
Generative Adversarial Nets
for Information Retrieval

Weinan Zhang
Shanghai Jiao Tong University

http://wnzhang.net

http://wnzhang.net/tutorials/sigir2018/

Fundamentals and Advances

SIGIR 2018 Tutorial, Ann Arbor, USA

Self Introduction – Weinan Zhang
• Position

• Assistant Professor at APEX Data & Knowledge
Management Lab, John Hopcroft Center, Dept. of
Computer Science, Shanghai Jiao Tong University,
2016-now

• Research on machine learning and data mining topics

• Education
• Ph.D. on Computer Science from University College

London (UCL), United Kingdom, 2012-2016
• B.Eng. on Computer Science from ACM Class 07 of

Shanghai Jiao Tong University, China, 2007-2011

Motivations of this Tutorial
• Deep learning methods get explosive growth in IR

• Lots of new works are implemented with deep neural
networks

• NeuIR workshop in SIGIR, deep learning for
recommender system workshop in RecSys etc.

• But almost all attentions are put on discriminant
models, i.e., how to use deep networks to
implement a scoring function

fÁ(query; doc)fÁ(query; doc)

• We can definitely consider more on the generative
modeling side of IR

Motivations of this Tutorial
• Many classic generative models in IR

• We can definitely consider more on the generative
modeling side of IR

p(queryjdoc; μ)p(queryjdoc; μ) p(docjquery; μ)p(docjquery; μ)

From document
to query

From query
to document

• Compared with the scoring for a particular query-
doc pair, generative models provide relevance
distribution over documents

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Problem Definition of Data Generation

• Given a dataset , build a model of
the data distribution that fits the true one

D = fxgD = fxg qμ(x)qμ(x)

• Traditional objective: maximum likelihood estimation (MLE)

max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]

p(x)p(x)

• Check whether a true data is with a high mass density of
the learned model

Inconsistency of Evaluation and Use

• Check whether a
true data is with a
high mass density
of the learned
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a
model-generated
data is considered as
true as possible

• More straightforward
but it is hard or
impossible to directly
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability

Generative Adversarial Nets (GANs)

• What we really want

max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

• But we cannot directly calculate p(x)p(x)

• Idea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

• Leverage the strong power of deep learning based
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]

Generative Adversarial Nets (GANs)

• Discriminator tries to correctly distinguish the true data and
the fake model-generated data

• Generator tries to generate high-quality data to fool
discriminator

• G & D can be implemented via neural networks
• Ideally, when D cannot distinguish the true and generated

data, G nicely fits the true underlying data distribution

G
D

Real World

Generator

Discriminator

Data

Generator Network

• Must be differentiable
• No invertibility requirement
• Trainable for any size of z
• Can make x conditionally Gaussian given

z but need not do so
• e.g. Variational Auto-Encoder

• Popular implementation: multi-layer
perceptron

x = G(z; μ)x = G(z; μ)

Discriminator Network

• Can be implemented by any neural networks with a
probabilistic prediction

• For example
• Multi-layer perceptron with logistic output
• AlexNet etc.

P (truejx) = D(x; Á)P (truejx) = D(x; Á) D

P (real)P (real)

Generator and Discriminator Nets

• Must be differentiable
• No invertibility requirement
• Popular implementation: multi-layer perceptron

x = G(z;μ)x = G(z;μ)

• Generator network

• Can be implemented by any neural networks with a
probabilistic prediction

• For example
• Multi-layer perceptron with logistic output
• AlexNet etc.

P (realjx) = D(x;Á)P (realjx) = D(x;Á)

• Discriminator network

G

D

P (real)P (real)

GAN: A Minimax Game

G
D

Real World

Generator

Discriminator

Data

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)

The joint objective function

Illustration of GANs

Discriminator

Data

Generator

J (D) = E »pdata()[log D(x)] + E »p ()[log(1¡D(G(z)))]J (D) = E »pdata()[log D(x)] + E »p ()[log(1¡D(G(z)))]

min
G

max
D

J (D)min
G

max
D

J (D) max
D

J (D)max
D

J (D)Generator Discriminator

Ideal Final Equilibrium

• Generator generates
perfect data
distribution

• Discriminator cannot
distinguish the true
and generated data

Training GANs
Training discriminator

Training GANs

Training generator

Optimal Strategy for Discriminator

• Optimal D(x) for any
pdata(x) and pG(x) is
always Discriminator

Data

Generator

• If this optimum is
allowed to reach, then
we have an ideal
equilibrium for GAN.

Equilibrium for the Minimax Game

J(G; D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= E »p ()[log D(x)] + E »pG()[log(1¡D(x))]

= E »p ()

·
log

p (x)

p (x) + pG(x)

¸
+ E »pG()

·
log

pG(x)

p (x) + pG(x)

¸
= ¡ log(4) +

μ
p

°°°p + pG

2

¶
| {z }

¸0

+

μ
pG

°°°p + pG

2

¶
| {z }

¸0

J(G; D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= E »p ()[log D(x)] + E »pG()[log(1¡D(x))]

= E »p ()

·
log

p (x)

p (x) + pG(x)

¸
+ E »pG()

·
log

pG(x)

p (x) + pG(x)

¸
= ¡ log(4) +

μ
p

°°°p + pG

2

¶
| {z }

¸0

+

μ
pG

°°°p + pG

2

¶
| {z }

¸0

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

• An equilibrium is and pG(x) = p (x)pG(x) = p (x) D(x) =
p (x)

p (x) + pG(x)
= 0:5D(x) =

p (x)

p (x) + pG(x)
= 0:5

Equilibrium for the Minimax Game

J(G; D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= E »p ()[log D(x)] + E »pG()[log(1¡D(x))]

= E »p ()

·
log

p (x)

p (x) + pG(x)

¸
+ E »pG()

·
log

pG(x)

p (x) + pG(x)

¸
= ¡ log(4) +

μ
p

°°°p + pG

2

¶
| {z }

¸0

+

μ
pG

°°°p + pG

2

¶
| {z }

¸0

J(G; D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= E »p ()[log D(x)] + E »pG()[log(1¡D(x))]

= E »p ()

·
log

p (x)

p (x) + pG(x)

¸
+ E »pG()

·
log

pG(x)

p (x) + pG(x)

¸
= ¡ log(4) +

μ
p

°°°p + pG

2

¶
| {z }

¸0

+

μ
pG

°°°p + pG

2

¶
| {z }

¸0

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

is something between and

[Huszár, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]

• In order to take gradient on the generator parameter, x has
to be continuous

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

Generator Discriminatormin
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)

Case Study of GANs for Continuous Data

Why study generative models?
• Excellent test of our ability to use high-dimensional,

complicated probability distributions
• Simulate possible futures for planning or simulated

RL
• Missing data

• Semi-supervised learning
• Multi-modal outputs
• Realistic generation tasks

(Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks)

High Resolution and Quality Images

• Progressive Growing of GANs

Two imaginary celebrities that were dreamed up by a random
number generator.

Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.

Single Image Super-Resolution

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.

deep residual generative adversarial
network optimized for a loss more
sensitive to human perception

[4× upscaling]

Image to Image Translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.

