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Motivations of this Tutorial
• Deep learning methods get explosive growth in IR

• Lots of new works are implemented with deep neural 
networks

• NeuIR workshop in SIGIR, deep learning for 
recommender system workshop in RecSys etc.

• But almost all attentions are put on discriminant 
models, i.e., how to use deep networks to 
implement a scoring function

fÁ(query; doc)fÁ(query; doc)

• We can definitely consider more on the generative 
modeling side of IR



Motivations of this Tutorial
• Many classic generative models in IR

• We can definitely consider more on the generative 
modeling side of IR

p(queryjdoc; μ)p(queryjdoc; μ) p(docjquery; μ)p(docjquery; μ)

From document
to query

From query
to document

• Compared with the scoring for a particular query-
doc pair, generative models provide relevance 
distribution over documents
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Problem Definition of Data Generation

• Given a dataset                 , build a model           of 
the data distribution that fits the true one

D = fxgD = fxg qμ(x)qμ(x)

• Traditional objective: maximum likelihood estimation (MLE)

max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]

p(x)p(x)

• Check whether a true data is with a high mass density of 
the learned model



Inconsistency of Evaluation and Use

• Check whether a 
true data is with a 
high mass density 
of the learned 
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a 
model-generated 
data is considered as 
true as possible

• More straightforward 
but it is hard or 
impossible to directly 
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability



Generative Adversarial Nets (GANs)

• What we really want

max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

• But we cannot directly calculate p(x)p(x)

• Idea: what if we build a discriminator to judge 
whether a data instance is true or fake (artificially 
generated)?

• Leverage the strong power of deep learning based 
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



Generative Adversarial Nets (GANs)

• Discriminator tries to correctly distinguish the true data and 
the fake model-generated data

• Generator tries to generate high-quality data to fool 
discriminator

• G & D can be implemented via neural networks
• Ideally, when D cannot distinguish the true and generated 

data, G nicely fits the true underlying data distribution

G
D

Real World

Generator

Discriminator

Data



Generator Network

• Must be differentiable
• No invertibility requirement
• Trainable for any size of z
• Can make x conditionally Gaussian given 

z but need not do so
• e.g. Variational Auto-Encoder

• Popular implementation: multi-layer 
perceptron

x = G(z; μ)x = G(z; μ)



Discriminator Network

• Can be implemented by any neural networks with a 
probabilistic prediction

• For example
• Multi-layer perceptron with logistic output
• AlexNet etc.

P (truejx) = D(x; Á)P (truejx) = D(x; Á) D

P (real)P (real)



Generator and Discriminator Nets

• Must be differentiable
• No invertibility requirement
• Popular implementation: multi-layer perceptron

x = G(z;μ)x = G(z;μ)

• Generator network

• Can be implemented by any neural networks with a 
probabilistic prediction

• For example
• Multi-layer perceptron with logistic output
• AlexNet etc.

P (realjx) = D(x;Á)P (realjx) = D(x;Á)

• Discriminator network

G

D

P (real)P (real)



GAN: A Minimax Game

G
D

Real World

Generator

Discriminator

Data

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)

The joint objective function



Illustration of GANs

Discriminator

Data

Generator

J (D) = E »pdata( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J (D) = E »pdata( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
G

max
D

J (D)min
G

max
D

J (D) max
D

J (D)max
D

J (D)Generator Discriminator



Ideal Final Equilibrium

• Generator generates 
perfect data 
distribution

• Discriminator cannot 
distinguish the true 
and generated data



Training GANs
Training discriminator



Training GANs

Training generator



Optimal Strategy for Discriminator

• Optimal D(x) for any 
pdata(x) and pG(x) is 
always Discriminator

Data

Generator

• If this optimum is 
allowed to reach, then 
we have an ideal 
equilibrium for GAN.



Equilibrium for the Minimax Game

J(G; D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]
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• An equilibrium is                                     and  pG(x) = p (x)pG(x) = p (x) D(x) =
p (x)

p (x) + pG(x)
= 0:5D(x) =

p (x)

p (x) + pG(x)
= 0:5



Equilibrium for the Minimax Game
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is something between and

[Huszár, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]



• In order to take gradient on the generator parameter, x has 
to be continuous

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

Generator Discriminatormin
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)



Case Study of GANs for Continuous Data



Why study generative models?
• Excellent test of our ability to use high-dimensional, 

complicated probability distributions
• Simulate possible futures for planning or simulated 

RL
• Missing data

• Semi-supervised learning
• Multi-modal outputs
• Realistic generation tasks

(Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks)



High Resolution and Quality Images

• Progressive Growing of GANs

Two imaginary celebrities that were dreamed up by a random 
number generator.

Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018. 



Single Image Super-Resolution

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.

deep residual generative adversarial 
network optimized for a loss more 
sensitive to human perception

[4× upscaling] 



Image to Image Translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.



High-Resolution Image Synthesis and Semantic 
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic 
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.



Grayscale Image Colorization

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.

Ground
Truth

Ground
Truth

Generated Colorization
after Performing Grayscale

Generated Colorization
after Performing Grayscale



GANs for Continuous Data
• All above applications are based on (conditional) 

GANs oriented to continuous data

• In information retrieval tasks, the data are mostly 
discrete

• IDs in collaborative filtering
• Text in web search
• Graph nodes and edges in social networks

• The original GANs framework cannot handle such 
discrete data generation tasks



• The chain rule in step 4 enables the generative to
• Tune the parameter to slightly change the output x on the 

direction of                             from the discriminator

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

@J(G;D)=@x@J(G;D)=@x

@J(G; D)

@x

@x

@μ

@J(G; D)

@x

@x

@μ

P (realjx) = D(x;Á)P (realjx) = D(x;Á)

x = G(z; μ)x = G(z; μ)

@J(G;D)

@x

@J(G;D)

@x

x Ã x¡ ´ ¢ @J(G;D)

@x
x Ã x¡ ´ ¢ @J(G;D)

@x

The loss function should be differentiable 
w.r.t. the instance x, which requires the 
data space is continuous



Discrete Data Generation

• How to generate discrete data?

