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Self Introduction — Weinan Zhang

e Position
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e Education
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London (UCL), United Kingdom, 2012-2016

* B.Eng. on Computer Science from ACM Class 07 of
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Motivations of this Tutorial

* Deep learning methods get explosive growth in IR

* Lots of new works are implemented with deep neural
networks

* NeulR workshop in SIGIR, deep learning for
recommender system workshop in RecSys etc.

* But almost all attentions are put on discriminant
models, i.e., how to use deep networks to
implement a scoring function

fe(query, doc)

* We can definitely consider more on the generative
modeling side of IR



Motivations of this Tutorial

* Many classic generative models in IR

From document From query
to query to document
p(query|doc; 0) p(doc|query; 0)

* Compared with the scoring for a particular query-
doc pair, generative models provide relevance
distribution over documents

* We can definitely consider more on the generative
modeling side of IR
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Problem Definition of Data Generation

 Given a dataset D = {z}, build a model gg(x) of
the data distribution that fits the true one p(z)

* Traditional objective: maximum likelihood estimation (MLE)

maX — Z log CIH ad maX ]Exwp(x) [log C]Q( )]
xED

* Check whether a true data is with a high mass density of
the learned model



Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
true data is with a model-generated
high mass density data is considered as
of the learned true as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(= calculate p(x)



Generative Adversarial Nets (GANSs)

* What we really want

max By gy (z) [log p(2)]

* But we cannot directly calculate p(z)

* |dea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



__________

Generative Adversarial Nets (GANSs)
Real World —N

! '—>© Discriminator
Generator Q—»: :

e Discriminator tries to correctly distinguish the true data and
the fake model-generated data

0000000
0000000
0000000

_—— e ———

* Generator tries to generate high-quality data to fool
discriminator

* G & D can be implemented via neural networks

* |deally, when D cannot distinguish the true and generated
data, G nicely fits the true underlying data distribution



Generator Network

r=G(z;0)

* Must be differentiable
* No invertibility requirement
* Trainable for any size of z

* Can make x conditionally Gaussian given
z but need not do so
e e.g. Variational Auto-Encoder

* Popular implementation: multi-layer
perceptron

O



Discriminator Network

P(true|x) = D(x; ¢) D

e Can be implemented by any neural networks with a
probabilistic prediction

* For example
* Multi-layer perceptron with logistic output
* AlexNet etc.



Generator and Discriminator Nets

 Generator network
r=G(z;0)

* Must be differentiable
* No invertibility requirement

* Popular implementation: multi-layer perceptron @

 Discriminator network

P(real|x) = D(x; ¢) @

* Can be implemented by any neural networks with a
probabilistic prediction

* For example
* Multi-layer perceptron with logistic output
* AlexNet etc.



GAN: A Minimax Game
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Real World ; i
Generator e—»:
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min max J(G, D) max J(G, D)

G D D

The joint objective function

J(G, D) = Egropya(@) 108 D(@)] + Ezp ()]




Illustration of GANSs

Data
Discriminator :....... :,.,: ._A..
\“ e e Generator
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JO) = Eqpp (wyllog D(@)] + Eany.xllog(l — D(G(2)))



|deal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the true
and generated data //// \\\\




Training GANSs

for number of training iterations do Traini ng discriminator
for & steps do
e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for



Training GANSs

for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for Training generator

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for



Optimal Strategy for Discriminator

e Optimal D(x) for any Dalta

PeatatX) and polx) i Discriminator o
always ! .

D (Qj) — Pdata (Zl’) ) ‘ f‘::; -

pdata(ﬂj) —+ pG<gj)

Generator

e
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(] ' f
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* If this optimum is

allowed to reach, then L
we have an ideal
equilibrium for GAN. ,




Equilibrium for the Minimax Game

G: minmax J(G, D) D: max J(G, D)
G D D

J(G, D) = Egrpya(a) [10g D(T)] + Eznp.(2)[log(l — D(G(2)))]
= Ezpiua() 108 D(2)] + Egpg (2 [log(1 — D(x))]

Pdata() |

pdaa(x) + pi () |

pa(x) ]

pdata() + pa(x)

= —log(4) + KL (pdata pdata; pG) +KL (pGdeata; pG)

\ . 7 \ . v/

>0 >0

= Ewwpdata(w) [log

t Eapg () [log

pdata(fU )

= 0.5
pdaa(x) + pa(x)

* Anequilibriumis pg(x) = pdaa(z) and D(z) =




Equilibrium for the Minimax Game

G: minmax J(G, D) D: max J(G, D)
G D D
J(G, D) = Earpya(z) 108 D(x)] + Ezp.()llog(l — D(G(2)))]
= Exropgua(2) 108 D(®)] + Egop, () [log(1 — D(x))]
Pdata() |
pdaa(x) + pa () |
pa(x) ]

pdata(w) + pG(CE)
it 5 (P2 1 m2)

\ 7 \ 7
TV TV

>0 >0

p— Ewwpdata(w) [log

t Eapg (a) [log

mén JD) s something between mén Exrpyu, Pc(x)] and mén Ezpe [Pdata ()]

[Huszar, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]



GANSs for Continuous Data

1. Generation 4. Further gradient on generator

z = G(2:0) 0.J(G, D) oz
ox 00
2. Discrimination 3. Gradient on generated data
0J(G,D
P(real|xz) = D(x; ¢) (8567 )

* In order to take gradient on the generator parameter, x has
to be continuous

J(G, D) = Egropy(@)log D(@)] + Ezop, (2 [log(1 — D(G(2)))]

Generator ménmng(G,D) Discriminator mng(G, D)



Case Study of GANs for Continuous Data




Why study generative models?

* Excellent test of our ability to use high-dimensional,
complicated probability distributions

e Simulate possible futures for planning or simulated
RL

* Missing data
* Semi-supervised learning

* Multi-modal outputs
* Realistic generation tasks

(Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks)



High Resolution and Quality Images

* Progressive Growing of GANs

Two imaginary celebrities that were dreamed up by a random
number generator.

Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.



Single Image Super-Resolution

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

¥ l ) > —— )
.r,-.':”l ) -% : "

deep residual generative adversarial
[4 X upscaling] network optimized for a loss more
sensitive to human perception

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.



Image to Image Translation

Labels to Street Scene

output

output

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.



High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.



Grayscale Image Colorization

Ground Generated Colorization Ground Generated Colorization
Truth after Performing Grayscale Truth after Performing Grayscale

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.



GANSs for Continuous Data

 All above applications are based on (conditional)
GANs oriented to continuous data

* In information retrieval tasks, the data are mostly
discrete
* |IDs in collaborative filtering
e Text in web search
* Graph nodes and edges in social networks

* The original GANs framework cannot handle such
discrete data generation tasks



GANSs for Continuous Data

1. Generation 4. Further gradient on generator

r = G(z;0) 0J(G, D) Oz
ox 00
2. Discrimination 3. Gradient on generated data
D
P(real|z) = D(x; ¢) aj(é?G:c’ )

* The chain rule in step 4 enables the generative to

* Tune the parameter to slightly change the output x on the
direction of 0J(G, D)/0x from the discriminator

The loss function should be differentiable
8J(G, D) w.r.t. the instance x, which requires the
Ox data space is continuous

T—T—1:"



Discrete Data Generation

* How to generate discrete data?

e Sample the discrete token from a parametric
distribution

xr ~ P(x;0)

and optimize the distribution w.r.t. its parameter

 Compare to the original GAN for continuous data
e Sample a noise vector from a known distribution
* Map the noise vector to a data instance
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Two Kinds of Machine Learning

* Prediction

* Predict the desired output given the data (supervised
learning)

* Generate data instances (unsupervised learning)

* Decision Making

* Take actions based on a particular state in a dynamic
environment (reinforcement learning)
* to transit to new states
* to receive immediate reward
* to maximize the accumulative reward over time

* Learning from interaction



Reinforcement Learning

Agent

e At each step t, the agent
action * Receives observation O,
* Receives scalar reward R,
* Executes action A,

* The environment

* Receives action A,
reward | R, * Emits observation O,,,
* Emits scalar reward R,,,

e tincrements at
environment step

observation

A

< * Goal of RL: take actions to
maximize cumulative
rewards over time

Environment



Model-free Reinforcement Learning

* In realistic problems, we have no access to the environment
(model) and only observed some episodes

1)

(1) (1) (
Episode 1: 381) _% Sgl) B NN Sgl) %, Sél) e sg})
R(so)) R(s1)® R(s2)™
(2) (2) (2)
Episode 2: 382) _H 552) 4, 352) _% s:(f) e sgg)
R(s0)(®) R(s1)®2) R(s2)®

* Model-free RL is to directly learn value & policy from
experience without building an MDP

* Key steps: (1) estimate value function; (2) optimize policy



Value Function Estimation

* In RL, the value function is calculated by dynamic
programming

V7 (s) = E[R(s0) + yR(s1) + v*R(s2) + - - |50 = 5, 7]

* Now in model-free RL
* We cannot directly know the environment
* But we have a list of experiences to estimate the values

(1) (1) (1)
Episode 1: sél) N sgl) G SN sgl) %, sél) .. sg,})
R(So)(l) R(Sl)(l) R(32)(1)
(2) (2) (2)
Episode 2: 582) _ s§2) 4 552) %, s:(f) e sg,?)

R(So)(2) R(Sl)(2) R(Sz)(Q)



Monte-Carlo Methods

* Monte-Carlo methods are a broad class of
computational algorithms that rely on repeated
random sampling to obtain numerical results.