High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.

Grayscale Image Colorization

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.

Ground
Truth

Ground
Truth

Generated Colorization
after Performing Grayscale

Generated Colorization
after Performing Grayscale

GANs for Continuous Data
• All above applications are based on (conditional)

GANs oriented to continuous data

• In information retrieval tasks, the data are mostly
discrete

• IDs in collaborative filtering
• Text in web search
• Graph nodes and edges in social networks

• The original GANs framework cannot handle such
discrete data generation tasks

• The chain rule in step 4 enables the generative to
• Tune the parameter to slightly change the output x on the

direction of from the discriminator

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

@J(G;D)=@x@J(G;D)=@x

@J(G; D)

@x

@x

@μ

@J(G; D)

@x

@x

@μ

P (realjx) = D(x;Á)P (realjx) = D(x;Á)

x = G(z; μ)x = G(z; μ)

@J(G;D)

@x

@J(G;D)

@x

x Ã x¡ ´ ¢ @J(G;D)

@x
x Ã x¡ ´ ¢ @J(G;D)

@x

The loss function should be differentiable
w.r.t. the instance x, which requires the
data space is continuous

Discrete Data Generation

• How to generate discrete data?

• Sample the discrete token from a parametric
distribution

x » P (x; μ)x » P (x; μ)

and optimize the distribution w.r.t. its parameter

• Compare to the original GAN for continuous data
• Sample a noise vector from a known distribution
• Map the noise vector to a data instance

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Two Kinds of Machine Learning
• Prediction

• Predict the desired output given the data (supervised
learning)

• Generate data instances (unsupervised learning)

• Decision Making
• Take actions based on a particular state in a dynamic

environment (reinforcement learning)
• to transit to new states
• to receive immediate reward
• to maximize the accumulative reward over time

• Learning from interaction

Reinforcement Learning
• At each step t, the agent

• Receives observation Ot
• Receives scalar reward Rt
• Executes action At

• The environment
• Receives action At
• Emits observation Ot+1
• Emits scalar reward Rt+1

• t increments at
environment step

• Goal of RL: take actions to
maximize cumulative
rewards over time

Agent

Environment

Model-free Reinforcement Learning

• Model-free RL is to directly learn value & policy from
experience without building an MDP

• Key steps: (1) estimate value function; (2) optimize policy

• In realistic problems, we have no access to the environment
(model) and only observed some episodes

Episode 1:

Episode 2:

s
(1)
0

a
(1)
0¡¡¡¡¡!

R(s0)(1)
s
(1)
1

a
(1)
1¡¡¡¡¡!

R(s1)(1)
s
(1)
2

a
(1)
2¡¡¡¡¡!

R(s2)(1)
s
(1)
3 ¢ ¢ ¢ s(1)

Ts
(1)
0

a
(1)
0¡¡¡¡¡!

R(s0)(1)
s
(1)
1

a
(1)
1¡¡¡¡¡!

R(s1)(1)
s
(1)
2

a
(1)
2¡¡¡¡¡!

R(s2)(1)
s
(1)
3 ¢ ¢ ¢ s(1)

T

s
(2)
0

a
(2)
0¡¡¡¡¡!

R(s0)(2)
s
(2)
1

a
(2)
1¡¡¡¡¡!

R(s1)(2)
s
(2)
2

a
(2)
2¡¡¡¡¡!

R(s2)(2)
s
(2)
3 ¢ ¢ ¢ s(2)

Ts
(2)
0

a
(2)
0¡¡¡¡¡!

R(s0)(2)
s
(2)
1

a
(2)
1¡¡¡¡¡!

R(s1)(2)
s
(2)
2

a
(2)
2¡¡¡¡¡!

R(s2)(2)
s
(2)
3 ¢ ¢ ¢ s(2)

T

Value Function Estimation
• In RL, the value function is calculated by dynamic

programming

• Now in model-free RL
• We cannot directly know the environment
• But we have a list of experiences to estimate the values

Episode 1:

Episode 2:

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

s
(1)
0

a
(1)
0¡¡¡¡¡!

R(s0)(1)
s
(1)
1

a
(1)
1¡¡¡¡¡!

R(s1)(1)
s
(1)
2

a
(1)
2¡¡¡¡¡!

R(s2)(1)
s
(1)
3 ¢ ¢ ¢ s(1)

Ts
(1)
0

a
(1)
0¡¡¡¡¡!

R(s0)(1)
s
(1)
1

a
(1)
1¡¡¡¡¡!

R(s1)(1)
s
(1)
2

a
(1)
2¡¡¡¡¡!

R(s2)(1)
s
(1)
3 ¢ ¢ ¢ s(1)

T

s
(2)
0

a
(2)
0¡¡¡¡¡!

R(s0)(2)
s
(2)
1

a
(2)
1¡¡¡¡¡!

R(s1)(2)
s
(2)
2

a
(2)
2¡¡¡¡¡!

R(s2)(2)
s
(2)
3 ¢ ¢ ¢ s(2)

Ts
(2)
0

a
(2)
0¡¡¡¡¡!

R(s0)(2)
s
(2)
1

a
(2)
1¡¡¡¡¡!

R(s1)(2)
s
(2)
2

a
(2)
2¡¡¡¡¡!

R(s2)(2)
s
(2)
3 ¢ ¢ ¢ s(2)

T

Monte-Carlo Methods
• Monte-Carlo methods are a broad class of

computational algorithms that rely on repeated
random sampling to obtain numerical results.

• Example, to calculate the circle’s surface

Circle Surface = Square Surface£ #points in circle

#points in total
Circle Surface = Square Surface£ #points in circle

#points in total

Monte-Carlo Methods

Win Rate(s) =
#win simulation cases started from s

#simulation cases started from s in total
Win Rate(s) =

#win simulation cases started from s

#simulation cases started from s in total

• Go: to estimate the winning rate given the current state

Monte-Carlo Value Estimation
• Goal: learn Vπ from episodes of experience under policy π

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

= E[Gtjst = s; ¼]

' 1

N

NX
i=1

G
(i)
t

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

= E[Gtjst = s; ¼]

' 1

N

NX
i=1

G
(i)
t

s
(i)
0

a
(i)
0¡¡!

R
(i)
1

s
(i)
1

a
(i)
1¡¡!

R
(i)
2

s
(i)
2

a
(i)
2¡¡!

R
(i)
3

s
(i)
3 ¢ ¢ ¢ s(i)

T » ¼s
(i)
0

a
(i)
0¡¡!

R
(i)
1

s
(i)
1

a
(i)
1¡¡!

R
(i)
2

s
(i)
2

a
(i)
2¡¡!