• Sample the discrete token from a parametric 
distribution

x » P (x; μ)x » P (x; μ)

and optimize the distribution w.r.t. its parameter

• Compare to the original GAN for continuous data
• Sample a noise vector from a known distribution
• Map the noise vector to a data instance
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Two Kinds of Machine Learning
• Prediction

• Predict the desired output given the data (supervised 
learning)

• Generate data instances (unsupervised learning)

• Decision Making
• Take actions based on a particular state in a dynamic 

environment (reinforcement learning)
• to transit to new states
• to receive immediate reward
• to maximize the accumulative reward over time

• Learning from interaction



Reinforcement Learning
• At each step t, the agent

• Receives observation Ot
• Receives scalar reward Rt
• Executes action At

• The environment
• Receives action At
• Emits observation Ot+1
• Emits scalar reward Rt+1

• t increments at 
environment step

• Goal of RL: take actions to 
maximize cumulative 
rewards over time

Agent

Environment



Model-free Reinforcement Learning

• Model-free RL is to directly learn value & policy from 
experience without building an MDP

• Key steps: (1) estimate value function; (2) optimize policy

• In realistic problems, we have no access to the environment 
(model) and only observed some episodes

Episode 1:

Episode 2:
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Value Function Estimation
• In RL, the value function is calculated by dynamic 

programming

• Now in model-free RL
• We cannot directly know the environment
• But we have a list of experiences to estimate the values

Episode 1:

Episode 2:

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]
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Monte-Carlo Methods
• Monte-Carlo methods are a broad class of 

computational algorithms that rely on repeated 
random sampling to obtain numerical results.

• Example, to calculate the circle’s surface

Circle Surface = Square Surface£ #points in circle

#points in total
Circle Surface = Square Surface£ #points in circle

#points in total



Monte-Carlo Methods

Win Rate(s) =
#win simulation cases started from s

#simulation cases started from s in total
Win Rate(s) =

#win simulation cases started from s

#simulation cases started from s in total

• Go: to estimate the winning rate given the current state



Monte-Carlo Value Estimation
• Goal: learn Vπ from episodes of experience under policy π

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

= E[Gtjst = s; ¼]
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• Recall that the return is the total discounted reward
Gt = Rt+1 + °Rt+2 + : : : °T¡1RTGt = Rt+1 + °Rt+2 + : : : °T¡1RT

• Recall that the value function is the expected return

• Sample N episodes from state s using policy π
• Calculate the average of cumulative reward

• Monte-Carlo policy evaluation uses empirical mean return instead of expected 
return



Parametric Policy
• We can parametrize the stochastic policy

• θ is the parameters of the policy
• Generalize from seen states to unseen states
• We focus on model-free reinforcement learning

¼μ(ajs) = P (ajs; μ)¼μ(ajs) = P (ajs; μ)



Policy Gradient
• For stochastic policy
• Intuition

• lower the probability of the action that leads to low value/reward
• higher the probability of the action that leads to high value/reward

• A 5-action example

¼μ(ajs) = P (ajs; μ)¼μ(ajs) = P (ajs; μ)

0
0.05

0.1
0.15

0.2
0.25

A1 A2 A3 A4 A5

Action Probability

0

0.1

0.2

0.3

0.4

A1 A2 A3 A4 A5

Action Probability

0

0.1

0.2

0.3

0.4

A1 A2 A3 A4 A5

Action Probability

2. Take action A2
Observe positive reward

4. Take action A3
Observe negative reward

1. Initialize θ 3. Update θ by policy gradient 5. Update θ by policy gradient



Policy Gradient in One-Step MDPs
• Consider a simple class of one-step MDPs

• Starting in state
• Terminating after one time-step with reward rsa

• Policy expected value

s » d(s)s » d(s)

J(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsaJ(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsa

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa
@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa



Likelihood Ratio
• Likelihood ratios exploit the following identity

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

• Thus the policy’s expected value
J(μ) = E¼μ [r] =

X
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X
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X
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X
a2A
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h@ log ¼μ(ajs)
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i This can be approximated by sampling 
state s from d(s) and action a from πθ



Policy Gradient Theorem
• The policy gradient theorem generalizes the likelihood ratio 

approach to multi-step MDPs
• Replaces instantaneous reward rsa with long-term value

• Policy gradient theorem applies to 
• start state objective J1, average reward objective JavR, and average 

value objective JavV

• Theorem
• For any differentiable policy                , for any of policy objective 

function J = J1, JavR, JavV , the policy gradient is

Q¼μ(s; a)Q¼μ(s; a)

¼μ(ajs)¼μ(ajs)

@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i

Please refer to appendix of the slides for detailed proofs



Monte-Carlo Policy Gradient (REINFORCE)
• Update parameters by stochastic gradient ascent
• Using policy gradient theorem
• Using return Gt as an unbiased sample of Q¼μ(s; a)Q¼μ(s; a)

¢μt = ®
@ log ¼μ(atjst)

@μ
Gt

• REINFORCE Algorithm
Initialize θ arbitrarily
for each episode                                                               do

for t=1 to T-1 do

end for
end for
return θ

fs1; a1; r2; : : : ; sT¡1; aT¡1; rTg » ¼μ

μ Ã μ + ® @
@μ

log ¼μ(atjst)Gt



Puck World Example

• Continuous actions exert small force on puck
• Puck is rewarded for getting close to target
• Target location is reset every 30 seconds
• Policy is trained using variant of MC policy gradient
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IR Theory: Relevancy is the Key

Web Search Question Answers Recommender Systems

keywords

Webpages
Textual answers

Textual questions User profile item

Recommended item



The classic school:
Generative Retrieval

• Assume there is an 
underlying stochastic 
generative process 
between documents and 
information needs

• D -> Q
e.g., From [Maron and Kuhns’ 
Probabilistic Indexing, 60s] to 
[Statistical language models of 
text retrieval, 90s]
• Q -> D

e.g., [Robertson and Sparck
Jones’s Binary Independence 
Model, 70s]

Relevant document 
or query distribution

D -> Q, Q -> D

Relevant

Non-relevant



The modern school:
Discriminative models

• Discriminative models 
learned from labeled 
relevant judgements or 
their proxies such as clicks 
or ratings

• Consider documents and 
queries jointly as features 
and predicts their relevancy 
or rank order labels 

• Q + D -> R 
e.g., [Learning to rank, 2000s]
[Neural information retrieval,  
2010s]

Q + D -> R

Decision boundary 
between relevance 
and non-relevance

Relevant

Non-relevant



Two Schools IR Thinkings: Pro/Con

Generative models of IR

• Pros: theoretically sound 
and very successful in 
modelling features

• Cons: 
• Difficult in leveraging 

relevancy signals from 
largely observable data, 
e.g., links, clicks 

• Typically not trainable

Discriminative models of IR 

• Pros: learn a retrieval 
ranking function implicitly 
from labeled data

• Cons: lack a principled way 
of 
• Obtaining useful features, 
• Gathering helpful signals from 

the massive unlabeled data 
available, e.g., text statistics, 
the collection distribution



How to take advantage of both 
schools of thinking?