* Example, to calculate the circle’s surface

Circle Surface = Square Surface x

#points in circle

#points in total



Monte-Carlo Methods

* Go: to estimate the winning rate given the current state

Evaluation

0240240

-O1T 900 jﬂ

@

0@

\

50
5

-

-

1
@

47347

Win Rate(s)

#win simulation cases started from s

~ #simulation cases started from s in total




Monte-Carlo Value Estimation

e Goal: learn V™ from episodes of experience under policy it
() (3) (3)

N a N a N a . )
N NI NI
Rgz) Rgt) Réz)

e Recall that the return is the total discounted reward
Gy = Ri1+7YRi2+ ... 'Ry

* Recall that the value function is the expected return

V™(s) = E[R(s0) + YR(s1) + 7" R(s2) + - -0 = s, 7]

= E[Gt|st = s, 7]
1 o
~ ~ Z ng)  Sample N episodes from state s using policy rt
i=1 * Calculate the average of cumulative reward

* Monte-Carlo policy evaluation uses empirical mean return instead of expected
return



Parametric Policy

* We can parametrize the stochastic policy
mo(als) = P(als; 0)

e ¥is the parameters of the policy
* Generalize from seen states to unseen states
* We focus on model-free reinforcement learning



Policy Gradient

* For stochastic policy mg(a|s) = P(als;6)

* Intuition
 lower the probability of the action that leads to low value/reward
* higher the probability of the action that leads to high value/reward

* A 5-action example

1. Initialize 0 3. Update @ by policy gradient 5. Update U by policy gradient
Action Probability Action Probability Action Probability
0.25 0.4 0.4
0.2 0.3 0.3
0.15
0.1 0.2 0.2
IIIIIIIIIIII 11
0 0 0 .
Al A2 A3 Ad A5 Al A2 A3 Ad A5 Al A2 A3 A4 A5
2. Take action A2 4. Take action A3

Observe positive reward Observe negative reward



Policy Gradient in One-Step MDPs

* Consider a simple class of one-step MDPs
e Starting in state s ~ d(s)
* Terminating after one time-step with reward r_,

* Policy expected value

J(0) =Erylr] =) d(s) > mo(als)rsa

sesS aEA

0J(0) _ Zd(s) Z 87?9(a|3)rsa

0
sesS acA J




Likelihood Ratio

* Likelihood ratios exploit the following identity
Omg(als) 1 Omgl(als)
o0 mo(als) mg(als) 06

0lo
— el 20Tk

* Thus the policy’s expected value

J(O) =E,,[r] = Zd ZT(@CL| frsa

seS a€A
Omg(als)
Zd Z T'sq
seS acA oo L
1 |
= Zd Zﬂe als) 8 OgWQ(CL'S) Tsa!
seS acA .__________________'

0log mg(als) This can be approximated by sampling
o0 5@¢| state s from d(s) and action a from rt,

|



Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs

* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to

* start state objective J,, average reward objective J
value objective J,,,

g and average

e Theorem

* For any differentiable policy mg(al|s), for any of policy objective
functionJ=J,,J the policy gradient is

1’ “avR’ avV ’

8.J(6)
"o =l

0log mp(als)
00

Q™ (s,a)

Please refer to appendix of the slides for detailed proofs



Monte-Carlo Policy Gradient (REINFORCE)

* Update parameters by stochastic gradient ascent

* Using policy gradient theorem
* Using return G, as an unbiased sample of Q™ (s,a)

&810gﬁe(at|5t)

o0 G

Aet —

* REINFORCE Algorithm
Initialize & arbitrarily

for each epiSOde {81, a1,72,...,57-1, @T—lﬂ“T} ~ Tg
fort=1to T-1 do

do

9
end foer — 0 + azg, log me(ays) Gy

end for
return J



Puck World Example
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Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds

3e+07 6e+07 9e+07
[terations

Policy is trained using variant of MC policy gradient

1.2e+08

1.5e+08
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IR Theory: Relevancy is the Key

Web Search

sigir keyWO rd S

All Images News Videos Maps More

results (0.40 seconds)

7 — The 40th International ACM SIGIR Conference
A7/ ~

is is a SIGIR you don't want to miss: it's the 40th Intemational ACM
on Resealth and Development in Information Retrieval ...

Program at a Glance - Workshops - Call for Short Papers - Call for Full Papers

SIGIR 2016 | July 17-21 2016 — Pisa, Tuscany, Italy
sigir.org/sigir2016/ ~
SIGIR 2016 is over. Thanks to all who attended, we think it was a very erfbyable we

Full Papers - Workshops - Tutorials - Short Papers We b pa ges

SIGIR | Special Interest Group on Information Retrieval
sigirorg/ v

This special issue of SIGIR Forum marks the 40th anniversary of the ACM SIGIR C
showcasing papers selected for the ACM SIGIR Test of Time ...

SIGIR 2014

sigir.org/sigir2014/ ~

NOTICES: *SIGIR 2014 is over. The chairs would like to thank all those involved. W
seeing you at SIGIR 2015 +The Proceedings of SIGIR 2014 ...

SIGIR 2016 Tutorial: Counterfactual Evaluation and Learning
www.cs.cornell.edu/~adith/CfactSIGIR2016/ v

17 Jul 2016 - SIGIR 2016 Tutorial on Counterfactual Evaluation and Learning. for S
Recommendation and Ad Placement. Speakers: Thorsten ...

You visited this page.

Question Answers

Textual questions

Google Search ~ Search Engine Optimization (SEO)  Algorithms  +1 /'

How come nobody has figured out Google's

| mean, thousands of people work at Google, surely one of them has shared sfime secret

S = P P —— RS to figure
out what they're up to, there seems to be so much secrecy with Google and everywhere |
lock (within seo community forums, ... (more)

Follow 4 Comment Share Downvote

much time researching prospects?
'orce Chrome extension automatically does all the research and
data entry for y|

Download at ch gle.com o

Textual answers

Nick Rios, works at Cisco x.

3 Answers

[The only big mystery behind Google's algorithm is how they weigh page relevance to
Ipage authority. Also how they calculate authority. There is likely some language

lanalysis occurring as well. Google's real magic is their computational speed. How you

than replicating their actual page ranking.

Upvote | 15 Downvote Ask Follow-Ug v

Recommender Systems

/= User profile item

Roll over4 oom in

Frequently bought together

# This item: Galt Toys 6850008 Folding Trampoline £49.99
# Generic Pop-Up Tunnel £12.99
# Little Tikes First Slide (Blue/ Green) £27.00

Recommended item



The classic school: e Assume there is an
Generative Retrieval underlying stochastic
D->Q,Q->D generative process
between documents and

information needs
® @ Non-relevant D->Q
e D>

¢ e.g., From [Maron and Kuhns’
- Probabilistic Indexing, 60s] to
[Statistical language models of
text retrieval, 90s]

° Q_>D

Relevant e.g., [Robertson and Sparck
Relevant document Jones’s Binary Independence

or query distribution Model, 70s]




The modern school: e Discriminative models

Discriminative models learned from labeled
Q+D->R relevant judgements or
their proxies such as clicks

or ratings
® @ Non-relevant

@
e Consider documents and

® qgueries jointly as features
and predicts their relevancy
or rank order labels
Relevant * Q+D->R
e.g., [Learning to rank, 2000s]

[Neural information retrieval,
2010s]

Decision boundary
between relevance
and non-relevance



Two Schools IR Thinkings: Pro/Con

Generative models of IR Discriminative models of IR

* Pros: theoretically sound * Pros: learn a retrieval
and very successful in ranking function implicitly
modelling features from labeled data
e Cons: * Cons: lack a principled way
 Difficult in leveraging of
relevancy signals from e Obtaining useful features,
largely observable data, * Gathering helpful signals from

e.g., Iinks, clicks the-masswe unlabeled glajca
] . available, e.g., text statistics,
* Typically not trainable the collection distribution



How to take advantage of both
schools of thinking?

Generative models of IR Discriminative models of IR

e Learns to fit the relevance * Able to exploit the
distribution over unlabeled data selected by
documents via the signal the generative model to
from the discriminative achieve a better estimation
model for document ranking

e -> Trainable!! e ->automatically obtain

needed training data!!



IRGAN: A Minimax Game
for Information Retrieval

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and
Discriminative Information Retrieval Models. SIGIR 2017.



IRGAN: A Minimax Game Unifying
both Models

* Take advantage of both schools of thinking:

* The generative model learns to fit the relevance
distribution over documents pi.ue(d|q, ) via the signal
from the discriminative model.

* The discriminative model is able to exploit the unlabeled
data selected by the generative model to achieve a
better estimation f4(q, d) for document ranking.



IRGAN Formulation

Relevant Docs

________

g
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=
ﬁ
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—_— Discriminator

fo(q, d)

— (Generator

p@(d|Q7 T)

I
I
|
|
|
I
I
1

________

* Underlying true relevance distribution ptrue(d|q, ’r) depicts the user’s
relevance preference distribution over the candidate documents with respect to
his submitted query

* Training set: A set of samples from ptrue(d\q, ?“)

* Generative retrieval model pg(d|q,r)
* Goal: approximate the true relevance distribution

* Discriminative retrieval model f¢(q, d)
e Goal: distinguish between relevant documents and non-relevant documents



A Minimax Game Unifying Both Models

e Objective
N
JG*,D* _ m@jn m(?X Z (EdNPtrue(d|Qn,T) [log ] +
n=1
B ot loa(1 £ D(dlgn))] )

Ptrue(d|q, ) - Real World : 388!
333

—> Generator —> ::: !

pe(dlg,r) 000

______

Discriminator —

fo(q,d)

where po(dlq,7) = ijgﬁ;jij,)gl’))

D(d|q) = a(fs(d,q)) = 1 ixigg(b}j&?;))




Optimizing Generative Retrieval via Policy Gradient

e Optimizing Generative Retrieval

e Samples documents from the whole document set to

fool its opponent
N

0" = argmin }_ (Ed~ptme<d|qn,r> log o(fo(d, an))] +

n=1

By (alan ) 108(1 = o(f5(d, 30)))] )

N
= argmax » [Eyp, (dlg, Jlog(1 + exp(fo(d, gn))))
n=1 " g

-~

Generator as Policy denoted as J&(gn) Reward Term

 REINFORCE (with Advantage Function)

log(l + exp(f¢(d, Qn))) - Edfvpe(d|qn,r) [log(l + exp(f¢(d, Qn)))]

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. Policy gradient methods for reinforcement learning with
function approximation. In NIPS 2000.



