
Weinan Zhang
Shanghai Jiao Tong University

http://wnzhang.net
May 2024

Multi-Agent
Reinforcement Learning

2024年上海交通大学ACM班强化学习课程大纲

2

1. 强化学习、探索与利用
2. MDP和动态规划
3. 值函数估计
4. 无模型控制方法
5. 规划与学习
6. 参数化的值函数和策略
7. 深度强化学习价值方法
8. 深度强化学习策略方法

9. 基于模型的深度强化学习
10. 模仿学习
11. 离线强化学习
12. 多智能体强化学习基础
13. 多智能体强化学习前沿
14. 基于扩散模型的强化学习
15. AI Agent与决策大模型
16. 技术交流与回顾

强化学习基础部分 强化学习前沿部分
（中文课件） （英文课件）

Content
• Background of MARL

• Fundamentals of Game Theory

• Multi-Agent Reinforcement Learning

• Many-Agent Reinforcement Learning

Intelligent
Internet of
Things based
on 5G

Autonomous
driving cars
with inter-
connections

The Coming Intelligent IoT Era

Prediction
& detection

Decision Making

Give more access to machines

Towards a more
decentralized service

Many-agent

Multi-agent

Single-agent

Generation

LR/SVM Language model Atari AI

Ensemble GANs MARL

IoT AI / City AI / Market AICrowding sensing

This area gets more and more attention!

Observation: Machine Learning Paradigm Extension

MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Wolfpack game
• Red agents are the predators
• Blue agent is the prey
• Red agent gets close to blue

agent to make a capture, then
the whole team gets a reward

Results
• Red agents learn to cooperate.

MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Gathering game
• Red and blue agents compete for food
• Each agent can either move to eat or

attack the other to make it paused

Results
• Red agents learn to compete

(shooting each other) when
food resource is insufficient

MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.

• Agents learn to cooperate in a team to fight against another
team (here the other team is just hand-crafted AI)

MARL Case: Army Align
• Let an army of agents align a particular pattern

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.

MARL Case: City Traffic Simulation
• Designing

• Car routing
policy

• Traffic light
controller

• Fleet
management &
taxi dispatch

• Shortcomings
• Discrete

implementation
is not suitable
for traffic
simulation

Use Case: Storage Sorting Robots

Haifeng Zhang, et al. “Layout Design for Intelligent Warehouse by Evolution with Fitness Approximation.” IEEE Access 2019.

Reinforcement Learning

• Learning from interaction
with the environment

• The agent
• senses the observations

from environment
• takes actions to deliver to

the environment
• gets reward signal from

the environment

• Normally, the
environment is stationary

Agent

Environment

REVIEW

Multi-Agent Reinforcement Learning

• Learning from interaction
with the environment

• The environment contains
other agents that are
learning and updating

• Non-stationary
environment

Agent

Environment

Fundamental Difficulty
in Multi-Agent RL
• MARL is fundamentally

more difficult since
agents not only learn to
interact with the
environment but also
with each other
• Directly applying single-

agent RL algorithms will
have no guarantee of
effectiveness
• Solution: game theory!

Content
• Background of MARL

• Fundamentals of Game Theory

• Multi-Agent Reinforcement Learning

• Many-Agent Reinforcement Learning

What is Game Theory
• Games theory studies

interaction of self-interested
agents
• What does “self-interested”

mean?

• Modeling an agent’s interests:
utility theory
• Utility function: mapping from

states to real numbers

• Things get more complicated with multiple agents
• One’s actions can affect others’ utilities
• Noncooperative game theory – individual

Prisoner’s Dilemma

Defect

Defect

Cooperate

Cooperate

Prisoner’s Dilemma
• If two players tune their strategies interactively,

they will finally converge to defect-defect action
profile

Defect Cooperate

Defect a, a c, b

Cooperate b, c d, d

Defect Cooperate

Defect -5, -5 0, -20

Cooperate -20, 0 -1, -1

c > d > a > b

Normal-form Game (正则形式博弈)

• Also known as the strategic or matrix form.
• It is a representation of every player’s utility for

every state of the world, where the states of the
world depend only on the player’s combined actions.

Action 1 Action 2

Action 1 a1, a2 b1, b2

Action 2 c1, c2 d1, d2

• Most other
representations of
games can be reduced
to (maybe much larger)
normal-form games.

Player 2

Player
1

Normal-form Game
Definition A (finite, n-player) normal-form game is a
tuple (𝑁, 𝐴, 𝑢), where:

• 𝑁 is a finite set of n players, indexed by 𝑖;
• 𝐴 = 𝐴!×⋯×𝐴", where 𝐴# is a finite set of actions

available to player 𝑖;
• Each vector 𝑎 = (𝑎!, ⋯ , 𝑎") ∈ 𝐴 is called an action

profile;
• 𝑢 = 𝑢!×⋯×𝑢" where 𝑢#: 𝐴 → ℝ is a real-valued

utility (or payoff) function for player 𝑖.

• Standard representation: an 𝑛-dimensional matrix.

