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Reinforcement Learning 
and its Challenges



A computational method that learn to achieve objectives through interactions

Three Aspects:

• Perceive: perceive the state of the environment to some extent

• Act: can take actions to influence states or achieve goals

• Objective: maximize cumulative rewards as time passes

Reinforcement Learning (RL)



Low Sample Efficiency of RL

TRPO + GAE

Mujoco HalfCheetah

10,000,000 steps
(10,000 episodes)

(~1.5 days real time)

• On-policy RL algorithms requires many interactions to learn a good 
policy, which is quite sample inefficient considering the time and 
potential cost

• Precludes using RL in complex simulated tasks and real-world 
applications

Figure: CS285. Lecture 23



Experience Reuse can Improve Sample Efficiency

Sample
Efficiency

• Though both off-policy RL and offline RL 
evaluate the policy using the data sampled 
from a replay buffer, they are different

• The key difference is whether the agent can 
interact with the environment while learning

Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open 
problems." arXiv 2005.01643 (2020).



Model-based RL (MBRL)

n Model-based RL is another attempt to improve sample efficiency in RL

n There are two typical usage of the learned model:

• Planning with model simulation (MPC, MuZero, …)

• Data augmentation with model simulation (MBPO, BMPO, …)

Agent

Environment
Model

Simulated Data



Sample-efficient RL: Are We There Yet?
n Restricted Expressiveness in Offline Learning

Directly applying off-policy RL to offline settings leads to 
extrapolation error problem in Bellman updates:

There are two (model-free) ways to address the problem: 
n penalizing the value predictions on out-of-distribution actions

• can be over-conservative & requires careful tuning
n regularizing the policy to not deviate too much from the 

behavior policy (data-collect policy)
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Sample-efficient RL: Are We There Yet?
n Restricted Expressiveness in Offline Learning

In offline RL, offline datasets are often collected by a mixture of policies, 
the behavior policy may exhibit:
• strong multi-modalities,
• skewness,
• dependencies between different action dimensions,
which cannot be well modeled by diagonal Gaussian policies.

We need a policy class that can 
model very complex distributions!



Sample-efficient RL: Are We There Yet?
n Data Scarcity in Experience Replay

• Both off-policy and offline RL learns from replay buffers with 
limited data (given limited environment interactions)

• Perform data augmentation on replay buffers?
• random augmentations (crop, rotate, ...) 

• lack of fidelity
• distribution modeling (GAN, VAE) 

• limited to simple environments

We need augmentation methods 
that can synthesize realistic and 
diverse data in complex tasks!



Sample-efficient RL: Are We There Yet?
n Compounding Error in Model-based Planning

Dreamer MuZero

Auto-regressive planning/rollout in a learned 
dynamic model can cause compounding errors

We need to go beyond single-step prediction 
and auto-regressive planning to match the 
distributions of model-simulated and training 
trajectories!



Diffusion Models for Sample-efficient RL

Summary of Challenges in sample-efficient RL:
• Restricted Expressiveness in Offline Learning
• Data Scarcity in Experience Replay
• Compounding Error in Model-based Planning

Use diffusion planning, diffusion policy and diffusion augmentation!



Foundations of 
Diffusion Models



Foundations of Diffusion Models 

Prominent Diffusion Formulations
• Denoising Diffusion Probabilistic Models (DDPM)

• Score-based Diffusion Models

Guided Sampling Methods
• Classifier Guidance

• Classifier-free Guidance



Diffusion Models

• An efficient generative method with superior 
sampling quality and training stability

• Generate samples from pure noises with multi-step 
denoising

Yang, Ling, et al. "Diffusion models: A comprehensive survey of methods and applications." ACM Computing 
Surveys 56.4 (2023): 1-39.



Diffusion Models

Text-to-video Generation

Text-to-image Generation

Robotics Manipulation



Denoising Diffusion Probabilistic Models
Sampling & Diffusion process:
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Denoising Diffusion Probabilistic Models

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information 
processing systems 33 (2020): 6840-6851.
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Denoising Diffusion Probabilistic Models

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information 
processing systems 33 (2020): 6840-6851.

Use learned model in sampling:
If the diffusion model is designed to predict the noise, the sampling 
process is alternating between recovering the (approximated) 
clean sample and jump back to the previous sample.

Use a neural network 𝜖! 𝑥$, 𝑡 to predict the 
noise at step t:



Guided Sampling Methods
• Instead of sampling from the dataset distribution 𝑝(𝑥),  

guided sampling samples from 𝑝(𝑥|𝑦).

• The conditional reverse process can be written as

where 𝑍 is the normalization factor.

• The reverse process can be approximated by another 
Gaussian distribution with a different mean:

where                                             and      is the guidance scale.

