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Recap on MARL (1)

e Stochastic Games
— Policy Iteration/Value lteration (model based)

e Equilibrium Learners (model free)
— Nash-Q
— Minimax-Q
— Friend-Foe-Q
* Best-Response Learners (model free)
— JAL and Opponent Modelling
— Iterated Gradient Ascent
— Wolf-IGA
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Artificial Population: Large-scale predator-prey world

W=
(=)
The setting:
> N _Erf_a « Predators hunt the
3 =) prey so as to survive

from starvation.
* Each predator has its

*‘ own health bar and

> = O| eyesightview.

- .~ ) |* Predatorscanforma

z group to hunt the prey

* Predators are scaled
up to 1 million

=0
(-

[ ||

B =C =0
—~ |

A

Predator “='Prey #4Obstacle §Health BID OGroupl ®Group2

Yaodong Yang, Lantao Yu, Yiwei Bai, Jun Wang, Weinan Zhang, Ying Wen , Yong Yu, , Dynamics of Artificial Populations by Million-agent
Reinforcement Learning, 2017




Ecology: the Lotka-Volterra (LV) model

* A major topic of population dynamics is the
cycling of predator and prey populations

* The Lotka-Volterra model is used to model this
lynx (wild cat) and hare
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Lotka, A. J. (1910). "Contribution to the Theory of Periodic Reaction". J. Phys.
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Reinforcement Learning with 1 millions agents
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The action space A: {move forward, backward, left, right, rotate left, rotate right, stand still,
join a group, and leave a group}.
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The Dynamics of the Artificial Population
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Tiger-sheep-rabbit: Grouping
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Exploratory Action Noise

e Agents in the system provide a
constantly changing
background in which each Q(S ai a,)
. ) )
agent needs to learn its task y J
— As a consequence, agents need
t(? extract the undgrlylng reward actions: a; but they are
signal from the noise of other also exploring —
agents acting within the the actual a; contains
environment some element of
. . . exploration and not their
* This learning noise can have a i tended actions
significant impact on the
resultant system performance

Condition on other agent

C. Holmesparker, M. E. Taylor, A. K. Agogino, and K. Tumer. Clean rewards to improve coordination by removing exploratory action noise. In Proceedings of

the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03, pages 127-134,
2014.



CLEAN rewards

* Coordinated Learning without Exploratory
Action Noise (CLEAN) aims to remove
exploratory noise present in the global Result in greedy actions
reward ——

— This is achieved by private exploration Qi (S’ ai’ a])

* Specifically, at each learning episode, each
a; =argmax Q)

agent executes an action by following its
greedy policy (i.e. without exploration);

* then all the agents receive a global re-
ward.

* Each agent then privately computes the
(global) reward it would have received had
it executed an exploratory action, while
the rest of the agents followed their
greedy policies.

a; =argmax @,

Qi(s, aj,a;)

C. Holmesparker, M. E. Taylor, A. K. Agogino, and K. Tumer. Clean rewards to improve coordination by removing exploratory action noise. In Proceedings of
the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03, pages 127-134,
2014.



CLEAN rewards

 CLEAN rewards were defined:
D, = R,(s,af,aj) — Ri(s,q; ,aj)
— where (a; , aj) is the joint action executed when all agents followed their
greedy policies,
— aj is the counterfactual (offline) action taken by agent i following e-greedy,

— R, is the reward of agent i received when all agents executed their greedy
policies and

- R, (s, af, aj) is the counterfactual (offline) reward agent i would have
recelved had it executed the counterfactual action a;, instead of action a,,
while the rest of the agents followed their greedy poI|C|es.

* Each agent then uses the following formula to update its Q-values:
Qi(Sr aic; a]) « Qi(S; aiCJ a]) + a(Dl _ Qi(sr algr a]))
* which removes the exploratory noise caused by other agents and

* allow each agent to effectively determine which actions are beneficial or
not

C. Holmesparker, M. E. Taylor, A. K. Agogino, and K. Tumer. Clean rewards to improve coordination by removing exploratory action noise. In Proceedings of
the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03, pages 127-134,
2014.