Generative models of IR

• Learns to fit the relevance 
distribution over 
documents via the signal 
from the discriminative 
model 

• -> Trainable!!

Discriminative models of IR 

• Able to exploit the 
unlabeled data selected by 
the generative model to 
achieve a better estimation 
for document ranking

• -> automatically obtain     
needed training data!!



IRGAN: A Minimax Game 
for Information Retrieval

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng 
Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and 
Discriminative Information Retrieval Models. SIGIR 2017.



IRGAN: A Minimax Game Unifying 
both Models
• Take advantage of both schools of thinking:

• The generative model learns to fit the relevance 
distribution over documents                          via the signal 
from the discriminative model.

• The discriminative model is able to exploit the unlabeled 
data selected by the generative model to achieve a 
better estimation                 for document ranking.



IRGAN Formulation

• Underlying true relevance distribution depicts the user’s 
relevance preference distribution over the candidate documents with respect to 
his submitted query

• Training set: A set of samples from

• Generative retrieval model 
• Goal: approximate the true relevance distribution

• Discriminative retrieval model
• Goal: distinguish between relevant documents and non-relevant documents

G
D

Real World

Generator

Discriminator

Relevant Docs

ptrue(djq; r)ptrue(djq; r)

pμ(djq; r)pμ(djq; r)
fÁ(q; d)fÁ(q; d)

ptrue(djq; r)ptrue(djq; r)

ptrue(djq; r)ptrue(djq; r)
pμ(djq; r)pμ(djq; r)

fÁ(q; d)fÁ(q; d)



A Minimax Game Unifying Both Models

• Objective

where

G
D

Real World

Generator
Discriminator

Relevant Docs

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))



Optimizing Generative Retrieval via Policy Gradient

• Optimizing Generative Retrieval
• Samples documents from the whole document set to 

fool its opponent

• REINFORCE (with Advantage Function)

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. Policy gradient methods for reinforcement learning with 
function approximation. In NIPS 2000.

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn)

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn) Reward TermGenerator as Policy

log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]



IRGAN REINFORCE

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

• Likelihood ratio



The Interplay between 
Generative and Discriminative Retrieval



Extension to Pairwise Case
• It is common that the dataset is a set of ordered

document pairs for each query rather than a set of
relevant documents.

• Capture relative preference judgements

rather than absolute relevance judgements

• Generator would try to generate document pairs 
that are similar to those in , i.e., with the correct 
ranking.



Experiments: Web Search
• Dataset

• MQ-2008 (Million-
query Track in 
LETOR 4.0)

• Semi-supervised 
learning: a large 
amount of 
unlabeled query-
document pairs

• Task
• Rank the 

candidate 
documents for 
each query



Experiments: Web Search
Key Observations
• In both setting, IRGAN 

consistently and 
significantly (see the 
table) outperforms other 
algorithms

• Typically, when one 
player (G or D) starts to 
outperforms the 
baseline discriminative 
model, the other player 
(D or G) would get worse 
than the baseline

IRGAN-Pointwise Generator Performance

IRGAN-Pairwise Discriminator Performance



Experiments: Item Recommendation

• Datasets
• Movielens: 943 users, 1.7k items, 

100k ratings
• Netflix: 480k users, 17k items, 100M 

ratings

• Task: Top-N item recommendation 
with implicit feedback data

• Key observations
• Although generative retrieval 

model in IRGAN does not 
explicitly learn to optimize the 
final ranking measures like what 
LambdaFM does, it still 
performs consistently better 
than LambdaFM.

IRGAN-pointwise Generator Performance on Movielens IRGAN-pointwise Generator Performance on Netflix



Experiments: Item Recommendation

Top-5 item recommendation task on Movielens

Key observations
• A reliable training 

process where IRGAN 
owns a consistent 
superiority over  
LambdaFM from the 
beginning of 
adversarial training

Temperature hyperparameter tuning

• The empirically optimal 
sampling temperature is 
0.2 but not 0 or 1

• Such a low temperature 
means optimal ranking 
is achieved by setting a 
low (but not none) 
randomness



Experiments: Question Answering

• InsuranceQA Dataset
• 12k question answer pairs
• Two test sets with 1.8k pairs

• Task
• rank top-1 answer for each 

question

• Key observations
• Discriminator performs better 

than LambdaCNN while the 
generator tends to perform less 
effectively

• The reason could be the high 
sparsity of the answer 
distribution

G and D performance on InsuranceQA



Different generator and discriminator 
scoring functions

a) For IRGAN-pointwise, the NN implemented generator works be 
better than its linear version, while the NN implemented 
discriminator may not offer a good guidance if the generator has 
lower model complexity (i.e. linear). 

b) For IRGAN-pairwise, the NN implemented discriminator outperforms 
its linear version. The one used for performing the prediction should 
be implemented with a capacity at least as high as its opponent. 



On the Equilibrium of Query 
Reformulation and 
Document Retrieval
Shihao Zou, Guanyu Tao, Jun Wang, Weinan Zhang, Dell Zhang. On 
the Equilibrium of Query Reformulation and Document Retrieval. 
ICTIR 2018.