R
(i)
3

s
(i)
3 ¢ ¢ ¢ s(i)

T » ¼

• Recall that the return is the total discounted reward
Gt = Rt+1 + °Rt+2 + : : : °T¡1RTGt = Rt+1 + °Rt+2 + : : : °T¡1RT

• Recall that the value function is the expected return

• Sample N episodes from state s using policy π
• Calculate the average of cumulative reward

• Monte-Carlo policy evaluation uses empirical mean return instead of expected
return

Parametric Policy
• We can parametrize the stochastic policy

• θ is the parameters of the policy
• Generalize from seen states to unseen states
• We focus on model-free reinforcement learning

¼μ(ajs) = P (ajs; μ)¼μ(ajs) = P (ajs; μ)

Policy Gradient
• For stochastic policy
• Intuition

• lower the probability of the action that leads to low value/reward
• higher the probability of the action that leads to high value/reward

• A 5-action example

¼μ(ajs) = P (ajs; μ)¼μ(ajs) = P (ajs; μ)

0
0.05

0.1
0.15

0.2
0.25

A1 A2 A3 A4 A5

Action Probability

0

0.1

0.2

0.3

0.4

A1 A2 A3 A4 A5

Action Probability

0

0.1

0.2

0.3

0.4

A1 A2 A3 A4 A5

Action Probability

2. Take action A2
Observe positive reward

4. Take action A3
Observe negative reward

1. Initialize θ 3. Update θ by policy gradient 5. Update θ by policy gradient

Policy Gradient in One-Step MDPs
• Consider a simple class of one-step MDPs

• Starting in state
• Terminating after one time-step with reward rsa

• Policy expected value

s » d(s)s » d(s)

J(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsaJ(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsa

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa
@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa

Likelihood Ratio
• Likelihood ratios exploit the following identity

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

• Thus the policy’s expected value
J(μ) = E¼μ [r] =

X
s2S

d(s)
X
a2A

¼μ(ajs)rsaJ(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsa

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa

=
X
s2S

d(s)
X
a2A

¼μ(ajs)@ log ¼μ(ajs)
@μ

rsa

= E¼μ

h@ log ¼μ(ajs)
@μ

rsa

i

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa

=
X
s2S

d(s)
X
a2A

¼μ(ajs)@ log ¼μ(ajs)
@μ

rsa

= E¼μ

h@ log ¼μ(ajs)
@μ

rsa

i This can be approximated by sampling
state s from d(s) and action a from πθ

Policy Gradient Theorem
• The policy gradient theorem generalizes the likelihood ratio

approach to multi-step MDPs
• Replaces instantaneous reward rsa with long-term value

• Policy gradient theorem applies to
• start state objective J1, average reward objective JavR, and average

value objective JavV

• Theorem
• For any differentiable policy , for any of policy objective

function J = J1, JavR, JavV , the policy gradient is

Q¼μ(s; a)Q¼μ(s; a)

¼μ(ajs)¼μ(ajs)

@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i

Please refer to appendix of the slides for detailed proofs

Monte-Carlo Policy Gradient (REINFORCE)
• Update parameters by stochastic gradient ascent
• Using policy gradient theorem
• Using return Gt as an unbiased sample of Q¼μ(s; a)Q¼μ(s; a)

¢μt = ®
@ log ¼μ(atjst)

@μ
Gt

• REINFORCE Algorithm
Initialize θ arbitrarily
for each episode do

for t=1 to T-1 do

end for
end for
return θ

fs1; a1; r2; : : : ; sT¡1; aT¡1; rTg » ¼μ

μ Ã μ + ® @
@μ

log ¼μ(atjst)Gt

Puck World Example

• Continuous actions exert small force on puck
• Puck is rewarded for getting close to target
• Target location is reset every 30 seconds
• Policy is trained using variant of MC policy gradient

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

IR Theory: Relevancy is the Key

Web Search Question Answers Recommender Systems

keywords

Webpages
Textual answers

Textual questions User profile item

Recommended item

The classic school:
Generative Retrieval

• Assume there is an
underlying stochastic
generative process
between documents and
information needs

• D -> Q
e.g., From [Maron and Kuhns’
Probabilistic Indexing, 60s] to
[Statistical language models of
text retrieval, 90s]
• Q -> D

e.g., [Robertson and Sparck
Jones’s Binary Independence
Model, 70s]

Relevant document
or query distribution

D -> Q, Q -> D

Relevant

Non-relevant

The modern school:
Discriminative models

• Discriminative models
learned from labeled
relevant judgements or
their proxies such as clicks
or ratings

• Consider documents and
queries jointly as features
and predicts their relevancy
or rank order labels

• Q + D -> R
e.g., [Learning to rank, 2000s]
[Neural information retrieval,
2010s]

Q + D -> R

Decision boundary
between relevance
and non-relevance

Relevant

Non-relevant

Two Schools IR Thinkings: Pro/Con

Generative models of IR

• Pros: theoretically sound
and very successful in
modelling features

• Cons:
• Difficult in leveraging

relevancy signals from
largely observable data,
e.g., links, clicks

• Typically not trainable

Discriminative models of IR

• Pros: learn a retrieval
ranking function implicitly
from labeled data

• Cons: lack a principled way
of
• Obtaining useful features,
• Gathering helpful signals from

the massive unlabeled data
available, e.g., text statistics,
the collection distribution

How to take advantage of both
schools of thinking?

Generative models of IR

• Learns to fit the relevance
distribution over
documents via the signal
from the discriminative
model

• -> Trainable!!

Discriminative models of IR

• Able to exploit the
unlabeled data selected by
the generative model to
achieve a better estimation
for document ranking

• -> automatically obtain
needed training data!!

IRGAN: A Minimax Game
for Information Retrieval

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and
Discriminative Information Retrieval Models. SIGIR 2017.

IRGAN: A Minimax Game Unifying
both Models
• Take advantage of both schools of thinking:

• The generative model learns to fit the relevance
distribution over documents via the signal
from the discriminative model.

• The discriminative model is able to exploit the unlabeled
data selected by the generative model to achieve a
better estimation for document ranking.

IRGAN Formulation

• Underlying true relevance distribution depicts the user’s
relevance preference distribution over the candidate documents with respect to
his submitted query

• Training set: A set of samples from

• Generative retrieval model
• Goal: approximate the true relevance distribution

• Discriminative retrieval model
• Goal: distinguish between relevant documents and non-relevant documents

G
D

Real World

Generator

Discriminator

Relevant Docs

ptrue(djq; r)ptrue(djq; r)

pμ(djq; r)pμ(djq; r)
fÁ(q; d)fÁ(q; d)

ptrue(djq; r)ptrue(djq; r)

ptrue(djq; r)ptrue(djq; r)
pμ(djq; r)pμ(djq; r)

fÁ(q; d)fÁ(q; d)

A Minimax Game Unifying Both Models

• Objective

where

G
D

Real World

Generator
Discriminator

Relevant Docs

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))

Optimizing Generative Retrieval via Policy Gradient

• Optimizing Generative Retrieval
• Samples documents from the whole document set to

fool its opponent

• REINFORCE (with Advantage Function)

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. Policy gradient methods for reinforcement learning with
function approximation. In NIPS 2000.

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn)

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn) Reward TermGenerator as Policy

log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

IRGAN REINFORCE

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

• Likelihood ratio

The Interplay between
Generative and Discriminative Retrieval

Extension to Pairwise Case
• It is common that the dataset is a set of ordered

document pairs for each query rather than a set of
relevant documents.

