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Reinforcement Learning
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A set of autonomous agents that share a common environment 



MARL Application: AI Plays Multiplayers Online Games

Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, Wang J. Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft 
Combat Games. NIPS17 Emergent Communication Workshop. (StarCraft AI beating Facebook methods)

https://www.youtube.com/watch?v=kW2q15MNFug

http://v.youku.com/v_show/id_XMjcyMTE0MDkwNA%3D%3D.
html

https://www.youtube.com/watch?v=kW2q15MNFug
http://v.youku.com/v_show/id_XMjcyMTE0MDkwNA==.html


MARL Application: Bidding Machine in Online Advertising

Advertiser
with ad budget

Environment

auction result，
user response

bid request 
xt+1

bid request xt bid price at

The goal is to maximise the user responses on displayed ads

Cai, H., K. Ren, W. Zhag, K. Malialis, and J. Wang. "Real-Time Bidding by Reinforcement Learning in Display Advertising." 
In The Tenth ACM International Conference on Web Search and Data Mining (WSDM). ACM, 2017.



MARL Application: Text Generation

Long Text Generation via Adversarial Training with Leaked Information
Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu
arXiv:1709.08624v1, AAAI-2018

• The generator is responsible to 
generate the next word, and the 
discriminator adversarially judges 
the generated sentence

• The discriminator reveals its 
internal state to guide the generator 
more informatively and frequently. 



Difficulty in Multi-agent Learning(MAL)

• MAL is fundamentally difficult 
– since agents not only interact with the 

environment but also with each other 

• If use single-agent Q learning by
considering other agents as a part of the 
environment 
– Such a setting breaks the theoretical 

convergence guarantees and makes the 
learning unstable,

i.e., the changes in strategy of one agent would 
affect the strategies of other agents and vice 
versa
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Sequential Decision Making

Includes:

• Markov decision processes
– one decision maker

– multiple states

• Repeated games
– multiple decision makers

– one state (e.g., one normal form game)

• Stochastic games (Markov games) 
– multiple decision makers

– multiple states (e.g., multiple normal form games)
28/03/2017	 30	

Many well known techniques from reinforcement learning, e.g., value/policy  

iteration can still be applied to solving these games 



Recall: Markov Decision Processes
• MDP is a single-agent, multiple state framework
• A Markov decision process (MDP)  is a tuple, (S, A, T , R), 

– where S is the set of States, 
– A is the set of actions, 
– T is a transition function S ×A×S →[0,1], 

• (The transition function defines a probability distribution over next states as a 
function of the current state and the agent’s action), and 

– R is a reward function S × A → R. 
• (The reward function defines the reward received when selecting an action 

from the given state)

• Solving MDPs consists of finding a policy, π : S → A, mapping states 
to actions so as to maximize discounted future reward with 
discount factor γ



Recall: Matrix Games
• Matrix games are a multi-agent (player), single state framework
• A matrix game or normal-form game is a tuple (n,A1...n,R1...n), 

where 
– n is the number of players, 
– Ai is the set of actions available to player i
– (and A is the joint action space A1 × · · · × An), and 
– Ri is player i’s payoff function A → R. 

• The players select actions from their available set and 
receive a payoff that depends on all the players’ actions. 
• These are often called matrix games, since the Ri functions can 

be written as n-dimensional matrices

218 M. Bowling, M. Veloso / Artificial Intelligence 136 (2002) 215–250

Table 1

Example matrix games. Games (a) and (b) are zero-sum games, and (c) is a general-sum game

R 1 =
1 − 1

− 1 1

R 2 = − R 1

R 1 =

⎡

⎣
0 − 1 1

1 0 − 1

− 1 1 0

⎤

⎦

R 2 = − R 1

R 1 =
2 0

0 1

R 2 =
1 0

0 2

(a) Matching pennies (b) Rock-paper-scissors (c) Coordination game

i.e., A − i = A 1 ×···×A i− 1 ×A i+ 1 ×···×A n . And we use σ− i to refer to a joint, possibly

mixed, strategy for these players, i.e., σ− i∈PD(A − i).
Example matrix games are shown in Table 1. Table 1(a) shows the matrices for a simple

two-player game called matching pennies. In this game each player may select eitherHeads

or Tails. If the choices are the same, then Player 1 takes a dollar from Player 2. If they are

different, then Player 1 gives a dollar to Player 2. The matrices R 1 and R 2 represent the

payoffs for players 1 and 2, with the row and columns corresponding to the two actions

Heads and Tails. Table 1(b) shows the game Rock-Paper-Scissors. In this game players

select an action and a winner is determined by the rules: Paper beats Rock, Scissors beats

Paper, and Rock beats Scissors. The winner, if there is one, takes a dollar from the loser.

Table 1(c) shows a coordination game with two players, each with two actions. The players

only receive a payoff when they select the same action, but the players have different

preferences as to which actions they would prefer to agree on.

Unlike MDPs, it is difficult even to define what it means to “solve” a matrix game.

A strategy can only be evaluated if the other players’ strategies are known. This can be

illustrated in the matching pennies game (Table 1(a)). In this game, if Player 2 is going to

playHeads, then Player 1’s optimal strategy is to playHeads, but if Player 2 is going to play

Tails, then Player 1’s optimal strategy is to play Tails. So there is no optimal pure strategy

independent of the opponent. Similarly, there is no opponent-independent mixed strategy

that is optimal. What does exist is an opponent-dependent solution, or set of solutions. This

is called a best-response.

Definition 1. For a game, the best-response function for player i, BRi(σ− i), is the set of

all strategies that are optimal given the other player(s) play the joint strategy σ− i.

The major advancement that has driven much of the development of matrix games and

game theory is the notion of a best-response equilibrium or Nash equilibrium [20].

Definition 2. A Nash equilibrium is a collection of strategies for all players, σi, with

σi∈BRi(σ− i).

So, no player can do better by changing strategies given that the other players continue to

follow the equilibrium strategy.

What makes the notion of equilibrium compelling is that all matrix games have a Nash

equilibrium, although there may be more than one.



Recall: Matrix Games



Exercise : 2x2 zero-sum game general solution

• Consider a general 2 × 2 zero-sum game matrix 

where a, b, c, d are the rewards for player 1 (row player). The reward
matrix for col player is –A.

• find the value of the game and at least one optimal 
strategy for each player?
– Step 1, test whether there is pure strategy

– Step 2, if not, solve by find equalizing strategy (check 
previous slides on learning NE)

For large m ×n m atrices it is tedious to check each entry of the m atrix to see if it
has the saddle point property. It is easier to com pute the m inim um of each row and the
m axim um ofeach colum n to see ifthere is a m atch. H ere is an exam ple ofthe m ethod.

row m in

A =

⎛

⎜
⎝

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 2 2 2

row m in

B =

⎛

⎜
⎝

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 1 2 2

In m atrix A , no row m inim um is equal to any colum n m axim um , so there is no saddle
point. H ow ever,ifthe 2 in position a12 w ere changed to a 1,then w e have m atrix B . H ere,
the m inim um ofthe fourth row is equalto the m axim um ofthe second colum n;so b42 is a
saddle point.

2.2 Solution of A ll 2 by 2 M atrix G am es. C onsider the general 2×2 gam e
m atrix

A =
a b
d c

.

To solve this gam e (i.e. to find the value and at least one optim alstrategy for each player)
w e proceed as follow s.

1. Test for a saddle point.

2. If there is no saddle point, solve by finding equalizing strategies.

W e now prove the m ethod offinding equalizing strategies ofSection 1.2 w orks w hen-
ever there is no saddle point by deriving the value and the optim alstrategies.

A ssum e there is no saddle point. Ifa≥b,then b < c,as otherw ise b is a saddle point.
Since b < c,w e m ust have c > d,as otherw ise c is a saddle point. C ontinuing thus,w e see
that d < a and a > b. In other w ords,ifa ≥b,then a > b < c > d < a. B y sym m etry,if
a≤b,then a < b > c < d > a. T his show s that

If there is no saddle point, then either a > b, b < c, c > d and d < a, or a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) below , w e develop form ulas for the optim al strategies
and value ofthe general2×2 gam e. IfI chooses the first row w ith probability p (i.e. uses
the m ixed strategy (p,1− p)),w e equate his average return w hen II uses colum ns 1 and 2.

ap + d(1 − p) = bp + c(1 − p).

Solving for p,w e find

p =
c− d

(a − b)+ (c− d)
. (1)

II–10

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA
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Since there is no saddle point,(a− b) and (c− d)are either both positive or both negative;
hence,0 < p < 1. P layer I’s average return using this strategy is

v = ap + d(1 − p)=
ac− bd

a − b+ c− d
.

IfIIchoosesthe firstcolum n w ith probability q (i.e. uses the strategy (q,1− q)),w e equate
his average losses w hen I uses row s 1 and 2.

aq + b(1 − q)= dq + c(1 − q)

H ence,

q =
c− b

a − b+ c− d
. (2)

A gain,since there isno saddle point,0 < q < 1. P layerII’s average lossusing this strategy
is

aq + b(1 − q)=
ac− bd

a − b+ c− d
= v, (3)

the sam e value achievable by I.T his show s that the gam e has a value,and thatthe players
have optim alstrategies. (som ething the m inim ax theorem says holds for allfinite gam es).

E xam ple 2.

A =
− 2 3
3 − 4

p =
− 4 − 3

− 2 − 3 − 4 − 3
= 7/12

q = sam e

v =
8 − 9

− 2 − 3 − 4 − 3
= 1/12

E xam ple 3.

A =
0 − 10
1 2

p =
2 − 1

0 + 10 + 2 − 1
= 1/11

q =
2 + 10

0 + 10 + 2 − 1
= 12/11.

B ut q m ust be betw een zero and one. W hat happened? T he trouble is w e“forgot to test
this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.

II–11



Exercise : 2x2 zero-sum game general solution
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this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.
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Example 1



Recall: Repeated Games

• In a (typical) repeated game, 
– players play a normal-form game (aka. the stage 

game), 

– then they see what happened (and get the reward),

– then they play again,

– etc.

• Can be repeated finitely or infinitely many times

• Multiple agents, but still single stage
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The Origin of Stochastic Games

• Shapley 1953:
“In a stochastic game the play proceeds by 
steps from position (state) to position (state), 
according to transition probabilities controlled 
jointly by the two players” 

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of 

sciences 39.10 (1953): 1095-1100.

States



Stochastic Games
• A stochastic game has multiple states and multiple agents

– Each state corresponds to a normal-form game

– After a round, the game randomly transitions to another state

– Transition probabilities depend on state and joint actions taken by all
agents

• Typically rewards are discounted over time

2, 2 0, 3

3, 0 1, 1

1, 1 1, 0

0, 1 0, 0

1, 0 0, 1

0, 1 1, 0.6

.4

.3

.5

.2

• 1-state stochastic game = (infinitely) repeated game

• 1-agent stochastic game = Markov Decision Process (MDP)

State 1

State 2

State 3

State transition

Player 1

Player 2



Definition of Stochastic Games
• Defined by a tuple (n, S, A1...n, T, R1...n), where 

– n is the number of players, 

– S is the set of states, 

– Ai is the set of actions available to player i
• (and A is the joint action space A1 × ··· × An), 

– T is the transition function S × A × S → [0,1], and 

– Ri is the reward function for the ith agent S × A → R. 

• Different with MDP:
– there are multiple players selecting actions and 

– the next state and rewards depend on the joint 
actions

– Each player has its own separate reward function. 



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

A natural extension of MDPs to multiple agents:
Each state in a stochastic game can be 
viewed as a matrix game with the payoff 
to player i of joint action a(k) in state s 
determined by ri(s,a)

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))



Stochastic Games vs. MDP

• If all but one player in a stochastic game play a 
fixed, then the problem for the remaining 
agent reverts back to an MDP. 

– This is because fixing the other agents’ policies, 
even if stochastic, makes the transitions 
Markovian, depending only on the remaining 
player’s actions. 



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))

An extension of matrix games to multiple states:
After playing the matrix game and receiving the 
payoffs, the players are transitioned to another 
state (or matrix game) determined by their joint 
action



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))

We can see that stochastic games then contain both 
MDPs (n = 1) and matrix games (|S| = 1) as subsets of 
the framework.



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))



Evolution of Stochastic Games

𝑝 𝑝 𝑝
𝑠1 𝑠1 𝑠1

Agent 1

Agent n

Agent 1, Agent 2,…, Agent n Agent 1, Agent 2,…, Agent n

r1(𝑠1, 𝑎(1))

rn(𝑠1, 𝑎(1)) rn(𝑠2, 𝑎(2))

r1(𝑠2, 𝑎(2)) r1(𝑠𝑘, 𝑎(𝑘))

rn(𝑠𝑘, 𝑎(𝑘))

The goal is to determine a course of action for a player:
1. Specifically, learn a stationary, though possibly 

stochastic, policy, π : S × Ai → [0, 1], that maps 
states to a probability distribution over its 
actions

2. The goal is to find such a policy that maximizes 
the player’s discounted future reward with 
discount factor γ . 



Example: Pollution Tax Model

• Two firms contribute to the emission of certain 
pollutant. 

• The government can detect only the combined 
emissions, and only if it is high. 

• The Profit Matrix (no tax version): 

• What is the Nash Equilibrium? 



Example: Pollution Tax Model
• Suppose Gov. added Tax (Two-state Stochastic Game)Example 1 – Pollution Tax Model

(state 1: no tax)

   Profit  
trans. pr.

     Clean        Dirty

Clean (4,5)           
(1,0)

  (3,8)          
(0,1)

Dirty (7,4)      
(0,1)

   (6,7)           
(0,1)

(state 2: tax = 3)

   Profit  
trans. pr.

   Clean        Dirty

Clean (1,2)           
(1,0)

  (0,5)          
(0,1)

Dirty (4,1)      
(0,1)

   (3,4)           
(0,1)

What is the Nash Equilibrium? 



Example: Pollution Tax Model
• Suppose Gov. added Tax (Two-state Stochastic Game)Example 1 – Pollution Tax Model

(state 1: no tax)

   Profit  
trans. pr.

     Clean        Dirty

Clean (4,5)           
(1,0)

  (3,8)          
(0,1)

Dirty (7,4)      
(0,1)

   (6,7)           
(0,1)

(state 2: tax = 3)

   Profit  
trans. pr.

   Clean        Dirty

Clean (1,2)           
(1,0)

  (0,5)          
(0,1)

Dirty (4,1)      
(0,1)

   (3,4)           
(0,1)

Deterministically 
stay in state 1

What is the Nash Equilibrium? 

Deterministically 
move to in state 2



Example: the game of Dare
• Player 1, the leader, and Player 2, the 

challenger, simultaneously “pass” or 
“dare”.
– If both pass, the payoff is zero (and the 

game is over). 
– If player 1 passes and player 2 dares, 

player 1 wins 1
– If player 1 dares and player 2 passes, 

player 1 wins 3
– If both dare, the basic game is played 

over with the roles of the players 
reversed 
• (the leader becomes the challenger and 

vice versa). 