Two Challenges in Information Retrieval

• How to formulate optimal 
queries to best represent the 
user’s information needs

• Relevance estimation for the 
document given the information 
need representation

• Query reformulation 
(relevance feedback)

Equilibrium theory of information retrieval
• a strategic game, simultaneously played between the 

query reformulation and the retrieval model

query
relevant doc

irrelevant doc

• Retrieval model



Intuition
• The query reformulation would refine the query 

that is the best response to the actions from the 
given retrieval model player

• The retrieval model would also need to produce 
the document relevant estimation that is the best 
response toward the formulated query

• Two components cooperate to achieve the best 
response to each other. (an equilibrium state)



Definition: IR Strategic Game
• is the set of two players: query formulator 

Q and retrieval model M.
• are finite sets of strategies available to 

player Q and M. 
• denotes whether the term is included in 

the query or not.
• denotes relevance estimation by retrieval 

model.
• An equilibrium state: both players have no incentive 

to change their strategies        and      , so that

{ },P Q M=

Q MS S S= ×

q Qs S∈

m Ms S∈

ms
∗

qs
∗

( ) ( ) ( ) ( ), , ,  , ,Q q m Q q m M q m M q mu s s u s s u s s u s s∗ ∗ ∗ ∗ ∗ ∗≥ ≥



IR Game with Relevance Feedback
• Common utility

• A toy example



IR Game with Pseudo Relevance Feedback

• Utility for retrieval model

• Utility for query reformulation

It makes the two utilities different



IR Game with Pseudo Relevance Feedback

• A toy example



• Case 1: Query Iteration (Conv-Q)

• Case 2: Retrieval Model Iteration (Conv-M)

• Case 3: Equilibrium of the Query and Retrieval Model.

Three Training Schemes

Logistic 
regression of K

weight schemes



Experiment: text retrieval
• Utility in each iteration of training stage

Observations
• Iterations on Q, M and both parts help improve the 

ranking performance (utility) in training stage



Text retrieval results on RF 
• Datasets

• TREC disks 4 & 5

• Task
• Text retrieval ranking

• Key observations
• Conv-Q shows better 

performance than Naive 
and Rocchio

• Conv-M fails to perform 
well on test set although 
well on training set

• The best Equil-Q&M 
indicates the effectiveness 
of coordinating Q and M



Text retrieval results on PRF 
• Datasets

• TREC disks 4 & 5
• Task

• Text retrieval ranking
• Key observations

• Conv-Q shows worse 
performance than Naive 
and Rocchio

• One cannot fully rely on the 
top-k retrieved docs from 
the model to update the 
query

• The best Equil-Q&M 
indicates the coordination 
of Q and M help overcome 
the issue of bad query 
representation



Summary of this Part
• Study the interactions between query 

reformulation and retrieval model relevance 
estimation in a game theoretical framework

• The performance of an equilibrium solution from 
relevance feedback consistently outperforms 
others separate cases.

• We shall perform a deeper investigation of the 
utility design in the proposed normal-form IR



Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)



Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization



RNN based Language Model
• Trained via maximum likelihood estimation (MLE)

<START> I love machine learningreally

I love machine learningreally <END>

LSTM

LSTM

Input

Output

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)]



Exposure Bias

• Exposure bias
• In MLE, the prefix is always from the real data

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• But during generation, the prefix is the output of the 
model, which could never occur in real data

• Similar in self-driving car training
• Problem of behavior cloning



Exposure Bias & Schedule Sampling

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• Schedule sampling
• With a decaying probability, use the prefix from real 

data, otherwise use the generated prefix to train



Professor Forcing
• Professor Forcing reduces the gap between teacher 

forcing and free generation procedures.

Lamb, Alex M., et al. "Professor forcing: A new algorithm for training recurrent networks.“ NIPS 2016.



Inconsistency of Evaluation and Use

• Check whether a 
true data is with a 
high mass density 
of the learned 
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a 
model-generated 
data is considered as 
true as possible

• More straightforward 
but it is hard or 
impossible to directly 
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability

REVIEW



Generative Adversarial Nets (GANs)

• What we really want

max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

• But we cannot directly calculate p(x)p(x)

• Idea: what if we build a discriminator to judge 
whether a data instance is true or fake (artificially 
generated)?

• Leverage the strong power of deep learning based 
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



SeqGAN:
Sequence Generation via 
GANs with Policy Gradient
[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence 
Generative Adversarial Nets with Policy Gradient. AAAI 2017.]
https://arxiv.org/abs/1609.05473



SeqGAN

• Generator is a reinforcement learning policy                 
of generating a sequence

• decide the next word to generate given the previous ones
• Discriminator provides the reward (i.e. the probability 

of being true data)                  for the whole sequence

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)

DÁ(Y n
1:T )DÁ(Y n
1:T )



Sequence Generator
• Objective: to maximize the expected reward

• State-action value function is the expected 
accumulative reward that

• Start from state s
• Taking action a
• And following policy G until the end

QGμ
DÁ

(s; a)QGμ
DÁ

(s; a)

• Reward is only on completed 
sequence (no immediate reward)
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤



State-Action Value Setting
• Reward is only on completed sequence

• No immediate reward
• Then the last-step state-action value 
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )

• For intermediate state-action value
• Use Monte Carlo search to estimate©

Y 1
1:T ; : : : ; Y N

1:T

ª
= MCGμ(Y1:t;N)

©
Y 1

1:T ; : : : ; Y N
1:T

ª
= MCGμ(Y1:t;N)

• Following a roll-out policy
QGμ

DÁ
(s = Y1:t¡1; a = yt) =½

1
N

PN
n=1 DÁ(Y n

1:T ); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T

QGμ
DÁ

(s = Y1:t¡1; a = yt) =½
1
N

PN
n=1 DÁ(Y n

1:T ); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T



Training Sequence Generator
• Policy gradient (REINFORCE)

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.

μ Ã μ + ®hrμJ(μ)μ Ã μ + ®hrμJ(μ)



Sequence Generator Model

• RNN with LSTM cells for

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735–1780.]

Shanghai is incredibly

is incredibly
Softmax sampling
over vocabulary

?

