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Intelligent 
Internet of 
Things based 
on 5G

Autonomous 
driving cars 
with inter-
connections

The Coming Intelligent IoT Era



Prediction
& detection

Decision Making

Give more access to machines

Towards a more 
decentralized service 

Many-agent

Multi-agent

Single-agent

Generation

LR/SVM Language model Atari AI

Ensemble GANs MARL

IoT AI / City AI / Market AICrowding sensing

This area gets more and more attention!

Observation: Machine Learning Paradigm Extension



MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Wolfpack game
• Red agents are the predators
• Blue agent is the prey
• Red agent gets close to blue 

agent to make a capture, then 
the whole team gets a reward

Results
• Red agents learn to cooperate.



MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Gathering game
• Red and blue agents compete for food
• Each agent can either move to eat or 

attack the other to make it paused

Results
• Red agents learn to compete 

(shooting each other) when 
food resource is insufficient



MARL Case: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to 
Play StarCraft Combat Games. NIPS workshop 2017. 

• Agents learn to cooperate in a team to fight against another 
team (here the other team is just hand-crafted AI)



MARL Case: Army Align
• Let an army of agents align a particular pattern

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



MARL Case: City Traffic Simulation
• Designing 

• Car routing 
policy

• Traffic light 
controller

• Fleet 
management & 
taxi dispatch

• Shortcomings
• Discrete 

implementation 
is not suitable 
for traffic 
simulation



Use Case: Storage Sorting Robots

Haifeng Zhang, et al. “Layout Design for Intelligent Warehouse by Evolution with Fitness Approximation.” IEEE Access 2019.



Reinforcement Learning

• Learning from interaction 
with the environment

• The agent 
• senses the observations 

from environment
• takes actions to deliver to 

the environment
• gets reward signal from 

the environment

• Normally, the 
environment is stationary

Agent

Environment

REVIEW



Multi-Agent Reinforcement Learning

• Learning from interaction 
with the environment

• The environment contains 
other agents that are 
learning and updating

• Non-stationary 
environment

Agent

Environment



Fundamental Difficulty 
in Multi-Agent RL
• MARL is fundamentally 

more difficult since 
agents not only learn to 
interact with the 
environment but also 
with each other
• Directly applying single-

agent RL algorithms will 
have no guarantee of 
effectiveness
• Solution: game theory!
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What is Game Theory
• Games theory studies 

interaction of self-interested 
agents
• What does “self-interested” 

mean?

• Modeling an agent’s interests: 
utility theory
• Utility function: mapping from 

states to real numbers

• Things get more complicated with multiple agents
• One’s actions can affect others’ utilities
• Noncooperative game theory  – individual



Prisoner’s Dilemma

Defect

Defect

Cooperate

Cooperate



Prisoner’s Dilemma
• If two players tune their strategies interactively, 

they will finally converge to defect-defect action 
profile

Defect Cooperate

Defect a, a c, b

Cooperate b, c d, d

Defect Cooperate

Defect -5, -5 0, -20

Cooperate -20, 0 -1, -1

c > d > a > b



Normal-form Game (正则形式博弈)

• Also known as the strategic or matrix form.
• It is a representation of every player’s utility for 

every state of the world, where the states of the 
world depend only on the player’s combined actions.

Action 1 Action 2

Action 1 a1, a2 b1, b2

Action 2 c1, c2 d1, d2

• Most other 
representations of 
games can be reduced 
to (maybe much larger) 
normal-form games.

Player 2

Player
1



Normal-form Game
Definition A (finite, n-player) normal-form game is a 
tuple (𝑁, 𝐴, 𝑢), where:

• 𝑁 is a finite set of n players, indexed by 𝑖;
• 𝐴 = 𝐴!×⋯×𝐴", where 𝐴# is a finite set of actions 

available to player 𝑖;
• Each vector 𝑎 = (𝑎!, ⋯ , 𝑎") ∈ 𝐴 is called an action 

profile;
• 𝑢 = 𝑢!×⋯×𝑢" where 𝑢#: 𝐴 → ℝ is a real-valued 

utility (or payoff) function for player 𝑖.