Common-payoff Game
Definition A common-payoff game is a game in which
for all action profiles 𝑎 ∈ 𝐴!×⋯×𝐴" and for any pair
of agents 𝑖, 𝑗, it is the case that 𝑢# 𝑎 = 𝑢$ 𝑎 .

• Common-payoff games are also called pure
coordination games or team games.
• The agents have no conflicting interests.

Coordination Game: Example
• Two drivers driving towards each other in a country

having no traffic rules …

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

left

right

right

left

Zero-sum Game (零和博弈)
Definition A two-player normal-form game is
constant-sum if there exists a constant 𝑐 such that for
each strategy profile 𝑎 ∈ 𝐴!×𝐴% it is the case that
𝑢! 𝑎 + 𝑢% 𝑎 = 𝑐.

• Pure competition
• A constant-sum game is zero-sum if 𝑐 = 0.
• Zero-sum games are most meaningful for two

agents because if we allow more agents, any game
can be turned into a zero-sum game by adding a
dummy player.

Zero-sum Game: Matching Pennies
• Two players present a penny at the same time

• Player 1 wins if two pennies match
• Player 2 wins otherwise

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1

Zero-sum Game: Rock, Paper, Scissors

Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1

Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

• Two players with three actions

Normal-form Game: Battle of the Sexes

• A couple wishes to go to watch boxing or shopping.
They have different preferences but prefer going
together.

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

• It includes element of both coordination and
competition.

Husband

Wife

Strategies in Normal-Form Games
• Pure strategy: to select a single action and play it.
• Pure-strategy profile: An action profile where each

agent plays a pure strategy.

Introducing randomness in the choice of action
• Mixed strategy: randomizing over the set of

available actions according to some probability
distribution.

Mixed Strategy
Definition Let (𝑁, 𝐴, 𝑢) be a normal-form game, and
for any set 𝑋 let Π(𝑋) be the set of all probability
distributions over 𝑋. Then the set of mixed strategies
for player 𝑖 is 𝑆# = Π(𝐴#).

Definition The set of mixed-strategy profiles is simply
the Cartesian product of the individual mixed-
strategy sets, i.e., 𝑆!×⋯×𝑆".

Definition The support of a mixed strategy 𝑠# for a
player 𝑖 is the set of pure strategies {𝑎#|𝑠# 𝑎# > 0}.

Expected Utility
Definition Given a normal-form game (𝑁, 𝐴, 𝑢), the
expected utility 𝑢# for player 𝑖 of the mixed-strategy
profile 𝑠 = (𝑠!, … , 𝑠") is defined as

Best Response
• Formally, define 𝑠&# = (𝑠# , … , 𝑠#&!, 𝑠#'!, … , 𝑠"), a

strategy profile 𝑠 without agent 𝑖’s strategy. Thus
we can write 𝑠 = (𝑠# , 𝑠&#).
• If the agents other than 𝑖 (denoted as −𝑖) were to

commit to play 𝑠&#, what is the best response of
agent 𝑖?

Definition Player 𝑖’s best response to the strategy
profile 𝑠&# is a mixed strategy 𝑠#∗ ∈ 𝑆# such that
𝑢# 𝑠#∗, 𝑠&# ≥ 𝑢#(𝑠# , 𝑠&#) for all strategies 𝑠# ∈ 𝑆#.

Best Response
• The best response is not necessarily unique

• Some cases – there is a unique best response that is a
pure strategy

• Other cases – the number of best responses is infinite

• If the support of a best response 𝑠∗ includes more
than one actions, the agent must be indifferent
among them

• i.e., the same expected utility 𝑢# 𝑎!, 𝑠$# = 𝑢# 𝑎%, 𝑠$#
• As such, any blending of 𝑎! and 𝑎% is the best response

Nash Equilibrium

• A Nash equilibrium is a stable strategy profile: no agent would
want to change his strategy if he knew what strategies the
other agents were following.

• Whether or not every agent’s strategy constitutes a unique
best response to the other agents’ strategies?
• Yes – strict Nash equilibrium
• No – weak Nash equilibrium

Definition
A strategy profile 𝑠 = (𝑠!, … , 𝑠") is
a Nash equilibrium if, for all agents
𝑖, 𝑠# is a best response to 𝑠&#.

John Nash

Finding Nash Equilibrium:
Prisoner’s Dilemma
• The only Nash equilibrium of prisoner’s dilemma is

both players defect

Defect Cooperate

Defect a, a c, b

Cooperate b, c d, d

Defect Cooperate

Defect -5, -5 0, -20

Cooperate -20, 0 -1, -1

c > d > a > b

Finding Nash Equilibria
The Battle of the Sexes game has two pure-strategy
Nash equilibria.

Are these two the only Nash equilibria?

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Husband

Wife

Finding Nash Equilibria
• There is also another mixed-strategy equilibrium.
• Assume that husband’s strategy is to watch boxing with

probability 𝑝 and go shopping with probability 1 − 𝑝.
• Then if the wife also mixes between boxing and shopping, she

must be indifferent between them, given the husband’s
strategy.