IRGAN REINFORCE

e Likelihood ratio

VHJG(Qn)
— VQEdeg(dm ) [log(l + eXp(f¢(d7 Q’n)))]

—ZWPG ilan, ) log(1 + exp(fy(di, gn)))

= Zpe ilan, )V log pg(dilqn, r)log(1 + exp(fe(di; gn)))
= Edfvpe(d|qn,r) [Vglog po(dlgn,r)log(1 + exp(fs(d, qn)))]

K
1
~ % Z Vo 1ng9(dk|Qna ”I“) log(l + eXp(qu(dk, Qn)))
k=1



The Interplay between
Generative and Discriminative Retrieval

IRGAN
Poata(dlA.r)  Po(d]q.r)  Dy(d]q)

doc 1

doc 2

pdata(d|Q> T)
D.(dlg) =
oldla) = i) + poldlar)

doc 3

doc 4

doc 5

query q START



Extension to Pairwise Case

e It is common that the dataset is a set of ordered
document pairs for each query rather than a set of
relevant documents.

* Capture relative preference judgements
Ry, = {(di, d;)|d; > d;}

rather than absolute relevance judgements

* Generator would try to generate document pairs
that are similar to those in R,, , i.e., with the correct
ranking.



Experiments: Web Search

Table 1: Webpage ranking performance comparison on

* Dataset MQ2008-semi dataset, where = means significant improve-
« MQ-2008 (|V|I||I on- Mmentina Wilcoxon signed-rank test.

query Track in | P@3 | P@5 | P@10 | MAP
LETOR 4.0) MLE 0.1556 0.1295 0.1029 0.1604

, _ RankNet [3] 0.1619 0.1219 0.1010 0.1517

* Semi-su pe rvised LambdaRank [5] 0.1651 0.1352 0.1076 0.1658
|ea rning: a |a rge LambdaMf.\RT [4] 0.1368 0.1026 0.0846 0.1288

f of IRGAN-pointwise | 0.1714 0.1657 0.1257 | 0.1915

amount o IRGAN-pairwise | 0.2000 | 0.1676 01248 | 0.1816
unlabeled q u?ry' Impv-pointwise 3.82% 22.56%" 16.82%* 15.50%*
document pairs Impv-pairwise 21.14%" 23.96%" 15.98% 9.53%
NDCG@3 | NDCG@5 | NDCG@10 | MRR

° Ta S k | | | |

MLE 0.1893 0.1854 0.2054 0.3194

* Rank the RankNet [3] 0.1801 0.1709 0.1943 0.3062
: LambdaRank [5] 0.1926 0.1920 0.2093 0.3242
candidate LambdaMART [4] |  0.1573 0.1456 0.1627 0.2696
documents for IRGAN-pointwise |  0.2065 0.2225 0.2483 0.3508
each query IRGAN-pairwise 0.2148 0.2154 0.2380 0.3322
Impv-pointwise 7.22% 15.89% 18.63% 8.20%

Impv-pairwise 11.53% 12.19% 13.71% 2.47%
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nts: Web Search

Key Observations

* In both setting, IRGAN
consistently and
significantly (see the
table) outperforms other
algorithms

* Typically, when one
player (G or D) starts to
outperforms the
baseline discriminative
model, the other player
(D or G) would get worse
than the baseline



Experiments: Item Recommendation

IRGAN-pointwise Generator Performance on Movielens

IRGAN-pointwise Generator Performance on Netflix

| P@3 | P@5 | P@10 | MAP | P@3 | P@5 | P@10 | MAP
MLE 0.3369 0.3013 0.2559 0.2005  MLE 0.2941 0.2945 0.2777 0.0957
BPR [35] 0.3289 0.3044 0.2656 0.2009  BPR[35] 0.3040 0.2933 0.2774 0.0935
LambdaFM [45] 0.3845 0.3474 0.2967 0.2222  LambdaFM [45] 0.3901 0.3790 0.3489 0.1672
IRGAN-pointwise |  0.4072 0.3750 0.3140 0.2418  IRGAN-pointwise |  0.4456 0.4335 0.3923 0.1720
Impv-pointwise | 5.90%* | 7.94%* | 583%" | 882%"  Impv-pointwise | 14.23%% | 1438%" | 12.44%° | 2.87%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3461 0.3236 0.3017 05264  MLE 0.3032 0.3011 0.2878 0.5085
BPR [35] 0.3410 0.3245 0.3076 0.5290  BPR[35] 0.3077 0.2993 0.2866 0.5040
LambdaFM [45] 0.3986 0.3749 0.3518 0.5797  LambdaFM [45] 0.3942 0.3854 0.3624 0.5857
IRGAN-pointwise 0.4222 0.4009 0.3723 0.6082 IRGAN-pointwise 0.4498 0.4404 0.4097 0.6371
Impv-pointwise |  5.92%" 6.94%* 5.83%" 4.92%* Impv-pointwise | 14.10%* | 14.27%° | 13.05%" | 8.78%"
* Datasets * Key observations

* Movielens: 943 users, 1.7k items,

100k ratings

* Netflix: 480k users, 17k items, 100M

ratings

e Task: Top-N item recommendation
with implicit feedback data

e Although generative retrieval
model in IRGAN does not
explicitly learn to optimize the
final ranking measures like what
LambdaFM does, it still
performs consistently better
than LambdaFM.



Experiments: ltem Recommendation
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Key observations

A reliable training
process where IRGAN
owns a consistent
superiority over
LambdaFM from the
beginning of
adversarial training

The empirically optimal
sampling temperature is
0.2 butnotOor1l

Such a low temperature
means optimal ranking
is achieved by setting a
low (but not none)
randomness



Experiments: Question Answering

0.7 0.64
Table 5: The Precision@1 of InsuranceQA. | | A
' 0.63 Lot ........... ....... ..........
| test-1 | test-2 © 05 ® U VA
& 5 0.62 ﬁ,ﬁ,ﬁﬁ, 4,,,*,,,,,,
QA-CNN [9] 0.6133 | 0.5689 B @ iR
LambdaCNN [9,49] | 0.6183 | 0.5838 &’ 031 g AV Ay A s et R S
IRGAN-paiI'WiSQ 06383 05978 02— C;enerato:rof IRGAN st 0.60 ___________ — ‘Discrimi:natorof:IRGAN |
— - LambdaCNN ; : : i | - - LambdaCNN
Impv-pairwise | 3.23%* | 2.74% %55 10 15 20 25 30 o 5 10 15 20 25 30
Generator Training Epoch Discriminator Training Epoch
G and D performance on InsuranceQA
* InsuranceQA Dataset * Key observations
e 12k question answer pairs * Discriminator performs better

than LambdaCNN while the
generator tends to perform less
e Task effectively

* The reason could be the high
sparsity of the answer
distribution

* Two test sets with 1.8k pairs

* rank top-1 answer for each
guestion



Different generator and discriminator
scoring functions

b)

Generator of IRGAN-pointwise Discriminator of IRGAN-pairwise

oo | o I
T e B

oo R | oo I

0.12 0.13 0.14 0.15 0.16 0.17 0.12 0.13 0.14 0.15 0.16 0.17
Precision@5 Precision@5

For IRGAN-pointwise, the NN implemented generator works be
better than its linear version, while the NN implemented
discriminator may not offer a good guidance if the generator has
lower model complexity (i.e. linear).

For IRGAN-pairwise, the NN implemented discriminator outperforms
its linear version. The one used for \oerforming the prediction should
be implemented with a capacity at least as high as its opponent.



On the Equilibrium of Query
Reformulation and
Document Retrieval

Shihao Zou, Guanyu Tao, Jun Wang, Weinan Zhang, Dell Zhang. On
the Equilibrium of Query Reformulation and Document Retrieval.

ICTIR 2018.



Two Challenges in Information Retrieval

O @ O O «——— irrelevant doc
query ————— A O P O O P

relevant doc —@) e O
* How to formulate optimal  Query reformulation
gueries to best represent the (relevance feedback)

user’s information needs

* Relevance estimation for the
document given the information
need representation

e Retrieval model

Equilibrium theory of information retrieval
* astrategic game, simultaneously played between the
qguery reformulation and the retrieval model



Intultion

* The query reformulation would refine the query
that is the best response to the actions from the
given retrieval model player

* The retrieval model would also need to produce
the document relevant estimation that is the best
response toward the formulated query

 Two components cooperate to achieve the best
response to each other. (an equilibrium state)



Definition: IR Strategic Game

« P={0,M} is the set of two players: query formulator
Q and retrieval model M.
* §=§,xS§, are finite sets of strategies available to
player Q and M.
* 5, € SQ denotes whether the term is included in
the query or not.
« s € §,, denotes relevance estimation by retrieval
model.
* An equilibrium state: both players have no incentive
to change their strategies s; and S; , SO that

Up (Sq’Sm)qu (Sq’SM)’ Uy (SQ’SM)zuM (Sq’Sm)



IR Game with Relevance Feedback

e Common utility

u(sq.Sm) = |D| > logp(r = 1]d;.q; ¢)-
4 d; €D,
|D ., logp(r = 0ldi.q: ).
* A toy example di€Dn

Table 1: An IR game example (relevance feedback).

d, dy Sm1 = Sm2 =
nl1 o (1,0.2} | {0.2,1}
t 1 sq1 = {1, 0} -1.0064 | -1.2913
, 0 sq2 = {0.1} 14913 | -2.0064
(a) Corpus

(b) Utilities of Strategies

p(r=1|di.q:¢) = Sigl’l’lﬂid(fﬁlqldn + ff)ﬂzdz‘z)

u(sq.sm) = logp(r = 1[dy. q: ¢) + log p(r = 0[d2.q; )

= —1.0064




IR Game with Pseudo Relevance Feedback

e Utility for retrieval model

1 .
um(sq:sm) = D Dgp(r = 1|di. q: ¢)—
r

> logp(r = 0ldi.q: ).
d;eD,

|Dn

 Utility for query reformulation

1
uQ(sq.sm) = Dol log p(r = 1]dj. q; ¢)—
k It makes the two utilities different

> logp(r = 0ldi.q: ).
d; €Dy

1
N — | Dy




IR Game with Pseudo Relevance Feedback

* A toy example

Table 2: An IR game example (pseudo relevance feedback).