– If the players keep daring forever, let the 
payoff be zero. 

equation

v = V al
v 5
1 0

for v. H ere there are m any solutions to this equation. T he set of all solutions to this
equation is the set ofnum bers v in the interval1≤v≤5. (C heck this!)

T his illustrates a generalresult that the equation,given by equating v to the value of
the gam e obtained by replacing the gam e in the m atrix by v,alw ays has a solution equal
to the value of the gam e. It m ay have m ore solutions but the value of the gam e is that
solution that is closest to Q . For m ore inform ation on these points,consult the papers of
E verett (1957) and ofM ilnor and Shapley (1957).

E xam ple 3. Let

G =

⎛

⎝
G 1 0
1 0 G
0 G 1

⎞

⎠ ,Q .

T hen,ifthe value ofG is v,

v = V al

⎛

⎝
v 1 0
1 0 v
0 v 1

⎞

⎠ =
1 + v

3
.

T his equation has a unique solution, v = 1/2. T his m ust be the value for all Q . T he
strategy (1/3,1/3,1/3) forever is optim alfor both players.

E xam ple 4. T he basic gam e ofD are is played as follow s. P layer I,the leader,and P layer
II, the challenger,sim ultaneously “pass”or“dare”. If both pass,the payoffis zero (and
the gam e is over). If I passes and II dares,I w ins 1. If I dares and II passes,I w ins 3. If
both dare,the basic gam e is played over w ith the roles ofthe players reversed (the leader
becom es the challenger and vice versa). If the players keep daring forever,let the payoff
be zero. W e m ight w rite

G =

pass dare

pass 0 1
dare 3 − G T

w here − G T represents the gam e w ith the roles ofthe players reversed. (Its m atrix is the
negative ofthe transpose ofthe m atrix G .) T he value of− G T is the negative ofthe value
ofG .

Ifv representsthe value ofG ,then v≥0 because ofthe top row . T herefore the m atrix
for G w ith − G T replaced by − v does not have a saddle point,and w e have

v = V al
0 1
3 − v

=
3

4 + v
.

T his gives the quadratic equation, v2 + 4v − 3 = 0. T he only nonnegative solution is
v =

√
7 − 2 = .64575···. T he optim alstrategy for I is ((5 −

√
7)/3,(

√
7 − 2)/3) and the

optim alstrategy for II is (3 −
√
7,

√
7 − 2).

II–67

where −GTrepresents the 
game with the roles of 
the players reversed. (Its 
matrix is the negative of 
the transpose of the 
matrix G.) The value of 
−GT is the negative of the 
value of G. 

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Example: the game of Dare

• If v represents the value of G, then v 
≥ 0 because of the top row. 
– Therefore the matrix for G with −GT

replaced by −v does not have a pure 
strategy, and we have 

– which gives v2 + 4v − 3 = 0. 

– The only nonnegative solution is 
v= 7−2. 

– The optimal strategy for player 1 
is((5− 7)/3,( 7 −2)/3) and the 
optimal strategy for player 2 is (3 − 
7, 7 − 2). 

equation

v = V al
v 5
1 0

for v. H ere there are m any solutions to this equation. T he set of all solutions to this
equation is the set ofnum bers v in the interval1≤v≤5. (C heck this!)

T his illustrates a generalresult that the equation,given by equating v to the value of
the gam e obtained by replacing the gam e in the m atrix by v,alw ays has a solution equal
to the value of the gam e. It m ay have m ore solutions but the value of the gam e is that
solution that is closest to Q . For m ore inform ation on these points,consult the papers of
E verett (1957) and ofM ilnor and Shapley (1957).

E xam ple 3. Let

G =

⎛

⎝
G 1 0
1 0 G
0 G 1

⎞

⎠ ,Q .

T hen,ifthe value ofG is v,

v = V al

⎛

⎝
v 1 0
1 0 v
0 v 1

⎞

⎠ =
1 + v

3
.

T his equation has a unique solution, v = 1/2. T his m ust be the value for all Q . T he
strategy (1/3,1/3,1/3) forever is optim alfor both players.

E xam ple 4. T he basic gam e ofD are is played as follow s. P layer I,the leader,and P layer
II, the challenger,sim ultaneously “pass”or“dare”. If both pass,the payoffis zero (and
the gam e is over). If I passes and II dares,I w ins 1. If I dares and II passes,I w ins 3. If
both dare,the basic gam e is played over w ith the roles ofthe players reversed (the leader
becom es the challenger and vice versa). If the players keep daring forever,let the payoff
be zero. W e m ight w rite

G =

pass dare

pass 0 1
dare 3 − G T

w here − G T represents the gam e w ith the roles ofthe players reversed. (Its m atrix is the
negative ofthe transpose ofthe m atrix G .) T he value of− G T is the negative ofthe value
ofG .

Ifv representsthe value ofG ,then v≥0 because ofthe top row . T herefore the m atrix
for G w ith − G T replaced by − v does not have a saddle point,and w e have

v = V al
0 1
3 − v

=
3

4 + v
.

T his gives the quadratic equation, v2 + 4v − 3 = 0. T he only nonnegative solution is
v =

√
7 − 2 = .64575···. T he optim alstrategy for I is ((5 −

√
7)/3,(

√
7 − 2)/3) and the

optim alstrategy for II is (3 −
√
7,

√
7 − 2).

II–67

where −GTrepresents the 
game with the roles of 
the players reversed. (Its 
matrix is the negative of 
the transpose of the 
matrix G.) The value of 
−GT is the negative of the 
value of G. 

equation

v = V al
v 5
1 0

for v. H ere there are m any solutions to this equation. T he set of all solutions to this
equation is the set ofnum bers v in the interval1≤v≤5. (C heck this!)

T his illustrates a generalresult that the equation,given by equating v to the value of
the gam e obtained by replacing the gam e in the m atrix by v,alw ays has a solution equal
to the value of the gam e. It m ay have m ore solutions but the value of the gam e is that
solution that is closest to Q . For m ore inform ation on these points,consult the papers of
E verett (1957) and ofM ilnor and Shapley (1957).

E xam ple 3. Let

G =

⎛

⎝
G 1 0
1 0 G
0 G 1

⎞

⎠ ,Q .

T hen,ifthe value ofG is v,

v = V al

⎛

⎝
v 1 0
1 0 v
0 v 1

⎞

⎠ =
1 + v

3
.

T his equation has a unique solution, v = 1/2. T his m ust be the value for all Q . T he
strategy (1/3,1/3,1/3) forever is optim alfor both players.

E xam ple 4. T he basic gam e ofD are is played as follow s. P layerI,the leader,and P layer
II, the challenger,sim ultaneously “pass”or“dare”. If both pass,the payoffis zero (and
the gam e is over). If I passes and II dares,I w ins 1. IfI dares and II passes,I w ins 3. If
both dare,the basic gam e is played over w ith the roles ofthe players reversed (the leader
becom es the challenger and vice versa). If the players keep daring forever,let the payoff
be zero. W e m ight w rite

G =

pass dare

pass 0 1
dare 3 − G T

w here − G T represents the gam e w ith the roles ofthe players reversed. (Its m atrix is the
negative ofthe transpose ofthe m atrix G .) T he value of− G T is the negative ofthe value
ofG .

Ifv representsthe value ofG ,then v≥0 because ofthe top row . T herefore the m atrix
for G w ith − G T replaced by − v does not have a saddle point,and w e have

v = V al
0 1
3 − v

=
3

4 + v
.

T his gives the quadratic equation, v2 + 4v − 3 = 0. T he only nonnegative solution is
v =

√
7 − 2 = .64575···. T he optim alstrategy for I is ((5 −

√
7)/3,(

√
7 − 2)/3) and the

optim alstrategy for II is (3 −
√
7,

√
7 − 2).
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Since there is no saddle point,(a− b) and (c− d)are either both positive or both negative;
hence,0 < p < 1. P layer I’s average return using this strategy is

v = ap + d(1 − p)=
ac− bd

a − b+ c− d
.

IfIIchoosesthe firstcolum n w ith probability q (i.e. uses the strategy (q,1− q)),w e equate
his average losses w hen I uses row s 1 and 2.

aq + b(1 − q)= dq + c(1 − q)

H ence,

q =
c− b

a − b+ c− d
. (2)

A gain,since there isno saddle point,0 < q < 1. P layerII’s average lossusing this strategy
is

aq + b(1 − q)=
ac− bd

a − b+ c− d
= v, (3)

the sam e value achievable by I.T his show s that the gam e has a value,and thatthe players
have optim alstrategies. (som ething the m inim ax theorem says holds for allfinite gam es).

E xam ple 2.

A =
− 2 3
3 − 4

p =
− 4 − 3

− 2 − 3 − 4 − 3
= 7/12

q = sam e

v =
8 − 9

− 2 − 3 − 4 − 3
= 1/12

E xam ple 3.

A =
0 − 10
1 2

p =
2 − 1

0 + 10 + 2 − 1
= 1/11

q =
2 + 10

0 + 10 + 2 − 1
= 12/11.

B ut q m ust be betw een zero and one. W hat happened? T he trouble is w e“forgot to test
this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.

II–11

For large m ×n m atrices it is tedious to check each entry of the m atrix to see if it
has the saddle point property. It is easier to com pute the m inim um of each row and the
m axim um ofeach colum n to see ifthere is a m atch. H ere is an exam ple ofthe m ethod.

row m in

A =

⎛

⎜
⎝

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 2 2 2

row m in

B =

⎛

⎜
⎝

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 1 2 2

In m atrix A , no row m inim um is equal to any colum n m axim um , so there is no saddle
point. H ow ever,ifthe 2 in position a12 w ere changed to a 1,then w e have m atrix B . H ere,
the m inim um ofthe fourth row is equalto the m axim um ofthe second colum n;so b42 is a
saddle point.

2.2 Solution of A ll 2 by 2 M atrix G am es. C onsider the general 2×2 gam e
m atrix

A =
a b
d c

.

To solve this gam e (i.e. to find the value and at least one optim alstrategy for each player)
w e proceed as follow s.

1. Test for a saddle point.

2. If there is no saddle point, solve by finding equalizing strategies.

W e now prove the m ethod offinding equalizing strategies ofSection 1.2 w orks w hen-
ever there is no saddle point by deriving the value and the optim alstrategies.

A ssum e there is no saddle point. Ifa≥b,then b < c,as otherw ise b is a saddle point.
Since b < c,w e m ust have c > d,as otherw ise c is a saddle point. C ontinuing thus,w e see
that d < a and a > b. In other w ords,ifa ≥b,then a > b < c > d < a. B y sym m etry,if
a≤b,then a < b > c < d > a. T his show s that

If there is no saddle point, then either a > b, b < c, c > d and d < a, or a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) below , w e develop form ulas for the optim al strategies
and value ofthe general2×2 gam e. IfI chooses the first row w ith probability p (i.e. uses
the m ixed strategy (p,1− p)),w e equate his average return w hen II uses colum ns 1 and 2.

ap + d(1 − p) = bp + c(1 − p).

Solving for p,w e find

p =
c− d

(a − b)+ (c− d)
. (1)

II–10

General
solution of
2x2 zero-
sum game



Exercise: Stochastic 
Movement Among Games

• Suppose we allow the choice of the next game played 
to depend not only upon the pure strategy choices of 
the players, but also upon chance

• Let G1 and G2 be related as follows:

• The game must eventually end (with probability 1). 
– the players could not play forever even if they wanted to

– when they choose the first row and first column forever, 
eventually the game would end with a payoff of 0 or −2 

E xam ple 5. C onsider the follow ing three related gam es.

G 1 =
G 2 0
0 G 3

G 2 =
G 1 1
1 0

G 3 =
G 1 2
2 0

and suppose the payoffifthe gam es are played forever is Q . Let us attem pt to solve these
gam es. Let v1 = V al(G 1), v2 = V al(G 2), and v3 = V al(G 3). P layer I can guarantee that
v1 > 0,v2 > 0 and v3 > 0 by playing (1/2,1/2) forever. In addition,v2 ≤1 and v3 ≤2,
w hich im plies v1 < 1. T herefore none ofthe gam es has a saddle point and w e m ay w rite

v1 =
v2v3
v2 + v3

, v2 =
1

2 − v1
, v3 =

4

4 − v1
.

Substituting the latter tw o equations into the form er,w e obtain

v1
2 − v1

+
4v1
4 − v1

=
4

(2 − v1)(4 − v1)

5v21 − 12v1 + 4 = 0

(5v1 − 2)(v1 − 2) = 0

Since 0 < v1 < 1,this im plies that v1 = 2/5. H ence

G am e value opt. for I= opt. for II
G 1 2/5 (16/25,9/25)
G 2 5/8 (5/8,3/8)
G 3 10/9 (5/9,4/9)

independent ofthe value ofQ .

6.4 Stochastic M ovem ent A m ong G am es. W e m ay generalize the notion of a
recursive gam e by allow ing the choice ofthe nextgam e played to depend notonly upon the
pure strategy choices of the players,but also upon chance. Let G 1,...,G n be gam es and
let p1,...,pn be probabilitiesthat sum to one. W e use the notation,p1G 1 + ···+ pn G n ,to
denote the situation w here the gam e to be played next is chosen at random ,w ith gam e G i
being chosen w ith probability pi,i= 1,...,n. Since,for a given num berz,the 1×1 m atrix
(z) denotes the trivialgam e in w hich II pays I z,w e m ay,for exam ple,use 12 G 1 +

1
2 (3) to

represent the situation w here G 1 is played if a fair coin com es up heads,and II pays I 3
otherw ise.

E xam ple 6. Let G 1 and G 2 be related as follow s.

G 1 =
1
2 G 2 +

1
2 (0) 1
2 0

G 2 =
2
3 G 1 +

1
3 (− 2) 0
0 − 1

T he gam e m ust eventually end (w ith probability 1). In fact, the players could not play
forever even ifthey w anted to. E ven ifthey choose the first row and first colum n forever,
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Since there is no saddle point,(a− b) and (c− d)are either both positive or both negative;
hence,0 < p < 1. P layer I’s average return using this strategy is

v = ap + d(1 − p)=
ac− bd

a − b+ c− d
.

IfIIchoosesthe firstcolum n w ith probability q (i.e. uses the strategy (q,1− q)),w e equate
his average losses w hen I uses row s 1 and 2.

aq + b(1 − q)= dq + c(1 − q)

H ence,

q =
c− b

a − b+ c− d
. (2)

A gain,since there isno saddle point,0 < q < 1. P layerII’s average lossusing this strategy
is

aq + b(1 − q)=
ac− bd

a − b+ c− d
= v, (3)

the sam e value achievable by I.T his show s that the gam e has a value,and thatthe players
have optim alstrategies. (som ething the m inim ax theorem says holds for allfinite gam es).