𝑝

1 − 𝑝

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Wife

Husband

Finding Nash Equilibria
The mixed-strategy Nash equilibrium of the Battle of the Sexes
game:
• The husband chooses boxing with probability 2/3 and

shopping with probability 1/3.
• The wife chooses to boxing with probability 1/3 and shopping

with probability 2/3.

2
3

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Wife

Husband

• The expected payoff of both
players is 2/3 in this
equilibrium, so each of the
pure-strategy equilibria
Pareto-dominates the mixed-
strategy equilibrium. 1

3

2
3

1
3

Mixed Strategies Matter
What about the Matching Pennies game?

• There is no pure-strategy Nash equilibrium.
• There exists a mixed-strategy equilibrium: each

player chooses Heads and Tails with probability 1/2.

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1

Mixed Strategies Matter
For the popular rock-paper-scissors game?

Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1

Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

• There is no pure-strategy Nash equilibrium.
• There exists a mixed-strategy equilibrium: each player

chooses Rock, Paper and Scissors with probability 1/3.

Existence of Nash Equilibrium
Theorem (Nash, 1951) Every game with a finite
number of players and action profiles has at least one
Nash equilibrium.

• The proof of this theorem is achieved by appealing to
fixed-point theorem.
• This theorem depends critically on the availability of

mixed strategies to the agents.

Thinking on Nash Equilibrium and MARL

• Given a normal-form game, every player i’s utility
depends on the joint strategy profile (𝑠# , 𝑠&#),
which makes the multi-agent decision making
unstable
• Nash equilibrium provides a peaceful place in such

an ‘unstable’ environment, where no player would
want to further change the strategy once getting to
the equilibrium
• Nash equilibrium of the normal-form game can be

set as the learning target of MARL
• Now we need to consider the case of multiple

states

Content
• Introduction to Reinforcement Learning

• Fundamentals of Game Theory

• Multi-Agent Reinforcement Learning

• Many-Agent Reinforcement Learning

Sequential Decision Making
• 3 types of setting in Game Theory

• Markov decision processes
• one decision maker
• multiple states

• Repeated games
• multiple decision makers
• one state (e.g., one normal form game)

• Stochastic games (Markov games)
• multiple decision makers
• multiple states (e.g., multiple normal

form games)

MDPs
• Single Agent
• Multiple States

Repeated Games
• Multiple Agents
• Single State

Stochastic Games
• Multiple Agents
• Multiple States

Stochastic Games
• A stochastic game has multiple states and multiple agents

• Each state corresponds to a normal-form game
• After a round, the game randomly transits to another state
• Transition probabilities depend on state and joint actions taken by

all agents

• Typically, rewards are discounted over time

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of sciences 39.10 (1953): 1095-1100.

2, 2 0, 3
3, 0 1, 1

1, 1 1, 0
0, 1 0, 0

1, 0 0, 1
0, 1 1, 0

0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
State transition

probabilities

Player 1

Player 2
a1 a2

a1

a2

Definition of Stochastic Games
• A stochastic game is defined by

• State space:

• Action space of agent j:

• Reward function of agent

• Transition probability

The collection of probability
distributions over S

• Discount factor across time

Policies in Stochastic Games
• For agent j, the corresponding policy is

The collection of probability
distributions over Aj

• The joint policy of all agents is

• State value function of agent j

• Action value function of agent j

Independent Learning in SG
• For each agent j, assume the other agents’ policies

are stationary, thus the environment for j is
stationary to perform Q-learning

• The agent does not know opponents’ actions, thus may
use the last-step actions or build opponent models

• Unfortunately, in SG with MARL, every agent is learning
and updating its policy, making the environment non-
stationary

Nash Equilibrium in SG

• Optimizing for agent j depends on the joint policy π

• Nash equilibrium in SG is represented by a particular joint
policy

such that nobody would like to change his policy given the
others’

Nash Q-learning
• Given a Nash policy π*, the Nash value function

• Nash Q-learning defines an iterative procedure
1. Solving the Nash equilibrium π* of the current stage

defined by {Qt}
2. Improving the estimation of the Q-function with the

new Nash value vNash

• But Nash Q-learning suffers from
• Very high computational complexity
• May not work when other agents’ policy is unavailable

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.

Nash Q-learning

where V
⇡
⇤

i
(s0) represents the equilibrium value for agent i when the joint-

policy being played is the Nash equilibrium ⇡
⇤ and is computed with respect

to the Q-values. This is similar to a Bellman optimality equation except for
the way the state value function is computed. In fact, the Q-function could
be estimated through a stochastic approximation procedure very similar to
the one of Q-learning:

8i=1...n Qi(s, a)! Qi(s, a) + ↵
�
ri + �Vi(s0)�Qi(s, a)

�
(3.16)

with Vi(s0) being the value of a Nash equilibrium policy for agent i.
The big problem with this approach is that, unlike what happens in MDPs,
there is no guarantee that Equation 3.15 has only one fixed point. In fact,
generally there are several Nash equilibria in a stochastic game, which results
in the fact that there is no unique way of computing a Nash equilibrium value
for each matrix game defined by Q(s, a). Usually, this approach works when
considering types of games with just one equilibria or, if that is not the case,
some coordination device is necessary so that the players all converge to the
same equilibrium.