• Standard representation: an 𝑛-dimensional matrix.



Common-payoff Game
Definition A common-payoff game is a game in which 
for all action profiles 𝑎 ∈ 𝐴!×⋯×𝐴" and for any pair 
of agents 𝑖, 𝑗, it is the case that 𝑢# 𝑎 = 𝑢$ 𝑎 .

• Common-payoff games are also called pure 
coordination games or team games.
• The agents have no conflicting interests.



Coordination Game: Example
• Two drivers driving towards each other in a country 

having no traffic rules …

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

left

right

right

left



Zero-sum Game (零和博弈)
Definition A two-player normal-form game is 
constant-sum if there exists a constant 𝑐 such that for 
each strategy profile 𝑎 ∈ 𝐴!×𝐴% it is the case that
𝑢! 𝑎 + 𝑢% 𝑎 = 𝑐.

• Pure competition
• A constant-sum game is zero-sum if 𝑐 = 0.
• Zero-sum games are most meaningful for two 

agents because if we allow more agents, any game 
can be turned into a zero-sum game by adding a 
dummy player.



Zero-sum Game: Matching Pennies
• Two players present a penny at the same time

• Player 1 wins if two pennies match
• Player 2 wins otherwise

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1



Zero-sum Game: Rock, Paper, Scissors

Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1

Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

• Two players with three actions



Normal-form Game: Battle of the Sexes

• A couple wishes to go to watch boxing or shopping. 
They have different preferences but prefer going 
together.

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

• It includes element of both coordination and 
competition.

Husband

Wife



Strategies in Normal-Form Games
• Pure strategy: to select a single action and play it.
• Pure-strategy profile: An action profile where each 

agent plays a pure strategy.

Introducing randomness in the choice of action
• Mixed strategy: randomizing over the set of 

available actions according to some probability 
distribution.



Mixed Strategy
Definition Let (𝑁, 𝐴, 𝑢) be a normal-form game, and 
for any set 𝑋 let Π(𝑋) be the set of all probability 
distributions over 𝑋. Then the set of mixed strategies 
for player 𝑖 is 𝑆# = Π(𝐴#).

Definition The set of mixed-strategy profiles is simply 
the Cartesian product of the individual mixed-
strategy sets, i.e., 𝑆!×⋯×𝑆".

Definition The support of a mixed strategy 𝑠# for a
player 𝑖 is the set of pure strategies {𝑎#|𝑠# 𝑎# > 0}.



Expected Utility
Definition Given a normal-form game (𝑁, 𝐴, 𝑢), the 
expected utility 𝑢# for player 𝑖 of the mixed-strategy 
profile 𝑠 = (𝑠!, … , 𝑠") is defined as



Best Response
• Formally, define 𝑠&# = (𝑠# , … , 𝑠#&!, 𝑠#'!, … , 𝑠"), a 

strategy profile 𝑠 without agent 𝑖’s strategy. Thus 
we can write 𝑠 = (𝑠# , 𝑠&# ). 
• If the agents other than 𝑖 (denoted as −𝑖) were to 

commit to play 𝑠&#, what is the best response of 
agent 𝑖?

Definition Player 𝑖’s best response to the strategy 
profile 𝑠&# is a mixed strategy 𝑠#∗ ∈ 𝑆# such that
𝑢# 𝑠#∗, 𝑠&# ≥ 𝑢#(𝑠# , 𝑠&#) for all strategies 𝑠# ∈ 𝑆#.



Best Response
• The best response is not necessarily unique

• Some cases – there is a unique best response that is a 
pure strategy

• Other cases – the number of best responses is infinite

• If the support of a best response 𝑠∗ includes more 
than one actions, the agent must be indifferent 
among them

• i.e., the same expected utility 𝑢# 𝑎!, 𝑠$# = 𝑢# 𝑎%, 𝑠$#
• As such, any blending of 𝑎! and 𝑎% is the best response



Nash Equilibrium

• A Nash equilibrium is a stable strategy profile: no agent would 
want to change his strategy if he knew what strategies the 
other agents were following.