E xam ple 2.

A =
− 2 3
3 − 4

p =
− 4 − 3

− 2 − 3 − 4 − 3
= 7/12

q = sam e

v =
8 − 9

− 2 − 3 − 4 − 3
= 1/12

E xam ple 3.

A =
0 − 10
1 2

p =
2 − 1

0 + 10 + 2 − 1
= 1/11

q =
2 + 10

0 + 10 + 2 − 1
= 12/11.

B ut q m ust be betw een zero and one. W hat happened? T he trouble is w e“forgot to test
this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.
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For large m ×n m atrices it is tedious to check each entry of the m atrix to see if it
has the saddle point property. It is easier to com pute the m inim um of each row and the
m axim um ofeach colum n to see ifthere is a m atch. H ere is an exam ple ofthe m ethod.

row m in

A =

⎛

⎜
⎝

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 2 2 2

row m in

B =

⎛

⎜
⎝

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 1 2 2

In m atrix A , no row m inim um is equal to any colum n m axim um , so there is no saddle
point. H ow ever,ifthe 2 in position a12 w ere changed to a 1,then w e have m atrix B . H ere,
the m inim um ofthe fourth row is equalto the m axim um ofthe second colum n;so b42 is a
saddle point.

2.2 Solution of A ll 2 by 2 M atrix G am es. C onsider the general 2×2 gam e
m atrix

A =
a b
d c

.

To solve this gam e (i.e. to find the value and at least one optim alstrategy for each player)
w e proceed as follow s.

1. Test for a saddle point.

2. If there is no saddle point, solve by finding equalizing strategies.

W e now prove the m ethod offinding equalizing strategies ofSection 1.2 w orks w hen-
ever there is no saddle point by deriving the value and the optim alstrategies.

A ssum e there is no saddle point. Ifa≥b,then b < c,as otherw ise b is a saddle point.
Since b < c,w e m ust have c > d,as otherw ise c is a saddle point. C ontinuing thus,w e see
that d < a and a > b. In other w ords,ifa ≥b,then a > b < c > d < a. B y sym m etry,if
a≤b,then a < b > c < d > a. T his show s that

If there is no saddle point, then either a > b, b < c, c > d and d < a, or a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) below , w e develop form ulas for the optim al strategies
and value ofthe general2×2 gam e. IfI chooses the first row w ith probability p (i.e. uses
the m ixed strategy (p,1− p)),w e equate his average return w hen II uses colum ns 1 and 2.

ap + d(1 − p) = bp + c(1 − p).

Solving for p,w e find

p =
c− d

(a − b)+ (c− d)
. (1)
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Exercise: Stochastic 
Movement Among Games

• To solve, let vi = Val(Gi ) for i = 1, 2. 
• Then 0 ≤ v1 ≤ 1 and −1 ≤ v2 ≤ 0, so neither game has a pure 

strategy. Hence, 

• This leads to the quadratic equation, 7v2
1−20v1 +10 = 0, 

with solution, v1 = (10− 30)/7. 

• Also v2 = -(2 30 − 10)/5

E xam ple 5. C onsider the follow ing three related gam es.

G 1 =
G 2 0
0 G 3

G 2 =
G 1 1
1 0

G 3 =
G 1 2
2 0

and suppose the payoffifthe gam es are played forever is Q . Let us attem pt to solve these
gam es. Let v1 = V al(G 1), v2 = V al(G 2), and v3 = V al(G 3). P layer I can guarantee that
v1 > 0,v2 > 0 and v3 > 0 by playing (1/2,1/2) forever. In addition,v2 ≤1 and v3 ≤2,
w hich im plies v1 < 1. T herefore none ofthe gam es has a saddle point and w e m ay w rite

v1 =
v2v3
v2 + v3

, v2 =
1

2 − v1
, v3 =

4

4 − v1
.

Substituting the latter tw o equations into the form er,w e obtain

v1
2 − v1

+
4v1
4 − v1

=
4

(2 − v1)(4 − v1)

5v21 − 12v1 + 4 = 0

(5v1 − 2)(v1 − 2) = 0

Since 0 < v1 < 1,this im plies that v1 = 2/5. H ence

G am e value opt. for I= opt. for II
G 1 2/5 (16/25,9/25)
G 2 5/8 (5/8,3/8)
G 3 10/9 (5/9,4/9)

independent ofthe value ofQ .

6.4 Stochastic M ovem ent A m ong G am es. W e m ay generalize the notion of a
recursive gam e by allow ing the choice ofthe nextgam e played to depend notonly upon the
pure strategy choices of the players,but also upon chance. Let G 1,...,G n be gam es and
let p1,...,pn be probabilitiesthat sum to one. W e use the notation,p1G 1 + ···+ pn G n ,to
denote the situation w here the gam e to be played next is chosen at random ,w ith gam e G i
being chosen w ith probability pi,i= 1,...,n. Since,for a given num berz,the 1×1 m atrix
(z) denotes the trivialgam e in w hich II pays I z,w e m ay,for exam ple,use 12 G 1 +

1
2 (3) to

represent the situation w here G 1 is played if a fair coin com es up heads,and II pays I 3
otherw ise.

E xam ple 6. Let G 1 and G 2 be related as follow s.

G 1 =
1
2 G 2 +

1
2 (0) 1
2 0

G 2 =
2
3 G 1 +

1
3 (− 2) 0
0 − 1

T he gam e m ust eventually end (w ith probability 1). In fact, the players could not play
forever even ifthey w anted to. E ven ifthey choose the first row and first colum n forever,
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eventually the gam e w ould end w ith a payoffof 0 or − 2. T hus w e do not need to specify
any payoffifplay continuesforever. To solve,letvi = V al(G i)for i= 1,2. T hen 0≤v1 ≤1
and − 1≤v2 ≤0,so neither gam e has a saddle point. H ence,

v1 = V al
1
2 v2 1
2 0

=
4

6 − v2
and

v2 = V al
2
3 v1 −

2
3 0

0 − 1
= −
2(1 − v1)

5 − 2v1

T hus

v1 =
4

6 + 2(1− v1 )
5− 2v1

=
2(5 − 2v1)

16 − 7v1
.

T hisleadsto the quadraticequation,7v21− 20v1+ 10 = 0,w ith solution,v1 = (10−
√
30)/7 =

.646···. W e m ay substitute back into the equation for v2 to find v2 = − (2
√
30 − 10)/5 =

− .191···. From these values one can easily find the optim alstrategies for the tw o gam es.

E xam ple 7. A coin w ith probability 2/3 of heads is tossed. B oth players m ust guess
w hether the coin w illland heads or tails. IfI is right and II is w rong,I w ins 1 if the coin
is heads and 4 ifthe coin is tails and the gam e is over. IfI is w rong and II is right,there
is no payoffand the gam e is over. Ifboth players are right,the gam e is played over. B ut
if both players are w rong,the gam e is played over w ith the roles of the players reversed.
Ifthe gam e never ends,the payoffis Q .

Ifw e denote this gam e by G ,then

G =
2
3
G + 1

3
(− G T ) 2

3
(1)+ 1

3
(0)

2
3 (0)+

1
3 (4)

2
3 (− G

T )+ 13 G

If w e let its value be denoted by v,then

v = V al
1
3 v

2
3

4
3 − 13 v

Ifv ≥2,then there is a saddle at the upper right corner w ith v = 2/3. T his contradiction
show s that v < 2 and there is no saddle. T herefore,

v =
8 + v2

18
or v2 − 18v + 8 = 0.

T his has a unique solution less than tw o,

v = 9 −
√
73 = .456···

from w hich w e m ay calculate the optim alstrategy for I:

(
13 −

√
73

6
,

√
73 − 7

6
) = (.743···,.256···)
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Since there is no saddle point,(a− b) and (c− d)are either both positive or both negative;
hence,0 < p < 1. P layer I’s average return using this strategy is

v = ap + d(1 − p)=
ac− bd

a − b+ c− d
.

IfIIchoosesthe firstcolum n w ith probability q (i.e. uses the strategy (q,1− q)),w e equate
his average losses w hen I uses row s 1 and 2.

aq + b(1 − q)= dq + c(1 − q)

H ence,

q =
c− b

a − b+ c− d
. (2)

A gain,since there isno saddle point,0 < q < 1. P layerII’s average lossusing this strategy
is

aq + b(1 − q)=
ac− bd

a − b+ c− d
= v, (3)

the sam e value achievable by I.T his show s that the gam e has a value,and thatthe players
have optim alstrategies. (som ething the m inim ax theorem says holds for allfinite gam es).

E xam ple 2.

A =
− 2 3
3 − 4

p =
− 4 − 3

− 2 − 3 − 4 − 3
= 7/12

q = sam e

v =
8 − 9

− 2 − 3 − 4 − 3
= 1/12

E xam ple 3.

A =
0 − 10
1 2

p =
2 − 1

0 + 10 + 2 − 1
= 1/11

q =
2 + 10

0 + 10 + 2 − 1
= 12/11.

B ut q m ust be betw een zero and one. W hat happened? T he trouble is w e“forgot to test
this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.
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For large m ×n m atrices it is tedious to check each entry of the m atrix to see if it
has the saddle point property. It is easier to com pute the m inim um of each row and the
m axim um ofeach colum n to see ifthere is a m atch. H ere is an exam ple ofthe m ethod.

row m in

A =

⎛

⎜
⎝

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 2 2 2

row m in

B =

⎛

⎜
⎝

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 1 2 2

In m atrix A , no row m inim um is equal to any colum n m axim um , so there is no saddle
point. H ow ever,ifthe 2 in position a12 w ere changed to a 1,then w e have m atrix B . H ere,
the m inim um ofthe fourth row is equalto the m axim um ofthe second colum n;so b42 is a
saddle point.

2.2 Solution of A ll 2 by 2 M atrix G am es. C onsider the general 2×2 gam e
m atrix

A =
a b
d c

.

To solve this gam e (i.e. to find the value and at least one optim alstrategy for each player)
w e proceed as follow s.

1. Test for a saddle point.

2. If there is no saddle point, solve by finding equalizing strategies.

W e now prove the m ethod offinding equalizing strategies ofSection 1.2 w orks w hen-
ever there is no saddle point by deriving the value and the optim alstrategies.

A ssum e there is no saddle point. Ifa≥b,then b < c,as otherw ise b is a saddle point.
Since b < c,w e m ust have c > d,as otherw ise c is a saddle point. C ontinuing thus,w e see
that d < a and a > b. In other w ords,ifa ≥b,then a > b < c > d < a. B y sym m etry,if
a≤b,then a < b > c < d > a. T his show s that

If there is no saddle point, then either a > b, b < c, c > d and d < a, or a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) below , w e develop form ulas for the optim al strategies
and value ofthe general2×2 gam e. IfI chooses the first row w ith probability p (i.e. uses
the m ixed strategy (p,1− p)),w e equate his average return w hen II uses colum ns 1 and 2.

ap + d(1 − p) = bp + c(1 − p).

Solving for p,w e find

p =
c− d

(a − b)+ (c− d)
. (1)
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Classification of Stochastic Games

• Zero-sum stochastic game: all of the states 
must define a zero-sum matrix game and 

• Team stochastic game: all of the states must 
define team matrix games - their reward is the 
same for every joint action  

• The one that do not fall in any of these 
categories are generally called general-sum
stochastic games



State Value in Stochastic Games

• Similar to MDP, the state value of a SG is
𝑉𝑖
𝜋 𝑠

= Ε𝜋 σ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 1) 𝑠𝑡 = 𝑠

= Ε𝜋 ri(𝑡 + 1)+γσ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 2) 𝑠𝑡 = 𝑠

=

𝑎

𝜋(𝑎|𝑠)

𝑠′

𝑝 𝑠′|𝑠, 𝑎 [ri(𝑠′, 𝑎) + 𝛾Ε𝜋 σ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 2) 𝑠𝑡+1 = 𝑠′ ]

=

𝑎

𝜋(𝑎|𝑠)

𝑠′

𝑝 𝑠′|𝑠, 𝑎 [ri(𝑠′, 𝑎) + 𝛾𝑉𝑖
𝜋 𝑠′ ]

π(s|a) is the probability of choosing joint action a in state s 

• However, SG state values must defined for each agent and the 
expected value depends on the joint policy and not on the 
individual policies of the agents

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1). Cambridge: MIT press.



State Value in Stochastic Games

• Similar to MDP, the state value of a SG is

𝑉𝑖
𝜋 𝑠 = Ε𝜋 σ𝑘=0

+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 1) 𝑠𝑡 = 𝑠

• The total expected payoff to either player is bounded 
by 

𝑉𝑖
𝜋 𝑠 ≤

𝑀

1−𝛾
,           𝑀 ≡ max

𝑖,𝑠,𝑎
𝑟𝑖 𝑠, 𝑎 .

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1). Cambridge: MIT press.



Game at each state
• We use game 𝐺(𝑠) at each state s

• In contrast to normal-form game, a payoff does not 
end the game. 

• After a payoff is made, it is then decided at 
random whether the game ends with probability
(1-𝛾) and, 

• if not, which state should be played next. 

𝐺(𝑠) = 𝑟𝑖 𝑠, 𝑎𝑖 , 𝑎−𝑖 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎𝑖 , 𝑎−𝑖 𝐺(𝑠′)

E xam ple 5. C onsider the follow ing three related gam es.

G 1 =
G 2 0
0 G 3

G 2 =
G 1 1
1 0

G 3 =
G 1 2
2 0

and suppose the payoffifthe gam es are played forever is Q . Let us attem pt to solve these
gam es. Let v1 = V al(G 1), v2 = V al(G 2), and v3 = V al(G 3). P layer I can guarantee that
v1 > 0,v2 > 0 and v3 > 0 by playing (1/2,1/2) forever. In addition,v2 ≤1 and v3 ≤2,
w hich im plies v1 < 1. T herefore none ofthe gam es has a saddle point and w e m ay w rite

v1 =
v2v3
v2 + v3

, v2 =
1

2 − v1
, v3 =

4

4 − v1
.

Substituting the latter tw o equations into the form er,w e obtain

v1
2 − v1

+
4v1
4 − v1

=
4

(2 − v1)(4 − v1)

5v21 − 12v1 + 4 = 0

(5v1 − 2)(v1 − 2) = 0

Since 0 < v1 < 1,this im plies that v1 = 2/5. H ence

G am e value opt. for I= opt. for II
G 1 2/5 (16/25,9/25)
G 2 5/8 (5/8,3/8)
G 3 10/9 (5/9,4/9)

independent ofthe value ofQ .