Dhariwal, Prafulla, and Alexander Nichol. “Diffusion models beat gans on image synthesis.” NeurIPS 2021.



Guided Sampling Methods

Classifier guided sampling

• Use the gradient from an extra classifier 𝑝'(𝑦|𝑥()

Classifier-free guided sampling

• The noise prediction target is a scaled score function of 𝑝(𝑥():

• From Bayes theorem, we have

• The noise in classifier-free guided sampling becomes

Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." arXiv preprint arXiv:2207.12598 (2022).

simply input a null token ∅



Roles of 
Diffusion Models
in Reinforcement Learning



Roles of Diffusion Models in RL

Current works mainly fall into three categories
• Planner
• Policy
• Data Synthesizer



Diffusion Planner

• Planning: making decisions imaginarily

• Traditional planners
• Autoregressive, suffering 

from compounding error

• Learn from Markovian data

• Diffusion model planners
• Non-autoregressive
• Multi-modal
• Can learn from non-Markovian data by adding temporal 

information



Notations of Diffusion Planners

• Clip of a trajectory 𝜏 = 𝑠), 𝑎), 𝑟), … , 𝑠*, 𝑎*, 𝑟* . 

• Diffusion models work on clips 𝑥 𝜏 = (𝑒), 𝑒+, … , 𝑒*).
• Basic elements 𝑒 vary from tasks. They can be 𝑠, 𝑎, 𝑟 , 𝑠, 𝑎 , 𝑠, or 𝑎

• Generating multiple steps -> planner

• Generating a single-step action -> policy

• Guidance 𝑦(𝜏) contains desired properties of 𝜏
• Accumulative discounted reward until the terminal (i.e., return)

• Whether the task is complete

• Safe constraints

• Either classifier guidance or classifier-free guidance can be used



Why Non-autoregressive Works
• Taking U-Net as an example

• Local consistency: 𝑒$) takes information in a local receptive area 𝑒$'*:$+*)+&

• Global consistency: such information spreads along the trajectory 
during the multi-step reverse process

Janner, Michael, et al. “Planning with Diffusion for Flexible Behavior Synthesis.” ICML 2022.

U-Net



Why Non-autoregressive Works
Non-autoregressive generation seems anti-causal

• Why the current step can be generated conditioned on future 

information?

• In fact, RL itself includes a 
hypothesis that the current 
decision will lead to optimal 

future outcomes.

• Think about whether the
route planning of human is

autoregressive? Not really.



• Use diffusion model as the parametrized policy class to output 
single-step actions

• Can model arbitrary distributions

• Train diffusion model on the dataset distribution

Diffusion Policy



Optimize the Diffusion Policy

• When learning from mixed-quality datasets, the diffusion 
loss is pure behavior cloning, and additional policy 
optimization is needed

• How to optimize the generated actions?

• Guided sampling

• Q-learning

• Weighted regression

• Policy extraction (e.g., combine DMs with IQL for multi-
modal policy building)

• Sample multiple candidates then reweight / select



Diffusion Data Synthesizer

Synthesizing a large amount of high-quality data is 
the key to scaling up our agents.

SimulatorReal world Generative models

Limited data Infinite data but time ineffective Infinite and fast



How to Synthesize

• Leverage diffusion models to learn from the original 
dataset

• Synthesize new samples to augment the dataset
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Other Roles
• Value functions:  DVF uses diffusion models as value functions by 

learning the discounted state occupancy

• Latent representations: LDCQ applies diffusion modeling on latent 

embeddings of trajectories

• Dynamics models: PolyGRAD builds a diffusion dynamics model and 
allow an online RL policy to collect synthetic trajectories on it

• Reward functions: A relative reward function can be extracted from 
two diffusion models (base and expert models)

Mazoure, Bogdan, et al. "Value function estimation using conditional diffusion models for control." arXiv preprint arXiv:2306.07290 (2023).
Venkatraman, Siddarth, et al. "Reasoning with Latent Diffusion in Offline Reinforcement Learning." The Twelfth International Conference on 
Learning Representations. 2023. 
Rigter, Marc, Jun Yamada, and Ingmar Posner. "World models via policy-guided trajectory diffusion." arXiv preprint arXiv:2312.08533 (2023).
Nuti, Felipe, Tim Franzmeyer, and João F. Henriques. "Extracting reward functions from diffusion models." Advances in Neural Information 
Processing Systems 36 (2024).



Applications
of DMs for RL
Elaborate on specific methods according to problem settings



Offline Reinforcement Learning

• Diffuser generates optimal trajectories through iteratively 
denoising process with classifier-guided sampling.

• Diffuser separately trains a classifier model and use its gradient to 
guide the sampling towards high-return trajectories.