There is an implicit assumption of full observability in this approach –
each agent has to store Q-values for all the joint actions.

The general algorithmic version of this procedure can be seen in 3.3.

Algorithm 3.3 General equilibrium learner algorithm
Initialize Q(s, a) arbitrarily

Initialize s
loop

ai probabilistic outcome of Nash policy derived from Q(s, a), for
player i {Mixed with exploration policy}

Take action ai, observe reward r, next state s
0 and the joint action of

other players a�i

for i = 1 . . . n do
Qi(s, hai, a�ii) Qi(s, hai, a�ii) + ↵

�
ri + �Vi(s0)�Qi(s, hai, a�ii)

�

end for
where V (s) = Nash ([Q(s, a)])

s s
0

end loop

40

Instead of taking “max” as in Q learning

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.

Nash Q-learning

2, 2 0, 3
3, 0 1, 1

1, 1 1, 0
0, 1 0, 0

1, 0 0, 1
0, 1 1, 0

0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
Entry values are

immediate reward

Player 1

Player 2
a1 a2

a1

a2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2
0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
Entry values

become Q values

Player 1

Player 2
a1 a2

a1

a2

Minimax Q-learning
• Minimax-Q is designed to work with zero-sum

stochastic games
• in zero-sum games a Nash equilibrium can be found

using linear programming

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.

Minimax Q-learning

3.4.1 Minimax-Q

The method of Minimax-Q (Littman, 1994) is designed to work with zero-
sum stochastic games. In zero-sum games there is only one equilibrium
and, as stated previously, it can be found using linear programming. In
this situation, the state value can be univocally computed by the minimax
procedure and Equation 3.15 only has one fixed point. It is expected that
Algorithm 3.3 converges to the equilibrium policy. In fact, this has been
proved by (Littman and Szepesvári, 1996).

Using minimax to compute the Nash equilibrium, Equation 3.15 can be
used to describe the Nash condition and Equation 3.16 can be used as an
update rule if the Nash value is computed like

V (s) = max
⇡2PD(A)

min
o2O

X

a2A

⇡(s, a)Q(s, ha, oi) (3.17)

where A represents the action space of the learner and O the action space
of the opponent. There is no need for considering a two-dimensional state
function because, as the rewards are always symmetric for the agents, so
will be the state values and Q-values.

The algorithm can be particularized from Algorithm 3.3 to the Minimax-
Q form of Algorithm 3.4.

Algorithm 3.4 Minimax-Q learner
Initialize Q(s, ha, oi) and ⇡(s) arbitrarily

Initialize s
loop

a probabilistic outcome of ⇡(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s
0 and opponent action o

Q(s, ha, oi) Q(s, ha, oi) + ↵
�
r + �V (s0)�Q(s, ha, oi)

�

with V (s) = max
⇡02PD(A)

min
o02O

P
a02A

⇡(s, a0) Q(s, ha0, o0i)

⇡(s)! arg max
⇡02PD(A)

min
o02O

P
a02A

⇡(s, a0) Q(s, ha0, o0i)

s s
0

end loop

41

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.

• a: own
actions,

• o: opponent
actions

• PD(A): prob.
distribution
of actions

Recent Progress of MARL
• Communications between agents

• Build local communication schemes between agents via the
hidden states of deep neural networks

• CommNet, BiCNet etc.
• Centralized training & decentralized execution

• Train a centralized critic to guide the update of each actor
policy, and execute the actor policies in a decentralized way

• COMA, MADDPG, QMIX etc.
• Opponent modeling

• Observe and predict the actions of other agents, so as to
perform better decision making

• LOLA, PR2, ROMMEO etc.
• And many other aspects such as bi-level opt., signal

coordination, “win or learning fast” (WoLF) etc.

Training Paradigms of MARL
Fully Decentralized

• Each agent independently
senses the local env. and
learns its policy

• Like multiple single-RL tasks
• E.g., Independent Q learning

Fully Centralized
• Training and execution are both

centralized
• All agents sync at each step,

which is costly
• E.g., Single Q learning,

CommNet

Centralized Training &
Decentralized Execution

• Train the agents together but
execute each of them
independently

• Agents number and indices are
fixed

• E.g., COMA, MADDPG, QMIX

Decentralized Training with
Networked Agents

• Agents senses the local env. but
can locally sync their info over the
network neighbors

• Robust over time-varying network
• E.g., AC with networked agents

Independent Q-Learning
• For each agent j, assume the other agents’ policies

are stationary, thus the environment for j is
stationary to perform Q-learning

• Unfortunately, in SG with MARL, every agent is
learning and updating its policy, making the
environment non-stationary

Tan, Ming. "Multi-agent reinforcement learning: Independent vs. cooperative agents." ICML. 1993.

Decentralized Training & Execution

PR2: Probabilistic Recursive Reasoning for MARL

Wen, Ying, et al. "Probabilistic recursive reasoning for multi-agent reinforcement learning." ICLR 2019.