Sm1 = Sm2 =
d d {1,0.2} {0.2, 1}
Hhl1 0 sqg1 = {1.0} (-1.0064. (-1.2913,
| 0 1 -1.0064) -1.2913)
rl 1 0 sg2 = {0. 1} (-1.2913, (-1.0064,
-1.4913) -2.0064)
(a) Corpus (b) Utilities of Strategies (up. upr)

uQ(sq2-smi1) = logp(r = 1|d2, q; ¢) + log p(r = 0|dy.q; ¢p) = —1.2913
upm(sqz.smi1) = log p(r = 1|d1, q; ¢) + log p(r = 0[d2.q; ¢) = —1.4913



Three Training Schemes

e Case 1: Query lteration (Conv-Q)

1
8; = sigmoid(q' d;) = =
I +e™™ ™
> = D] Z(l—ﬁ’f)df-lDl Z 0id;
. q r d; EDr n d; EDH

e Case 2: Retrieval Model Iteration (Conv-M) L
Logistic
K regression of K

. : (ARN\T Lk
0i = sigmoid . wi - (dj) q ) weight schemes

k=1

TP b _ ] > (=6 -(d)Tq" -
rawk |DF| dj'EDr :

Z 0; - (d';-c)qu

|D”| diEDn

* Case 3: Equilibrium of the Query and Retrieval Model.



Experiment: text retrieval

 Utility in each iteration of training stage

Utility (relevance feedback) Le Utility (pseudo relevance feedback)
—#— Conv-Q(VSM) —«— Conv-Q{VSM)
| Conv-Q(TFIDF) 1.4 1 Conv-Q(TFIDF)
—¥— Conv-Q(BM25) —¥— Conv-Q{BM25)
—— Conv-M 129 _ Conv-M
1 —« Equil-Q&M 104 —¢ Equil-Q&M(Q)
' —+— Equil-Q&M{M)
0.8 ‘
0.6 -
0.4 -
0.2 -
0.0 -
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
lterations lterations

Observations

* lterations on Q, M and both parts help improve the
ranking performance (utility) in training stage



Text retrieval results on RF

Table 3: Text retrieval results (relevance feedback).

Algorithm NDCG@10 NDCG@30 MRR
mean=+std mean+std mean=+std
Naive (V5M) 0.395:0.37 0.412+0.32 0.352+0.38
Naive (TFIDF) 0.511+0.37 0.528+0.33 0.478x0.41
Naive (BM25) 0.504+0.37 0.517+0.32 0.459+0.40
Rocchio (VSM) 0.407+0.37 0.422+0.32 0.367+0.39
Rocchio (TFIDF) 0.519+0.38 0.536+0.33 0.487+0.41
Rocchio (BM25) 0.518+0.37 0.531+0.32 0.474+0.40
Conv-Q (V5M) 0.527+0.34 0.554+0.29 0.475+0.39
Conv-Q (TFIDF) 0.568+0.35 0.571+0.30 0.530+0.40
Conv-Q (BM25) 0.563+0.35 0.573+0.30 0.522+0.40
Conv-M 0.463+0.38 0.452+0.34 0.431x0.41
Equil-Q&M 0.583+0.34  0.601°+0.29 0.537+0.39
| P@10 P@30 MAP
Naive (V5M) 0.152+0.18 0.134+0.15 0.184+0.16
Naive (TFIDF) 0.221+0.22 0.179+0.18 0.263+0.23
Naive (BM25) 0.217+0.22 0.178+0.17 0.262+0.23
Rocchio (VSM) 0.162+0.18 0.139+0.15 0.193+0.17
Rocchio (TFIDF) 0.225+0.22 0.186+0.18 0.276+0.24
Rocchio (BM25) 0.221+0.21 0.183+0.17 0.272+0.24
Conv-Q (V5M) 0.245+0.23 0.212+0.18 0.288+0.22
Conv-Q (TFIDF) 0.264+0.24 0.220+0.20 0.317+0.25
Conv-Q (BM25) 0.265+0.24 0.214+0.20 0.319+0.25
Conv-M 0.190+0.20 0.160+0.16 0.238+0.21
Equil-Q&M 0.278"+0.24  0.233+0.19 0.331"+0.25

* Datasets
e TREC disks 4 & 5

e Task

* Text retrieval ranking

* Key observations

e Conv-Q shows better
performance than Naive
and Rocchio

e Conv-M fails to perform
well on test set although
well on training set

* The best Equil-Q&M
indicates the effectiveness
of coordinating Q and M



Text retrieval results on PRF

Table 4: Text retrieval results (pseudo relevance feedback)

Algorithm NDCG@10 NDCG@30 MRR
mean-+std mean+std mean=+std
Naive (VSM) 0.32320.35 0.378+0.29 0.287+0.36
Naive (TFIDF) 0.463+0.36 0.493+0.30 0.413+0.38
Naive (BM25) 0.439+0.35 0.474+0.28 0.375+0.36
Rocchio (VSM) 0.323x0.36 0.378+0.30 0.285+0.36
Rocchio (TFIDF) 0.460+0.36 0.493+0.30 0.410+0.38
Rocchio (BM25) 0.444+0.35 0.477+0.29 0.386+0.37
Conv-Q (V5M) 0.245+0.34 0.308+0.29 0.228+0.33
Conv-Q (TFIDF) 0.428+0.37 0.465+0.32 0.370+0.38
Conv-Q (BM25) 0.400+0.36 0.456+0.30 0.349+0.36
Conv-M 0.415+0.37 0.447+0.31 0.367+0.385
Equil-Q&M 0.469+0.37 0.499+0.31 0.397+0.38
| P@io P@30 MAP

Naive (VSM) 0.112+0.14 0.100+0.12 0.158+0.15
Naive (TFIDF) 0.200+0.21 0.142+0.14 0.239+0.22
Naive (BM25) 0.187+0.20 0.137+0.13 0.226+0.21
Rocchio (VSM) 0.108+0.14 0.100x0.12 0.157+0.16
Rocchio (TFIDF) | 0.207+0.22 0.145+0.14 0.244+0.23
Rocchio (BM25) 0.193+0.20 0.141+0.14 0.233+0.22
Conv-Q (VSM) 0.095+0.15 0.090x0.12 0.138+0.15
Conv-Q (TFIDF) | 0.211+0.23 0.150x0.16 0.253+0.24
Conv-Q (BM25) 0.180+0.21 0.143+0.15 0.234+0.23
Conv-M 0.154+0.17 0.122+0.13 0.205+0.19
Equil-Q&M 0.223+0.16 0.1627=0.16 0.257+0.23

* Datasets
e TREC disks 4 & 5

e Task

* Text retrieval ranking

* Key observations

e Conv-Q shows worse
performance than Naive
and Rocchio

* One cannot fully rely on the
top-k retrieved docs from
the model to update the

query
* The best Equil-Q&M
indicates the coordination
of Q and M help overcome
the issue of bad query
representation



Summary of this Part

 Study the interactions between query
reformulation and retrieval model relevance
estimation in a game theoretical framework

* The performance of an equilibrium solution from
relevance feedback consistently outperforms
others separate cases.

* We shall perform a deeper investigation of the
utility design in the proposed normal-form IR



Beyond Single Discrete Token

* Sequence
: Text Oo—0O—C0C-—-0

- Musc score p(wordy|word;__1;6)
 DNA/RNA pieces

* Graph
* Social network
* User-item shopping behavior
* Paper citations

p(node, |node,,, neighbor(m); #)



Content of this Tutorial

Introduction to Generative Adversarial Nets
Reinforcement Learning

GANs for Information Retrieval

GANs for Text Generation

GANs for Graph/Network Learning

Beyond GANSs, Cooperative Training

N o U A wWheE

Future Perspective and Summarization



RNN based Language Model

* Trained via maximum likelihood estimation (MLE)

meax Exrvp(a:) [lOg do (.CI?)]

Output I really love machinelearning <END>

O O O O O
OO0
9900

LSTM I"xh__x’ M )_"H,_ H,ﬁj

éé@ééé

Input <START> really love machinelearning

LSTM



Exposure Bias

* Exposure bias
* In MLE, the prefix is always from the real data

p(learning|I really love machine)

* But during generation, the prefix is the output of the
model, which could never occur in real data

00,
3

p(?|I machine love really)

Expert
 Similar in self-driving car training
* Problem of behavior cloning

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.



Exposure Bias & Schedule Sampling

e Schedule sampling

* With a decaying probability, use the prefix from real
data, otherwise use the generated prefix to train

Sample Sample

Loss Loss ‘ ’ |
E tial d
A rd 0.9 Inversgzrgenr:c:?d dgggz ]
y(t-1) y(t) 0.8 - Linear decay ]
0.7 + B
ht) | het1) h) | o2 |
§ ) 1 0.4 | 1
X P 0.3 1
0.2 B
A

VAS i :

\ 0 | [ I I

sampled y(t-2) true y(t-2) true y(t-1)

o

200 400 600 800 1000

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.



Professor Forcing

* Professor Forcing reduces the gap between teacher
forcing and free generation procedures.

Teacher
Forcing

- _ h
........ I
| Y |
_______________ — &% — & - Distributions of
Share - hidden states are : S
L arameter . forced to be close : | Discriminator
- parameters - to each other by -
....... SRR r— _— = =T = —] : Discriminator :
| | A )
"""" > |
- _ =] _J
Free
Running

Lamb, Alex M., et al. "Professor forcing: A new algorithm for training recurrent networks.” NIPS 2016.