6.4 Stochastic M ovem ent A m ong G am es. W e m ay generalize the notion of a
recursive gam e by allow ing the choice ofthe nextgam e played to depend notonly upon the
pure strategy choices of the players,but also upon chance. Let G 1,...,G n be gam es and
let p1,...,pn be probabilitiesthat sum to one. W e use the notation,p1G 1 + ···+ pn G n ,to
denote the situation w here the gam e to be played next is chosen at random ,w ith gam e G i
being chosen w ith probability pi,i= 1,...,n. Since,for a given num berz,the 1×1 m atrix
(z) denotes the trivialgam e in w hich II pays I z,w e m ay,for exam ple,use 12 G 1 +

1
2 (3) to

represent the situation w here G 1 is played if a fair coin com es up heads,and II pays I 3
otherw ise.

E xam ple 6. Let G 1 and G 2 be related as follow s.

G 1 =
1
2 G 2 +

1
2 (0) 1
2 0

G 2 =
2
3 G 1 +

1
3 (− 2) 0
0 − 1

T he gam e m ust eventually end (w ith probability 1). In fact, the players could not play
forever even ifthey w anted to. E ven ifthey choose the first row and first colum n forever,

II–68

Example:



Value Iterations in SG

• Theorem (SG). (Shapley (1952)) Each game G(s) has 
a value, V(s). These values are the unique solution 
of the set of equations, 

• Each player has a stationary optimal mixed 
strategy in state s with matrix 

where V represents the values at different states, V = 
(V(s), . . . )

𝑉(𝑠) = 𝑉𝑎𝑙 𝑟𝑖 𝑠, 𝑎𝑖 , 𝑎−𝑖 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎𝑖 , 𝑎−𝑖 𝑉(𝑠) 𝑓or s ∈ 𝑆

𝐺 𝑠 (𝑉) = 𝑟𝑖 𝑠, 𝑎𝑖 , 𝑎−𝑖 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎𝑖 , 𝑎−𝑖 𝑉(𝑠)

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of 

sciences 39.10 (1953): 1095-1100.



Value Iterations in SG
• Shapley’s value iterations

• Val operator solves the matrix game and find the value 
of the game (in Nash Equilibrium), using e.g. linear 
programing

𝐺 𝑠 (𝑉) = 𝑟𝑖 𝑠, 𝑎𝑖 , 𝑎−𝑖 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎𝑖 , 𝑎−𝑖 𝑉(𝑠)

𝑉(𝑠) ← 𝑉𝑎𝑙(𝐺 𝑠 (𝑉))

Compared to VI in MDP, the “Max ” operator replaced by the “Val” operator 

Bowling, Michael, and Manuela Veloso. An analysis of stochastic game theory for multiagent reinforcement learning. No. CMU-CS-00-165. 
Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science, 2000.

Shapley, Lloyd S. "Stochastic 

games." Proceedings of the national academy 
of sciences 39.10 (1953): 1095-1100.



A Simple Example
• Consider the following 2x2 zero-sum

stochastic game with just one state, call it G 

• From Player 2’s viewpoint, column 1 is better 
than column 2 in terms of immediate payoff, 

• but column 2 is more likely to end the game 
sooner than column 1, so that it should entail 
smaller future payoffs. 

• Which column should he choose? 

Player 1 receives
payoff 1 and with 
3/5 chance to play 
the game again

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



A Simple Example
• Assume that all strategies are active (no pure strategy) - must check 

when we are finished to see if the assumption was correct. Then 

• This leads to                   which gives two possible solutions v = ± 25/2. 
• Since the value is obviously positive, we must use the plus sign. This is v 

= (5/2) 2 = 3.535. Thus the matrix above becomes 

– The optimal strategy for Player 1 is p = ( 2 − 1, 2 − 2 ) = (.414, .586), and 
– the optimal strategy for Player 2 is q = (1 − 2 /2, 2 /2) = (.293, .707). 

• Since these are probability vectors, our assumption is correct and 
• v = (5/2) 2 is the value of the stochastic game. 

From P layerII’s view point,colum n 1 is better than colum n 2 in term sofim m ediate payoff,
but colum n 2 is m ore likely to end the gam e sooner than colum n 1,so that it should entail
sm aller future payoffs. W hich colum n should she choose?

A ssum e that allstrategies are active,i.e.that the gam e does not have a saddle point.
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Solving this quadratic equation gives tw o possible solutions v = ± 25/2 = ±(5/2)
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6.6 A pproxim ating the solution. For a generalstochastic gam e w ith m any states,
equations (9) becom e a rather com plex system of sim ultaneous nonlinear equations. W e
cannot hope to solve such system s in general. H ow ever,there is a sim ple iterative m ethod
ofapproxim ating the solution. T hisis based on Shapley’sproofofT heorem 1,and iscalled
Shapley iteration.

F irst w e m ake a guess at the solution,callit v0 = (v0(1),...,v0(N )). A ny guess w ill
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In particular,v1(k) = V al(A k) for allk.

T he proof of T heorem 1 show s that vn (k) converges to the true value, v(k), of the
stochastic gam e starting at k. T w o usefulfacts should be noted. F irst, the convergence
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Since there is no saddle point,(a− b) and (c− d)are either both positive or both negative;
hence,0 < p < 1. P layer I’s average return using this strategy is

v = ap + d(1 − p)=
ac− bd

a − b+ c− d
.

IfIIchoosesthe firstcolum n w ith probability q (i.e. uses the strategy (q,1− q)),w e equate
his average losses w hen I uses row s 1 and 2.

aq + b(1 − q)= dq + c(1 − q)

H ence,

q =
c− b

a − b+ c− d
. (2)

A gain,since there isno saddle point,0 < q < 1. P layerII’s average lossusing this strategy
is

aq + b(1 − q)=
ac− bd

a − b+ c− d
= v, (3)

the sam e value achievable by I.T his show s that the gam e has a value,and thatthe players
have optim alstrategies. (som ething the m inim ax theorem says holds for allfinite gam es).

E xam ple 2.

A =
− 2 3
3 − 4

p =
− 4 − 3

− 2 − 3 − 4 − 3
= 7/12

q = sam e

v =
8 − 9

− 2 − 3 − 4 − 3
= 1/12

E xam ple 3.

A =
0 − 10
1 2

p =
2 − 1

0 + 10 + 2 − 1
= 1/11

q =
2 + 10

0 + 10 + 2 − 1
= 12/11.

B ut q m ust be betw een zero and one. W hat happened? T he trouble is w e“forgot to test
this m atrix for a saddle point, so of course it has one”. (J. D . W illiam s T he C om pleat
Strategyst R evised E dition,1966,M cG raw -H ill,page 56.) T he low er left corner is a saddle
point. So p = 0 and q = 1 are optim alstrategies,and the value is v = 1.

2.3 R em oving D om inated Strategies. Som etim es, large m atrix gam es m ay be
reduced in size (hopefully to the 2×2 case)by deleting row sand colum nsthatare obviously
bad for the player w ho uses them .

D efinition. W e say the ith row of a m atrix A = (aij) dom inates the kth row if
aij ≥akj for allj. W e say the ith row of A strictly dom inates the kth row if aij > akj
for allj. Sim ilarly,the jth colum n ofA dom inates (strictly dom inates) the kth colum n if
aij ≤aik (resp. aij < aik) for alli.
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For large m ×n m atrices it is tedious to check each entry of the m atrix to see if it
has the saddle point property. It is easier to com pute the m inim um of each row and the
m axim um ofeach colum n to see ifthere is a m atch. H ere is an exam ple ofthe m ethod.

row m in

A =

⎛

⎜
⎝

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 2 2 2

row m in

B =

⎛

⎜
⎝

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

⎞

⎟
⎠

0
0
0
1

colm ax 3 1 2 2

In m atrix A , no row m inim um is equal to any colum n m axim um , so there is no saddle
point. H ow ever,ifthe 2 in position a12 w ere changed to a 1,then w e have m atrix B . H ere,
the m inim um ofthe fourth row is equalto the m axim um ofthe second colum n;so b42 is a
saddle point.

2.2 Solution of A ll 2 by 2 M atrix G am es. C onsider the general 2×2 gam e
m atrix

A =
a b
d c

.

To solve this gam e (i.e. to find the value and at least one optim alstrategy for each player)
w e proceed as follow s.

1. Test for a saddle point.

2. If there is no saddle point, solve by finding equalizing strategies.

W e now prove the m ethod offinding equalizing strategies ofSection 1.2 w orks w hen-
ever there is no saddle point by deriving the value and the optim alstrategies.

A ssum e there is no saddle point. Ifa≥b,then b < c,as otherw ise b is a saddle point.
Since b < c,w e m ust have c > d,as otherw ise c is a saddle point. C ontinuing thus,w e see
that d < a and a > b. In other w ords,ifa ≥b,then a > b < c > d < a. B y sym m etry,if
a≤b,then a < b > c < d > a. T his show s that

If there is no saddle point, then either a > b, b < c, c > d and d < a, or a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) below , w e develop form ulas for the optim al strategies
and value ofthe general2×2 gam e. IfI chooses the first row w ith probability p (i.e. uses
the m ixed strategy (p,1− p)),w e equate his average return w hen II uses colum ns 1 and 2.

ap + d(1 − p) = bp + c(1 − p).

Solving for p,w e find

p =
c− d

(a − b)+ (c− d)
. (1)
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Value Iteration
• Shapley proves that vn(s) converges to the true 

value, v(s), of the stochastic game starting at s

– First, the convergence is at an exponential rate: 
the maximum error goes down at least as fast as 
𝛾𝑛

– Second, the maximum error at stage n + 1 is at 
most the maximum change from stage n to n + 1 
multiplied by 𝛾/(1 − 𝛾) 

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of 

sciences 39.10 (1953): 1095-1100.



Exercise: Value Iteration
• Let us take an example of a 2x2 zero-sum stochastic 

game with two states. The corresponding games G(1)

and G(2), are related as follows. 

e.g., in state 1, if choosing (row2,col1), then player 1 receives reward 1 and with 0.4 chance
moves to state 2.

• What are the values of the game in states 1 and 2,
respectively?

• What are the optimal strategies for players in states 1
and 2, respectively?
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Exercise: Value Iteration

• The optimal strategies using v6 (time step 6)
are easily found. 

– For game G(1), the optimal strategies are 

• p(1) = (.4134, .5866) for Player 1 and 

• q(1) = (.5219, .4718) for Player 2 

– For game G(2), the optimal strategies are 

• p(2) = (.3996,.6004) for Player 1 and 

• q(2) = (.4995,.5005) for Player 2. 

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Policy Iterations (Pollatschek & Avi-Itzhak )

• Just as Shapley’s algorithm is an extension of value 
iteration to SG, Pollatschek & Avi-Itzhak introduced an 
extension of policy iteration

• Each player selects the equilibrium policy according to 
the current value function

• The value function is then updated based on the actual 
rewards of following these policies 

Pollatschek, M. A., and B. Avi-Itzhak. "Algorithms for stochastic games with geometrical interpretation." Management Science 15.7 (1969): 399-415.



Fined-grained Definition of Strategies
• For agent i, a deterministic strategy specifies a choice 

of action for i at every stage of every possible history 
• A mixed strategy is a probability distribution over 

deterministic strategies
• Several restricted classes of strategies: 

– As in dynamical games, a behavioural strategy is a mixed 
strategy in which the mixing take place at each history 
independently 

– A Markov strategy is a behavioural strategy such that for 
each time t, the distribution over actions depends only on 
the current state 
• But the distribution may be different at time t than at time t' ≠ t 

– A stationary strategy is a Markov strategy in which the 
distribution over actions depends only on the current state 
(not on the time t) 



Best-response Learners

• A best-response policy for player i is optimal 
with respect to some joint policy of the other 
players:

𝜋𝑖 ∈ 𝐵𝑅𝑖(𝜋−𝑖)

where 𝜋−𝑖 is the joint policy of other agents

• 𝜋𝑖
∗ ∈ 𝐵𝑅𝑖(𝜋−𝑖)if and only if:

∀𝑠 ∈ 𝑆, 𝑉
𝑖

𝜋𝑖
∗,𝜋−𝑖

≥ 𝑉
𝑖

𝜋𝑖 ,𝜋−𝑖



Nash Equilibrium Learners

• A Nash equilibrium in SG is a collection of 
policies, one for each player, 

– so that all of this policies are best-response 
policies and 

• no player can do better by changing its policy

∀𝑖=1…𝑛, 𝜋𝑖
∗ ∈ 𝐵𝑅𝑖(𝜋−𝑖

∗ )
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Equilibrium Learners

• Equilibrium Learners aim to find policies which 
are Nash equilibria for the stochastic game 
– as it is hard to find such equilibria, they focus on a 

smaller class of problems, for example zero-sum 
games or two-person general-sum.

• The advantage of finding the Nash equilibrium is 
that the agent learns a lower bound for 
performance and,
– in this situation, it becomes fairly independent of the 

policies being played by the other agents 
– it will get at least the amount of return which 

corresponds to the equilibrium



Q-value in Stochastic Games

• Similar to MDP, the Q value of a SG is
𝑄𝑖
𝜋 𝑠, 𝑎

= Ε𝜋 σ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 1) 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

= Ε𝜋 ri(𝑡 + 1)+γσ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 2) 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

=

𝑠′

𝑝 𝑠′|𝑠, 𝑎 [ri(𝑠′, 𝑎) + 𝛾Ε𝜋 σ𝑘=0
+∞ 𝛾𝑘ri(𝑡 + 𝑘 + 2) 𝑠𝑡+1 = 𝑠′, 𝑎𝑡 = 𝑎 ]

=

𝑠′

𝑝 𝑠′|𝑠, 𝑎 [ri(𝑠′, 𝑎) + 𝛾𝑉𝑖
𝜋 𝑠′ ]

• π(s|a) is the probability of choosing joint action a in 
state s 

• The individual Q-values also depend on the actions 
of all the players. 



Equilibrium Learners

• Generally, a solution for an equilibrium learner 
would be a fixed point in 𝜋∗ = (𝜋𝑖

∗, 𝜋−𝑖
∗ ) of the 

following system of equations: 

– where 𝑉𝑖
∗ 𝑠′ represents the equilibrium value for 

agent i when the joint- policy being played is the Nash 
equilibrium π∗ and 

– is computed with respect to the Q-values. 

– This is similar to a Bellman optimality equation except 
for the way the state value function is computed. 

𝑄𝑖
∗ 𝑠, 𝑎 = ri(𝑠, 𝑎) + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉𝑖

∗ 𝑠′∀𝑖=1…𝑛



Nash-Q: general equilibrium learner

• Nash-Q addresses two-player general-sum 
games

– quadratic programming is used for computing 
general-sum equilibrium 

– theoretical limitation on single equilibrium only

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic 

games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q: general equilibrium learner
• The Q-function could be estimated through a stochastic 

approximation procedure very similar to standard Q-learning: 

Instead of  taking “max” 
as in Q learning

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Minimax Q
• Minimax-Q is designed to work with zero-sum stochastic games 

– in zero-sum games there is only one equilibrium 
– it can be found using linear programming. 