Recursive
reasoning

Policy
objective

Policy
gradient

Decentralized Training & Execution (with Opponent Modeling)

LOLA: Learning with Opponent-Learning Awareness

• Main idea: not only consider the opponent’s
current policy, but further consider how it will
change for the next step!
• Naïve learner:

Foerster, Jakob, et al. "Learning with opponent-learning awareness." AAMAS 2018.

• LOLA learner optimizes

Consider opponent
policy learning

First-order Taylor
expansion approximation

Decentralized Training & Execution (with Opponent Modeling)

<latexit sha1_base64="KhwZDqRArhIeQzJ1Lt1yeAEfTe0=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiRS1GXRjcsK9gFNDJPJpB06eTBzI5aQjRt/xY0LRdz6D+78GydtFtp6YJjDOfdy7z1ewpkE0/zWKkvLK6tr1fXaxubW9o6+u9eVcSoI7ZCYx6LvYUk5i2gHGHDaTwTFocdpzxtfFX7vngrJ4ugWJgl1QjyMWMAIBiW5+qEd4gc3s72Y+3ISqi+zYUQB53dW7up1s2FOYSwSqyR1VKLt6l+2H5M0pBEQjqUcWGYCToYFMMJpXrNTSRNMxnhIB4pGOKTSyaZX5MaxUnwjiIV6ERhT9XdHhkNZrKgqQwwjOe8V4n/eIIXgwslYlKRAIzIbFKTcgNgoIjF8JigBPlEEE8HUrgYZYYEJqOBqKgRr/uRF0j1tWGeN5k2z3ros46iiA3SETpCFzlELXaM26iCCHtEzekVv2pP2or1rH7PSilb27KM/0D5/AKaZmVE=</latexit>max
✓1

CommNet: Learnable Communication Scheme

• Design learnable explicit communication scheme is
important for directly achieving agent coordination

Possible skip connections:

Sukhbaatar et al. Learning Multiagent Communication with Backpropagation. NIPS 2016.

Fully Centralized

BiCNet: Bidirectionally-Coordinated Net for MARL

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.

Fully Centralized

• Multi-agent game playing
• Learning to cooperate and compete

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.

• Agents learn to cooperate in a team to fight against another
team (here the other team is just hand-crafted AI)

BiCNet: Bidirectionally-Coordinated Net for MARL
Fully Centralized

COMA: Counterfactual Multi-Agent PG

COMA Model Actor Critic

Foerster, Jakob N., et al. "Counterfactual multi-agent policy gradients." AAAI 2018.

Centralized Training & Decentralized Execution

MADDPG: Multi-Agent DDPG

• Centralized action-value function

• Deterministic policy gradient via chain rule

• Comparing with COMA, MADDPG
• Learn a centralized critic for the agents
• Continuous policies

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.

Centralized Training & Decentralized Execution

Predator-prey task DDPG MADDPG

Learning Multi-Agent Interactions

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.

• Evaluation protocol
• A vs. B for training & test
• If A gets higher score in A-

vs-B than A-vs-A, then it
means A is better than B

Centralized Training & Decentralized Execution

Two Parts of Sample Complexity in MARL

• Dynamics sample complexity: num. of real environment transitions
(observations sampled from 𝑝 𝑠! 𝑠, 𝑎", … , 𝑎#))

• Opponent sample complexity: num. of real opponent actions
(observations sampled from 𝜋$(𝑎|𝑠))

Decentralized Training & Execution (with Models)

Decentralized Model-based MARL

• Multi-agent environment model
• Environment dynamics model
• Opponent model

• Decentralized MARL: each agent independently maintains
its multi-agent environment model as above

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

Decentralized Training & Execution (with Models)

Bound of Policy Value Discrepancy
• Multi-agent branched rollout scheme
1. Learn environment dynamics and opponent models
2. Start from an experienced state and start the rollout with

ego policy and above models to collect simulated data
3. Train ego policy based on simulated data
• Then the value discrepancy bound is

different opponent models contribute differently

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

before branch

after branch

Decentralized Training & Execution (with Models)

Algorithm Derived from Theoretic Analysis

• Environment model starts
from real state and then
samples the next states

• Ego agent takes actions
following its current policy

• Opponent models sample
actions based on their errors
• If the error is large(small),

it samples few(more)
actions

• Then use real opponent
agents to sample further
actions

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

Decentralized Training & Execution (with Models)

AORPO Experiments
• Multi-Agent Particle Environment (cooperative setting)

• On sample efficiency, AORPO and AORDPG outperform MASAC and MADDPG
respectively, indicating the efficacy of building multi-agent environment model

Complex env. & simple opponents
Simple env. &

complex opponents

Decentralized Training & Execution (with Models)

Content
• Introduction to Reinforcement Learning

• Fundamentals of Game Theory

• Multi-Agent Reinforcement Learning

• Many-Agent Reinforcement Learning
• Algorithms
• Platforms

From Multi- to Many-Agent RL
• What will happen when agent number grows?