REVIEW

Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
true data is with a model-generated
high mass density data is considered as
of the learned true as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(w calculate p(x)



Generative Adversarial Nets (GANSs)

* What we really want

max By gy (z) [log p(2)]

* But we cannot directly calculate p(z)

* |dea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



SeqGAN:

Sequence Generation via
GANs with Policy Gradient

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. AAAI 2017.]

https://arxiv.org/abs/1609.05473



G Next MC D

action search
True data

Real World

G Generate

0000
0000
»>0-0-0-0-0
0000
0000

. S

Policy Gradient

* Generator is a reinforcement learning policy Gg(y¢|Y1.4—1)
of generating a sequence

* decide the next word to generate given the previous ones

* Discriminator provides the reward (i.e. the probability
of being true data) D,(Y{’r) for the whole sequence



Sequence Generator

* Objective: to maximize the expected reward

J(0) =Byi, nGo[ D GoelYie-1) - QD) (Yiit—1,9s)]
Yyt €Y

 State-action value function Qgi(s, a) is the expected
accumulative reward that

 Start from state s (G Next MG D

) _ action search
* Taking action a Reward
* And following policy G until the end ~_Stte_ Reward

Reward

* Reward is only on completed
sequence (no immediate reward) T

Qgi (a = Yr,S = Yl:T—l) — ng(Yl:T) Policy Gradient

Reward




State-Action Value Setting

* Reward is only on completed sequence
* No immediate reward
* Then the last-step state-action value

Q%@(a =yr,s = Y1.7—1) = Dg(Y1.7)
G Next MC D

* For intermediate state-action value e SR

* Use Monte Carlo search to estimate _S%*_ —

Yir,..., Y2} = MCY (Y. N) Reward

* Following a roll-out policy Gy T Revlvard
ngs (s = Yiu_1,a = y;) = Policy Gradient

N S 1 Dy(Yp), Y € MCY (Y43 N) for t<T
Dy (Y1:t) for t=1T



Training Sequence Generator

* Policy gradient (REINFORCE)

VoJ(0) =Eyi,,_1~Gy| Z VoGo(ys|Y1:1-1) - Qgi(ylzt—layt)]
Yyt €Y
T
= i VoGo(ys|Y1:4-1) - Qg‘) (let—layt)
T ¢

t=1 g€y

T
1
== > > GowilYi:e-1) Vo log Go(us|Yiie-1) - QT (Yis—1, ut)
t=1 yr €y

1

T
-7 Z EyinGo(yevie—1) [ Vo 108 Go(ye|Y1:6-1) - Qgi (Yie—1,t)]
t=1

0 — 0+ apVeJ(0)

Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.



Sequence Generator Model

incredibly ?

IS
Softmax sampling
over vocabulary @ @ @

1 ! f

é N\ ( N ™

—»> —%) —® X > —>

A IIIGIta%hI A

B e e > >
\l , . \| J
&) ) &

Shanghai is incredibly

* RNN with LSTM cells for Gg(y¢|Y1.t—-1)

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735-1780.]



Training Sequence Discriminator

* Objective: standard binary classification

min —Eyp,... [log Dg(Y')] — Ey g, |log(1l — Dg(Y))]

¢

* A CNN implementation

Feature Map Max over Time
oling

You
are
not

listening
to
a
word
I
am

typing

Word Embedding

Po

Concat.

Multi-layer Perceptron

[T ]]

HEEN

Logistic
@ Qutput

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]



Overall Algorithm

Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy Gg; roll-out policy G's; discriminator
D,; a sequence dataset S = {X1.7}
1: Initialize G, Dy with random weights 6, ¢.
2: Pre-train Gy using MLE on §
3: B+ 0
4: Generate negative samples using G for training D,
5: Pre-train D, via minimizing the cross entropy

6: repeat
7. for g-steps do
8: Generate a sequence Y1.7 = (y1,...,y1) ~ Go
9: fortin1:7T do
10: Compute Q(a = yi; s = Y1.4—1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8)
13:  end for
14:  for d-steps do
15: Use current Gy to generate negative examples and com-
bine with given positive examples S
16: Train discriminator Dy, for k£ epochs by Eq. (5)
17:  end for
18: B+« 0

19: until SeqGAN converges




Experiments on

Synthetic Data

* Evaluation measure with Oracle  maxE,. ., ()[logp(x)]
T 0
NLLoracle — _EY:[:TNG@ Z log Goracle (yt|Y1:t—1)}
=1
Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
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Experiments on Real-World Data

* Chinese poem generation

Algorithm | Human score | p-value | BLEU-2 | p-value
MLE 0.4165 0.6670 6
SeqGAN 0.5356 0.0034 1 67389 | <10
Real data 0.6011 0.746

* Obama political speech text generation

Algorithm | BLEU-3 | p-value | BLEU-4 | p-value

MLE | 0519 o | 0416
SeqGAN | 0.556 ‘< 10 0.427 ‘000014

* Midi music generation
Algorithm | BLEU-4 | p-value | MSE | p-value

MLE | 09210 2238
SeqGAN | 0.9406 ‘ <107 2062 ‘ 0.00034




Experiments on Real-World Data

* Chinese poem generation

mMfEEXE, RBEAF. LIREEE, ERESH.

KPEERER, B HEWAT. LEETARIR, ER—TE

PAXAT e, PUSSES. UE= e, SRS,

Human Machine



Obama Speech Text Generation

* When he was told of this

extraordinary honor that he
was the most trusted man in
America

But we also remember and
celebrate the journalism that
Walter practiced -- a standard
of honesty and integrity and
responsibility to which so many
of you have committed your
careers. It's a standard that's a
little bit harder to find today

| am honored to be here to pay
tribute to the life and times of
the man who chronicled our
time.

Human

* i stood here today i have one

and most important thing that
not on violence throughout the
horizon is OTHERS american
fire and OTHERS but we need
you are a strong source

for this business leadership will
remember now i cant afford to
start with just the way our
european support for the right
thing to protect those american
story from the world and

i want to acknowledge you
were going to be an
outstandingdjob times for
student medical education and
warm the republicans who like
my times if he said is that
brought the

Machine



L eakGAN:

ong Text Generation via
Adversarial Training with
Leaked Information

 [Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang.

Long Text Generation via Adversarial Training with Leaked Information.

AAAI 2018.]
https://arxiv.org/abs/1709.08624




Main Weakness in SeqGAN

* Huge search space: If the vocabulary is 5000, and
the text length is 10, the text’s number will be up
to 5000'Y, it needs many attempts to find a good

policy.

&(D Text
QO Signal fabout
quality
Student Teacher

(Generator) (Discriminator)



Main Weakness in SeqGAN

* Huge search space: If the vocabulary is 5000, and
the text length is 10, the text’s number will be up
to 5000'Y, it needs many attempts to find a good

policy.

&@ Rewrite Text

ofeel e New signal
about quality
Student Teacher
(Generator) (Discriminator)

Generator only knows if the text is good, but don’t know why!
Huge search cost!
We need more guide information.



Recall the 2 Players” Tasks

* Generator task: generate high quality’s text to fool
discriminator.

 Discriminator task: identify the text according to
the feature extracted by itself

Feature Map Max over Time

Pooling
Word Embedding
= i Concat. Multi-layer Perceptron
You ; ] ]
are : ] ]
not : ] ] Logistic
listening - ] Output
a . > >
word ] ||
| : P ]
am : - ]
typing (o — Feature




The criterion is the feature in the
discriminator

Feature Map Max over Time
ooooooo

Word Embedding
: : Concat. Multi-layer Perceptron

You i _
are .E
not Logistic
listening : P Output
to
a : . .
word .E
| |
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Information Leaking

* If this criterion is leaked to Generator just like
student knows the scoring rules. It may reduce the
search space.

O

A

. [
scoring rules

db

R° -




How to utilize the feature from D?

* If G wants to fool D, G needs to
generate more realistic text to obtain
more realistic feature.

Current place in

* During the generation, we know feature space
current feature, we need to choose Goal \ _——mmem
next action to obtain more realistic e
feature, i.e., we need to find a higher /" High reward
reward region in feature space. \ region .

—
i

 We refer the hierarchical reinforcement
learning like FeUdal Networks
[Vezhnevets 2017]

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.



LeakGAN Framework

o A
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Manager: receives current text’s feature from D, outputs a direction of higher

reward feature as the sub-goal vector for Worker.
Worker: produces primitive actions to follow the sub-goals from Manager.



Training of Hierarchical RL

* Manager: a high-level transition policy gradient

TP (fevcl £1) = p(Frrel frr 91(Om))

what new feature will
be after taking action
and transit c steps

* Use Mises-Fisher distribution to implement
p(ft—l—c‘fm gt(em)) X edCOS(ftJrc_ft’ 9¢(6m))

* Policy gradient (with likelihood ratio)
vg?:gt i _Q}_(Stvgt)vé’mdcos (ft—H: — [t gt(em))

* Value function by Monte Carlo search

QF(st,9t) = Q(F(st),9t) = Q(ft, 9t) = E[ri]

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.



Training of Hierarchical RL

* For Generator, we train the Manager and Worker
independently to let them focus on their own task

 Worker is trained

V(?w Est_ 1 NG

ike SeqGAN

:ZrtIW(:cﬂSt_l; Hw)}

Lt

:ESt—lNG,xtNW(ai‘t|St—1) [Ttlvew log W(CEt ‘ St—1; Hw)]

where the intrinsic reward is
rtI — % 2521 dcos(ft — ft—z’; gt—i)

to follow the Manager’s sub-goal.
* The training method is REINFORCE.



Experiment

* Synthetic ¢

Negative log likelihood
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Table 1: The over NLL performance on synthetic data.

Length | MLE | SeqGAN | RankGAN | LeakGAN | Real | p-value
20 9.038 8.736 8.247 7.038 [5750 | <107°
40 10411 | 10.310 9.958 7.191 4.071 | <10°°
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Experiment

* BLEU Scores in real data
e Short Text (Chinese Poem):
Table 4: The BLEU performance on Chinese Poems.

Method | SeqGAN | RankGAN | LeakGAN
BLEU-2 0.738 0.812 0.881
p-value | <107° | <107° -

* Middle Text (Image COCO):

Table 3: BLEU scores on COCO Image Captions.

Method | SeqGAN | RankGAN | LeakGAN | p-value
BLEU-2 0.831 0.850 0.950 < 107°
BLEU-3 | 0.642 0.672 0.880 <107
BLEU-4 0.521 0.557 0.778 < 10~
BLEU-5 0.427 0.544 0.686 = T ™




Experiment

* BLEU Scores
* Long Text (EMNLP WMT 2017):
Table 2: BLEU scores performance on EMNLP2017 WMT.