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.

a: own 
actions,
o: opponent 
actions
PD(A): Prob. 
Distribution 
of Action



Friend-or-Foe-Q 

• Extended Minimax-Q to solve a more 
general class of stochastic games. 

– In each state, the method is told 
whether the agent is playing with a 
Friend, and the Nash would be a 
coordination equilibria and a global 
optimum,

– or against a Foe, with the game having 
an adversarial equilibrium in a saddle 
point. 

Littman, Michael L. "Friend-or-foe Q-learning in general-sum games." ICML. Vol. 1. 2001.



Friend-or-Foe-Q 

Littman, Michael L. "Friend-or-foe Q-learning in general-sum games." ICML. Vol. 1. 2001.

foe

friend
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Desired Properties of Multi-agent Learners

• Rationality: If the other players’ policies converge to 
stationary policies, then the learning algorithm will 
converge to a policy that is a best-response to the 
other players’ policies

• Convergence: The learner will necessarily converge to 
a stationary policy. 
– Definition A learning algorithm for player i converges to a 

stationary policy π if and only if for any ε > 0 there exists a
time T > 0 such that,

– where P(s,t) is the probability that the game is in state s at 
time t, and P(ai|s,t) is the probability that the algorithm 
selects action ai , given the game is in state s at time t 
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policy, then the problem for the remaining agent reverts back to an MDP. This is because

fixing the other agents’ policies, even if stochastic, makes the transitions Markovian,

depending only on the remaining player’s actions.

Types of stochastic games. The same classification for matrix games can be used with

stochastic games. Strictly collaborativegames, or team games, are ones where all the agents

have the same reward function. Strictly competitive games, or zero-sum games, are two-

player games where one player’s reward is always the negative of the others’. Like matrix

games, zero-sum stochastic games have a unique Nash equilibrium, although finding this

equilibrium is no longer as trivial. Shapley presented along with his existence proof [26] a

value iteration algorithm and others have also examined a variety of techniques [10,33].

Learning in stochastic games. This article explores algorithms for an agent to learn a

policy in stochastic games while other agents are learning simultaneously. This problem

can be formalized as an on-line reinforcement learning problem, i.e., agents observe the

current state and must select an action, which then affects the observed next state and

reward. The algorithms we discuss and present vary, though, in what is observable about

the other agents. As we will note, our theoretical results presented in Section 3 require the

player’s complete reward matrix to be known as well as observations of the other players’

current stochastic policy. Algorithms described later in this Section require observation

of only the other players’ immediate actions, and additionally require observations of

their immediate rewards. The novel algorithm we introduce in Section 4 requires the least

information, neither needing to observe the other players’ policies, actions, nor rewards.

One final concept of importance is the idea of convergence to a stationary policy.

Definition 3. A learning algorithm for player i converges to a stationary policy π if and

only if for any ε > 0 there exists a time T > 0 such that,

∀t> T, ai∈A i, s∈S, P (s,t)> 0⇒ P (ai|s,t)− π(s,ai) < ε,

where P (s,t) is the probability that the game is in state s at time t, and P (ai |s,t) is the

probability that the algorithm selects action ai, given the game is in state s at time t.

2.2. Properties

In this section we present two properties that are desirable for multiagent learning

algorithms. We will then examine how well previous algorithms have achieved these

properties. Intuitively, the properties formalize the idea that a learner should learn a best-

response when possible. Also, the learner should have some guarantee of convergence. We

will now define these properties formally.

Property 1 (Rationality). If the other players’ policies converge to stationary policies then

the learning algorithmwill converge to a policy that is a best-response to the other players’

policies.

This is a fairly basic property requiring the learner to learn and play a best-response

policy when the other players play stationary policies, in which case a best-response policy

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.
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where P (s,t) is the probability that the game is in state s at time t, and P (ai |s,t) is the

probability that the algorithm selects action ai, given the game is in state s at time t.
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In this section we present two properties that are desirable for multiagent learning

algorithms. We will then examine how well previous algorithms have achieved these

properties. Intuitively, the properties formalize the idea that a learner should learn a best-

response when possible. Also, the learner should have some guarantee of convergence. We
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the learning algorithmwill converge to a policy that is a best-response to the other players’
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This is a fairly basic property requiring the learner to learn and play a best-response
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Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

Rationality -> whether it is a best response to
others stationary policies
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Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

Convergence is usually conditioned on other players’
learning algorithms, e.g., convergence with respect to 
rational players or self-play (all players using the same
algos)
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Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

Relationship to equilibria: If all the players use rational learning algorithms and
their policies converge, they must have converged to an equilibrium. Why?



Learning against stationary policies

• When the policies of all but one of the agents 
are stationary, the stochastic game reduces to 
a MDP 

• Why?



Learning against stationary policies

• When the policies of all but one of the agents are 
stationary, the stochastic game reduces to a MDP 

• Why?
– all the other agents’ stationary policies are used to

redefine the transition probabilities and reward structure 
for the equivalent MDP 

• Suppose
– agent i has learning policy πi and 
– the joint policy of the other agents π−i is fixed, 
– the parameters of the equivalent MDP are: 

• Transition prob:𝑝 𝑠′ 𝑠, 𝑎𝑖 = σ𝑎−𝑖 π−i(𝑎−𝑖|𝑠)𝑝(𝑠
′|𝑠, 𝑎𝑖, 𝑎−𝑖)

• Reward function:ri(𝑠, 𝑎𝑖) = σ𝑎−𝑖 π−i(𝑎−𝑖|𝑠)ri(𝑠, 𝑎𝑖, 𝑎−𝑖)



Independent learners vs. Joint Action Learners

• Independent learners (ILs) apply Q-learning in the 
classic sense, ignoring the existence of other agents:
– Q learning: each agent uses Q(S,ai) independently

– Q-learning does not play stochastic policies. This prevents 
Q-learners from being convergent in self-play 

– One may use a soft Q-learning (stochastic policies)

• Joint Action learners (JALs), instead, learn the value of 
their own actions in conjunction with those of other 
agents via integration of RL with equilibrium (or 
coordination) learning methods: Q(S,ai, a-i)

Claus, Caroline, and Craig Boutilier. "The dynamics of reinforcement learning in 

cooperative multiagent systems." AAAI/IAAI 1998 (1998): 746-752.



Difficulty in Independent learners (ILs) 

• assuming other agents are 
not learning is not very 
realistic

• if player 1 is playing the 
equilibrium strategy, the 
other may play a 
deterministic strategy and 
get the same reward

• However, once player 2 
leaves the equilibrium, a 
learning player 1 can 
exploit that fact and play 
some policy which will 
lower the reward for 
player 2 

Nash

R1

π(a1)

π(a2)

Player 2 leaves the equilibrium 

to deterministic policy , 

maintaining reward

Player 1 exploits deterministic 

policy of player 2   

(note that R2 = -R1)

Figure 3.4: D eterm inistic policies can be exploited.

into account,ifone agent (player 1) is playing the equilibrium strategy,the
other (player 2) m ay play a determ inistic strategy and get the sam e rew ard
(w hich is equivalent to find a border solution for that player). H ow ever,
once player 2 leaves the equilibrium , a learning player 1 can exploit that
fact and play som e policy w hich w illlow er the rew ard for player 2. Figure
3.4 represents the path taken.

3.3.2 Joint-action L earners

Joint-action learners (JA Ls) (C laus and B outilier, 1998) are intended to
solve iterated team m atrix gam es,w here the rew ard function is the sam e for
allthe involved agentsand there isonly one state w hich isplayed indefinitely.
T hey di↵er from purely M D P m ethods in that they learn Q -values based
on the joint-actions rather than just their ow n actions–it is assum ed that
they have fullobservability ofthe state and ofthe other agents’actions.
So,from the point of view of the learning m ethod there is no di↵erence

betw een Q -learning and JA Ls, except for the action space. T he problem
arises w hen deciding w hich action to take: if the Q -functions for all the
agents w ere coordinated, they w ould alw ays choose the best action, w hen
not perform ing exploratory m oves. H ow ever,there is no guarantee that the
other players are at the sam e learning stage,or even ifthey are learning at
all. T hat is w hy (C laus and B outilier,1998) propose a value function to be

35

Neto G. From single-agent to multi-agent reinforcement learning: Foundational concepts and methods[J]. Learning theory course, 2005.



Joint Action learners (JALs)

• Q-values are based on the joint-actions rather than just 
their own actions 
– relies on full observability of the state and of the other 

agents’ actions

• However, as agents are not coordinated, there is no 
guarantee that the other players are at the same 
learning stage, or even if they are learning at all

• The Q-value can be updated on the basis of the
observed actions

Claus, Caroline, and Craig Boutilier. "The dynamics of reinforcement learning in 

cooperative multiagent systems." AAAI/IAAI 1998 (1998): 746-752.

This is a stateless case,
but multiple states
cases can be done
similarly



Opponent Modeling/Fictitious Play
• Learn explicit models of the other players, assuming that they are playing according to a 

stationary policy
• Like JALs, statistics of the number of visits to a state and the number of times an opponent 

chooses an action are maintained to obtain policy estimators for the other players.  
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Table 4

Algorithm: Opponent Modeling Q-Learning for player i

(1) Initialize Q arbitrarily, and ∀s∈S ,a− i∈A − i C (s,a− i)← 0 and n(s)← 0.

(2) Repeat,

(a) From state s select action ai that maximizes,

a− i

C (s,a− i)

n(s)
Q s,⟨ai,a− i⟩

(b) Observing other agents’ actions a− i, reward r, and next state s′,

Q (s,a) ← (1 − α)Q (s,a)+ α r + γ V (s′)

C (s,a− i) ← C (s,a− i)+ 1

n(s) ← n(s)+ 1

where,

a = (ai,a− i)

V (s) = max
ai a− i

C (s,a− i)

n(s)
Q s,⟨ai,a− i⟩ .

distribution. Uther and Veloso [32] investigated this algorithm in zero-sum games and

Claus and Boutilier [9] examined it for fully collaborative matrix games.

The algorithm is essentially fictitious play [24,33] in a reinforcement learning context.

Fictitious play is a game theory algorithm that has been proven to find equilibria in

certain types of games. Basically, the fictitious play algorithm has players selecting the

action at each iteration that would have received the highest total payoff if it had been

played exclusively throughout the past. Fictitious play, when played by all players, has

been proven to converge to the Nash equilibrium in games that are iterated dominance

solvable. These are games such that iteratively removing dominated actions (i.e., actions

whose payoffs are lower than some other strategy regardless of the opponent’s play) will

leave a single action or set of equivalent actions. In addition, in zero-sum games the

players’ empirical distribution of actions that are played will converge to the game’s Nash

equilibrium, even though the actual strategies being played may not. The behavior of the

opponent modelling algorithm is very similar, although not all of these results have formal

proofs.

Like single-agent learners, opponent modelling is rational. This is because eventually

the player’s estimates of its opponent’s policy will converge to the true policy. Since it finds

best-response policies given its estimates eventually it will converge to a best-response

policy to the opponent’s true policy. Also, like single-agent learning it is not convergent.

The reason is identical: it only plays pure policies, and so cannot converge in games with

only mixed equilibria.

2.3.4. Discussion

In summary, Single-agent learners and joint-action learners are both rational, but have

no guarantee of convergence. Minimax-Q is guaranteed to converge to the equilibrium, but

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

To be more precise, 
opponent modeling
regards the other agents 
as one massive opponent 
with the ability to play 
joint actions and 
maintains statistics over 
them 



Opponent Modeling/Fictitious Play
• Learn explicit models of the other players, assuming that they are playing according to a 

stationary policy
• Like JALs, statistics of the number of visits to a state and the number of times an opponent 

chooses an action are maintained to obtain policy estimators for the other players.  
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Table 4
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players’ empirical distribution of actions that are played will converge to the game’s Nash

equilibrium, even though the actual strategies being played may not. The behavior of the

opponent modelling algorithm is very similar, although not all of these results have formal

proofs.

Like single-agent learners, opponent modelling is rational. This is because eventually

the player’s estimates of its opponent’s policy will converge to the true policy. Since it finds

best-response policies given its estimates eventually it will converge to a best-response

policy to the opponent’s true policy. Also, like single-agent learning it is not convergent.

The reason is identical: it only plays pure policies, and so cannot converge in games with

only mixed equilibria.

2.3.4. Discussion

In summary, Single-agent learners and joint-action learners are both rational, but have

no guarantee of convergence. Minimax-Q is guaranteed to converge to the equilibrium, but
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Essentially, JALs/Opponent Modeling/Fictitious Play are the same. However, we have
three subtle variations:
1) The current opponent strategies are given (Centralized solution)
2) We don’t know the current opponent strategies but maintain an estimation from

observed actions for each opponent (Distributed solution)
3) We keep one estimation for all other agents (Distributed solution)



Discussions on JALs

• Like single-agent learners, opponent modelling is 
rational. 
– This is because eventually the player’s estimates of its 

opponent’s policy will converge to the true policy. 

– Since it finds best-response policies given its estimates,
eventually it will converge to a best-response policy to the 
opponent’s true policy. 

• Also, like single-agent learning it is not convergent. 
– The reason is identical: it only plays pure policies, and so 

cannot converge in games with only mixed equilibria. 

• Even if the learners capable of playing stochastic 
policies, JALs still may not converge in self-play 



Gradient ascent 
• A simple two-player, two-action, general-sum 

repeated matrix games
– the row player selects action i and
– the column player selects action j
– the row player receives a payoff rij and the column 

player receives the payoff cij

• α ∈ [0, 1] is a strategy for the row player, 
where α corresponds to the probability of 
selecting the first action and 1 − α is the 
probability the player selects the second action 

• Similarly, β is a strategy for the column player 
• The joint strategy (α, β ) is  a point constrained 

to the unit square 
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there’s no guarantee that this is a best-response to the actual opponent. So Minimax-Q is

not rational.

Although the rational and convergent properties do not encompass all that is desirable

in a learning technique, it is interesting that simultaneously achieving both properties is

very difficult. The rest of this article will look at a new technique to do exactly that, i.e.,

a rational and convergent learning algorithm. The idea is to use a variable learning rate

in rational learning algorithms to make them convergent. In Section 3 we will look at a

theoretical analysis of variable learning rates in a restricted class of iterated matrix games.

In Section 4 we will further develop the technique into a more general stochastic game

learner and show empirical results of this algorithm.

3. Theoretical analysis

In this section we will begin by examining gradient ascent as a technique for learning

in simple two-player, two-action, general-sum repeated matrix games. We will look at a

theoretical analysis of this algorithm, which observes that the algorithm fails to converge.

We will follow by introducing the concept of a variable learning rate, and prove that this

concept, in fact, causes gradient ascent to converge.

3.1. Gradient ascent

Singh, Kearns, and Mansour [27] examined the dynamics of using gradient ascent

in two-player, two-action, iterated matrix games. We can represent this problem as two

matrices,

R r =
r11 r12

r21 r22
,

R c =
c11 c12

c21 c22
.