• Capture relative preference judgements

rather than absolute relevance judgements

• Generator would try to generate document pairs
that are similar to those in , i.e., with the correct
ranking.

Experiments: Web Search
• Dataset

• MQ-2008 (Million-
query Track in
LETOR 4.0)

• Semi-supervised
learning: a large
amount of
unlabeled query-
document pairs

• Task
• Rank the

candidate
documents for
each query

Experiments: Web Search
Key Observations
• In both setting, IRGAN

consistently and
significantly (see the
table) outperforms other
algorithms

• Typically, when one
player (G or D) starts to
outperforms the
baseline discriminative
model, the other player
(D or G) would get worse
than the baseline

IRGAN-Pointwise Generator Performance

IRGAN-Pairwise Discriminator Performance

Experiments: Item Recommendation

• Datasets
• Movielens: 943 users, 1.7k items,

100k ratings
• Netflix: 480k users, 17k items, 100M

ratings

• Task: Top-N item recommendation
with implicit feedback data

• Key observations
• Although generative retrieval

model in IRGAN does not
explicitly learn to optimize the
final ranking measures like what
LambdaFM does, it still
performs consistently better
than LambdaFM.

IRGAN-pointwise Generator Performance on Movielens IRGAN-pointwise Generator Performance on Netflix

Experiments: Item Recommendation

Top-5 item recommendation task on Movielens

Key observations
• A reliable training

process where IRGAN
owns a consistent
superiority over
LambdaFM from the
beginning of
adversarial training

Temperature hyperparameter tuning

• The empirically optimal
sampling temperature is
0.2 but not 0 or 1

• Such a low temperature
means optimal ranking
is achieved by setting a
low (but not none)
randomness

Experiments: Question Answering

• InsuranceQA Dataset
• 12k question answer pairs
• Two test sets with 1.8k pairs

• Task
• rank top-1 answer for each

question

• Key observations
• Discriminator performs better

than LambdaCNN while the
generator tends to perform less
effectively

• The reason could be the high
sparsity of the answer
distribution

G and D performance on InsuranceQA

Different generator and discriminator
scoring functions

a) For IRGAN-pointwise, the NN implemented generator works be
better than its linear version, while the NN implemented
discriminator may not offer a good guidance if the generator has
lower model complexity (i.e. linear).

b) For IRGAN-pairwise, the NN implemented discriminator outperforms
its linear version. The one used for performing the prediction should
be implemented with a capacity at least as high as its opponent.

On the Equilibrium of Query
Reformulation and
Document Retrieval
Shihao Zou, Guanyu Tao, Jun Wang, Weinan Zhang, Dell Zhang. On
the Equilibrium of Query Reformulation and Document Retrieval.
ICTIR 2018.

Two Challenges in Information Retrieval

• How to formulate optimal
queries to best represent the
user’s information needs

• Relevance estimation for the
document given the information
need representation

• Query reformulation
(relevance feedback)

Equilibrium theory of information retrieval
• a strategic game, simultaneously played between the

query reformulation and the retrieval model

query
relevant doc

irrelevant doc

• Retrieval model

Intuition
• The query reformulation would refine the query

that is the best response to the actions from the
given retrieval model player

• The retrieval model would also need to produce
the document relevant estimation that is the best
response toward the formulated query

• Two components cooperate to achieve the best
response to each other. (an equilibrium state)

Definition: IR Strategic Game
• is the set of two players: query formulator

Q and retrieval model M.
• are finite sets of strategies available to

player Q and M.
• denotes whether the term is included in

the query or not.
• denotes relevance estimation by retrieval

model.
• An equilibrium state: both players have no incentive

to change their strategies and , so that

{ },P Q M=

Q MS S S= ×

q Qs S∈

m Ms S∈

ms
∗

qs
∗

() () () (), , , , ,Q q m Q q m M q m M q mu s s u s s u s s u s s∗ ∗ ∗ ∗ ∗ ∗≥ ≥

IR Game with Relevance Feedback
• Common utility

• A toy example

IR Game with Pseudo Relevance Feedback

• Utility for retrieval model

• Utility for query reformulation

It makes the two utilities different

IR Game with Pseudo Relevance Feedback

• A toy example

• Case 1: Query Iteration (Conv-Q)

• Case 2: Retrieval Model Iteration (Conv-M)

• Case 3: Equilibrium of the Query and Retrieval Model.

Three Training Schemes

Logistic
regression of K

weight schemes

Experiment: text retrieval
• Utility in each iteration of training stage

Observations
• Iterations on Q, M and both parts help improve the

ranking performance (utility) in training stage

Text retrieval results on RF
• Datasets

• TREC disks 4 & 5

• Task
• Text retrieval ranking

• Key observations
• Conv-Q shows better

performance than Naive
and Rocchio

• Conv-M fails to perform
well on test set although
well on training set

• The best Equil-Q&M
indicates the effectiveness
of coordinating Q and M

Text retrieval results on PRF
• Datasets

• TREC disks 4 & 5
• Task

• Text retrieval ranking
• Key observations

• Conv-Q shows worse
performance than Naive
and Rocchio

• One cannot fully rely on the
top-k retrieved docs from
the model to update the
query

• The best Equil-Q&M
indicates the coordination
of Q and M help overcome
the issue of bad query
representation

Summary of this Part
• Study the interactions between query

reformulation and retrieval model relevance
estimation in a game theoretical framework

• The performance of an equilibrium solution from
relevance feedback consistently outperforms
others separate cases.

• We shall perform a deeper investigation of the
utility design in the proposed normal-form IR

Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

RNN based Language Model
• Trained via maximum likelihood estimation (MLE)

<START> I love machine learningreally

I love machine learningreally <END>

LSTM

LSTM

Input

Output

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)]

Exposure Bias

• Exposure bias
• In MLE, the prefix is always from the real data

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• But during generation, the prefix is the output of the
model, which could never occur in real data

• Similar in self-driving car training
• Problem of behavior cloning

Exposure Bias & Schedule Sampling

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• Schedule sampling
• With a decaying probability, use the prefix from real

data, otherwise use the generated prefix to train

Professor Forcing
• Professor Forcing reduces the gap between teacher

forcing and free generation procedures.

Lamb, Alex M., et al. "Professor forcing: A new algorithm for training recurrent networks.“ NIPS 2016.