• Whether or not every agent’s strategy constitutes a unique
best response to the other agents’ strategies?
• Yes – strict Nash equilibrium
• No – weak Nash equilibrium

Definition
A strategy profile 𝑠 = (𝑠!, … , 𝑠") is 
a Nash equilibrium if, for all agents
𝑖, 𝑠# is a best response to 𝑠&#.

John Nash



Finding Nash Equilibrium: 
Prisoner’s Dilemma
• The only Nash equilibrium of prisoner’s dilemma is 

both players defect

Defect Cooperate

Defect a, a c, b

Cooperate b, c d, d

Defect Cooperate

Defect -5, -5 0, -20

Cooperate -20, 0 -1, -1

c > d > a > b



Finding Nash Equilibria
The Battle of the Sexes game has two pure-strategy 
Nash equilibria.

Are these two the only Nash equilibria?

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Husband

Wife



Finding Nash Equilibria
• There is also another mixed-strategy equilibrium.
• Assume that husband’s strategy is to watch boxing with 

probability 𝑝 and go shopping with probability 1 − 𝑝.
• Then if the wife also mixes between boxing and shopping, she 

must be indifferent between them, given the husband’s 
strategy.

𝑝

1 − 𝑝

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Wife

Husband



Finding Nash Equilibria
The mixed-strategy Nash equilibrium of the Battle of the Sexes 
game:
• The husband chooses boxing with probability 2/3 and 

shopping with probability 1/3.
• The wife chooses to boxing with probability 1/3 and shopping 

with probability 2/3.

2
3

Boxing Shopping

Boxing 2, 1 0, 0

Shopping 0, 0 1, 2

Wife

Husband

• The expected payoff of both 
players is 2/3 in this 
equilibrium, so each of the 
pure-strategy equilibria 
Pareto-dominates the mixed-
strategy equilibrium. 1

3

2
3

1
3



Mixed Strategies Matter
What about the Matching Pennies game?

• There is no pure-strategy Nash equilibrium.
• There exists a mixed-strategy equilibrium: each 

player chooses Heads and Tails with probability 1/2.

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1



Mixed Strategies Matter
For the popular rock-paper-scissors game?

Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1

Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

• There is no pure-strategy Nash equilibrium.
• There exists a mixed-strategy equilibrium: each player 

chooses Rock, Paper and Scissors with probability 1/3.



Existence of Nash Equilibrium
Theorem (Nash, 1951)  Every game with a finite 
number of players and action profiles has at least one 
Nash equilibrium.

• The proof of this theorem is achieved by appealing to 
fixed-point theorem.
• This theorem depends critically on the availability of 

mixed strategies to the agents.



Thinking on Nash Equilibrium and MARL

• Given a normal-form game, every player i’s utility 
depends on the joint strategy profile (𝑠# , 𝑠&# ), 
which makes the multi-agent decision making 
unstable
• Nash equilibrium provides a peaceful place in such 

an ‘unstable’ environment, where no player would 
want to further change the strategy once getting to 
the equilibrium
• Nash equilibrium of the normal-form game can be 

set as the learning target of MARL
• Now we need to consider the case of multiple 

states
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Sequential Decision Making
• 3 types of setting in Game Theory

• Markov decision processes
• one decision maker
• multiple states

• Repeated games
• multiple decision makers
• one state (e.g., one normal form game)

• Stochastic games (Markov games) 
• multiple decision makers
• multiple states (e.g., multiple normal 

form games)

MDPs
• Single Agent
• Multiple States

Repeated Games
• Multiple Agents
• Single State

Stochastic Games
• Multiple Agents
• Multiple States



Stochastic Games
• A stochastic game has multiple states and multiple agents

• Each state corresponds to a normal-form game
• After a round, the game randomly transits to another state
• Transition probabilities depend on state and joint actions taken by 

all agents

• Typically, rewards are discounted over time

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of sciences 39.10 (1953): 1095-1100.