Method | SeqGAN | RankGAN | LeakGAN | p-value
BLEU-2 | 0.8590 0.778 0.956 <107°
BLEU-3 | 0.6015 0.478 0.819 < 10—
BLEU-4 | 0.4541 0.411 0.627 < 10~
BLEU-5 | 0.4498 0.463 0.498 < 10®

* Human study

Table 5: Turing test results for in real-world experiments.

Dataset SeqGAN | LeakGAN | Ground Truth | p-value

WMT News 0.236 0.554 0.651 <10~°

COCO 0.405 0.574 0.675 oz 10"




Experiment

 BLEU improvements over baseline models

1.0 L ¥ i T L} '!'
=@= BLEU-3 over SeqGAN =@ ' BLEU-3 over RankGAN
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Figure 3: The illustration of BLEU improvement change
along with the generated text length on WMT News.

The curves clearly show that LeakGAN vyields larger performance gain over the baselines
when the generated sentences are longer.



Image COCO Caption Text Generation

* Awoman holding an * Several metal balls sit in
umbrella while standing the S?Hd near a group of
against a sidewalk. people.

. . * A phone lies on the
The bathroom is clean and counter in a modern

ready for us to use. kitchen.
LeakGAN Human

e Asilver stove, the
refrigerator, sitting in a
kitchen.

* A cat and a woman
standing b¥ two computer
preparing food.

SeqGAN



WMT 2017 News Text Generation

* I’also think that’s a good place for us, * This is a part of the population that is
I'm sure thatfthls would be a 300?] notorious for its lack of interest in
opportunity tor me to get in touch. actually showing up when the political

* That’ s why we’re the most important process takes place.
people for the African American . : :
community and we’ve made a good * | was paid far too little to pick up a
response. dead off of the ground and put it back

in the box.
LeakGAN Human

* “I think you should really really
leave for because we hadn’t
been busy, where it goes to
one,” he wrote.

* We are thinking about 40, 000
and jobs in what is wrong in the
coming and you know.

SeqGAN



Explanation

* Feature Traces

Start token — ® v - SeqGAN
80 -'.X.‘\f*.&. X% RankGAN

o | : |ooo Real Data
~ L} K X i |@®@ LeakGAN

Real data —, Sk

region ]
—20 0 20 40 60
PCA-x

Figure 4: Feature traces during the generation (SeqGAN,
RankGAN and LeakGAN) and features of completed real
data (all compressed to 2-dim by PCA) on WMT News.
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The rise of the 6th
subscore indicates the
token is usually followed
by a long suffix.
The rise of the 5th
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structural token, e.g.,
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Figure 5: Illustration of WORKER and MANAGER’s be-
haviors during a generation. (Dimension-wise Product of
Worker and Manager)



wGeek. AL A Text Generation Model
gen Benchmarking Platform

* Motivations * Platform advantages
* Make comparison * Highly decoupled
transparent and

* Easy to Run

comprehensive
* Customization

* Open source all models

©utils part ©© model part
Metrics 4_,_ Generator < ‘
Oracle GAN Dataloader Reward
Discriminator T

Yaoming Zhu, Weinan Zhang et al. Texygen: A Benchmarking Platform for Text Generation Models. SIGIR 2018.
https://github.com/geek-ai/Texygen



Evaluation Metrics

* Document Similarity
* BLEU score [Papineni et al., 2002]

e Counting of matching n-grams between two sentences
* Penalty for shorter sentence
* Clip the duplicated n-grams

* Average the BLEU score over all true sentences and the
generated one

e Self-BLEU
* Measure the BLEU score among the generated sentences
* The lower Self-BLEU means the higher diversity



Evaluation Metrics

e Likelihood-based measurement
 NLL-oracle [Yu et al., 2017]

e Use a randomly initialized LSTM as the true model, aka, oracle
* Minimize the exact opposite average negative log-likelihood

T
NLLoracle = _EY1:T~G9 [Z log(Gorade(yt‘leit—l))}
t=1

e NLL-test

 Dual to NLL-oracle

* Evaluating the model’s capacity to fit real test data
T

NLLtest = —Eypo6 [Z log(GG(yt’YLt—l))]
t=1



Texygen Code

» User friendly APIs for

* 7 models: SeqGAN, MaliGAN, RankGAN, LeakGAN, GSGAN, TextGAN,
MLE

* 6 Metrics: BLEU, EmbSim, NLL-oracle, NLL-test, Self-BLEU, CFG
* 3 Training methods: Oracle, CFG, Real data

#usage:
python main.py —-g <GAN type> -t <training method> -d <data location=
-g <GAN type>
specify the GAN type in the experiment
<GAN type> = seggan | maligan | rankgan | leakgan | gsgan | textgan | mle
-t <training method>
specify the traning method in the experiment
<training method> = oracle | cfg | real
default is oracle
-d <data location=
use user's own dataset
only avaiable with real data training
default is 'data/image_coco.txt'



Texygen Experiments

GAN type — seqgan -~ rankgan = maligan ~+ leakgan -= textgan -+ gsgan
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Key observations

 MaliGAN and GSGAN diverges
* LeakGAN and TextGAN performs better than SeqGAN/RankGAN, could be led
by mode collapse, i.e. low diversity



Texygen Experiments

GAN type — seqgan -~ rankgan -=-maligan -+ leakgan -= textgan -* gsgan
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Key observations
* LeakGAN performs better than any other compared models on both NLL-test
and NLL-oracle metrics



Texygen Experiments

Table 2: BLEU score on test data

BLEU-2 | BLEU-3 | BLEU-4 | BLEU-5
SeqGAN 0.917 0.747 0.530 0.348
MaliGAN 0.887 0.697 0.482 0.312

RankGAN | 0.937 0.799 0.601 0.414
LeakGAN (0.926 0.816 0.660 0.470
TextGAN 0.650 0.645 0.569 0.523

MLE 0.921 0.763 0.570 0.392

Table 3: Self-BLEU score

BLEU-2 | BLEU-3 | BLEU-4 | BLEU-5
SeqGAN 0.950 0.840 0.670 0.489
MaliGAN 0.918 0.781 0.606 0.437
RankGAN 0.959 0.882 0.762 0.618
LeakGAN 0.966 0.913 0.848 0.780
TextGAN (0.942 0.931 0.804 0.746
MLE 0.916 0.769 0.583 0.408

Dataset: Image COCO
Key observations: LeakGAN provides the best BLEU performance but
sacrifice on diversity



Summary of this Part

* It looks promising to leverage RL to train GANSs for
discrete data

* SeqGAN models the sequence generation as a
sequential decision making process
* Next token generation as an RL policy
e Discriminator provides final reward signals

* LeakGAN addresses two problems of SeqGAN
* Scalar reward is non-informative
* Final reward is sparse
* By leaking information from D to G with HRL

* More models are developed, which need fair
comparison



Content of this Tutorial

Introduction to Generative Adversarial Nets
Reinforcement Learning

GANs for Information Retrieval

GANs for Text Generation

GANSs for Graph/Network Learning

Beyond GANSs, Cooperative Training

N o U s W NPE

Future Perspective and Summarization



Beyond Single Discrete Token

* Sequence
: Text Oo—0O—C0C-—-0

- Musc score p(wordy|word;__1;6)
 DNA/RNA pieces

* Graph
* Social network
* User-item shopping behavior
* Paper citations

p(node, |node,,, neighbor(m); #)



GraphGAN:

Graph Representation
Learning with Generative
Adversarial Nets

[Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang,
Fuzheng Zhang, Xing Xie, Minyi Guo. GraphGAN: Graph Representation
Learning with Generative Adversarial Nets. AAAI 2018.]

https://arxiv.org/abs/1711.08267



Background of GRL

* Graph representation learning (GRL) learns a vector
for each node in a graph

* a.k.a. graph embedding / network embedding / network
representation learning

Graph representation ®
5 g learning
) O
®
1




Background of GRL

* Graph representation learning applications
* Link prediction
* Node classification
* Recommendation
* Visualization
 Knowledge graph representation
* Clustering
* Text embedding
e Social network analysis



Background of GRL

* Researchers have examined applying representation
learning methods to various types of graphs:

Weighted graphs (Grover and Leskovec, KDD 2016)
Directed graphs (Zhou et al., AAAI 2017)

Signed graphs (Wang et al., SDM 2017)
Heterogeneous graphs (Wang et al., WSDM 2018)
Attributed graphs (Huang, Li, and Hu, WSDM 2017)

* Several prior works also try to preserve specific properties
during the learning process:

Global structures (Wang, Cui, and Zhu, KDD 2017)
Community structures (Wang et al., AAAI 2017)

Group information (Chen, Zhang, and Huang, CIKM 2016)
Asymmetric transitivity (Ou et al., KDD 2016)



Motivation of GraphGAN

* Generative graph representation learning model assumes an
underlying true connectivity distribution p,,.,, (v|v,) for each
vertex v,

e Similar to GMM and LDA

* The edges can be viewed as observed samples generated by the true
distribution p,,..., (V|v,)

* Vertex embeddings are learned by maximizing the likelihood of edges
* E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)

Original graph Perue (V|Vc)



Motivation of GraphGAN

* Discriminative graph representation learning model aims to
learn a classifier for predicting the existence of edges
directly

* Consider two vertices v; and v; jointly as features

* Predict the probability of an edge existing between them, i.e.,
pledge|v,v))

* E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)

p(edge|vi,vj) = 0.8
p(edgel|v;, vy) = 0.3



Motivation of GraphGAN

 Generative and discriminative models are two sides
of the same coin

e LINE (WWW 2015) has tried to combine these two
objectives via edge sampling

* GraphGAN, a framework that unifies generative
and discriminative thinking for graph
representation learning

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.



GraphGAN: the Minimax Game

* Given a graph g = (V,¢)
* Set of vertices: V = {vq,...,vy}
* Setof edges: & = {eij}};,/j:l
* Underlying true connectivity distribution for v,: pirue(v|ve)

* The objective of GraphGAN is to learn the following
two models
* Generator G(v|ve; 0a) to approximate Pirue(v|ve)

* Discriminator D(v,v.;0p) to estimate the connectivity
for the vertex pair (v,v,.)