Janner, Michael, et al. “Planning with Diffusion for Flexible Behavior Synthesis.” ICML 2022.

Planner



Offline Reinforcement Learning
• Decision Diffuser adopts a classifier-free guided diffusion model 

which only generates state sequences.

Ajay, Anurag, et al. "Is Conditional Generative Modeling all you need for Decision Making?." ICLR 2022.

Planner

• Action sequences are less smooth and harder to model. Instead, 
each action is predicted by a separate inverse dynamics model.



Offline Reinforcement Learning
• With classifier-free guidance, Decision Diffuser allows 

conditioning beyond returns, and composing different skills 
or constraints:

Planner



Offline Reinforcement Learning
• Besides end-to-end diffusion planning, HDMI proposes a 

hierarchical diffusion framework. 

• Subgoals are first extracted from the original dataset. 
• A goal diffusion model is used to generate subgoal sequences. 

• The generated subgoals are then used as conditions in the 
trajectory inpainting diffusion model.

Li, Wenhao, et al. "Hierarchical diffusion for offline decision 
making." International Conference on Machine Learning. PMLR, 2023.

Planner



Offline Reinforcement Learning
• Diffusion models are used as a more expressive policy class 

to boost existing offline RL algorithms.

• Diffusion-QL introduces the diffusion policy to Q learning 
framework, using the diffusion loss as an additional policy 
regularization term:

Wang, Zhendong, Jonathan J. Hunt, and Mingyuan Zhou. "Diffusion Policies as an Expressive Policy Class for Offline 
Reinforcement Learning." The Eleventh International Conference on Learning Representations. 2022.

Given Q, optimize 𝜋

Given 𝜋, optimize Q

Policy



Offline Reinforcement Learning
• Use diffusion model as the policy class can better capture 

the multi-modal behavior dataset.

Policy



Offline Reinforcement Learning
• Implicit Q-Learning (IQL) first approximates the optimal Q 

function without querying policy models, while the policy 
are later extracted via advantage weighted regression (AWR).

• The learned optimal Q function can be multi-modal, which 
makes a simple Gaussian policy hard to fit corresponding 
optimal policy.

The unimodal actor incorrectly 
approximates the implicit 
policy for all temperatures and 
requires tuning to capture the 
maximum action.

Hansen-Estruch, Philippe, et al. ”IDQL: Implicit q-learning as an actor-critic method with diffusion 
policies." arXiv preprint arXiv:2304.10573 (2023).

Policy



Offline Reinforcement Learning

• IDQL uses diffusion policy in policy extraction, which 
captures the implicit policy accurately.

Hansen-Estruch, Philippe, et al. ”IDQL: Implicit q-learning as an actor-critic method with diffusion 
policies." arXiv preprint arXiv:2304.10573 (2023).

Policy



Multi-agent Offline RL

• MADiff uses attention-based diffusion model to plan joint 
trajectories of multiple agents, explicitly considering the 
coordination among agents.

• In CTDE scenarios, each agent also uses the same model to 
plan for not only themselves, but also other agents, which 
can be seen as teammate modeling.

Zhu, Zhengbang, et al. "Madiff: Offline multi-agent learning with diffusion models." arXiv preprint arXiv:2305.17330(2023).

Planner



Safe Offline RL
• Besides maximizing cumulative rewards, Safe RL requires 

agents to satisfy extra safety constraints.

• For diffusion agents, the constraints need to be injected in 
each denoising step.

Xiao, Wei, et al. "Safediffuser: Safe planning with diffusion probabilistic models." arXiv preprint arXiv:2306.00148 (2023).

Planner

• Safe Diffuser adds a QP 
solver in each denoising 
step to steer the original 
diffusion process.



Safe Offline RL
• To trade-off between reward-maximization and constraint-

satisfaction in each denoising step, TREBI learns a reward 
return model and cost return model as classifier guidance.

• They use the cost model to evaluate the cost value of 
trajectory in previous step, which is used to decide whether 
to add cost minimization guidance in the current step.

Lin, Qian, et al. “Safe offline reinforcement learning with 
real-time budget constraints.” ICML 2023.

Planner

cost minimization guidance



Online Reinforcement Learning

• Value estimations in online RL are noisier and change with 
the current policy, which poses additional challenges on 
training a multistep diffusion model.

• Recently, there have been some works showing that 
diffusion models can also boost online RL training.



Online Reinforcement Learning
• DIPO adopts an action relabeling strategy to perform diffusion policy 

improvement, bypassing the potentially unstable value-guided training.

• During the training phase, actions in the replay buffer are replaced by Q 
value gradient ascent:

Yang, Long, et al. "Policy representation via diffusion probability model for reinforcement learning." arXiv preprint arXiv:2305.13122 (2023).