2, 2 0, 3
3, 0 1, 1

1, 1 1, 0
0, 1 0, 0

1, 0 0, 1
0, 1 1, 0

0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
State transition 

probabilities

Player 1

Player 2
a1 a2

a1

a2



Definition of Stochastic Games
• A stochastic game is defined by 

• State space:  

• Action space of agent j:

• Reward function of agent

• Transition probability

The collection of probability 
distributions over S

• Discount factor across time



Policies in Stochastic Games
• For agent j, the corresponding policy is

The collection of probability 
distributions over Aj

• The joint policy of all agents is

• State value function of agent j

• Action value function of agent j



Independent Learning in SG
• For each agent j, assume the other agents’ policies 

are stationary, thus the environment for j is 
stationary to perform Q-learning

• The agent does not know opponents’ actions, thus may 
use the last-step actions or build opponent models

• Unfortunately, in SG with MARL, every agent is learning 
and updating its policy, making the environment non-
stationary



Nash Equilibrium in SG

• Optimizing            for agent j depends on the joint policy π

• Nash equilibrium in SG is represented by a particular joint 
policy

such that nobody would like to change his policy given the 
others’



Nash Q-learning
• Given a Nash policy π*, the Nash value function

• Nash Q-learning defines an iterative procedure
1. Solving the Nash equilibrium π* of the current stage 

defined by {Qt}
2. Improving the estimation of the Q-function with the 

new Nash value vNash

• But Nash Q-learning suffers from
• Very high computational complexity
• May not work when other agents’ policy is unavailable

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q-learning

where V
⇡
⇤

i
(s0) represents the equilibrium value for agent i when the joint-

policy being played is the Nash equilibrium ⇡
⇤ and is computed with respect

to the Q-values. This is similar to a Bellman optimality equation except for
the way the state value function is computed. In fact, the Q-function could
be estimated through a stochastic approximation procedure very similar to
the one of Q-learning:

8i=1...n Qi(s, a)! Qi(s, a) + ↵
�
ri + �Vi(s0)�Qi(s, a)

�
(3.16)

with Vi(s0) being the value of a Nash equilibrium policy for agent i.
The big problem with this approach is that, unlike what happens in MDPs,
there is no guarantee that Equation 3.15 has only one fixed point. In fact,
generally there are several Nash equilibria in a stochastic game, which results
in the fact that there is no unique way of computing a Nash equilibrium value
for each matrix game defined by Q(s, a). Usually, this approach works when
considering types of games with just one equilibria or, if that is not the case,
some coordination device is necessary so that the players all converge to the
same equilibrium.

There is an implicit assumption of full observability in this approach –
each agent has to store Q-values for all the joint actions.

The general algorithmic version of this procedure can be seen in 3.3.

Algorithm 3.3 General equilibrium learner algorithm
Initialize Q(s, a) arbitrarily

Initialize s
loop

ai  probabilistic outcome of Nash policy derived from Q(s, a), for
player i {Mixed with exploration policy}

Take action ai, observe reward r, next state s
0 and the joint action of

other players a�i

for i = 1 . . . n do
Qi(s, hai, a�ii) Qi(s, hai, a�ii) + ↵

�
ri + �Vi(s0)�Qi(s, hai, a�ii)

�

end for
where V (s) = Nash ([Q(s, a)])

s s
0

end loop

40

Instead of  taking “max” as in Q learning

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q-learning

2, 2 0, 3
3, 0 1, 1

1, 1 1, 0
0, 1 0, 0

1, 0 0, 1
0, 1 1, 0

0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
Entry values are 

immediate reward

Player 1

Player 2
a1 a2

a1

a2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2

Q1,Q2 Q1,Q2
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Q1,Q2 Q1,Q2
0.6

0.4

0.3

0.5
0.2

State 1

State 2

State 3
Entry values 

become Q values

Player 1

Player 2
a1 a2

a1

a2



Minimax Q-learning
• Minimax-Q is designed to work with zero-sum 

stochastic games 
• in zero-sum games a Nash equilibrium can be found 

using linear programming

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.