• Reward function of agent

• Transition probability

• Both reward function and state transition
probability get exponentially larger

• More difficult to model
• The environment is more dynamic and sensitive
• Need more exploration data
• More computational resources

Battle Game Demo 1

Battle Game Demo 2

Idea 1: Taking Other Agents as A Whole

• In some many-body systems, the interaction
between an agent and others can be approximated
as that between the agent and the “mean agent” of
others

Mean Field Multi-Agent RL
• Mean field approximation

• Approximate the joint
action value by factorizing
the Q-function into
pairwise interactions

Yaodong Yang, Weinan Zhang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.

Neighboring agent set of j

• Significantly reduces the global interactions among agents
• Still preserves global interactions of any agent pair

Action Representation

• Consider discrete action space
• Action aj of agent j is one-hot encoded as

Only one element is 1

• The mean action based on the neighborhood of j is

• Thus the action ak of each neighbor k can be represented as

mean
action

residual Residual sum is 0

Mean Field Approximation

• A 2-order Taylor expansion on Q-function

Mean Field Q-Learning

Experiment of Ising Model

• Each spin is an agent to
decide up or down (action)
• Measure: order parameter

• The closer OP is to 1, the
more orderly the system is.

Experiment Performance IM
• Ground truth: MCMC

simulation
• Goal: MF-Q learns

with the similar
behavior as MCMC,
which we observed

Experiment Performance IM

Experiment: Battle

Supported by

Lianmin Zheng, Weinan Zhang et al. "MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence." NIPS 2017.

Action Space

wall
group1
group1’s hp
group1’s minimap
group2
group2’s hp
group2’s minimap
…

ID Embedding Last action/reward Relative pos

move attack turn

Grid World

Observation Space

Experiment Performance Battle

• For 64 vs 64 battle, MF-Q works the best among all
compared models
• MF-AC may not work that well particularly when

the agent number is large

Experiment Performance Battle

• MF-Q has a fast convergence property
• MF-AC has a phase changing point

Case Study of MF-Q vs. IL

• Blue: MF-Q
• Red: IL

• MF-Q presents a
go-around-and-
besiege strategy

• MF-Q agents are
more consistent
with neighbors

Idea2: Factorization Machine

• Computing the Q-value with the independent Q-
function and the interactive ingredients inspired
from factorization machine

Factorized Q-learning

• A composite deep neural network architecture
whose components share the model parameters
among all the agents within the same group

• Reduce the model complexity

• Still preserves global interactions of any agent pair

• Accelerate the learning process.

Ming Zhou, Weinan Zhang et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.

Factorized Q-learning

Q Network�

()T

V Network�

1()E 2()E

U Network�

vector matrix

averaged

�
O

vector

scalar

dot

selector

scalar

(,)i is a (,)i is a

1 2, , , , , , , ,i j Ns a a a a a" " "

(, ;)i iQ s a T 1(, ;)i iV s a E

2(, ;)j jU s a E

2(, ;)i iU s a E� �

1 2(, ;) (, ;)i i T i iV s a U s aE E� �

(, ;)iQ s a 4

{ , }j j
j is a ��

Ming Zhou, Weinan Zhang et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.

Factorized Q-learning
• Q-Network: Denote the i-th agent’s value function

• V-Network & U-Network
• The outputs of V and U denote the feature vectors of

focused agent and other agents, respectively. And the dot
product of U and V denotes the interactive ingredients of
the focused i-th agent and other j-th agents

Factorized Q-learning
• We redefine the Q-function for the high-order

tensor relationship between states and actions as
follows

implies the equivalent force in place of complex interactions

Experiment Performance Battle

• 3 self-play trainining curves. The Killing Index shows the ability of killing
enemies, the Mean-Rewards Index shows the rewards of every agent in every
step, and the Total Rewards Index shows the ability of gaining rewards in an
episode.

FQL

FQL

FQL

Experiment Performance Battle

• The battle results between FQL and other three
competitors indicate the effectiveness of FQL

Content
• Introduction to Reinforcement Learning

• Fundamentals of Game Theory

• Multi-Agent Reinforcement Learning

• Many-Agent Reinforcement Learning
• Algorithms
• Platforms

From Multi- to Many-Agent RL
• What will happen when agent number grows?

• Reward function of agent

• Transition probability

• Both reward function and state transition
probability get exponentially larger

• More difficult to model
• The environment is more dynamic and sensitive
• Need more exploration data
• More computational resources

Key Factors for Successful MARL
• Computation: High computational resource for

reinforcement learning

• Data: a huge amount of data for training the
models

• Environment: a low-cost environment for RL agents
to interact with

• Solution: an effective simulator

What accounts for an effective simulator?

High Efficiency

• Interact with multiple
agents in a high speed

• Multi-thread and
multi-machine
deployment

High Reality

• The simulation results
should be as close to
reality as possible

• Match in both micro
and macro levels

Extendibility

• Flexible to adapt to
new tasks with little
effort

Interaction

• Easy to visualize and
friendly for human
interaction

MARL Case: Online Taxi Order Dispatch

Blue points:
orders

Red points:
taxis

Ming Zhou, Weinan Zhang. Multi-Agent Reinforcement Learning for Order Dispatching via Order-Vehicle Distribution Matching. Working paper.

Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

The Challenges
• High demand of

computation
• Large scale computation

in training, inference
and simulation

• Scalable and dynamic
solution
• The number of agents is

highly dynamic. Agents
can enter and exit

• Complicated interaction
• It is hard to exactly

model the interaction
among agents

• Visualization

The Challenges

Action Space

wall
group1
group1’s hp
group1’s minimap
group2
group2’s hp
group2’s minimap
…

ID Embedding Last action/reward Relative pos

move attack turn

Grid World

Observation Space

Other MARL Platforms

Platform Number of
agents Learning Interface

OpenAI Gym < 10 !

Malmo < 1000 !

Starcraft Learning
Environment < 2000 !

Arcade Learning
Environment < 10 !

NetLogo ~ 1000,000 "

MAgent ~ 1,000,000 !

Decentralized MARL
• When agent number is too large to maintain a centralized

meta-agent for controlling
• Sharing Q-network for scalability
• Agent ID for personalization

Use Case: Many-Agent Interactions
• MAgent game: aligning

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.

Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.

• MAgent game: battle

Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.

• MAgent game: battle

Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.

• MAgent game: city simulation
• Designing

• Car routing
policy

• Traffic light
controller

• Fleet
management
& taxi dispatch

A Continuous-World Simulator is
Necessary to City Traffic Simulation

Cathy Wu et al. Flow: Architecture and Benchmarking for Reinforcement Learning in Traffic Control. 2017.

For example, traffic jams are caused by micro-scale acceleration
and deceleration.

Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

Why is Simulator a
Necessity?
• Large number of training samples

required
• High trial and error cost

• Not possible in real world
environment
• Even more problematic in city

scenario

Current City Simulator
• Focus on traffic scenario

• Commercial:
• VISSIM
• AIMSUN.NEXT

• Open source:
• Most Popular: SUMO
• Ours: CityFlow

• Microscopic Simulator
• Simulate the movement of each single vehicle or object

SUMO
• Simulation of Urban Mobility

• Institute of Transportation Systems @ German Aerospace Center

• Project starts from 2000

https://gfycat.com/hopefulsolidamericancreamdraft

https://gfycat.com/hopefulsolidamericancreamdraft

CityFlow https://github.com/cityflow-project/CityFlow

• CityFlow is city simulator particularly focused on
speed and scale

Our hierarchical
roadnet structure

serves for car
following model

Roadnet
Design

New Car following
algorithm designed
by us is much faster

than SUMO

Car
Following

Improvement of
fundamental code
speeds up 2x with

same algorithm

Excellent
Implement

Parallel Computing
speeds up 4x with 8

core CPU

Parallel
Computing

https://github.com/cityflow-project/CityFlow

CityFlow Design
• Road structure

Road

Lane LaneLink

RoadLink
Segment

• Car flow structure: linked list

CityFlow Design
• Car following model

• Lane changing model

Time Step 𝑡
𝑣%, 𝑔𝑎𝑝, 𝑑% 𝑣&, 𝑑&

1
2𝑑!

𝑠" +
1
2
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 3 𝑠

= 𝑔𝑎𝑝 +
𝑣#"

2𝑑#
−
1
2
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 3 𝑣!

no-collision-speed 𝑠:
Time Step 𝑡 + 1

s, 𝑔𝑎𝑝, 𝑑% 𝑣& = 0, 𝑑&

Shadow vehicle

CityFlow Design
• Intersection model

Checkpoint

CityFlow
• Focus on speed

• Data structure design
• Simulation algorithm design
• Multithread
• Faster python api (compared to SUMO)

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow

CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow

CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow

CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow

Compare Good/Bad Traffic Control

Worse control

Better control

Test on Real-World Road Network:
Los Angeles (4 Intersections)

Worse control Better control

Real World City Simulator: Manhatton
(2510 Intersections)

Real World City Simulator: Manhatton
(2510 Intersections)

TSCC2050
• Use a customized version of CityFlow as backend

智能交通灯调度落地

ṛશ � ҁӤऱ�Ӿမṛຝ҂ܖݻ۹

ړ��ᰦᖽکٺ��ᰦړ

���ٺ

ภ᭗۪ᳩ ॠ᧣ഴපຎق

ފ����و�ഭන&2ٺ

उ૱य़ᚏ � ᧣ഴපຎᐏ

ṛશ ภṛશ

�� Ӥṛશ҅ളᭆၞीग़
�� کᬁ҅ᬡفฬᚆන᭲ۼ
๋֯ၞੂଶ̶

ᓒဩս۸᪠҅٭
ᕮṛશ

ᓒဩฬᚆս۸᪠٭

ᓒဩս۸᪠҅٭
ᕮภṛશ

ଘશ

ଘ
࣐

᭛

᧣ෆڹ

᧣ෆݸ

ภṛશ � ۹ҁӾမ�Ӥऱṛຝ҂ݻܖ

ړ����ᰦᖽړ����کٺᰦ
���ٺ

&2� ފ����

����༒
���� ���� ���� ���� ����� ����� ����� �����

���-��	���

早⾼峰 晚⾼峰

Morning peak hour

平峰

Av
er
ag
e
Sp
ee
d

调整前
调整后

3:00

Time
6:000:00 9:00 12:00 15:00 18:00 21:00

智能交通灯调度落地

Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

Autonomous Driving

Step 1: Perception
Recognize the objects around &

build the 3D world

Step 2: Control
Make action decisions in the

built world

SMARTS (with Huawei Team)