• After relabeling, the diffusion policy only need to perform pure 
supervised learning: predict the relabeled action given the state.

Policy



Imitation Learning
• Imitation learning aims to reproduce dataset behavior by 

extracting knowledge from expert demonstrations.

• Basically, demonstrations are a set of trajectories containing 
observations and actions, without reward signals.

• Diffusion models are more expressive, thus can solve complex 
tasks of imitation learning
• Diverse trajectories from complex environments

• Multimodal input (image, raw state, text, etc.)

• Multiple tasks

• Skill discovering

• ……



Imitation Learning

• Diffusion Policy utilizes diffusion models to plan on action 
sequences conditioned on history observations.

• Diffusion models can flexibly mimic multimodal behavior, 
whereas MLP-based models fail.

Chi, Cheng, et al. "Diffusion policy: Visuomotor policy learning via action diffusion." RSS. 2023.

Planner



Imitation Learning
• PlayFusion focuses on the ability of taking multimodal input & skill discovery

• PlayFusion trains a discrete diffusion model on a text-annotated play dataset

• States and language instructions are encoded to the latent space, as 
conditions of diffusion models.

• A discrete codebook is maintained to represent different skills.

• Diffusion models generate the latent action, and the closest code is 
retrieved to reconstruct the real action.

Chen, Lili, Shikhar Bahl, and Deepak Pathak. "Playfusion: Skill acquisition via diffusion from language-
annotated play." Conference on Robot Learning. PMLR, 2023.

Planner



Data Augmentation
• Synthesize new images for vision-based RL.

• Synthesize new (𝑠, 𝑎, 𝑟, 𝑠-) for state-based RL.

Chen, Zoey, et al. "Genaug: Retargeting behaviors to unseen situations via generative augmentation." arXiv preprint arXiv:2302.06671 (2023).
Yu, Tianhe, et al. "Scaling robot learning with semantically imagined experience." RSS. 2023.

Lu, Cong, et al. "Synthetic experience replay." Advances in Neural Information Processing Systems 36 (2024).

Synthesizer



Data Augmentation
• A more effective way is to leverage diffusion models to learn 

from multi-modal multi-task rollout data. 

• This way outperforms other methods and demonstrates high 
fidelity of the synthesized data.

He, Haoran, et al. “Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning.” NeurIPS 2023.

Experiments on 4 selected tasks demonstrates that the synthetic data overlap and expand the 
original data distribution while also keeping consistency with the underlying MDP.

Synthesizer



Data Augmentation
• MTDiff-s achieves superior 

policy improvement 
compared with previous 
SOTA augmentation methods;

• MTDiff-s can perform implicit 
data sharing by integrating other 
tasks’ knowledge into data 
synthesis of the current task.

Synthesizer

He, Haoran, et al. “Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning.” NeurIPS 2023.



Data Augmentation
• Performance of offline RL 

algorithms are constrained by the 
qualities of the training dataset.

• In some cases, offline dataset only 
contains very limited optimal 
trajectories, which requires 
extensive “trajectory stitching”.

• Sequence modeling algorithms such as decision transformer or 
diffuser are known for lack of stitching abilities.

• Q-learning algorithms rely on the generalization ability of function 
approximations to do implicit stitching.

Li, Guanghe, et al. “DiffStitch: Boosting Offline Reinforcement Learning with Diffusion-based Trajectory Stitching.” ICML 2024.

Synthesizer



Data Augmentation

• DiffStitch proposes to use diffusion trajectory model to 
perform explicit generative stitching.

• The generated sub-trajectories connects different suboptimal 
regions, resulting in  globally optimal trajectories.

Synthesizer

Li, Guanghe, et al. “DiffStitch: Boosting Offline Reinforcement Learning with Diffusion-based Trajectory Stitching.” ICML 2024.



Summary
1. DMs for RL: towards sample-efficient methods & highly

expressive non-autoregressive modeling of RL

2. Roles of Diffusion Models in RL
• Planners: generate future trajectories and select one-step action
• Policies: generate one-step action
• Data synthesizer: generate more training data

3. Applications in RL and Related Tasks
• Reinforcement Learning
• Imitation Learning
• Data Augmentation

4. Limitations
• Some difficulties for online RL
• Computational efficiency



Future Developments of DMs for RL

• Generative Simulation
• Use diffusion model to augment the online environment
• generate configurations, dynamics, reward functions, opponents, ...

• Retrieval-augmented Generation
• Accelerates sampling as well
• Updating retrieval dataset as online adaptation

• Composing different skills
• Diffusion models can share knowledge across skills and combine 

them up
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