Each player selects an action from the set {1,2} which determines the rewards or

payoffs to the players. If the row player selects action i and the column player selects

action j, then the row player receives a payoff rij and the column player receives the

payoff cij .
Since this is a two-action game, a strategy (i.e., a probability distribution over the two

available actions) can be represented as a single value. Let α ∈[0,1]be a strategy for the

row player, where α corresponds to the probability the player selects the first action and

1 − α is the probability the player selects the second action. Similarly, let β be a strategy

for the column player. We can consider the joint strategy (α,β)as a point in R 2 constrained

to the unit square.

For any pair of strategies (α,β), we can write the expected payoffs the row and column

player will receive. Let Vr(α,β) and Vc(α,β) be these expected payoffs, respectively.
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Then,

Vr(α,β) = αβr11 + α(1 − β)r12 + (1 − α)βr21 + (1 − α)(1 − β)r22

= uαβ + α(r12 − r22)+ β(r21 − r22)+ r22, (1)

Vc(α,β) = αβc11 + α(1 − β)c12 + (1 − α)βc21 + (1 − α)(1 − β)c22

= u′αβ + α(c12 − c22)+ β(c21 − c22)+ c22, (2)

where,

u = r11 − r12 − r21 + r22,

u′= c11 − c12 − c21 + c22.

A player can now consider the effect of changing its strategy on its expected payoff. This

can be computed as just the partial derivative of its expected payoff with respect to its

strategy,

∂Vr(α,β)

∂α
= βu + (r12 − r22), (3)

∂Vc(α,β)

∂β
= αu′+ (c21 − c22). (4)

In the gradient ascent algorithm a player will adjust its strategy after each iteration so

as to increase its expected payoffs. This means the player will move their strategy in the

direction of the current gradient with some step size, η. If (αk,βk)are the strategies on the

kth iteration, and both players are using gradient ascent then the new strategies will be,

αk+ 1 = αk + η
∂V r(αk,βk)

∂αk
,

βk+ 1 = βk + η
∂Vr(αk,βk)

∂βk
.

If the gradient will move the strategy out of the valid probability space (i.e., the unit square)

then the gradient is projected back on to the probability space. This will only occur on the

boundaries of the probability space. The question to consider then is what can we expect

will happen if both players are using gradient ascent to update their strategies.

Notice that this algorithm is rational by the properties defined in Section 2.2. This is

because fixing the other player’s strategy causes the player’s gradient to become constant,

and will eventually force the player to converge to the optimal pure strategy response. On

the other hand the algorithm is not convergent, which is shown in [27]. This is despite the

fact that the algorithm can and does play mixed strategies.

The analysis, by Singh and colleagues, of gradient ascent examines the dynamics of

the learners in the case of an infinitesimal step size (limη→0). They call this algorithm

Infinitesimal Gradient Ascent (IGA). They observe later that an algorithm with an

appropriately decreasing step size will have the same properties as IGA. In the next section

we will briefly outline their analysis.
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and will eventually force the player to converge to the optimal pure strategy response. On
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fact that the algorithm can and does play mixed strategies.

The analysis, by Singh and colleagues, of gradient ascent examines the dynamics of
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• By gradient ascent, a player can adjust 
its strategy after each iteration so as to 
increase its expected payoffs
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direction of the current gradient with 
some step size, η

• This can be consider a simple JAL when 
the opponent strategy is given:
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there’s no guarantee that this is a best-response to the actual opponent. So Minimax-Q is

not rational.

Although the rational and convergent properties do not encompass all that is desirable

in a learning technique, it is interesting that simultaneously achieving both properties is

very difficult. The rest of this article will look at a new technique to do exactly that, i.e.,

a rational and convergent learning algorithm. The idea is to use a variable learning rate

in rational learning algorithms to make them convergent. In Section 3 we will look at a

theoretical analysis of variable learning rates in a restricted class of iterated matrix games.

In Section 4 we will further develop the technique into a more general stochastic game

learner and show empirical results of this algorithm.

3. Theoretical analysis

In this section we will begin by examining gradient ascent as a technique for learning

in simple two-player, two-action, general-sum repeated matrix games. We will look at a

theoretical analysis of this algorithm, which observes that the algorithm fails to converge.

We will follow by introducing the concept of a variable learning rate, and prove that this

concept, in fact, causes gradient ascent to converge.

3.1. Gradient ascent

Singh, Kearns, and Mansour [27] examined the dynamics of using gradient ascent

in two-player, two-action, iterated matrix games. We can represent this problem as two

matrices,

R r =
r11 r12

r21 r22
,

R c =
c11 c12

c21 c22
.

Each player selects an action from the set {1,2} which determines the rewards or

payoffs to the players. If the row player selects action i and the column player selects

action j, then the row player receives a payoff rij and the column player receives the

payoff cij .
Since this is a two-action game, a strategy (i.e., a probability distribution over the two

available actions) can be represented as a single value. Let α ∈[0,1]be a strategy for the

row player, where α corresponds to the probability the player selects the first action and

1 − α is the probability the player selects the second action. Similarly, let β be a strategy

for the column player. We can consider the joint strategy (α,β)as a point in R 2 constrained

to the unit square.

For any pair of strategies (α,β), we can write the expected payoffs the row and column

player will receive. Let Vr(α,β) and Vc(α,β) be these expected payoffs, respectively.

row player payoffs

col player payoffs
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If the gradient will move the strategy out of the valid probability space (i.e., the unit square)

then the gradient is projected back on to the probability space. This will only occur on the

boundaries of the probability space. The question to consider then is what can we expect

will happen if both players are using gradient ascent to update their strategies.

Notice that this algorithm is rational by the properties defined in Section 2.2. This is

because fixing the other player’s strategy causes the player’s gradient to become constant,

and will eventually force the player to converge to the optimal pure strategy response. On

the other hand the algorithm is not convergent, which is shown in [27]. This is despite the

fact that the algorithm can and does play mixed strategies.

The analysis, by Singh and colleagues, of gradient ascent examines the dynamics of

the learners in the case of an infinitesimal step size (limη→0). They call this algorithm

Infinitesimal Gradient Ascent (IGA). They observe later that an algorithm with an

appropriately decreasing step size will have the same properties as IGA. In the next section

we will briefly outline their analysis.
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there’s no guarantee that this is a best-response to the actual opponent. So Minimax-Q is

not rational.

Although the rational and convergent properties do not encompass all that is desirable

in a learning technique, it is interesting that simultaneously achieving both properties is

very difficult. The rest of this article will look at a new technique to do exactly that, i.e.,

a rational and convergent learning algorithm. The idea is to use a variable learning rate

in rational learning algorithms to make them convergent. In Section 3 we will look at a

theoretical analysis of variable learning rates in a restricted class of iterated matrix games.

In Section 4 we will further develop the technique into a more general stochastic game

learner and show empirical results of this algorithm.

3. Theoretical analysis

In this section we will begin by examining gradient ascent as a technique for learning

in simple two-player, two-action, general-sum repeated matrix games. We will look at a

theoretical analysis of this algorithm, which observes that the algorithm fails to converge.

We will follow by introducing the concept of a variable learning rate, and prove that this

concept, in fact, causes gradient ascent to converge.

3.1. Gradient ascent

Singh, Kearns, and Mansour [27] examined the dynamics of using gradient ascent

in two-player, two-action, iterated matrix games. We can represent this problem as two

matrices,

R r =
r11 r12

r21 r22
,

R c =
c11 c12

c21 c22
.

Each player selects an action from the set {1,2} which determines the rewards or

payoffs to the players. If the row player selects action i and the column player selects

action j, then the row player receives a payoff rij and the column player receives the

payoff cij .
Since this is a two-action game, a strategy (i.e., a probability distribution over the two

available actions) can be represented as a single value. Let α ∈[0,1]be a strategy for the

row player, where α corresponds to the probability the player selects the first action and

1 − α is the probability the player selects the second action. Similarly, let β be a strategy

for the column player. We can consider the joint strategy (α,β)as a point in R 2 constrained

to the unit square.

For any pair of strategies (α,β), we can write the expected payoffs the row and column

player will receive. Let Vr(α,β) and Vc(α,β) be these expected payoffs, respectively.

row player payoffs

col player payoffs

What will happen if both players are using gradient ascent to update their strategies?
1) this algorithm is rational because fixing the other player’s strategy will eventually 

force the player to converge to the optimal pure strategy response
2) the algorithm is, however, not convergent 
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3.2. Analysis of IGA

The main conclusion of Singh, Kearns, and Mansour [27] is the following theorem.

Theorem 1. If both players follow Infinitesimal Gradient Ascent (IGA), where η→ 0, then

their strategies will converge to a Nash equilibrium OR the average payoffs over time will

converge in the limit to the expected payoffs of a Nash equilibrium.

Their proof of this theorem proceeds by examining the dynamics of the strategy pair,

(α,β). This is an affine dynamical system in R 2 where the dynamics are defined by the

differential equation,

⎡

⎢
⎣

∂α

∂t
∂β

∂t

⎤

⎥
⎦ =

0 u

u′ 0

α

β
+
(r12 − r22)

(c21 − c22)
.

If we define U to be the multiplicative matrix term above with off-diagonal values u and u′,
then we can classify the dynamics of the system based on properties of U . From dynamical

systems theory, if U is invertible then there are only two qualitative forms for the dynamics

of the system, depending on whether U has purely real or purely imaginary eigenvalues.

This results in three cases: U is not invertible, U has purely real eigenvalues, or U has

purely imaginary eigenvalues. The qualitative forms of these different cases are shown in

Fig. 1. Their analysis then proceeded by examining each case geometrically. One important

consideration is that the basic forms above are for the unconstrained dynamics not the

dynamics that projects the gradient onto the unit square. Basically, this requires considering

all possible positions of the unit square relative to the dynamics shown in Fig. 1.

One crucial aspect to their analysis were points of zero-gradient in the constrained

dynamics, which they show to correspond to Nash equilibria. This is also discussed in

Lemma 2. In the unconstrained dynamics, there exist at most one point of zero-gradient,

(a) (b) (c)

Fig. 1. Qualitative forms of the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has

imaginary eigenvalues.
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which is called the center and denoted (α∗,β∗). This point can be found mathematically

by setting Eqs. (3) and (4) to zero and solving,

(α∗,β∗)=
(c22 − c21)

u′
,
(r22 − r12)

u
.

Notice that the center may not even be inside the unit square. In addition, if U is not

invertible then there is no point of zero gradient in the unconstrained dynamics. But in the

constrained dynamics, where gradients on the boundaries of the unit square are projected

onto the unit square, additional points of zero gradient may exist. When IGA converges it

will be to one of these points with zero gradient.

This theorem is an exciting result since it is one of the first convergence results for a

rational multiagent learning algorithm. The notion of convergence, though, is rather weak.

In fact, not only may the players’ policies not converge when playing gradient ascent but

the expected payoffs may not converge either. Furthermore, at any moment in time the

expected payoff of a player could be arbitrarily poor.5 Not only does this make it difficult

to evaluate a learner, it also could be potentially disastrous when applied with temporal

differencing for multiple state stochastic games, which assumes that expected payoffs in

the past predict expected payoffs in the future.

In the next section we will examine a method for addressing this convergence problem.

We will then prove that this new method has the stronger notion of convergence, i.e.,

players will always converge to a Nash equilibrium.

3.3. Variable learning rate

We now introduce the concept and study the impact of a variable learning rate. In the

gradient ascent algorithm presented above the steps taken in the direction of the gradient

were constant. We will now allow them to vary over time, thus changing the update rules

to,

αk+ 1 = αk + ηℓ rk
∂Vr(αk,βk)

∂α
,

βk+ 1 = βk + ηℓ ck
∂Vr(αk,βk)

∂β
,

where ℓ
r,c
k ∈[ℓmin,ℓmax]> 0.At the kth iteration the algorithm takes a step of size ηℓ k in

the direction of the gradient. Notice the restrictions on ℓ k require that it be strictly positive

and bounded, thus bounding the step sizes as well.

The specific method for varying the learning rate that we are contributing is the WoLF

(“Win or Learn Fast”) principle. The essence of this method is to learn quickly when

losing, and cautiously when winning. The intuition is that a learner should adapt quickly

when it is doing more poorly than expected. When it is doing better than expected, it

should be cautious since the other players are likely to change their policy. The heart of the

algorithm is how to determine whether a player is winning or losing. For the analysis in

5 The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there

must be some corresponding period in the past or in the future of arbitrarily high payoffs.
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3.2. Analysis of IGA

The main conclusion of Singh, Kearns, and Mansour [27] is the following theorem.

Theorem 1. If both players follow Infinitesimal Gradient Ascent (IGA), where η→ 0, then

their strategies will converge to a Nash equilibrium OR the average payoffs over time will

converge in the limit to the expected payoffs of a Nash equilibrium.

Their proof of this theorem proceeds by examining the dynamics of the strategy pair,

(α,β). This is an affine dynamical system in R 2 where the dynamics are defined by the

differential equation,

⎡

⎢
⎣

∂α

∂t
∂β

∂t

⎤

⎥
⎦ =

0 u

u′ 0

α

β
+
(r12 − r22)

(c21 − c22)
.

If we define U to be the multiplicative matrix term above with off-diagonal values u and u′,
then we can classify the dynamics of the system based on properties of U . From dynamical

systems theory, if U is invertible then there are only two qualitative forms for the dynamics

of the system, depending on whether U has purely real or purely imaginary eigenvalues.

This results in three cases: U is not invertible, U has purely real eigenvalues, or U has

purely imaginary eigenvalues. The qualitative forms of these different cases are shown in

Fig. 1. Their analysis then proceeded by examining each case geometrically. One important

consideration is that the basic forms above are for the unconstrained dynamics not the

dynamics that projects the gradient onto the unit square. Basically, this requires considering

all possible positions of the unit square relative to the dynamics shown in Fig. 1.

One crucial aspect to their analysis were points of zero-gradient in the constrained

dynamics, which they show to correspond to Nash equilibria. This is also discussed in

Lemma 2. In the unconstrained dynamics, there exist at most one point of zero-gradient,

(a) (b) (c)

Fig. 1. Qualitative forms of the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has

imaginary eigenvalues.
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which is called the center and denoted (α∗,β∗). This point can be found mathematically

by setting Eqs. (3) and (4) to zero and solving,

(α∗,β∗)=
(c22 − c21)

u′
,
(r22 − r12)

u
.

Notice that the center may not even be inside the unit square. In addition, if U is not

invertible then there is no point of zero gradient in the unconstrained dynamics. But in the

constrained dynamics, where gradients on the boundaries of the unit square are projected

onto the unit square, additional points of zero gradient may exist. When IGA converges it

will be to one of these points with zero gradient.