Minimax Q-learning

3.4.1 Minimax-Q

The method of Minimax-Q (Littman, 1994) is designed to work with zero-
sum stochastic games. In zero-sum games there is only one equilibrium
and, as stated previously, it can be found using linear programming. In
this situation, the state value can be univocally computed by the minimax
procedure and Equation 3.15 only has one fixed point. It is expected that
Algorithm 3.3 converges to the equilibrium policy. In fact, this has been
proved by (Littman and Szepesvári, 1996).

Using minimax to compute the Nash equilibrium, Equation 3.15 can be
used to describe the Nash condition and Equation 3.16 can be used as an
update rule if the Nash value is computed like

V (s) = max
⇡2PD(A)

min
o2O

X

a2A

⇡(s, a)Q(s, ha, oi) (3.17)

where A represents the action space of the learner and O the action space
of the opponent. There is no need for considering a two-dimensional state
function because, as the rewards are always symmetric for the agents, so
will be the state values and Q-values.

The algorithm can be particularized from Algorithm 3.3 to the Minimax-
Q form of Algorithm 3.4.

Algorithm 3.4 Minimax-Q learner
Initialize Q(s, ha, oi) and ⇡(s) arbitrarily

Initialize s
loop

a probabilistic outcome of ⇡(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s
0 and opponent action o

Q(s, ha, oi) Q(s, ha, oi) + ↵
�
r + �V (s0)�Q(s, ha, oi)

�

with V (s) = max
⇡02PD(A)

min
o02O

P
a02A

⇡(s, a0) Q(s, ha0, o0i)

⇡(s)! arg max
⇡02PD(A)

min
o02O

P
a02A

⇡(s, a0) Q(s, ha0, o0i)

s s
0

end loop
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Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.

• a: own 
actions,

• o: opponent 
actions

• PD(A): prob. 
distribution 
of actions



Recent Progress of MARL
• Communications between agents

• Build local communication schemes between agents via the 
hidden states of deep neural networks

• CommNet, BiCNet etc.
• Centralized training & decentralized execution

• Train a centralized critic to guide the update of each actor 
policy, and execute the actor policies in a decentralized way

• COMA, MADDPG, QMIX etc.
• Opponent modeling

• Observe and predict the actions of other agents, so as to
perform better decision making

• LOLA, PR2, ROMMEO etc.
• And many other aspects such as bi-level opt., signal 

coordination, “win or learning fast” (WoLF) etc.



Training Paradigms of MARL
Fully Decentralized

• Each agent independently 
senses the local env. and 
learns its policy

• Like multiple single-RL tasks
• E.g., Independent Q learning

Fully Centralized
• Training and execution are both 

centralized
• All agents sync at each step, 

which is costly
• E.g., Single Q learning, 

CommNet

Centralized Training & 
Decentralized Execution

• Train the agents together but 
execute each of them 
independently

• Agents number and indices are 
fixed

• E.g., COMA, MADDPG, QMIX

Decentralized Training with 
Networked Agents

• Agents senses the local env. but 
can locally sync their info over the 
network neighbors

• Robust over time-varying network
• E.g., AC with networked agents



Independent Q-Learning
• For each agent j, assume the other agents’ policies 

are stationary, thus the environment for j is 
stationary to perform Q-learning

• Unfortunately, in SG with MARL, every agent is 
learning and updating its policy, making the 
environment non-stationary

Tan, Ming. "Multi-agent reinforcement learning: Independent vs. cooperative agents." ICML. 1993.

Decentralized Training & Execution



PR2: Probabilistic Recursive Reasoning for MARL

Wen, Ying, et al. "Probabilistic recursive reasoning for multi-agent reinforcement learning." ICLR 2019.

Recursive 
reasoning

Policy 
objective

Policy 
gradient

Decentralized Training & Execution (with Opponent Modeling)



LOLA: Learning with Opponent-Learning Awareness

• Main idea: not only consider the opponent’s 
current policy, but further consider how it will 
change for the next step!
• Naïve learner:

Foerster, Jakob, et al. "Learning with opponent-learning awareness." AAMAS 2018.