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)



Training Sequence Discriminator
• Objective: standard binary classification

min
Á
¡EY»pdata

[log DÁ(Y )]¡ EY»Gμ [log(1¡DÁ(Y ))]min
Á
¡EY»pdata

[log DÁ(Y )]¡ EY»Gμ [log(1¡DÁ(Y ))]

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

• A CNN implementation



Overall Algorithm



Experiments on Synthetic Data
• Evaluation measure with Oracle

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
i

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
imax

μ
Ex»qμ(x)[log p(x)]max

μ
Ex»qμ(x)[log p(x)]



Experiments on Real-World Data
• Chinese poem generation

• Obama political speech text generation

• Midi music generation



Experiments on Real-World Data
• Chinese poem generation

南陌春风早，东邻去日斜。

紫陌追随日，青门相见时。

胡风不开花，四气多作雪。

山夜有雪寒，桂里逢客时。

此时人且饮，酒愁一节梦。

四面客归路，桂花开青竹。

Human Machine



Obama Speech Text Generation
• i stood here today i have one 

and most important thing that 
not on violence throughout the 
horizon is OTHERS american
fire and OTHERS but we need 
you are a strong source

• for this business leadership will 
remember now i cant afford to 
start with just the way our 
european support for the right 
thing to protect those american
story from the world and

• i want to acknowledge you 
were going to be an 
outstanding job times for 
student medical education and 
warm the republicans who like 
my times if he said is that 
brought the

• When he was told of this 
extraordinary honor that he 
was the most trusted man in 
America

• But we also remember and 
celebrate the journalism that 
Walter practiced -- a standard 
of honesty and integrity and 
responsibility to which so many 
of you have committed your 
careers.  It's a standard that's a 
little bit harder to find today

• I am honored to be here to pay 
tribute to the life and times of 
the man who chronicled our 
time.

Human Machine



LeakGAN: 
Long Text Generation via 
Adversarial Training with 
Leaked Information
• [Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang. 

Long Text Generation via Adversarial Training with Leaked Information.
AAAI 2018.]
https://arxiv.org/abs/1709.08624



Main Weakness in SeqGAN

Text

Signal about 
quality

Student
(Generator)

Teacher
(Discriminator)

• Huge search space: If the vocabulary is 5000, and 
the text length is 10, the text’s number will be up 
to             , it needs many attempts to find a good 
policy.



Main Weakness in SeqGAN

Rewrite Text

Generator only knows if the text is good, but don’t know why!
Huge search cost!

We need more guide information.

New signal
about quality

• Huge search space: If the vocabulary is 5000, and 
the text length is 10, the text’s number will be up 
to             , it needs many attempts to find a good 
policy.

Student
(Generator)

Teacher
(Discriminator)



Recall the 2 Players’ Tasks
• Generator task: generate high quality’s text to fool 

discriminator.

• Discriminator task: identify the text according to 
the feature extracted by itself

Feature



The criterion is the feature in the
discriminator

Feature



• If this criterion is leaked to Generator just like 
student knows the scoring rules. It may reduce the 
search space.

Information Leaking



How to utilize the feature from D?
• If G wants to fool D, G needs to 

generate more realistic text to obtain 
more realistic feature.

• During the generation, we know 
current feature, we need to choose 
next action to obtain more realistic 
feature, i.e., we need to find a higher 
reward region in feature space.

• We refer the hierarchical reinforcement 
learning like FeUdal Networks 
[Vezhnevets 2017]

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.

High reward 
region

Current place in 
feature space

Goal



LeakGAN Framework

Manager: receives current text’s feature from D, outputs a direction of higher 
reward feature as the sub-goal vector for Worker. 
Worker: produces primitive actions to follow the sub-goals from Manager.



Training of Hierarchical RL
• Manager: a high-level transition policy gradient

what new feature will 
be after taking action 
and transit c steps

• Use Mises-Fisher distribution to implement

• Policy gradient (with likelihood ratio)

• Value function by Monte Carlo search

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.



Training of Hierarchical RL
• For Generator, we train the Manager and Worker 

independently to let them focus on their own task

• Worker is trained like SeqGAN

where the intrinsic reward is

to follow the Manager’s sub-goal. 
• The training method is REINFORCE.



• Synthetic data experiments

Experiment



• BLEU Scores in real data
• Short Text (Chinese Poem):

• Middle Text (Image COCO):

Experiment



• Human study

Experiment

• BLEU Scores
• Long Text (EMNLP WMT 2017):



Experiment
• BLEU improvements over baseline models

The curves clearly show that LeakGAN yields larger performance gain over the baselines 
when the generated sentences are longer.



Image COCO Caption Text Generation

• Several metal balls sit in 
the sand near a group of 
people.

• A phone lies on the 
counter in a modern 
kitchen.

• A woman holding an 
umbrella while standing 
against a sidewalk.

• The bathroom is clean and 
ready for us to use .

HumanLeakGAN

• A silver stove, the 
refrigerator, sitting in a 
kitchen.

• A cat and a woman 
standing by two computer 
preparing food.

SeqGAN



WMT 2017 News Text Generation
• This is a part of the population that is 

notorious for its lack of interest in 
actually showing up when the political 
process takes place.

• I was paid far too little to pick up a 
dead off of the ground and put it back 
in the box.

• I also think that’s a good place for us, 
I’m sure that this would be a good 
opportunity for me to get in touch.

• That’ s why we’re the most important 
people for the African American 
community and we’ve made a good 
response.

HumanLeakGAN

• “I think you should really really
leave for because we hadn’t 
been busy, where it goes to 
one,” he wrote.

• We are thinking about 40, 000 
and jobs in what is wrong in the 
coming and you know.

SeqGAN



Explanation
• Feature Traces

Start token

Real data
region



• Behaviors of Worker and Manager

Explanation



A Text Generation Model 
Benchmarking Platform

• Platform advantages
• Highly decoupled
• Easy to Run
• Customization

Yaoming Zhu, Weinan Zhang et al. Texygen: A Benchmarking Platform for Text Generation Models. SIGIR 2018.

• Motivations
• Make comparison 

transparent and 
comprehensive

• Open source all models

https://github.com/geek-ai/Texygen



Evaluation Metrics
• Document Similarity

• BLEU score [Papineni et al., 2002]
• Counting of matching n-grams between two sentences
• Penalty for shorter sentence
• Clip the duplicated n-grams
• Average the BLEU score over all true sentences and the 

generated one

• Self-BLEU
• Measure the BLEU score among the generated sentences
• The lower Self-BLEU means the higher diversity



Evaluation Metrics
• Likelihood-based measurement

• NLL-oracle [Yu et al., 2017] 
• Use a randomly initialized LSTM as the true model, aka, oracle
• Minimize the exact opposite average negative log-likelihood

• NLL-test
• Dual to NLL-oracle
• Evaluating  the model’s capacity to fit real test data