This theorem is an exciting result since it is one of the first convergence results for a

rational multiagent learning algorithm. The notion of convergence, though, is rather weak.

In fact, not only may the players’ policies not converge when playing gradient ascent but

the expected payoffs may not converge either. Furthermore, at any moment in time the

expected payoff of a player could be arbitrarily poor.5 Not only does this make it difficult

to evaluate a learner, it also could be potentially disastrous when applied with temporal

differencing for multiple state stochastic games, which assumes that expected payoffs in

the past predict expected payoffs in the future.

In the next section we will examine a method for addressing this convergence problem.

We will then prove that this new method has the stronger notion of convergence, i.e.,

players will always converge to a Nash equilibrium.

3.3. Variable learning rate

We now introduce the concept and study the impact of a variable learning rate. In the

gradient ascent algorithm presented above the steps taken in the direction of the gradient

were constant. We will now allow them to vary over time, thus changing the update rules

to,

αk+ 1 = αk + ηℓ rk
∂Vr(αk,βk)

∂α
,

βk+ 1 = βk + ηℓ ck
∂Vr(αk,βk)

∂β
,

where ℓ
r,c
k ∈[ℓmin,ℓmax]> 0.At the kth iteration the algorithm takes a step of size ηℓ k in

the direction of the gradient. Notice the restrictions on ℓ k require that it be strictly positive

and bounded, thus bounding the step sizes as well.

The specific method for varying the learning rate that we are contributing is the WoLF

(“Win or Learn Fast”) principle. The essence of this method is to learn quickly when

losing, and cautiously when winning. The intuition is that a learner should adapt quickly

when it is doing more poorly than expected. When it is doing better than expected, it

should be cautious since the other players are likely to change their policy. The heart of the

algorithm is how to determine whether a player is winning or losing. For the analysis in

5 The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there

must be some corresponding period in the past or in the future of arbitrarily high payoffs.

The average payoff of each ellipse is 
exactly the expected payoff of the 
center.

the dynamics of the strategy pair 
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3.2. Analysis of IGA

The main conclusion of Singh, Kearns, and Mansour [27] is the following theorem.

Theorem 1. If both players follow Infinitesimal Gradient Ascent (IGA), where η→ 0, then

their strategies will converge to a Nash equilibrium OR the average payoffs over time will

converge in the limit to the expected payoffs of a Nash equilibrium.

Their proof of this theorem proceeds by examining the dynamics of the strategy pair,

(α,β). This is an affine dynamical system in R 2 where the dynamics are defined by the

differential equation,

⎡

⎢
⎣

∂α

∂t
∂β

∂t

⎤

⎥
⎦ =

0 u

u′ 0

α

β
+
(r12 − r22)

(c21 − c22)
.

If we define U to be the multiplicative matrix term above with off-diagonal values u and u′,
then we can classify the dynamics of the system based on properties of U . From dynamical

systems theory, if U is invertible then there are only two qualitative forms for the dynamics

of the system, depending on whether U has purely real or purely imaginary eigenvalues.

This results in three cases: U is not invertible, U has purely real eigenvalues, or U has

purely imaginary eigenvalues. The qualitative forms of these different cases are shown in

Fig. 1. Their analysis then proceeded by examining each case geometrically. One important

consideration is that the basic forms above are for the unconstrained dynamics not the

dynamics that projects the gradient onto the unit square. Basically, this requires considering

all possible positions of the unit square relative to the dynamics shown in Fig. 1.

One crucial aspect to their analysis were points of zero-gradient in the constrained

dynamics, which they show to correspond to Nash equilibria. This is also discussed in

Lemma 2. In the unconstrained dynamics, there exist at most one point of zero-gradient,

(a) (b) (c)

Fig. 1. Qualitative forms of the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has

imaginary eigenvalues.

the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has imaginary eigenvalues. 

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

U

228 M. Bowling, M. Veloso / Artificial Intelligence 136 (2002) 215–250

which is called the center and denoted (α∗,β∗). This point can be found mathematically

by setting Eqs. (3) and (4) to zero and solving,

(α∗,β∗)=
(c22 − c21)

u′
,
(r22 − r12)

u
.

Notice that the center may not even be inside the unit square. In addition, if U is not

invertible then there is no point of zero gradient in the unconstrained dynamics. But in the

constrained dynamics, where gradients on the boundaries of the unit square are projected

onto the unit square, additional points of zero gradient may exist. When IGA converges it

will be to one of these points with zero gradient.

This theorem is an exciting result since it is one of the first convergence results for a

rational multiagent learning algorithm. The notion of convergence, though, is rather weak.

In fact, not only may the players’ policies not converge when playing gradient ascent but

the expected payoffs may not converge either. Furthermore, at any moment in time the

expected payoff of a player could be arbitrarily poor.5 Not only does this make it difficult

to evaluate a learner, it also could be potentially disastrous when applied with temporal

differencing for multiple state stochastic games, which assumes that expected payoffs in

the past predict expected payoffs in the future.

In the next section we will examine a method for addressing this convergence problem.

We will then prove that this new method has the stronger notion of convergence, i.e.,

players will always converge to a Nash equilibrium.

3.3. Variable learning rate

We now introduce the concept and study the impact of a variable learning rate. In the

gradient ascent algorithm presented above the steps taken in the direction of the gradient

were constant. We will now allow them to vary over time, thus changing the update rules

to,

αk+ 1 = αk + ηℓ rk
∂Vr(αk,βk)

∂α
,

βk+ 1 = βk + ηℓ ck
∂Vr(αk,βk)

∂β
,

where ℓ
r,c
k ∈[ℓmin,ℓmax]> 0.At the kth iteration the algorithm takes a step of size ηℓ k in

the direction of the gradient. Notice the restrictions on ℓ k require that it be strictly positive

and bounded, thus bounding the step sizes as well.

The specific method for varying the learning rate that we are contributing is the WoLF

(“Win or Learn Fast”) principle. The essence of this method is to learn quickly when

losing, and cautiously when winning. The intuition is that a learner should adapt quickly

when it is doing more poorly than expected. When it is doing better than expected, it

should be cautious since the other players are likely to change their policy. The heart of the

algorithm is how to determine whether a player is winning or losing. For the analysis in

5 The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there

must be some corresponding period in the past or in the future of arbitrarily high payoffs.

The average payoff of each ellipse is 
exactly the expected payoff of the 
center.
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However, at any moment in time the expected payoff of a player could 
be arbitrarily poor.  1) difficult to evaluate a learner, 2) difficult in 
temporal difference learning for multiple state stochastic games. 
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and D. The gradient always points to the right and therefore the strategy will eventually

hit the right boundary at which point it will be in quadrant A and the gradient will be

pointing downward. Therefore in this case it will converge to the bottom right corner. We

can similarly show convergence for other pairs of quadrants. The third and final case is

when the center is on the boundary of the unit square. In this case some points along the

boundary will have a projected gradient of zero. By similar arguments to those above, any

strategy will converge to one of these boundary points. See [27] for a diagram and further

explanation. Since in all cases the strategy pairs converge, by Lemma 2 they must have

converged to a Nash equilibrium. ✷

Center is inside the unit square. This is the final sub-case and is the point where the

dynamics of IGA and WoLF-IGA qualitatively differ. We will show that, although IGA

will not converge in this case, WoLF-IGA will. The proof will identify the areas of the

strategy space where the players are “winning” and “losing” and show that the trajectories

are actually piecewise elliptical in such a way that they spiral towards the center. All of

the lemmas in this subsection implicitly assume that U (t) has imaginary eigenvalues and

the center is inside the unit square. We begin with the following lemma that considers the

dynamics for fixed learning rates.

Lemma 6. If the learning rates, ℓ r and ℓ c, remain constant, then the trajectory of the

strategy pair is an elliptical orbit around the center, (α∗,β∗), and the axes of this ellipse
are,

0

ℓ c|u|/ℓ r|u′|
,

1

0
.

Proof. This is just a result from dynamical systems theory [23] as mentioned in [27] when

U (t)has imaginary eigenvalues. ✷

We now need the critical lemma that identifies the areas of strategy space where the

players are using a constant learning rate. Notice that this corresponds to the areas where

the players are “winning” or “losing”.

Lemma 7. The player is “winning” if and only if that player’s strategy is moving away

from the center.

Proof. Notice that in this sub-case where U (t) has imaginary eigenvalues and the center

is within the unit square, the game has a single Nash equilibrium, which is the center.

So, the players’ selected equilibrium strategies for the WoLF principle must be the center,

i.e., (αe,βe)= (α∗,β∗). Now, consider the row player. The player is “winning” when its

current expected payoff is larger than the expected payoffs if it were to play its selected

equilibrium. This can be written as,

Vr(α,β)− Vr α
e,β > 0. (5)

We can rewrite the left hand side of inequality (5) by using Eq. (1),αe is the equilibrium strategy 

for the row player, and βe is

the equilibrium strategy for 

the column player. 
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and D. The gradient always points to the right and therefore the strategy will eventually

hit the right boundary at which point it will be in quadrant A and the gradient will be

pointing downward. Therefore in this case it will converge to the bottom right corner. We

can similarly show convergence for other pairs of quadrants. The third and final case is

when the center is on the boundary of the unit square. In this case some points along the

boundary will have a projected gradient of zero. By similar arguments to those above, any

strategy will converge to one of these boundary points. See [27] for a diagram and further

explanation. Since in all cases the strategy pairs converge, by Lemma 2 they must have

converged to a Nash equilibrium. ✷

Center is inside the unit square. This is the final sub-case and is the point where the

dynamics of IGA and WoLF-IGA qualitatively differ. We will show that, although IGA

will not converge in this case, WoLF-IGA will. The proof will identify the areas of the

strategy space where the players are “winning” and “losing” and show that the trajectories

are actually piecewise elliptical in such a way that they spiral towards the center. All of

the lemmas in this subsection implicitly assume that U (t) has imaginary eigenvalues and

the center is inside the unit square. We begin with the following lemma that considers the

dynamics for fixed learning rates.

Lemma 6. If the learning rates, ℓ r and ℓ c, remain constant, then the trajectory of the

strategy pair is an elliptical orbit around the center, (α∗,β∗), and the axes of this ellipse
are,

0

ℓ c|u|/ℓ r|u′|
,

1

0
.

Proof. This is just a result from dynamical systems theory [23] as mentioned in [27] when

U (t)has imaginary eigenvalues. ✷

We now need the critical lemma that identifies the areas of strategy space where the

players are using a constant learning rate. Notice that this corresponds to the areas where

the players are “winning” or “losing”.

Lemma 7. The player is “winning” if and only if that player’s strategy is moving away

from the center.

Proof. Notice that in this sub-case where U (t) has imaginary eigenvalues and the center

is within the unit square, the game has a single Nash equilibrium, which is the center.

So, the players’ selected equilibrium strategies for the WoLF principle must be the center,

i.e., (αe,βe)= (α∗,β∗). Now, consider the row player. The player is “winning” when its

current expected payoff is larger than the expected payoffs if it were to play its selected

equilibrium. This can be written as,

Vr(α,β)− Vr α
e,β > 0. (5)

We can rewrite the left hand side of inequality (5) by using Eq. (1),αe is the equilibrium strategy 

for the row player, and βe is

the equilibrium strategy for 
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(αβu + α(r12 − r22)+ β(r21 − r22)+ r22)

− αeβu + αe(r12 − r22)+ β(r21 − r22)+ r22 . (6)

Using expression (6) in inequality (5), we substitute the center for the equilibrium

strategies, and then simplify making use of Eq. (3), as presented in Section 3.1.

(α − α∗)βu + (α − α∗)(r12 − r22)> 0, (7)

(α − α∗) βu + (r12 − r22) > 0, (8)

(α − α∗)
∂Vr(α,β)

∂α
> 0. (9)

Notice that inequality (9) is satisfied if and only if the two left hand factors have the same

sign. This is true if and only if the player’s strategy α is greater than the strategy at the

center α∗ and it is increasing, or it’s smaller than the center and decreasing. So the player

is winning if and only if its strategy is moving away from the center. The same can be

shown for the column player. ✷

Corollary 1. Throughout any one quadrant, the learning rate is constant.

Combining Lemmas 6 and 7, we find that the trajectories will be piece-wise elliptical

orbits around the center, where the pieces correspond to the quadrants defined by the center.

We can now prove convergence for a limited number of starting strategy pairs. We will then

use this lemma to prove convergence for any initial strategy pairs.

Lemma 8. For any initial strategy pair, (α∗,β∗ + β0)or (α∗ + α0,β∗), that is “sufficiently
close” to the center, the strategy pair will converge to the center. “Sufficiently close” here

means that the elliptical trajectory from this point defined when both players use 1 as their

learning rate lies entirely within the unit square.

Proof. Without loss of generality assume u > 0 and u′< 0. This is the case shown

in Fig. 1(c). Let l=
√
ℓmin/ℓmax < 1.0, and r = |u′|/|u|. Consider an initial strategy

(α∗,β∗ + β0)with β0 > 0.

For any fixed learning rates for the players, the trajectory forms an ellipse centered

at (α∗,β∗) and with the ratio of its y-radius to its x-radius equal to,
√
ℓ c/ℓ rr.Since the

trajectory is piecewise elliptical we can consider the ellipse that the trajectory follows while

in each quadrant. This is shown graphically in Fig. 2. As the trajectory travels through

quadrant A, by Lemma 7, we can observe that the row player is “winning” and the column

player is “losing”. Therefore, ℓ r = ℓmin and ℓ c = ℓmax, so the ratio of the ellipse’s axes will

be r/l, and this ellipse will cross into quadrant B at the point (α∗ + β0
l
r,β

∗). Similarly,

in quadrant B, the row player is “losing” and the column player is “winning” therefore the

ratio of the ellipse’s axes will be rland the ellipse will cross into quadrant C at the point

(α∗,β∗ − β0l2).
We can continue this to return to the axis where the trajectory began. The strategy pair

at that point will be (α∗,β∗ + β0l4). So, for each orbit around the center we decrease the

distance to the center by a factor of l4 < 1.0, and therefore the trajectory will converge to
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and D. The gradient always points to the right and therefore the strategy will eventually

hit the right boundary at which point it will be in quadrant A and the gradient will be

pointing downward. Therefore in this case it will converge to the bottom right corner. We

can similarly show convergence for other pairs of quadrants. The third and final case is

when the center is on the boundary of the unit square. In this case some points along the

boundary will have a projected gradient of zero. By similar arguments to those above, any

strategy will converge to one of these boundary points. See [27] for a diagram and further

explanation. Since in all cases the strategy pairs converge, by Lemma 2 they must have

converged to a Nash equilibrium. ✷

Center is inside the unit square. This is the final sub-case and is the point where the

dynamics of IGA and WoLF-IGA qualitatively differ. We will show that, although IGA

will not converge in this case, WoLF-IGA will. The proof will identify the areas of the

strategy space where the players are “winning” and “losing” and show that the trajectories

are actually piecewise elliptical in such a way that they spiral towards the center. All of

the lemmas in this subsection implicitly assume that U (t) has imaginary eigenvalues and

the center is inside the unit square. We begin with the following lemma that considers the

dynamics for fixed learning rates.