CLEAN rewards: Experiment

 The Gaussian Squeeze Domain (GSD):
— There is a set of agents in which each agent
contributes to a system objective

—(z—p)?

G(x) =xe o2 T=Y 0

U and o are parameters

— The goal of the agents is to choose their individual
actions a. in such a way that the sum of their
individual actions optimize the objective

C. Holmesparker, M. E. Taylor, A. K. Agogino, and K. Tumer. Clean rewards to improve coordination by removing exploratory action noise. In Proceedings of
the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03, pages 127-134,
2014.



CLEAN rewards: Experiment

GSD, 1000 Agents (high coupling)
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2014.



CLEAN rewards: Feature selection
Experiment
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Malialis, Kleanthis, et al. "Feature Selection as a Multiagent Coordination Problem." arXiv preprint arXiv:1603.05152(2016).



Mean-field MARL

 Mean Field Reinforcement Learning

— interactions within the population of agents are approximated by
those between a single agent and the average effect from
neighbouring agents;

— the interplay between the two entities is mutually reinforced:

* the learning of the individual agent’s optimal policy depends on the
dynamics of the population,

* while the dynamics of the population change according to the collective
patterns of the individual policies.

C 1 j wk Joint action is replaced
a) = — Q' (s,a’,a"), o .
NJ gt by pairwise interactions

Q’ (s,

j iz
Q11(s.d,a) | | . _ Interplayed with
= (1—a)0l(s,d’,a) + [ri +7V¥(S’)} a mean agent

Yang Y, Luo R, Li M, Zhou M, Zhang W, Wang J. Mean Field Multi-Agent Reinforcement Learning. arXiv
preprint arXiv:1802.05438. 2018 Feb 15.



Mean-field MARL: experiments
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Mean-field MARL: experiments
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Communications among agents

* Al require the collaboration of multiple agents

 the communication between agents is vital to
coordinate the behaviour of each individual




CommNets

* Full cooperation between agents A
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Sukhbaatar, Sainbayar, and Rob Fergus. "Learning multiagent communication with
backpropagation." Advances in Neural Information Processing Systems. 2016.



Differentiable Inter-Agent Learning (DIAL)

* Uses centralised learning but decentralised
execution

— during learning, agents can backpropagate error
derivatives through (noisy) communication channels
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Foerster J, Assael IA, de Freitas N, Whiteson S. Learning to communicate with deep multi-agent reinforcement learning.
InAdvances in Neural Information Processing Systems 2016 (pp. 2137-2145).
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Replay Progress

One of the most difficult games for computers

At least 108> possible states (for reference, the game of Go has about 10170
states)!

Multiagent reinforcement learning: how large-scale multiple Al agents could
learn human-level collaborations, or competitions, from their experiences?



Bidirectional-Coordinated nets (BiCNet)
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Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017



Unsupervised training without human demonstration
and labelled data
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Coordinated moves without collision

Combat 3 Marines (ours) vs. 1 Super Zergling (enemy)
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* The first two (a) and (b) illustrate that the collision happens when the
agents are close by during the early stage of the training;

* thelast two (c) and (d) illustrate coordinated moves over the well-trained
agents

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017




“Hit and Run” tactics

combat 3 Marines (ours) vs. 1 Zealot (enemy)

su— A fiack
—> Move

(@) tim e step 1: run when () tim e step 2: fightback () tim e step 3: run again (d) tim e step 4: fight back
attacked w hen safe again

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017



Coordinated moves without collision

Combat 3 Marines (ours) vs. 1 Zergling (enemy)

- — — % Attack
—» Move

(a) time step 1 (b) time step 2 (c) time step 3 (d) time step 4

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017



Focus fire

combat 15 Marines (ours) vs. 16 Marines (enemy)

e = A
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(@) tim e step 1 b) tim e step 2 (c) tim e step 3 d) tim e step 4

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017



Coordinated heterogeneous agents

combat 2 Dropships and 2 tanks vs. 1 Ultralisk

- — — » Attack

@ Load
O Unload

(a) time step 1 (b) time step 2

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, Jun Wang, Multiagent Bidirectionally-
Coordinated Nets for Learning to Play StarCraft Combat Games, 2017
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