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log(Goracle(ytjY1:t¡1))
i

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log(Goracle(ytjY1:t¡1))
i

NLLtest = ¡EY1:T»Greal

h TX
t=1

log(Gμ(ytjY1:t¡1))
i

NLLtest = ¡EY1:T»Greal

h TX
t=1

log(Gμ(ytjY1:t¡1))
i



Texygen Code
• User friendly APIs for

• 7 models: SeqGAN, MaliGAN, RankGAN, LeakGAN, GSGAN, TextGAN, 
MLE

• 6 Metrics: BLEU, EmbSim, NLL-oracle, NLL-test, Self-BLEU, CFG
• 3 Training methods: Oracle, CFG, Real data



Texygen Experiments

Key observations
• MaliGAN and GSGAN diverges
• LeakGAN and TextGAN performs better than SeqGAN/RankGAN, could be led 

by mode collapse, i.e. low diversity



Texygen Experiments

Key observations
• LeakGAN performs better than any other compared models on both NLL-test 

and NLL-oracle metrics



Texygen Experiments

Dataset: Image COCO
Key observations: LeakGAN provides the best BLEU performance but 
sacrifice on diversity



Summary of this Part
• It looks promising to leverage RL to train GANs for 

discrete data
• SeqGAN models the sequence generation as a 

sequential decision making process
• Next token generation as an RL policy
• Discriminator provides final reward signals

• LeakGAN addresses two problems of SeqGAN
• Scalar reward is non-informative
• Final reward is sparse
• By leaking information from D to G with HRL

• More models are developed, which need fair 
comparison



Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization



Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)



GraphGAN: 
Graph Representation 
Learning with Generative 
Adversarial Nets
[Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, 
Fuzheng Zhang, Xing Xie, Minyi Guo. GraphGAN: Graph Representation 
Learning with Generative Adversarial Nets. AAAI 2018.]

https://arxiv.org/abs/1711.08267



Background of GRL
• Graph representation learning (GRL) learns a vector 

for each node in a graph
• a.k.a. graph embedding / network embedding / network 

representation learning

5 2

1

Graph representation 
learning



Background of GRL
• Graph representation learning applications

• Link prediction
• Node classification
• Recommendation
• Visualization
• Knowledge graph representation
• Clustering
• Text embedding
• Social network analysis
• …



Background of GRL
• Researchers have examined applying representation 

learning methods to various types of graphs:
• Weighted graphs (Grover and Leskovec, KDD 2016)
• Directed graphs (Zhou et al., AAAI 2017) 
• Signed graphs (Wang et al., SDM 2017)
• Heterogeneous graphs (Wang et al., WSDM 2018)
• Attributed graphs (Huang, Li, and Hu, WSDM 2017)

• Several prior works also try to preserve specific properties 
during the learning process:

• Global structures (Wang, Cui, and Zhu, KDD 2017)
• Community structures (Wang et al., AAAI 2017)
• Group information (Chen, Zhang, and Huang, CIKM 2016)
• Asymmetric transitivity (Ou et al., KDD 2016)



Motivation of GraphGAN
• Generative graph representation learning model assumes an 

underlying true connectivity distribution 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐) for each 
vertex 𝑣𝑐

• Similar to GMM and LDA
• The edges can be viewed as observed samples generated by the true

distribution 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐)
• Vertex embeddings are learned by maximizing the likelihood of edges
• E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)

𝑣 0.00.3
0.30.4

Original graph 𝑝௧௨(𝑣|𝑣)
𝑣



Motivation of GraphGAN
• Discriminative graph representation learning model aims to 

learn a classifier for predicting the existence of edges 
directly

• Consider two vertices 𝑣𝑖 and 𝑣𝑗 jointly as features
• Predict the probability of an edge existing between them, i.e., 𝑝(𝑒𝑑𝑔𝑒|𝑣𝑖,𝑣𝑗)
• E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)

𝑣 𝑣
𝑣

𝑝 𝑒𝑑𝑔𝑒 𝑣, 𝑣 = 0.8𝑝 𝑒𝑑𝑔𝑒 𝑣, 𝑣 = 0.3
……



Motivation of GraphGAN
• Generative and discriminative models are two sides 

of the same coin
• LINE (WWW 2015) has tried to combine these two 

objectives via edge sampling

• GraphGAN, a framework that unifies generative 
and discriminative thinking for graph 
representation learning

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.



GraphGAN: the Minimax Game
• Given a graph

• Set of vertices:
• Set of edges:
• Underlying true connectivity distribution for 𝑣𝑐:

G = (V; E)G = (V; E)

V = fv1; :::; vV gV = fv1; :::; vV g
E = feijgV

i;j=1E = feijgV
i;j=1

ptrue(vjvc)ptrue(vjvc)

• The objective of GraphGAN is to learn the following 
two models

• Generator                         to approximate 
• Discriminator                         to estimate the connectivity 

for the vertex pair (𝑣,𝑣𝑐) ptrue(vjvc)ptrue(vjvc)G(vjvc; μG)G(vjvc; μG)

D(v; vc; μD)D(v; vc; μD)



GraphGAN: the Minimax Game
• The objective of GraphGAN is to learn the following 

two models
• Generator                         to approximate 
• Discriminator                         to estimate the connectivity for 

the vertex pair (𝑣,𝑣𝑐) ptrue(vjvc)ptrue(vjvc)G(vjvc; μG)G(vjvc; μG)
D(v; vc; μD)D(v; vc; μD)

• The two-player minimax game:

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:



GraphGAN: the Minimax Game

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:



Implementation & Optimization of D

• A simple implementation of D

D(v; vc) = ¾(d>v dvc) =
1

1 + exp(¡d>v dvc)
D(v; vc) = ¾(d>v dvc) =

1

1 + exp(¡d>v dvc)

• Note that any other discriminative model of link prediction 
can be implemented here, e.g., SDNE

min
μG

max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

• Gradient of V(G, D) w.r.t. the parameters of D

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

(a normal replacement of loss in GAN)



Optimization of G

min
μG

max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

• Gradient of V(G, D) w.r.t. the parameters of G

rμGV (G;D) =rμG
VX

c=1

Ev»G(¢jvc)

£
log

¡
1¡D(v; vc)

¢¤
=

VX
c=1

NX
i=1

rμGG(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

NX
i=1

G(vijvc)rμG log G(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

Ev»G(¢jvc)

£rμG log G(vjvc) log
¡
1¡D(v; vc)

¢¤

rμGV (G;D) =rμG
VX

c=1

Ev»G(¢jvc)

£
log

¡
1¡D(v; vc)

¢¤
=

VX
c=1

NX
i=1

rμGG(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

NX
i=1

G(vijvc)rμG log G(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

Ev»G(¢jvc)

£rμG log G(vjvc) log
¡
1¡D(v; vc)

¢¤



Implementation of G
• Softmax?