Inconsistency of Evaluation and Use

• Check whether a
true data is with a
high mass density
of the learned
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a
model-generated
data is considered as
true as possible

• More straightforward
but it is hard or
impossible to directly
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability

REVIEW

Generative Adversarial Nets (GANs)

• What we really want

max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

• But we cannot directly calculate p(x)p(x)

• Idea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

• Leverage the strong power of deep learning based
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]

SeqGAN:
Sequence Generation via
GANs with Policy Gradient
[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. AAAI 2017.]
https://arxiv.org/abs/1609.05473

SeqGAN

• Generator is a reinforcement learning policy
of generating a sequence

• decide the next word to generate given the previous ones
• Discriminator provides the reward (i.e. the probability

of being true data) for the whole sequence

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)

DÁ(Y n
1:T)DÁ(Y n
1:T)

Sequence Generator
• Objective: to maximize the expected reward

• State-action value function is the expected
accumulative reward that

• Start from state s
• Taking action a
• And following policy G until the end

QGμ
DÁ

(s; a)QGμ
DÁ

(s; a)

• Reward is only on completed
sequence (no immediate reward)
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T)QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T)

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

State-Action Value Setting
• Reward is only on completed sequence

• No immediate reward
• Then the last-step state-action value
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T)QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T)

• For intermediate state-action value
• Use Monte Carlo search to estimate©

Y 1
1:T ; : : : ; Y N

1:T

ª
= MCGμ(Y1:t;N)

©
Y 1

1:T ; : : : ; Y N
1:T

ª
= MCGμ(Y1:t;N)

• Following a roll-out policy
QGμ

DÁ
(s = Y1:t¡1; a = yt) =½

1
N

PN
n=1 DÁ(Y n

1:T); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T

QGμ
DÁ

(s = Y1:t¡1; a = yt) =½
1
N

PN
n=1 DÁ(Y n

1:T); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T

Training Sequence Generator
• Policy gradient (REINFORCE)

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.

μ Ã μ + ®hrμJ(μ)μ Ã μ + ®hrμJ(μ)

Sequence Generator Model

• RNN with LSTM cells for

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735–1780.]

Shanghai is incredibly

is incredibly
Softmax sampling
over vocabulary

?

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)

Training Sequence Discriminator
• Objective: standard binary classification

min
Á
¡EY»pdata

[log DÁ(Y)]¡ EY»Gμ [log(1¡DÁ(Y))]min
Á
¡EY»pdata

[log DÁ(Y)]¡ EY»Gμ [log(1¡DÁ(Y))]

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

• A CNN implementation

Overall Algorithm

Experiments on Synthetic Data
• Evaluation measure with Oracle

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
i

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
imax

μ
Ex»qμ(x)[log p(x)]max

μ
Ex»qμ(x)[log p(x)]

Experiments on Real-World Data
• Chinese poem generation

• Obama political speech text generation

• Midi music generation

Experiments on Real-World Data
• Chinese poem generation

南陌春风早，东邻去日斜。

紫陌追随日，青门相见时。

胡风不开花，四气多作雪。

山夜有雪寒，桂里逢客时。

此时人且饮，酒愁一节梦。

四面客归路，桂花开青竹。

Human Machine

Obama Speech Text Generation
• i stood here today i have one

and most important thing that
not on violence throughout the
horizon is OTHERS american
fire and OTHERS but we need
you are a strong source

• for this business leadership will
remember now i cant afford to
start with just the way our
european support for the right
thing to protect those american
story from the world and

• i want to acknowledge you
were going to be an
outstanding job times for
student medical education and
warm the republicans who like
my times if he said is that
brought the

• When he was told of this
extraordinary honor that he
was the most trusted man in
America

• But we also remember and
celebrate the journalism that
Walter practiced -- a standard
of honesty and integrity and
responsibility to which so many
of you have committed your
careers. It's a standard that's a
little bit harder to find today

• I am honored to be here to pay
tribute to the life and times of
the man who chronicled our
time.

Human Machine

LeakGAN:
Long Text Generation via
Adversarial Training with
Leaked Information
• [Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang.

Long Text Generation via Adversarial Training with Leaked Information.
AAAI 2018.]
https://arxiv.org/abs/1709.08624

Main Weakness in SeqGAN

Text

Signal about
quality

Student
(Generator)

Teacher
(Discriminator)

• Huge search space: If the vocabulary is 5000, and
the text length is 10, the text’s number will be up
to , it needs many attempts to find a good
policy.

Main Weakness in SeqGAN

Rewrite Text

Generator only knows if the text is good, but don’t know why!
Huge search cost!

We need more guide information.

New signal
about quality

• Huge search space: If the vocabulary is 5000, and
the text length is 10, the text’s number will be up
to , it needs many attempts to find a good
policy.

Student
(Generator)

Teacher
(Discriminator)

Recall the 2 Players’ Tasks
• Generator task: generate high quality’s text to fool

discriminator.

• Discriminator task: identify the text according to
the feature extracted by itself

Feature

The criterion is the feature in the
discriminator

Feature

• If this criterion is leaked to Generator just like
student knows the scoring rules. It may reduce the
search space.

Information Leaking

How to utilize the feature from D?
• If G wants to fool D, G needs to

generate more realistic text to obtain
more realistic feature.

• During the generation, we know
current feature, we need to choose
next action to obtain more realistic
feature, i.e., we need to find a higher
reward region in feature space.

• We refer the hierarchical reinforcement
learning like FeUdal Networks
[Vezhnevets 2017]

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.

High reward
region

Current place in
feature space

Goal

LeakGAN Framework

Manager: receives current text’s feature from D, outputs a direction of higher
reward feature as the sub-goal vector for Worker.
Worker: produces primitive actions to follow the sub-goals from Manager.

Training of Hierarchical RL
• Manager: a high-level transition policy gradient

what new feature will
be after taking action
and transit c steps

• Use Mises-Fisher distribution to implement

• Policy gradient (with likelihood ratio)

• Value function by Monte Carlo search

Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." ICML 2017.

Training of Hierarchical RL
• For Generator, we train the Manager and Worker

independently to let them focus on their own task

• Worker is trained like SeqGAN

where the intrinsic reward is

to follow the Manager’s sub-goal.
• The training method is REINFORCE.

• Synthetic data experiments

Experiment

• BLEU Scores in real data
• Short Text (Chinese Poem):

• Middle Text (Image COCO):

Experiment

• Human study

Experiment

• BLEU Scores
• Long Text (EMNLP WMT 2017):

Experiment
• BLEU improvements over baseline models

The curves clearly show that LeakGAN yields larger performance gain over the baselines
when the generated sentences are longer.

Image COCO Caption Text Generation

• Several metal balls sit in
the sand near a group of
people.

• A phone lies on the
counter in a modern
kitchen.

• A woman holding an
umbrella while standing
against a sidewalk.

• The bathroom is clean and
ready for us to use .

HumanLeakGAN

• A silver stove, the
refrigerator, sitting in a
kitchen.

• A cat and a woman
standing by two computer
preparing food.

SeqGAN

WMT 2017 News Text Generation
• This is a part of the population that is

notorious for its lack of interest in
actually showing up when the political
process takes place.

• I was paid far too little to pick up a
dead off of the ground and put it back
in the box.

• I also think that’s a good place for us,
I’m sure that this would be a good
opportunity for me to get in touch.

• That’ s why we’re the most important
people for the African American
community and we’ve made a good
response.

HumanLeakGAN

• “I think you should really really
leave for because we hadn’t
been busy, where it goes to
one,” he wrote.

• We are thinking about 40, 000
and jobs in what is wrong in the
coming and you know.

SeqGAN

Explanation
• Feature Traces

Start token

Real data
region

• Behaviors of Worker and Manager

Explanation

A Text Generation Model
Benchmarking Platform

• Platform advantages
• Highly decoupled
• Easy to Run
• Customization

Yaoming Zhu, Weinan Zhang et al. Texygen: A Benchmarking Platform for Text Generation Models. SIGIR 2018.