• A scalable multi-agent learning simulator for
autonomous driving control
• Flexibility and high efficiency in the physical

simulation and interacting with multi-agent
reinforcement learning algorithms

https://github.com/huawei-noah/SMARTS

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Scenario: Multi-lane Cruising

Scenario: Crossroad

Scenario: On-ramp

Multi-Agent Learning for Auto-Driving

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

SMARTS:
Scalable Multi-Agent RL Training School

• SMARTS is an open-source scalable multi-agent
reinforcement learning platform for autonomous
driving.

Distributed/Parallel
Computing

High fidelity Interaction
Scenario Design

User friendly
rendering

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Overview Demo of SMARTS

https://github.com/huawei-noah/SMARTS

SMARTS Architecture

Interaction scenarios are instantiated based on a (domain specific language) DSL
specification. Social agents are instantiated from the Social Agent Zoo. Orange vehicles
are controlled by learning agents, dark blue vehicles by social agents, light blue ones by
traffic provider. All providers and agents in principle run in their own processes, possibly
remotely.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Bootstrapping Realistic Interaction
• Key contextual factors of realistic and diverse:

• Physics
• Road users’ behavior
• Road structure & regulations

Interactive social
agents for scenario generation

Social Agent
Zoo

Behavior model with
realistic constraints

Data collected from
simulated self-plays

• Rule-based agent
• Learning-based agent
• Optimal-control agent
• Community contributions

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Bubble Mechanism
• The bubble mechanism

allows SMARTS to scale
without sacrificing interaction
relism.

• Goal: support large-scale
simulation and distributed
computing.

background traffic zone
airlocking zone
social agent zone

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Interaction Scenario Library
• Using the scenario

DSL of SMARTS,
we can create
numerous
scenarios that vary
in road structure
and traffic.

• Scenarios provide
rich traffic flows
and road
conditions to help
us study behavior
and driving
strategies.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

MARL Benchmarking
• Distributed training

supported.

• Rich metrics.
• Customizable observation,

action (controller) and
reward function.

• Algorithms/Baselines
• Independent learning
• Centralized/decentraliz

ed learning
• Networked agent

learning
• …

Evaluation metrics of multi-agent AD

Results on behavior metrics.
“SV-” represents the algorithms interacting with social vehicles.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

SMARTS Supported MARL Algorithms

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Overall Evaluation Results

Observations from above table
• PPO is the empirically best single-agent RL method
• MADDPG is the empirically best multi-agent RL method

Average collision rate / completion rate of selected baselines

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Demo: Single Agent with PPO

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Demo: Intersection (Unprotected Left Turn)

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Easy flow

Hard flow

Summary of Many-Agent RL
• Main difficulties for many-agent RL

• Computational complexity
• Complicated agent interactions
• Highly dynamic neighborhood

• Possible solutions to many-agent RL
• Mean field approximation and factorized value functions
• Scalable MARL platforms

MAgent CityFlow SMARTS

• Traditional machine
learning is to build
• a loss function
• a likelihood estimation
• an expectation of value

from a machine and the
training data and to
optimize the objective

model

data
objective

• Multi-agent machine
learning is to build
• a loss function
• a likelihood estimation
• an expectation of value

from the two machines and
the training data and to
optimize the objective

model

data

objectives

model

Summary from Machine Learning Perspective

Summary of MARL
• Machine learning paradigm shift

• From prediction to decision making (RL)
• From single-agent to multi-agent to many-agent
• An intersection with game theory is essential

• Multi-agent RL
• Centralized training (with decentralized execution)
• Decentralized training (with networked agents)

• Many-agent RL
• Challenges

• Computational complexity
• Complicated agent interactions
• Highly dynamic neighborhood

• Possible solutions
• Mean field approximation and factorized value functions
• Scalable MARL platforms: Magent and CityFlow etc.

Thank You!
Questions?
Weinan Zhang
Associate Professor at Shanghai Jiao Tong University
http://wnzhang.net

Related references
1. Yaodong Yang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.
2. Ming Zhou et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.
3. Lianmin Zheng et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial

Collective Intelligence. AAAI 2018.
4. Huichu Zhang et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large

Scale City Traffic Scenario. WWW 2019.
5. Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for

Autonomous Driving. CoRL 2020.
6. Muning Wen et al. Multi-Agent Reinforcement Learning is a Sequence Modeling Problem.

NeurIPS 2022.
7. Xihuai Wang et al. Order Matters: Agent-by-agent Policy Optimization. ICLR 2023.