• Computationally inefficient
• Graph-structure-unaware where 𝐠௩, 𝐠௩ ∈ ℝ are the k-dimensional 

vectors of 𝑣 and 𝑣 for G

G(vjvc) =
exp(g>v gvc)P

v 6=vc
exp(g>v gvc)

G(vjvc) =
exp(g>v gvc)P

v 6=vc
exp(g>v gvc)

• Hierarchical softmax?
• Graph-structure-unaware

• Negative sampling (NCE)?
• Not a valid probability distribution
• Graph-structure-unaware



Graph Softmax in GraphGAN
• Objectives: The design of graph softmax should 

satisfy the following three properties
• Normalized: The generator should produce a valid 

probability distributionP
v 6=vc

G(vjvc; μG) = 1
P

v 6=vc
G(vjvc; μG) = 1

• Graph-structure-aware: The generator should take 
advantage of the structural information of a graph

• Computationally efficient: The computation of 𝐺(𝑣│𝑣𝑐;𝜃𝐺) should only involve a small number of 
vertices in the graph



Graph Softmax in GraphGAN
• Breadth First Search (BFS) on from every vertex 𝑐

• BFS-tree 𝑇𝑐 rooted at 𝑣𝑐
• For a given vertex and one of its neighbors 𝑖∈ 𝑐 ( ), the relevance probability of 𝑖 given 

as
pc(vijv) =

exp(g>vi
gv)P

vj2Nc(v) exp(g>vj
gv)

pc(vijv) =
exp(g>vi

gv)P
vj2Nc(v) exp(g>vj

gv)

• Graph softmax

G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)

given the unique path from 𝑣 to 𝑣 in tree 𝑇: 𝑃௩→௩ =(𝑣బ, 𝑣భ, … , 𝑣), where 𝑣బ = 𝑣 and 𝑣 = 𝑣
Go to an unvisited neighbor Get back to the parent



Graph Softmax in GraphGAN
G(vjvc) ,

¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)



Graph Softmax in GraphGAN
• Some properties for graph softmax in GraphGAN

• Normalized
P

v 6=vc
G(vjvc; μG) = 1

P
v 6=vc

G(vjvc; μG) = 1

• decreases exponentially with the increase 
of the shortest distance between 𝑣 and 𝑣𝑐 in original 
graph 𝒢G(vjvc; μG)G(vjvc; μG)

• The calculation of                         depends on 𝑂(𝑑 log𝑉) 
vertices, where 𝑑 is average degree of vertices and 𝑉 is 
the number of vertices in graph 𝒢G(vjvc; μG)G(vjvc; μG)



Graph Softmax Algorithm



GraphGAN Algorithm



Experiments of GraphGAN
• Datasets

• arXiv-AstroPh: 18,772 vertices and 198,110 edges
• arXiv-GrQc: 5,242 vertices and 14,496 edges
• BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
• Wikipedia: 4,777 vertices, 184,812 edges and 40 labels
• MovieLens-1M: 6,040 users and 3,706 movies

• Baselines
• DeepWalk (KDD 2014)
• LINE (WWW 2015)
• Node2vec (KDD 2016)
• Struc2vec (KDD 2017)



Link Prediction Experiments
• Learning curves

• Generator outperforms discriminator

Dataset: arXiv-GrQc: 5,242 vertices and 14,496 edges



Link Prediction Experiments
• Overall link prediction performance

• LINE and struc2vec is relatively poor in link prediction, as they cannot quite 
capture the pattern of edge existence in graphs.

• DeepWalk and node2vec perform better than LINE and struc2vec probably 
because of the random-walk-based Skip-Gram model, which is graph-structure-
aware and better at extracting proximity information among vertices.

• GraphGAN performs the best



Experiments on Other Tasks
• Node Classification

• Recommendation (Movielens-1M)



Summary of This Part
• GraphGAN is a novel framework that unifies generative and 

discriminative thinking for graph representation learning
• Generator 𝐺(𝑣|𝑣𝑐) tries to fit 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐) as much as possible
• Discriminator 𝐷(𝑣, 𝑣𝑐) tries to tell whether an edge exists between 𝑣 and 𝑣𝑐

• G and D act as two players in a minimax game:
• G tries to produce the most indistinguishable “fake” vertices under guidance 

provided by D
• D tries to draw a clear line between the ground truth and “counterfeits” to 

avoid being fooled by G

• Graph softmax is leveraged as the implementation of G
• Graph softmax overcomes the limitations of softmax and hierarchical softmax
• Graph softmax satisfies the properties of normalization, graph structure 

awareness and computational efficiency



Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization



Rethink about GAN
• Why is GAN significantly better than many 

supervised approaches?
• This is because of the nice properties of GAN’s objective, 

i.e., Jensen-Shannon Divergence.

J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

M =
1

2
(P + G)M =

1

2
(P + G) M: the mediate distribution



Disadvantages of GANs
• Model collapse

• The generator trends to generate some particular 
samples that fools the current discriminator

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

• Unstable training
• Minimax objective
• Adversarial training

min
G

E »p ( )[log(1¡D(G(z)))]min
G

E »p ( )[log(1¡D(G(z)))]

• This problem also occurs for RL based generator like SeqGAN, 
i.e., the generator policy trends to take the action leading to 
higher value without considering the diversity



Disadvantages of Discrete Data GANs

• It is crucial for SeqGAN or LeakGAN to perform 
model pre-training via MLE

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.



Text

Signal about 
quality

Teacher
(Discriminator)

Student
(Generator)

Disadvantages of Discrete Data GANs

• It is crucial for SeqGAN or LeakGAN to perform 
model pre-training via MLE

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.

• The guidance from discriminator is not sufficiently 
informative and is of high variance

• Leading to low data efficiency, i.e., one may need a large 
amount of training data & effort to find a good 
generator policy



Beyond GANs, Cooperative Training

• To find an algorithm that is at least as good as GANs,
a simple solution is to find a way to

• Optimize an accurate calculation of JSD
• Or, find an unbiased estimation of JSD at any time 

during the training.