• Motivations
• Make comparison

transparent and
comprehensive

• Open source all models

https://github.com/geek-ai/Texygen

Evaluation Metrics
• Document Similarity

• BLEU score [Papineni et al., 2002]
• Counting of matching n-grams between two sentences
• Penalty for shorter sentence
• Clip the duplicated n-grams
• Average the BLEU score over all true sentences and the

generated one

• Self-BLEU
• Measure the BLEU score among the generated sentences
• The lower Self-BLEU means the higher diversity

Evaluation Metrics
• Likelihood-based measurement

• NLL-oracle [Yu et al., 2017]
• Use a randomly initialized LSTM as the true model, aka, oracle
• Minimize the exact opposite average negative log-likelihood

• NLL-test
• Dual to NLL-oracle
• Evaluating the model’s capacity to fit real test data

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log(Goracle(ytjY1:t¡1))
i

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log(Goracle(ytjY1:t¡1))
i

NLLtest = ¡EY1:T»Greal

h TX
t=1

log(Gμ(ytjY1:t¡1))
i

NLLtest = ¡EY1:T»Greal

h TX
t=1

log(Gμ(ytjY1:t¡1))
i

Texygen Code
• User friendly APIs for

• 7 models: SeqGAN, MaliGAN, RankGAN, LeakGAN, GSGAN, TextGAN,
MLE

• 6 Metrics: BLEU, EmbSim, NLL-oracle, NLL-test, Self-BLEU, CFG
• 3 Training methods: Oracle, CFG, Real data

Texygen Experiments

Key observations
• MaliGAN and GSGAN diverges
• LeakGAN and TextGAN performs better than SeqGAN/RankGAN, could be led

by mode collapse, i.e. low diversity

Texygen Experiments

Key observations
• LeakGAN performs better than any other compared models on both NLL-test

and NLL-oracle metrics

Texygen Experiments

Dataset: Image COCO
Key observations: LeakGAN provides the best BLEU performance but
sacrifice on diversity

Summary of this Part
• It looks promising to leverage RL to train GANs for

discrete data
• SeqGAN models the sequence generation as a

sequential decision making process
• Next token generation as an RL policy
• Discriminator provides final reward signals

• LeakGAN addresses two problems of SeqGAN
• Scalar reward is non-informative
• Final reward is sparse
• By leaking information from D to G with HRL

• More models are developed, which need fair
comparison

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)

GraphGAN:
Graph Representation
Learning with Generative
Adversarial Nets
[Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang,
Fuzheng Zhang, Xing Xie, Minyi Guo. GraphGAN: Graph Representation
Learning with Generative Adversarial Nets. AAAI 2018.]

https://arxiv.org/abs/1711.08267

Background of GRL
• Graph representation learning (GRL) learns a vector

for each node in a graph
• a.k.a. graph embedding / network embedding / network

representation learning

5 2

1

Graph representation
learning

Background of GRL
• Graph representation learning applications

• Link prediction
• Node classification
• Recommendation
• Visualization
• Knowledge graph representation
• Clustering
• Text embedding
• Social network analysis
• …

Background of GRL
• Researchers have examined applying representation

learning methods to various types of graphs:
• Weighted graphs (Grover and Leskovec, KDD 2016)
• Directed graphs (Zhou et al., AAAI 2017)
• Signed graphs (Wang et al., SDM 2017)
• Heterogeneous graphs (Wang et al., WSDM 2018)
• Attributed graphs (Huang, Li, and Hu, WSDM 2017)

• Several prior works also try to preserve specific properties
during the learning process:

• Global structures (Wang, Cui, and Zhu, KDD 2017)
• Community structures (Wang et al., AAAI 2017)
• Group information (Chen, Zhang, and Huang, CIKM 2016)
• Asymmetric transitivity (Ou et al., KDD 2016)

Motivation of GraphGAN
• Generative graph representation learning model assumes an

underlying true connectivity distribution 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐) for each
vertex 𝑣𝑐

• Similar to GMM and LDA
• The edges can be viewed as observed samples generated by the true

distribution 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐)
• Vertex embeddings are learned by maximizing the likelihood of edges
• E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)

𝑣 0.00.3
0.30.4

Original graph 𝑝௧௨(𝑣|𝑣)
𝑣

Motivation of GraphGAN
• Discriminative graph representation learning model aims to

learn a classifier for predicting the existence of edges
directly

• Consider two vertices 𝑣𝑖 and 𝑣𝑗 jointly as features
• Predict the probability of an edge existing between them, i.e., 𝑝(𝑒𝑑𝑔𝑒|𝑣𝑖,𝑣𝑗)
• E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)

𝑣 𝑣
𝑣

𝑝 𝑒𝑑𝑔𝑒 𝑣, 𝑣 = 0.8𝑝 𝑒𝑑𝑔𝑒 𝑣, 𝑣 = 0.3
……

Motivation of GraphGAN
• Generative and discriminative models are two sides

of the same coin
• LINE (WWW 2015) has tried to combine these two

objectives via edge sampling

• GraphGAN, a framework that unifies generative
and discriminative thinking for graph
representation learning

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.

GraphGAN: the Minimax Game
• Given a graph

• Set of vertices:
• Set of edges:
• Underlying true connectivity distribution for 𝑣𝑐:

G = (V; E)G = (V; E)

V = fv1; :::; vV gV = fv1; :::; vV g
E = feijgV

i;j=1E = feijgV
i;j=1

ptrue(vjvc)ptrue(vjvc)

• The objective of GraphGAN is to learn the following
two models

• Generator to approximate
• Discriminator to estimate the connectivity

for the vertex pair (𝑣,𝑣𝑐) ptrue(vjvc)ptrue(vjvc)G(vjvc; μG)G(vjvc; μG)

D(v; vc; μD)D(v; vc; μD)

GraphGAN: the Minimax Game
• The objective of GraphGAN is to learn the following

two models
• Generator to approximate
• Discriminator to estimate the connectivity for

the vertex pair (𝑣,𝑣𝑐) ptrue(vjvc)ptrue(vjvc)G(vjvc; μG)G(vjvc; μG)
D(v; vc; μD)D(v; vc; μD)

• The two-player minimax game:

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

GraphGAN: the Minimax Game

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

Implementation & Optimization of D

• A simple implementation of D

D(v; vc) = ¾(d>v dvc) =
1

1 + exp(¡d>v dvc)
D(v; vc) = ¾(d>v dvc) =

1

1 + exp(¡d>v dvc)

• Note that any other discriminative model of link prediction
can be implemented here, e.g., SDNE

min
μG

max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

• Gradient of V(G, D) w.r.t. the parameters of D

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

(a normal replacement of loss in GAN)

Optimization of G

min
μG

max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

• Gradient of V(G, D) w.r.t. the parameters of G

rμGV (G;D) =rμG
VX

c=1

Ev»G(¢jvc)

£
log

¡
1¡D(v; vc)

¢¤
=

VX
c=1

NX
i=1

rμGG(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

NX
i=1

G(vijvc)rμG log G(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

Ev»G(¢jvc)

£rμG log G(vjvc) log
¡
1¡D(v; vc)

¢¤

rμGV (G;D) =rμG
VX

c=1

Ev»G(¢jvc)

£
log

¡
1¡D(v; vc)

¢¤
=

VX
c=1

NX
i=1

rμGG(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

NX
i=1

G(vijvc)rμG log G(vijvc) log
¡
1¡D(vi; vc)

¢
=

VX
c=1

Ev»G(¢jvc)

£rμG log G(vjvc) log
¡
1¡D(v; vc)

¢¤

Implementation of G
• Softmax?