GraphGAN: the Minimax Game

* The objective of GraphGAN is to learn the following
two models
* Generator G(v|vg; O¢) to approximate Perye(V|ve)

* Discriminator D (v, v¢; 0p) to estimate the connectivity for
the vertex pair (v,v,)

* The two-player minimax game:
1%

minmax V (G, D) = Z (vaptrue(-|’vc) [logD(v, Uc; HD)]

0c 0Op =

+ Euni(ute) [ 108 (1= D(v,v::0))] ).



GraphGAN: the Minimax Game

Perue (* [V¢) > O OO tnin D G

_ generates | > > ~
G(- ve; 66) 1066 | Ptrue

t

policy gradient
> > >0 >
v, V, U,
G underperforms G is approaching piye G is hardly distinguishable
in initial stage during adversarial training from Pirue

| %
minmax V (G, D) = Z <Evatrue(.|vc) [log D(v,ve; QD)] + By |ves6c) [10g (1 — D(v, ve; QD))])'

b bp c=1



Implementation & Optimization of D

1%
minmax V (G, D) = Z (]Evatme(_m) [log D(v,vg; HD)] + EynG(-veibe) [log (1 — D(v,v; HD))]).

0c 0p —1

* A simple implementation of D

1
D(v,ve) = o(dy du) = 3 g

* Note that any other discriminative model of link prediction
can be implemented here, e.g., SDNE

e Gradient of V(G, D) w.r.t. the parameters of D

Vo, log D(v,v.), if v~ Pirye
Vo, (1 —log D(v,v.)), if v~ G

(a normal replacement of loss in GAN)

Vo, ,V(G,D) = {



Optimization of G

\%
minmax V (G, D) = Z (]Evatrue(.m) [log D(v,ve; 9D)] + Eoni(|veste) [log (1 — D(v, v¢; QD))])-

0c 0p 1

* Gradient of V(G, D) w.r.t. the parameters of G

%
Vo V(G,D) =V, Z]EUNG(-lvc) [log (1 — D(v, vc))}

c=1
V N
=" Vo, G(vilve) log (1 — D(v;, ve))
c=1 =1
V N
=33 Gvilve) Vo, log G(v;]ve) log (1 — D(v;, ve))
c=1 =1
|%4

- Z Eync(fve) [V9G log G(v|ve) log (1 — D(v, UC))]

c=1



Implementation of G

* Softmax? Cloloy) = — P8y 8u)
* Computationally inefficient D vstve exp(g, 8u.)
 Graph-structure-unaware yehftgersggﬁgﬁdﬂi?gfg‘e k-dimensional
Fao=t . . , T
. Hierarchical softmax? "~ & o(Pod = sl sy )

e Graph-structure-unaware

* Negative sampling (NCE)?
* Not a valid probability distribution
k
* Graph-structure-unaware logo(vl,, "vu,) + > Eunrw) {10ga(—?,r:L,iT'UwI)}

=1



Graph Softmax in GraphGAN

* Objectives: The design of graph softmax should
satisfy the following three properties

* Normalized: The generator should produce a valid
probability distribution

D vatn, G(V|Ve; 0c) =1

* Graph-structure-aware: The generator should take
advantage of the structural information of a graph

 Computationally efficient: The computation of

G(v|v_0.) should only involve a small number of
vertices in the graph



Graph Softmax in GraphGAN

* Breadth First Search (BFS) on G from every vertex v,
* BFS-tree T, rooted at v,

* For a given vertex v and one of its neighbors
v, €N, (v), the relevance probability of v, given v
as

exp(g,,&v)

v; ENc(v) eXp(gt—l); g’U)

Pe(vilv) = >

* Graph SOftmaX Go to an unvisited neighbor  Get back to the parent

G(oloe) £ ([T _, pelvrslvr, 1)) - pelvr,lor,.)

given the unique path from v, tovintree T.: B, _, =
(Vrys Vryy oo Up, ), Where v, = voand v, =v



Graph Softmax in GraphGAN

Golve) & (T pelwor,lor;_)) - pelvr, s [vr,,)
71=1
Ve Ve (vro) Ve (U
BFS-tree .
" 3
i
Original graph G Choose vy, Choose vy,
pc(v.,..l‘vc) = 0.7 pc(v?.z‘v,.l) =03

Ve(Vr,)

Choose vy, sampling completed Update all vertexes along the green
vy, is the sampled vertex path and all vertexes in green

pe(vr |vr,) = 0.6 G(vr,|ve B5) = 0.7 X 0.3 X 0.6 = 0.126



Graph Softmax in GraphGAN

 Some properties for graph softmax in GraphGAN

* Normalized }_ ., G(v[ve;0c) =1

e G(v|ve; 0g) decreases exponentially with the increase
of the shortest distance between v and v, in original

graph §

* The calculation of G(v|v.; ) depends on O(d logV)
vertices, where d is average degree of vertices and V' is

the number of vertices in graph §



Graph Softmax Algorithm

Algorithm 1 Online generating strategy for the generator

Input: BFS-tree 7., representation vectors {g; }.cv
Output: generated sample vyer
1: Vpre = Ve, Veur — Ve;
2: while true do
3:  Randomly select v; proportionally to p.(v;|ve.r) in Eq.
(6);

4:  if v; = vy, then

5: Vgen $— Vcur;

6: return vgen

7. else

8: Upre < Veur, Veur < Vi,
9: end if

10: end while

Ve Ve (vro ) v ( Uro )
vy,
BF5-tree
—_—— —_— —_—
Uy,
Original graph G Choose vy, Choose vy, Choose vy, , sampling completed Update all vertexes along the green
Ur, is the sampled vertex path and all vertexes in green

(v, |v:) = 0.7 p.(v,|v,) =03 pc(vr,|vr,) = 0.6 G(v,,|ve: 8c) = 0.7 X 0.3 X 0.6 = 0.126



GraphGAN Algorithm

Algorithm 2 GraphGAN framework

Input: dimension of embedding k, size of generating samples
s, size of discriminating samples ¢
Output: generator G'(v|v.;f0q), discriminator D(v, v.; 0p)
1: Initialize and pre-train G(v|ve; 0¢) and D (v, ve; 0p);
2: Construct BFS-tree 7. for all v. € V;
3: while GraphGAN not converge do
4. for G-steps do
5: G(v|ve; 0g) generates s vertices for each vertex w.
according to Algorithm 1;

6: Update ¢ according to Eq. (4), (6) and (7);
7:  end for
8:  for D-steps do
9: Sample t positive vertices from ground truth and ¢
negative vertices from G(v|ve; fg) for each vertex v;
10: Update 6p according to Eq. (2) and (3);
11:  end for

12: end while
13: return G (v|ve;fe) and D(v,ve;6p)




Experiments of GraphGAN

* Datasets

arXiv-AstroPh: 18,772 vertices and 198,110 edges
arXiv-GrQc: 5,242 vertices and 14,496 edges

BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
Wikipedia: 4,777 vertices, 184,812 edges and 40 labels

* MovieLens-1M: 6,040 users and 3,706 movies

* Baselines

DeepWalk (KDD 2014)
LINE (WWW 2015)
Node2vec (KDD 2016)
Struc2vec (KDD 2017)



Link Prediction Experiments

* Learning curves
e Generator outperforms discriminator

o
©
e
O

L L
O O
- & 08 - - -8 -
= =
> >
S 0.7 © 0.7
8 — Accuracy S — Accuracy
Q —Macro-F1 Q —Macro-F1
< 0.6 ' : : ' < 0.6 : ' ' '
1 20 40 60 80 100 1 20 40 60 80 100
lteration lteration
(a) Generator (b) Discriminator

Dataset: arXiv-GrQc: 5,242 vertices and 14,496 edges



Link Prediction Experiments

e Overall link prediction performance

Model arXiv-AstrolPPh arXiv-GrQc
Accuracy | Macro-F1 | Accuracy | Macro-F1
DeepWalk 0.841 0.839 0.803 0.812
LINE 0.820 0.814 0.764 0.761
Node2vec 0.845 0.854 0.844 0.842
Struc2vec 0.821 0.810 0.780 0.776
GraphGAN 0.855 0.859 0.849 0.853

* LINE and struc2vec is relatively poor in link prediction, as they cannot quite
capture the pattern of edge existence in graphs.

 DeepWalk and node2vec perform better than LINE and struc2vec probably
because of the random-walk-based Skip-Gram model, which is graph-structure-
aware and better at extracting proximity information among vertices.

* GraphGAN performs the best



Experiments on Other Tasks

* Node Classification
Model BlogCatalog Wikipedia
Accuracy | Macro-F1 | Accuracy | Macro-F1
DeepWalk 0.225 0.214 0.194 0.183
LINE 0.205 0.192 0.175 0.164
Node2vec 0.215 0.206 0.191 0.179
Struc2vec 0.228 0.216 0.211 0.190
GraphGAN 0.232 0.221 0.213 0.194

* Recommendation (Movielens-1M)
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Summary of This Part

* GraphGAN is a novel framework that unifies generative and
discriminative thinking for graph representation learning
* Generator G(v|v,) tries to fit p,,,, (V| v,) as much as possible
* Discriminator D(v, v,) tries to tell whether an edge exists between v and v,

G and D act as two players in a minimax game:

* G tries to produce the most indistinguishable “fake” vertices under guidance
provided by D

e D tries to draw a clear line between the ground truth and “counterfeits” to
avoid being fooled by G

* Graph softmax is leveraged as the implementation of G
e Graph softmax overcomes the limitations of softmax and hierarchical softmax

* Graph softmax satisfies the properties of normalization, graph structure
awareness and computational efficiency
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Rethink about GAN

* Why is GAN significantly better than many
supervised approaches?

* This is because of the nice properties of GAN’s objective,
i.e., Jensen-Shannon Divergence.