• LOLA learner optimizes

Consider opponent 
policy learning

First-order Taylor 
expansion approximation

Decentralized Training & Execution (with Opponent Modeling)
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CommNet: Learnable Communication Scheme 

• Design learnable explicit communication scheme is 
important for directly achieving agent coordination

Possible skip connections:

Sukhbaatar et al. Learning Multiagent Communication with Backpropagation. NIPS 2016.

Fully Centralized



BiCNet: Bidirectionally-Coordinated Net for MARL

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to 
Play StarCraft Combat Games. NIPS workshop 2017. 

Fully Centralized



• Multi-agent game playing
• Learning to cooperate and compete

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to 
Play StarCraft Combat Games. NIPS workshop 2017. 

• Agents learn to cooperate in a team to fight against another 
team (here the other team is just hand-crafted AI)

BiCNet: Bidirectionally-Coordinated Net for MARL
Fully Centralized



COMA: Counterfactual Multi-Agent PG

COMA Model Actor Critic

Foerster, Jakob N., et al. "Counterfactual multi-agent policy gradients." AAAI 2018.

Centralized Training & Decentralized Execution



MADDPG: Multi-Agent DDPG

• Centralized action-value function

• Deterministic policy gradient via chain rule

• Comparing with COMA, MADDPG
• Learn a centralized critic for the agents
• Continuous policies

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.

Centralized Training & Decentralized Execution



Predator-prey task DDPG MADDPG

Learning Multi-Agent Interactions

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.

• Evaluation protocol
• A vs. B for training & test
• If A gets higher score in A-

vs-B than A-vs-A, then it 
means A is better than B

Centralized Training & Decentralized Execution



Two Parts of Sample Complexity in MARL

• Dynamics sample complexity: num. of real environment transitions 
(observations sampled from 𝑝 𝑠! 𝑠, 𝑎", … , 𝑎#))

• Opponent sample complexity: num. of real opponent actions 
(observations sampled from 𝜋$(𝑎|𝑠))

Decentralized Training & Execution (with Models)



Decentralized Model-based MARL

• Multi-agent environment model
• Environment dynamics model
• Opponent model

• Decentralized MARL: each agent independently maintains 
its multi-agent environment model as above

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

Decentralized Training & Execution (with Models)



Bound of Policy Value Discrepancy
• Multi-agent branched rollout scheme
1. Learn environment dynamics      and opponent models
2. Start from an experienced state and start the rollout with 

ego policy       and above models to collect simulated data
3. Train ego policy based on simulated data
• Then the value discrepancy bound is

different opponent models contribute differently

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

before branch

after branch

Decentralized Training & Execution (with Models)



Algorithm Derived from Theoretic Analysis

• Environment model starts 
from real state and then 
samples the next states

• Ego agent takes actions 
following its current policy

• Opponent models sample 
actions based on their errors
• If the error is large(small), 

it samples few(more) 
actions

• Then use real opponent 
agents to sample further 
actions

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.

Decentralized Training & Execution (with Models)



AORPO Experiments
• Multi-Agent Particle Environment (cooperative setting)

• On sample efficiency, AORPO and AORDPG outperform MASAC and MADDPG 
respectively, indicating the efficacy of building multi-agent environment model

Complex env. & simple opponents
Simple env. & 

complex opponents

Decentralized Training & Execution (with Models)
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From Multi- to Many-Agent RL
• What will happen when agent number grows?

• Reward function of agent

• Transition probability

• Both reward function and state transition 
probability get exponentially larger

• More difficult to model
• The environment is more dynamic and sensitive
• Need more exploration data
• More computational resources



Battle Game Demo 1



Battle Game Demo 2



Idea 1: Taking Other Agents as A Whole

• In some many-body systems, the interaction 
between an agent and others can be approximated 
as that between the agent and the “mean agent” of 
others



Mean Field Multi-Agent RL
• Mean field approximation

• Approximate the joint 
action value by factorizing 
the Q-function into 
pairwise interactions

Yaodong Yang, Weinan Zhang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.