• Computationally inefficient
• Graph-structure-unaware where 𝐠௩, 𝐠௩ ∈ ℝ are the k-dimensional

vectors of 𝑣 and 𝑣 for G

G(vjvc) =
exp(g>v gvc)P

v 6=vc
exp(g>v gvc)

G(vjvc) =
exp(g>v gvc)P

v 6=vc
exp(g>v gvc)

• Hierarchical softmax?
• Graph-structure-unaware

• Negative sampling (NCE)?
• Not a valid probability distribution
• Graph-structure-unaware

Graph Softmax in GraphGAN
• Objectives: The design of graph softmax should

satisfy the following three properties
• Normalized: The generator should produce a valid

probability distributionP
v 6=vc

G(vjvc; μG) = 1
P

v 6=vc
G(vjvc; μG) = 1

• Graph-structure-aware: The generator should take
advantage of the structural information of a graph

• Computationally efficient: The computation of 𝐺(𝑣│𝑣𝑐;𝜃𝐺) should only involve a small number of
vertices in the graph

Graph Softmax in GraphGAN
• Breadth First Search (BFS) on from every vertex 𝑐

• BFS-tree 𝑇𝑐 rooted at 𝑣𝑐
• For a given vertex and one of its neighbors 𝑖∈ 𝑐 (), the relevance probability of 𝑖 given

as
pc(vijv) =

exp(g>vi
gv)P

vj2Nc(v) exp(g>vj
gv)

pc(vijv) =
exp(g>vi

gv)P
vj2Nc(v) exp(g>vj

gv)

• Graph softmax

G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)

given the unique path from 𝑣 to 𝑣 in tree 𝑇: 𝑃௩→௩ =(𝑣బ, 𝑣భ, … , 𝑣), where 𝑣బ = 𝑣 and 𝑣 = 𝑣
Go to an unvisited neighbor Get back to the parent

Graph Softmax in GraphGAN
G(vjvc) ,

¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)

Graph Softmax in GraphGAN
• Some properties for graph softmax in GraphGAN

• Normalized
P

v 6=vc
G(vjvc; μG) = 1

P
v 6=vc

G(vjvc; μG) = 1

• decreases exponentially with the increase
of the shortest distance between 𝑣 and 𝑣𝑐 in original
graph 𝒢G(vjvc; μG)G(vjvc; μG)

• The calculation of depends on 𝑂(𝑑 log𝑉)
vertices, where 𝑑 is average degree of vertices and 𝑉 is
the number of vertices in graph 𝒢G(vjvc; μG)G(vjvc; μG)

Graph Softmax Algorithm

GraphGAN Algorithm

Experiments of GraphGAN
• Datasets

• arXiv-AstroPh: 18,772 vertices and 198,110 edges
• arXiv-GrQc: 5,242 vertices and 14,496 edges
• BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
• Wikipedia: 4,777 vertices, 184,812 edges and 40 labels
• MovieLens-1M: 6,040 users and 3,706 movies

• Baselines
• DeepWalk (KDD 2014)
• LINE (WWW 2015)
• Node2vec (KDD 2016)
• Struc2vec (KDD 2017)

Link Prediction Experiments
• Learning curves

• Generator outperforms discriminator

Dataset: arXiv-GrQc: 5,242 vertices and 14,496 edges

Link Prediction Experiments
• Overall link prediction performance

• LINE and struc2vec is relatively poor in link prediction, as they cannot quite
capture the pattern of edge existence in graphs.

• DeepWalk and node2vec perform better than LINE and struc2vec probably
because of the random-walk-based Skip-Gram model, which is graph-structure-
aware and better at extracting proximity information among vertices.

• GraphGAN performs the best

Experiments on Other Tasks
• Node Classification

• Recommendation (Movielens-1M)

Summary of This Part
• GraphGAN is a novel framework that unifies generative and

discriminative thinking for graph representation learning
• Generator 𝐺(𝑣|𝑣𝑐) tries to fit 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐) as much as possible
• Discriminator 𝐷(𝑣, 𝑣𝑐) tries to tell whether an edge exists between 𝑣 and 𝑣𝑐

• G and D act as two players in a minimax game:
• G tries to produce the most indistinguishable “fake” vertices under guidance

provided by D
• D tries to draw a clear line between the ground truth and “counterfeits” to

avoid being fooled by G

• Graph softmax is leveraged as the implementation of G
• Graph softmax overcomes the limitations of softmax and hierarchical softmax
• Graph softmax satisfies the properties of normalization, graph structure

awareness and computational efficiency

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Rethink about GAN
• Why is GAN significantly better than many

supervised approaches?
• This is because of the nice properties of GAN’s objective,

i.e., Jensen-Shannon Divergence.

J(G;D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

J(G;D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

M =
1

2
(P + G)M =

1

2
(P + G) M: the mediate distribution

Disadvantages of GANs
• Model collapse

• The generator trends to generate some particular
samples that fools the current discriminator

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

• Unstable training
• Minimax objective
• Adversarial training

min
G

E »p ()[log(1¡D(G(z)))]min
G

E »p ()[log(1¡D(G(z)))]

• This problem also occurs for RL based generator like SeqGAN,
i.e., the generator policy trends to take the action leading to
higher value without considering the diversity

Disadvantages of Discrete Data GANs

• It is crucial for SeqGAN or LeakGAN to perform
model pre-training via MLE

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.

Text

Signal about
quality

Teacher
(Discriminator)

Student
(Generator)

Disadvantages of Discrete Data GANs

• It is crucial for SeqGAN or LeakGAN to perform
model pre-training via MLE

Guo et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.

• The guidance from discriminator is not sufficiently
informative and is of high variance

• Leading to low data efficiency, i.e., one may need a large
amount of training data & effort to find a good
generator policy

Beyond GANs, Cooperative Training

• To find an algorithm that is at least as good as GANs,
a simple solution is to find a way to

• Optimize an accurate calculation of JSD
• Or, find an unbiased estimation of JSD at any time

during the training.

J(G;D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´

J(G;D) = E »p ()[log D(x)] + E »p ()[log(1¡D(G(z)))]

= ¡ log(4) +

μ
p

°°°p + pG

2

¶
+

μ
pG

°°°p + pG

2

¶
| {z }

JSD(PkG) =
1

2

³
KL(PkM) + KL(GkM)

´
M =

1

2
(P + G)M =

1

2
(P + G) M: the mediate distribution

Unbiased Estimation of JSD

• where M = 0.5 (P + G)
• If we can find an unbiased estimation for M, the

problem will be solved.
• Can we? YES!