J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
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°°°p + pG
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¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]
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μ
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+

μ
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°°°p + pG
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Unbiased Estimation of JSD

• where M = 0.5 (P + G)
• If we can find an unbiased estimation for M, the 

problem will be solved.
• Can we? YES!



Unbiased Estimation of JSD
• Note that for probability prediction, MLE is unbiased.
• We can simply create a balanced mixture dataset B 

of samples from both distributions
• learned model G and training data batch P

• Then we train a model via MLE using B.MÁMÁ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))] :max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))] :

• can be used to provide with an unbiased 
estimation of JSD.
MÁMÁ

MÁ ' 1

2
(P + Gμ)MÁ ' 1

2
(P + Gμ)

^JSD(GμkP ) =
1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
^JSD(GμkP ) =

1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤



Unbiased Estimation of JSD
• Note that         is a continuous and white-box 

distribution.
• We can perform better utilization of it than simply 

using Policy Gradient.
• We can directly compute the distribution of data 

(i.e. policy at each state) and perform update on it.

MÁMÁ



Cooperative Training

Sidi Lu et al. CoT: Cooperative Training for Generative Modeling. ArXiv:1804.03782 2018. 



Cooperative Training

• The overall objective

max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]

Two max operations 
for cooperative 

training

Unbiased estimation of 
Jensen-Shannon Divergence



Cooperative Training

• Mediator: MLE objective

Jm(Á) =
1

2

³
E

s»Gμ
[¡ log(MÁ(s))] + E

s»P
[¡ log(MÁ(s))]

´
Jm(Á) =

1

2

³
E

s»Gμ
[¡ log(MÁ(s))] + E

s»P
[¡ log(MÁ(s))]

´
• Generator: maximize estimated JSD

Jg(μ) = ^JSD(GμkP ) =
1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
Jg(μ) = ^JSD(GμkP ) =

1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
rμJg(μ) = rμ E

s»Gμ

h n¡1X
t=0

¼g(st)
>(log ¼m(st)¡ log ¼g(st))

i
rμJg(μ) = rμ E

s»Gμ

h n¡1X
t=0

¼g(st)
>(log ¼m(st)¡ log ¼g(st))

i



Cooperative Training

• The overall objective

max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]



Experiment: JSD on Synthetic Data

• Compared to SeqGAN, CoT is significantly stable w.r.t. 
its hyperparameters and requires no pre-training

NLL-oracle of SeqGAN NLL-oracle of CoT



Experiment: JSD on Synthetic Data

Curves of training time JSD
on synthetic data

Curves of balanced NLL and real 
JSD

CoT provides a much more stable 
training curve than SeqGAN

Balanced NLL is a good 
estimation of real JSD, i.e.,

balanced NLL = JSD(GkP ) + H(G) + H(P )balanced NLL = JSD(GkP ) + H(G) + H(P )



In the Sense of Philosophy
• The game thus becomes:

with maximized entropy of M.

• Cooperative training can also achieve the goal of 
adversarial training!

• Compared with the adversarial training of GAN
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Summary of this Part
• Cooperative training (CoT) has potential to be better 

than GAN

• Along with Equil Q&M (Zou et al. ICTIR 2018), there are 
multiple ways of formulation for multi-agent IR 
modeling

• Deeper thinking
• M is actually a multi-task learning (to model data from both P 

and G) module. How can we further improve M?
• GAN is significantly improved as Wasserstein GAN. Does there 

exist a similar improvement for CoT?



Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization



Motivations of this Tutorial
• Review the two schools of thinking in IR

p(docjquery; μ)p(docjquery; μ)

REVIEW

fÁ(query; doc)fÁ(query; doc)

• Discriminative models 
estimate the relevance of 
each query-doc pair

• Generative models estimate 
the preference distribution 
over docs given the query

• Pros: learn a retrieval ranking 
function implicitly from labeled 
data

• Cons: lack a principled way of 
• Obtaining useful features, 
• Gathering helpful signals from 

the massive unlabeled data 
available, e.g., text statistics, 
the collection distribution

• Pros: theoretically sound and 
very successful in modelling 
features

• Cons: typically difficult in
• leveraging relevancy signals from 

largely observable data, e.g., links, 
clicks 

• Being formulated in a trainable 
framework



A Two Agent Framework for IR

fÁ(query; doc)fÁ(query; doc) p(docjquery; μ)p(docjquery; μ)

• Deep generative models
• Flexible to fit complex 

relevance distribution
• Trainable
• Guided from the 

discriminative model 

• Deep discriminative models
• Flexible to fit complex 

relevance ranking & scoring
• Obtaining training data 

(negative cases) from the 
generative model

Undirected guidance for relevance distribution fitting

Feeding new training data for decision boundary pushing



IRGAN Formulation

• Underlying true relevance distribution depicts the user’s 
relevance preference distribution over the candidate documents with respect to 
his submitted query

• Training set: A set of samples from

• Generative retrieval model 
• Goal: approximate the true relevance distribution

• Discriminative retrieval model
• Goal: distinguish between relevant documents and non-relevant documents

G
D

Real World

Generator

Discriminator

Relevant Docs

ptrue(djq; r)ptrue(djq; r)

pμ(djq; r)pμ(djq; r)
fÁ(q; d)fÁ(q; d)

ptrue(djq; r)ptrue(djq; r)

ptrue(djq; r)ptrue(djq; r)
pμ(djq; r)pμ(djq; r)

fÁ(q; d)fÁ(q; d)



Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)



From Machine Learning Perspective

• Traditional machine 
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from a machine and the 
training data and to 
optimize the objective

model

data
objective

• Two-agent machine 
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from the two machines and 
the training data and to 
optimize the objective

model

data

objective

model



Machine Learning Paradigm Extension

Prediction
& detection

Decision Making

Give more access to machines

Towards a more 
decentralized service 

Many-agent

Multi-agent

Single-agent

Generation

LR/SVM Language model Atari AI

Ensemble GANs/CoT MARL

IoT AI / City AI / Market AICrowding sourcing

This area gets more and more attention!



Thank You! 
Questions?

Weinan Zhang
Assistant Professor
APEX Data & Knowledge Management Lab
John Hopcroft Center for Computer Science
Shanghai Jiao Tong University
http://wnzhang.net ACM SIGIR 2018