G: minmax J(G, D) D: max J(G, D)
G D D

J(G, D) = Egpy(a) 108 D(®)] + Ezp, (z)[log(1 — D(G(2)))]

- = 10g<4) + KL (pdata pdata;‘pG> + KL (ngpdata;‘pG>

~

Jensen-Shannon Divergence

JSD(P|G) = %(KL(PHM) + KL(GHM))

1
M = §(P + G)  M: the mediate distribution



Disadvantages of GANs

Model collapse

* The generator trends to generate some particular
samples that fools the current discriminator

minEp.(2) log(1 — D(G(2)))]

* This problem also occurs for RL based generator like SeqGAN,
i.e., the generator policy trends to take the action leading to

higher value without considering the diversity
* Unstable training

* Minimax objective & | |
* Adversarial training S

0.08 -rrrrvvfrornineiend <o RankNet

G: minmax J(G, D) D: maxJ(G, D) 1| 2- Lamoceank
G D D

i i T I T
0 100 200 300 400 500 600
Training Epoch



Disadvantages of Discrete Data GANSs

* Itis crucial for SeqGAN or LeakGAN to perform
model pre-training via MLE

------- SeqGAN ===+ SeqGAN-rescale - LeakGAN
+ MLE RankGAN

_ Text Lgngth:4Q

[
w0 W YW O o
v O u»1 O WU

~ oo
(9] o
| T

Negative log likelihood

~
o
T

£
[

50 100 150 200 250 0 50 100 150 200
Training epoch Training epoch

=)

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.



Disadvantages of Discrete Data GANSs

* Itis crucial for SeqGAN or LeakGAN to perform
model pre-training via MLE

* The guidance from discriminator is not sufficiently
informative and is of high variance
* Leading to low data efficiency, i.e., one may need a large

amount of training data & effort to find a good
generator policy

Student
(Generator)

Teacher
(Discriminator)

&@ Text
: Signal about
@ @ quality

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.




Beyond GANSs, Cooperative Training

J(G, D) = Ezrpu(@)llog D(@)] + Ez oy, (z)[log(1 — D(G(2)))]

= —log(4) + KL (pdata Plaa 2+ P G) + KL (pGdem; pG)

TV
Jensen-Shannon Divergence

JSD(P|G) = %(KL(PHM) + KL(G||M))

1
M = §(P + G) M: the mediate distribution

* To find an algorithm that is at least as good as GANs,
a simple solution is to find a way to
e Optimize an accurate calculation of JSD

* Or, find an unbiased estimation of JSD at any time
during the training.



Unbiased Estimation of JSD

JSD(P||G) = %(KL(PHM) + KL(G||M))

e where M =0.5 (P + G)

* |f we can find an unbiased estimation for M, the
problem will be solved.

e Can we? YES!



Unbiased Estimation of JSD

* Note that for probability prediction, MLE is unbiased.

* We can simply create a balanced mixture dataset B
of samples from both distributions

* learned model G and training data batch P

* Then we train a model M, via MLE using B.
max K {log(My(s))]+ E [log(My(s))].

Qb S~Pdata S~ 9

* M, can be used to provide with an unbiased
estimation of JSD. .
M¢ §(P + GO)
2 1
JSD(GollP) = 5 [K L(Gol| My) + K L(P|[ M)



Unbiased Estimation of JSD

* Note that M, is a continuous and white-box
distribution.

* We can perform better utilization of it than simply
using Policy Gradient.

* We can directly compute the distribution of data
(i.e. policy at each state) and perform update on it.

Data P . ‘ —Samples—

Maximum .
Likelihood Estimation M ¢ Mediator

X Minimize JSD(Gy||P)

—Samples—

Generator (5g




Cooperative Training

CoT: Cooperative Training for Generative Modeling
of Discrete Data

Sidi Lu Lantao Yu
Shanghai Jiao Tong University Shanghai Jiao Tong University
steve_lu@ apex.sjtu.edu.cn yulantao @apex.sjtu.edu.cn
Weinan Zhang Yong Yu
Shanghai Jiao Tong University Shanghai Jiao Tong University
wnzhang @apex.sjtu.edu.cn yyu@apex.sjtu.edu.cn

Sidi Lu et al. CoT: Cooperative Training for Generative Modeling. ArXiv:1804.03782 2018.



Cooperative Training

pre P A .
Maximum N _
Likelihood Estimation M ¢ Mediator
Senermer Ot h el

Minimize JSD(Gy||P)

* The overall objective

LmeaX mq?XJSNIEdm log(Mgy(s))] “ 8}%@ log(Mqy(s))]

Two max operations Unbiased estimation of
for cooperative Jensen-Shannon Divergence
training



Cooperative Training

pre P A .
Maximum - '
Likelihood Estimation M ¢ Mediator
enermer Ol A e

Minimize JSD(Gy||P)

* Mediator: MLE objective

1

In(8) = 5 E, [~log(My(s))] + E,[~log(My(s)])

e Generator: maximize estimated JSD

Ty(6) = JSD(Gy|[P) = é[KL<Ge||M¢>+KL<P||M¢>]

Vodg (6 [ng St) logwm (s¢) — logwg(st))]
SNGQ



Cooperative Training

* The overall objective

mexmex B log(My(s))] + E log(Mg(s))]

Algorithm 1 Cooperative Training

Require: Generator Gy; mediator M, ; Samples from real data distribution P; Hyper-parameter m.
1: Initialize Gg, M with random weights 6, ¢.
2: repeat
3:  for m steps do
4 Collect a mini-batch of mixed balanced samples {s} from both GGy and P
5: Update mediator M, with {s} via Eq. (9)
6:  end for
7 Generate a mini-batch of sequences {s} ~ Gy
8 Update generator G¢ with {s} via Eq. (13)
9: until CoT converges




Experiment: JSD on Synthetic Data

10.00 12
g-steps=100, d-steps=1, k=10 —— learning rate=1e-4
g-steps=30, d-steps=1, k=30 —— learning rate=1e-3
g-steps=1, d-steps=1, k=10 11 learning rate=5e-3
g-steps=1, d-steps=5, k=3 learning rate=1e-2
o 950 ® —— learning rate=1e-1
S S
3 310
— —
pd =
9.00 9
8.94
8.70 1 8
0 50 100 150 200 0 5000 10000 15000 20000
Epochs Iterations
NLL-oracle of SeqGAN NLL-oracle of CoT

 Compared to SegGAN, CoT is significantly stable w.r.t.
its hyperparameters and requires no pre-training



Experiment: JSD on Synthetic Data

Curves of training time JSD
on synthetic data

— SeqGAN
8 — MLE

0 20 40 60 80 100
epochs

CoT provides a much more stable

training curve than SeqGAN

Oracle JSD
~J
-.\I

Curves of balanced NLL and real
JSD

JSD of CoT

- Nglanced NLL

120 0 20 40 60 80 100 120

epochs

Balanced NLL is a good
estimation of real JSD, i.e.,

balanced NLL = JSD(G|P)+ H(G) + H(P)



In the Sense of Philosophy

* The game thus becomes:

maxmax [ [logMy(s)|+ E [log Mg(s)]
0 qb S~PDdata SNGQ

with maximized entropy of M.

 Compared with the adversarial training of GAN

minmax [E [logDy(s)] + ]E log(1 — Dy(s))]

0 Qb S~Pdata S~ 9

* Cooperative training can also achieve the goal of
adversarial training!



Summary of this Part

* Cooperative training (CoT) has potential to be better
than GAN

e Along with Equil Q&M (Zou et al. ICTIR 2018), there are
multiple ways of formulation for multi-agent IR
modeling

* Deeper thinking

* M is actually a multi-task learning (to model data from both P
and G) module. How can we further improve M?

* GAN is significantly improved as Wasserstein GAN. Does there
exist a similar improvement for CoT?
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REVIEW

Motivations of this Tutorial

* Review the two schools of thinking in IR

e Discriminative models
estimate the relevance of
each query-doc pair

fe(query, doc)

* Pros: learn a retrieval ranking
function implicitly from labeled
data

e Cons: lack a principled way of
e Obtaining useful features,

e Gathering helpful signals from
the massive unlabeled data
available, e.g., text statistics,
the collection distribution

* Generative models estimate
the preference distribution
over docs given the query

p(doc|query; 0)

* Pros: theoretically sound and
very successful in modelling
features

e Cons: typically difficult in
* leveraging relevancy signals from
largely observable data, e.g., links,
clicks
* Being formulated in a trainable
framework



A Two Agent Framework for IR

Undirected guidance for relevance distribution fitting

v

fo(query,doc) = p(doc|query; 0)

A

Feeding new training data for decision boundary pushing

* Deep discriminative models * Deep generative models
* Flexible to fit complex * Flexible to fit complex
relevance ranking & scoring relevance distribution
* Obtaining training data * Trainable
(negative cases) from the * Guided from the

generative model discriminative model



IRGAN Formulation

Relevant Docs
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* Underlying true relevance distribution ptrue(d|q, ’r) depicts the user’s
relevance preference distribution over the candidate documents with respect to
his submitted query

* Training set: A set of samples from ptrue(d\q, 7“)

* Generative retrieval model pg(d|q,r)
* Goal: approximate the true relevance distribution

* Discriminative retrieval model f¢(q, d)
e Goal: distinguish between relevant documents and non-relevant documents



Beyond Single Discrete Token

* Sequence
: Text Oo—0O—C0C-—-0

- Musc score p(wordy|word;__1;6)
 DNA/RNA pieces

* Graph
* Social network
* User-item shopping behavior
* Paper citations

p(node, |node,,, neighbor(m); #)



From Machine Learning Perspective

* Traditional machine
learning is to build
e aloss function
* alikelihood estimation
* an expectation of value

from a machine and the
training data and to
optimize the objective

®9e o

obiectiv . % O O
objective @ OO

 Two-agent machine

learning is to build
* aloss function
* alikelihood estimation
* an expectation of value

from the two machines and
the training data and to
optimize the objective

‘\\ O OO O
, O

. . A
objective v

model | «° data



Machine Learning Paradigm Extension

Towards a more

decentralized service This area gets more and more attention!

Many-agent “ Crowding sourcing loT Al / City Al / Market Al
Multi-agent Ensemble GANs/CoT MARL
Single-agent LR/SVM Language model Atari Al
Prediction Generation Decision I\/Iakinrg
& detection

Give more access to machines
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