Lemma 6. If the learning rates, ℓ r and ℓ c, remain constant, then the trajectory of the

strategy pair is an elliptical orbit around the center, (α∗,β∗), and the axes of this ellipse
are,

0

ℓ c|u|/ℓ r|u′|
,

1

0
.

Proof. This is just a result from dynamical systems theory [23] as mentioned in [27] when

U (t)has imaginary eigenvalues. ✷

We now need the critical lemma that identifies the areas of strategy space where the

players are using a constant learning rate. Notice that this corresponds to the areas where

the players are “winning” or “losing”.

Lemma 7. The player is “winning” if and only if that player’s strategy is moving away

from the center.

Proof. Notice that in this sub-case where U (t) has imaginary eigenvalues and the center

is within the unit square, the game has a single Nash equilibrium, which is the center.

So, the players’ selected equilibrium strategies for the WoLF principle must be the center,

i.e., (αe,βe)= (α∗,β∗). Now, consider the row player. The player is “winning” when its

current expected payoff is larger than the expected payoffs if it were to play its selected

equilibrium. This can be written as,

Vr(α,β)− Vr α
e,β > 0. (5)

We can rewrite the left hand side of inequality (5) by using Eq. (1),

the above is true when the 
two left hand factors have 
the same sign. 
Therefore 1) strategy α is 
greater than the strategy at 
the center α∗ and it is 
increasing 2) it’s smaller 
than the center and 
decreasing-> moves away

The winning condition



WoLF (Win or Learn Fast)
• So we can have a variable learning rate:

• How to update the learning rate?
– the WoLF (“Win or Learn Fast”) principle (learn quickly when losing, and cautiously 

when winning

• The intuition: 
– a learner should adapt quickly when it is doing more poorly than expected. 
– when it is doing better than expected, it should be cautious since the other players 

are likely to change their policy
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which is called the center and denoted (α∗,β∗). This point can be found mathematically

by setting Eqs. (3) and (4) to zero and solving,

(α∗,β∗)=
(c22 − c21)

u′
,
(r22 − r12)

u
.

Notice that the center may not even be inside the unit square. In addition, if U is not

invertible then there is no point of zero gradient in the unconstrained dynamics. But in the

constrained dynamics, where gradients on the boundaries of the unit square are projected

onto the unit square, additional points of zero gradient may exist. When IGA converges it

will be to one of these points with zero gradient.

This theorem is an exciting result since it is one of the first convergence results for a

rational multiagent learning algorithm. The notion of convergence, though, is rather weak.

In fact, not only may the players’ policies not converge when playing gradient ascent but

the expected payoffs may not converge either. Furthermore, at any moment in time the

expected payoff of a player could be arbitrarily poor.5 Not only does this make it difficult

to evaluate a learner, it also could be potentially disastrous when applied with temporal

differencing for multiple state stochastic games, which assumes that expected payoffs in

the past predict expected payoffs in the future.

In the next section we will examine a method for addressing this convergence problem.

We will then prove that this new method has the stronger notion of convergence, i.e.,

players will always converge to a Nash equilibrium.

3.3. Variable learning rate

We now introduce the concept and study the impact of a variable learning rate. In the

gradient ascent algorithm presented above the steps taken in the direction of the gradient

were constant. We will now allow them to vary over time, thus changing the update rules

to,

αk+ 1 = αk + ηℓ rk
∂Vr(αk,βk)

∂α
,

βk+ 1 = βk + ηℓ ck
∂Vr(αk,βk)

∂β
,

where ℓ
r,c
k ∈[ℓmin,ℓmax]> 0.At the kth iteration the algorithm takes a step of size ηℓ k in

the direction of the gradient. Notice the restrictions on ℓ k require that it be strictly positive

and bounded, thus bounding the step sizes as well.

The specific method for varying the learning rate that we are contributing is the WoLF

(“Win or Learn Fast”) principle. The essence of this method is to learn quickly when

losing, and cautiously when winning. The intuition is that a learner should adapt quickly

when it is doing more poorly than expected. When it is doing better than expected, it

should be cautious since the other players are likely to change their policy. The heart of the

algorithm is how to determine whether a player is winning or losing. For the analysis in

5 The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there

must be some corresponding period in the past or in the future of arbitrarily high payoffs.
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onto the unit square, additional points of zero gradient may exist. When IGA converges it
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k ∈[ℓmin,ℓmax]> 0.At the kth iteration the algorithm takes a step of size ηℓ k in

the direction of the gradient. Notice the restrictions on ℓ k require that it be strictly positive

and bounded, thus bounding the step sizes as well.

The specific method for varying the learning rate that we are contributing is the WoLF

(“Win or Learn Fast”) principle. The essence of this method is to learn quickly when

losing, and cautiously when winning. The intuition is that a learner should adapt quickly

when it is doing more poorly than expected. When it is doing better than expected, it

should be cautious since the other players are likely to change their policy. The heart of the

algorithm is how to determine whether a player is winning or losing. For the analysis in

5 The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there

must be some corresponding period in the past or in the future of arbitrarily high payoffs.
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are given,
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this section each player will select a Nash equilibrium and compare their expected payoff

with the payoff they would receive if they played according to the selected equilibrium

strategy. Let αe be the equilibrium strategy selected by the row player, and βe be the

equilibrium strategy selected by the column player. Notice that no requirement is made

that the players choose the same equilibrium (i.e., the strategy pair (αe,βe)may not be a

Nash equilibrium). Formally,

ℓ rk =
ℓmin if Vr(αk,βk)> V r(αe,βk)WINNING,

ℓmax otherwise LOSING,

ℓ ck =
ℓmin if Vc(αk,βk)> V c(αk,βe)WINNING,

ℓmax otherwise LOSING.

With a variable learning rate such as this we can still consider the case of an infinitesimal

step size (limη→0). We will call this algorithm WoLF-IGA and in the next section show

that the WoLF adjustment has a very interesting effect on the convergence of the algorithm.

3.4. Analysis of WoLF-IGA

We will prove the following result.

Theorem 2. If in a two-person, two-action, iterated general-sum game, both players follow

the WoLF-IGA algorithm (with ℓmax > ℓmin), then their strategies will converge to a Nash
equilibrium.

Notice that this is the more standard notion of convergence and strictly stronger than

what is true for basic IGA.

The proof of this theorem will follow closely with the proof of Theorem 1 from Singh

and colleagues [27], by examining the possible cases for the dynamics of the learners. First,

let us write down the differential equations that define the system with an infinitesimal step

size,

⎡

⎢
⎣

∂α

∂t
∂β

∂t

⎤

⎥
⎦ =

0 ℓ r(t)u

ℓ c(t)u′ 0

α

β
+

ℓ r(t)(r12 − r22)

ℓ c(t)(c21 − c22)
.

We will call the multiplicative matrix with off-diagonal entries U (t) since it now depends

on the learning rates at time t, ℓ r(t) and ℓ c(t). At time t, the qualitative form of the

dynamics is determined by the U (t) matrix and can be summarized into three general

cases,

• U (t) is not invertible,

• U (t)has purely real eigenvalues, or

• U (t)has purely imaginary eigenvalues.

αe is the equilibrium strategy for the row 

player, and βe is the equilibrium strategy for 

the column player. 



WoLF-IGA 
• With IGA, we have the following dynamics

• Theorem (WoLF-IGA) If in a two-person, two-action, 
iterated general-sum game, both players follow the 
WoLF-IGA algorithm (with ℓmax > ℓmin), then their 
strategies will converge to a Nash equilibrium. 
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this section each player will select a Nash equilibrium and compare their expected payoff

with the payoff they would receive if they played according to the selected equilibrium

strategy. Let αe be the equilibrium strategy selected by the row player, and βe be the

equilibrium strategy selected by the column player. Notice that no requirement is made

that the players choose the same equilibrium (i.e., the strategy pair (αe,βe)may not be a

Nash equilibrium). Formally,

ℓ rk =
ℓmin if Vr(αk,βk)> V r(αe,βk)WINNING,

ℓmax otherwise LOSING,

ℓ ck =
ℓmin if Vc(αk,βk)> Vc(αk,βe)WINNING,

ℓmax otherwise LOSING.

With a variable learning rate such as this we can still consider the case of an infinitesimal

step size (limη→0). We will call this algorithm WoLF-IGA and in the next section show

that the WoLF adjustment has a very interesting effect on the convergence of the algorithm.

3.4. Analysis of WoLF-IGA

We will prove the following result.

Theorem 2. If in a two-person, two-action, iterated general-sum game, both players follow

the WoLF-IGA algorithm (with ℓmax > ℓmin), then their strategies will converge to a Nash
equilibrium.

Notice that this is the more standard notion of convergence and strictly stronger than

what is true for basic IGA.

The proof of this theorem will follow closely with the proof of Theorem 1 from Singh

and colleagues [27], by examining the possible cases for the dynamics of the learners. First,

let us write down the differential equations that define the system with an infinitesimal step

size,

⎡

⎢
⎣

∂α

∂t
∂β

∂t

⎤

⎥
⎦ =

0 ℓ r(t)u

ℓ c(t)u′ 0

α

β
+

ℓ r(t)(r12 − r22)

ℓ c(t)(c21 − c22)
.

We will call the multiplicative matrix with off-diagonal entries U (t) since it now depends

on the learning rates at time t, ℓ r(t) and ℓ c(t). At time t, the qualitative form of the

dynamics is determined by the U (t) matrix and can be summarized into three general

cases,

• U (t) is not invertible,

• U (t)has purely real eigenvalues, or

• U (t)has purely imaginary eigenvalues.

U(t)

Convergence is the same 
as before for 
(a) U(t) is invertible  
(b) (b) U(t) has has purely 

real eigenvalues

converge to a point on the boundary NE converge to a NE point
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this section each player will select a Nash equilibrium and compare their expected payoff

with the payoff they would receive if they played according to the selected equilibrium

strategy. Let αe be the equilibrium strategy selected by the row player, and βe be the

equilibrium strategy selected by the column player. Notice that no requirement is made

that the players choose the same equilibrium (i.e., the strategy pair (αe,βe)may not be a

Nash equilibrium). Formally,

ℓ rk =
ℓmin if Vr(αk,βk)> V r(αe,βk)WINNING,

ℓmax otherwise LOSING,

ℓ ck =
ℓmin if Vc(αk,βk)> Vc(αk,βe)WINNING,

ℓmax otherwise LOSING.

With a variable learning rate such as this we can still consider the case of an infinitesimal

step size (limη→0). We will call this algorithm WoLF-IGA and in the next section show

that the WoLF adjustment has a very interesting effect on the convergence of the algorithm.

3.4. Analysis of WoLF-IGA

We will prove the following result.

Theorem 2. If in a two-person, two-action, iterated general-sum game, both players follow

the WoLF-IGA algorithm (with ℓmax > ℓmin), then their strategies will converge to a Nash
equilibrium.

Notice that this is the more standard notion of convergence and strictly stronger than

what is true for basic IGA.

The proof of this theorem will follow closely with the proof of Theorem 1 from Singh

and colleagues [27], by examining the possible cases for the dynamics of the learners. First,

let us write down the differential equations that define the system with an infinitesimal step

size,

⎡
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∂α
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⎤
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⎦ =
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We will call the multiplicative matrix with off-diagonal entries U (t) since it now depends

on the learning rates at time t, ℓ r(t) and ℓ c(t). At time t, the qualitative form of the

dynamics is determined by the U (t) matrix and can be summarized into three general

cases,

• U (t) is not invertible,

• U (t)has purely real eigenvalues, or

• U (t)has purely imaginary eigenvalues.

U(t)

IGA
WoLF-IGA

But for U(t) has purely 
imaginary eigenvalues 
and center is inside the 
unit square, it 
becomes converged! 



WoLF-IGA 
• Lemma (WoLF-IGA) For any initial strategy pair, (α∗, β∗ + 

β0) or (α∗ + α0, β∗), that is “sufficiently close” to the 
center, the strategy pair will converge to the center.
“Sufficiently close” here means that the elliptical trajectory 
from this point defined when both players use 1 as their 
learning rate lies entirely within the unit square. 
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α (row player) 
is winning so 
reduce the 
learning rate

β (col player) 
is winning so 
reduce the 
learning rate



WoLF-IGA 
• With IGA, we have the following dynamics

• Theorem (WoLF-IGA) If in a two-person, two-action, 
iterated general-sum game, both players follow the 
WoLF-IGA algorithm (with ℓmax > ℓmin), then their 
strategies will converge to a Nash equilibrium. 

convergence
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this section each player will select a Nash equilibrium and compare their expected payoff

with the payoff they would receive if they played according to the selected equilibrium

strategy. Let αe be the equilibrium strategy selected by the row player, and βe be the

equilibrium strategy selected by the column player. Notice that no requirement is made

that the players choose the same equilibrium (i.e., the strategy pair (αe,βe)may not be a

Nash equilibrium). Formally,

ℓ rk =
ℓmin if Vr(αk,βk)> V r(αe,βk)WINNING,

ℓmax otherwise LOSING,

ℓ ck =
ℓmin if Vc(αk,βk)> Vc(αk,βe)WINNING,

ℓmax otherwise LOSING.

With a variable learning rate such as this we can still consider the case of an infinitesimal
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Practical algorithm of WoLF: PHC Basis

Problems:
• guarantees rationality against stationary opponents
• does not converge in self-play

Updating a mixed strategy 
by giving more weight to the 
action that Q-learning 
believes is the best

Policy hill-climbing 
(PHC):
Simple Q-Learner that 
plays mixed strategies

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a 
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Practical algorithm of WoLF: WoLF-HPC

Maintaining average policy

Determination of “W” and “L”:
by comparing the expected value of 
the current policy to that of the 
average policy

• Agents only need to see its 
own payoff

• Converges for two player two 
action  SG’s in self-play

Probability of playing action 



Practical algorithm of WoLF: WoLF-HPC

Maintaining average policy

Determination of “W” and “L”:
by comparing the expected value of 
the current policy to that of the 
average policy

• Agent only need to see its own 
payoff

• Converges for two player two 
action  SG’s in self-play

Probability of playing action 

For many games, averaging over greedy 

policies does in fact approximate the 

equilibrium, which is the driving mechanism 

in fictitious play 



Matching Pennies
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Rock-paper-scissors: PHC
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Rock-paper-scissors: WoLF PHC
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Limitation of WoLF PHC :Pseudo Convergence

Shapley’s counter game 
for fictitious play 

Cook, Philip R. "Limitations and extensions of the wolf-phc algorithm." (2007).

The circular shift from one agent’s policy to 
the other’s average reward and Q-values 
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