Unbiased Estimation of JSD
• Note that for probability prediction, MLE is unbiased.
• We can simply create a balanced mixture dataset B

of samples from both distributions
• learned model G and training data batch P

• Then we train a model via MLE using B.MÁMÁ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))] :max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))] :

• can be used to provide with an unbiased
estimation of JSD.
MÁMÁ

MÁ ' 1

2
(P + Gμ)MÁ ' 1

2
(P + Gμ)

^JSD(GμkP) =
1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
^JSD(GμkP) =

1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤

Unbiased Estimation of JSD
• Note that is a continuous and white-box

distribution.
• We can perform better utilization of it than simply

using Policy Gradient.
• We can directly compute the distribution of data

(i.e. policy at each state) and perform update on it.

MÁMÁ

Cooperative Training

Sidi Lu et al. CoT: Cooperative Training for Generative Modeling. ArXiv:1804.03782 2018.

Cooperative Training

• The overall objective

max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]

Two max operations
for cooperative

training

Unbiased estimation of
Jensen-Shannon Divergence

Cooperative Training

• Mediator: MLE objective

Jm(Á) =
1

2

³
E

s»Gμ
[¡ log(MÁ(s))] + E

s»P
[¡ log(MÁ(s))]

´
Jm(Á) =

1

2

³
E

s»Gμ
[¡ log(MÁ(s))] + E

s»P
[¡ log(MÁ(s))]

´
• Generator: maximize estimated JSD

Jg(μ) = ^JSD(GμkP) =
1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
Jg(μ) = ^JSD(GμkP) =

1

2

£
KL(GμkMÁ) + KL(PkMÁ)

¤
rμJg(μ) = rμ E

s»Gμ

h n¡1X
t=0

¼g(st)
>(log ¼m(st)¡ log ¼g(st))

i
rμJg(μ) = rμ E

s»Gμ

h n¡1X
t=0

¼g(st)
>(log ¼m(st)¡ log ¼g(st))

i

Cooperative Training

• The overall objective

max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]max
μ

max
Á

E
s»p

[log(MÁ(s))] + E
s»Gμ

[log(MÁ(s))]

Experiment: JSD on Synthetic Data

• Compared to SeqGAN, CoT is significantly stable w.r.t.
its hyperparameters and requires no pre-training

NLL-oracle of SeqGAN NLL-oracle of CoT

Experiment: JSD on Synthetic Data

Curves of training time JSD
on synthetic data

Curves of balanced NLL and real
JSD

CoT provides a much more stable
training curve than SeqGAN

Balanced NLL is a good
estimation of real JSD, i.e.,

balanced NLL = JSD(GkP) + H(G) + H(P)balanced NLL = JSD(GkP) + H(G) + H(P)

In the Sense of Philosophy
• The game thus becomes:

with maximized entropy of M.

• Cooperative training can also achieve the goal of
adversarial training!

• Compared with the adversarial training of GAN

min
μ

max
Á

E
s»p

[log DÁ(s)] + E
s»Gμ

[log(1¡DÁ(s))]min
μ

max
Á

E
s»p

[log DÁ(s)] + E
s»Gμ

[log(1¡DÁ(s))]

max
μ

max
Á

E
s»p

[log MÁ(s)] + E
s»Gμ

[log MÁ(s)]max
μ

max
Á

E
s»p

[log MÁ(s)] + E
s»Gμ

[log MÁ(s)]

Summary of this Part
• Cooperative training (CoT) has potential to be better

than GAN

• Along with Equil Q&M (Zou et al. ICTIR 2018), there are
multiple ways of formulation for multi-agent IR
modeling

• Deeper thinking
• M is actually a multi-task learning (to model data from both P

and G) module. How can we further improve M?
• GAN is significantly improved as Wasserstein GAN. Does there

exist a similar improvement for CoT?

Content of this Tutorial

1. Introduction to Generative Adversarial Nets
2. Reinforcement Learning
3. GANs for Information Retrieval
4. GANs for Text Generation
5. GANs for Graph/Network Learning
6. Beyond GANs, Cooperative Training
7. Future Perspective and Summarization

Motivations of this Tutorial
• Review the two schools of thinking in IR

p(docjquery; μ)p(docjquery; μ)

REVIEW

fÁ(query; doc)fÁ(query; doc)

• Discriminative models
estimate the relevance of
each query-doc pair

• Generative models estimate
the preference distribution
over docs given the query

• Pros: learn a retrieval ranking
function implicitly from labeled
data

• Cons: lack a principled way of
• Obtaining useful features,
• Gathering helpful signals from

the massive unlabeled data
available, e.g., text statistics,
the collection distribution

• Pros: theoretically sound and
very successful in modelling
features

• Cons: typically difficult in
• leveraging relevancy signals from

largely observable data, e.g., links,
clicks

• Being formulated in a trainable
framework

A Two Agent Framework for IR

fÁ(query; doc)fÁ(query; doc) p(docjquery; μ)p(docjquery; μ)

• Deep generative models
• Flexible to fit complex

relevance distribution
• Trainable
• Guided from the

discriminative model

• Deep discriminative models
• Flexible to fit complex

relevance ranking & scoring
• Obtaining training data

(negative cases) from the
generative model

Undirected guidance for relevance distribution fitting

Feeding new training data for decision boundary pushing

IRGAN Formulation

• Underlying true relevance distribution depicts the user’s
relevance preference distribution over the candidate documents with respect to
his submitted query

• Training set: A set of samples from

• Generative retrieval model
• Goal: approximate the true relevance distribution

• Discriminative retrieval model
• Goal: distinguish between relevant documents and non-relevant documents

G
D

Real World

Generator

Discriminator

Relevant Docs

ptrue(djq; r)ptrue(djq; r)

pμ(djq; r)pμ(djq; r)
fÁ(q; d)fÁ(q; d)

ptrue(djq; r)ptrue(djq; r)

ptrue(djq; r)ptrue(djq; r)
pμ(djq; r)pμ(djq; r)

fÁ(q; d)fÁ(q; d)

Beyond Single Discrete Token
• Sequence

• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem;neighbor(m); μ)p(nodenjnodem;neighbor(m); μ)

From Machine Learning Perspective

• Traditional machine
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from a machine and the
training data and to
optimize the objective

model

data
objective

• Two-agent machine
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from the two machines and
the training data and to
optimize the objective

model

data

objective

model

Machine Learning Paradigm Extension

Prediction
& detection

Decision Making

Give more access to machines

Towards a more
decentralized service

Many-agent

Multi-agent

Single-agent

Generation

LR/SVM Language model Atari AI

Ensemble GANs/CoT MARL

IoT AI / City AI / Market AICrowding sourcing

This area gets more and more attention!

Thank You!
Questions?

Weinan Zhang
Assistant Professor
APEX Data & Knowledge Management Lab
John Hopcroft Center for Computer Science
Shanghai Jiao Tong University
http://wnzhang.net ACM SIGIR 2018