Neighboring agent set of j

• Significantly reduces the global interactions among agents
• Still preserves global interactions of any agent pair



Action Representation

• Consider discrete action space
• Action aj of agent j is one-hot encoded as

Only one element is 1

• The mean action based on the neighborhood of j is

• Thus the action ak of each neighbor k can be represented as

mean
action

residual Residual sum is 0



Mean Field Approximation

• A 2-order Taylor expansion on Q-function



Mean Field Q-Learning



Experiment of Ising Model

• Each spin is an agent to 
decide up or down (action)
• Measure: order parameter

• The closer OP is to 1, the 
more orderly the system is.



Experiment Performance IM
• Ground truth: MCMC 

simulation
• Goal: MF-Q learns 

with the similar 
behavior as MCMC, 
which we observed



Experiment Performance IM



Experiment: Battle

Supported by

Lianmin Zheng, Weinan Zhang et al. "MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence." NIPS 2017.

Action Space

wall
group1
group1’s hp
group1’s minimap
group2
group2’s hp
group2’s minimap
…

ID Embedding Last action/reward Relative pos

move attack turn

Grid World

Observation Space



Experiment Performance Battle

• For 64 vs 64 battle, MF-Q works the best among all 
compared models
• MF-AC may not work that well particularly when 

the agent number is large



Experiment Performance Battle

• MF-Q has a fast convergence property
• MF-AC has a phase changing point



Case Study of MF-Q vs. IL

• Blue: MF-Q
• Red: IL

• MF-Q presents a 
go-around-and-
besiege strategy

• MF-Q agents are 
more consistent 
with neighbors



Idea2: Factorization Machine

• Computing the Q-value with the independent Q-
function and the interactive ingredients inspired 
from factorization machine



Factorized Q-learning

• A composite deep neural network architecture 
whose components share the model parameters 
among all the agents within the same group

• Reduce the model complexity

• Still preserves global interactions of any agent pair

• Accelerate the learning process. 

Ming Zhou, Weinan Zhang et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.



Factorized Q-learning
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Factorized Q-learning
• Q-Network: Denote the i-th agent’s value function

• V-Network & U-Network
• The outputs of V and U denote the feature vectors of 

focused agent and other agents, respectively. And the dot 
product of U and V denotes the interactive ingredients of 
the focused i-th agent and other j-th agents



Factorized Q-learning
• We redefine the Q-function for the high-order 

tensor relationship between states and actions as 
follows 

implies the equivalent force in place of complex interactions 



Experiment Performance Battle

• 3 self-play trainining curves. The Killing Index shows the ability of killing 
enemies, the Mean-Rewards Index shows the rewards of every agent in every 
step, and the Total Rewards Index shows the ability of gaining rewards in an 
episode.

FQL

FQL

FQL



Experiment Performance Battle

• The battle results between FQL and other three 
competitors indicate the effectiveness of FQL
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From Multi- to Many-Agent RL
• What will happen when agent number grows?

• Reward function of agent

• Transition probability

• Both reward function and state transition 
probability get exponentially larger

• More difficult to model
• The environment is more dynamic and sensitive
• Need more exploration data
• More computational resources



Key Factors for Successful MARL
• Computation: High computational resource for 

reinforcement learning

• Data: a huge amount of data for training the 
models

• Environment: a low-cost environment for RL agents 
to interact with

• Solution: an effective simulator



What accounts for an effective simulator?

High Efficiency

• Interact with multiple 
agents in a high speed

• Multi-thread and 
multi-machine 
deployment

High Reality

• The simulation results 
should be as close to 
reality as possible

• Match in both micro 
and macro levels

Extendibility

• Flexible to adapt to 
new tasks with little 
effort

Interaction

• Easy to visualize and 
friendly for human 
interaction



MARL Case: Online Taxi Order Dispatch

Blue points: 
orders

Red points: 
taxis

Ming Zhou, Weinan Zhang. Multi-Agent Reinforcement Learning for Order Dispatching via Order-Vehicle Distribution Matching. Working paper.



Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS


The Challenges
• High demand of 

computation
• Large scale computation 

in training, inference 
and simulation

• Scalable and dynamic 
solution
• The number of agents is 

highly dynamic. Agents 
can enter and exit

• Complicated interaction
• It is hard to exactly 

model the interaction 
among agents

• Visualization



The Challenges

Action Space

wall
group1
group1’s hp
group1’s minimap
group2
group2’s hp
group2’s minimap
…

ID Embedding Last action/reward Relative pos

move attack turn

Grid World

Observation Space



Other MARL Platforms

Platform Number of 
agents Learning Interface

OpenAI Gym < 10 !

Malmo < 1000 !

Starcraft Learning 
Environment < 2000 !

Arcade Learning 
Environment < 10 !

NetLogo ~ 1000,000 "

MAgent ~ 1,000,000 !



Decentralized MARL
• When agent number is too large to maintain a centralized 

meta-agent for controlling
• Sharing Q-network for scalability
• Agent ID for personalization



Use Case: Many-Agent Interactions
• MAgent game: aligning

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 



Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: battle



Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: battle



Use Case: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: city simulation
• Designing 

• Car routing 
policy

• Traffic light 
controller

• Fleet 
management 
& taxi dispatch



A Continuous-World Simulator is 
Necessary to City Traffic Simulation

Cathy Wu et al. Flow: Architecture and Benchmarking for Reinforcement Learning in Traffic Control. 2017.

For example, traffic jams are caused by micro-scale acceleration 
and deceleration.



Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS


Why is Simulator a 
Necessity?
• Large number of training samples 

required
• High trial and error cost

• Not possible in real world 
environment
• Even more problematic in city 

scenario



Current City Simulator
• Focus on traffic scenario

• Commercial:
• VISSIM
• AIMSUN.NEXT

• Open source:
• Most Popular: SUMO
• Ours: CityFlow

• Microscopic Simulator
• Simulate the movement of each single vehicle or object



SUMO
• Simulation of Urban Mobility

• Institute of Transportation Systems @ German Aerospace Center

• Project starts from 2000

https://gfycat.com/hopefulsolidamericancreamdraft

https://gfycat.com/hopefulsolidamericancreamdraft


CityFlow https://github.com/cityflow-project/CityFlow

• CityFlow is city simulator particularly focused on 
speed and scale

Our hierarchical 
roadnet structure 

serves for car 
following model

Roadnet
Design

New Car following 
algorithm designed 
by us is much faster 

than SUMO

Car 
Following

Improvement of 
fundamental code 
speeds up 2x with 

same algorithm

Excellent 
Implement

Parallel Computing 
speeds up 4x with 8 

core CPU

Parallel 
Computing

https://github.com/cityflow-project/CityFlow


CityFlow Design
• Road structure

Road

Lane LaneLink

RoadLink
Segment

• Car flow structure: linked list



CityFlow Design
• Car following model

• Lane changing model

Time Step 𝑡
𝑣%, 𝑔𝑎𝑝, 𝑑% 𝑣&, 𝑑&

1
2𝑑!

𝑠" +
1
2
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 3 𝑠

= 𝑔𝑎𝑝 +
𝑣#"

2𝑑#
−
1
2
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 3 𝑣!

no-collision-speed 𝑠:
Time Step 𝑡 + 1

s, 𝑔𝑎𝑝, 𝑑% 𝑣& = 0, 𝑑&

Shadow vehicle



CityFlow Design
• Intersection model

Checkpoint



CityFlow
• Focus on speed

• Data structure design
• Simulation algorithm design
• Multithread
• Faster python api (compared to SUMO)

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow


CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW 
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow


CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW 
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow


CityFlow

Huichu Zhang, Siyuan Feng et al. CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. WWW 
2019 demo.

https://github.com/cityflow-project/CityFlow

https://github.com/cityflow-project/CityFlow


Compare Good/Bad Traffic Control

Worse control

Better control



Test on Real-World Road Network:
Los Angeles (4 Intersections)

Worse control Better control



Real World City Simulator: Manhatton
(2510 Intersections)



Real World City Simulator: Manhatton
(2510 Intersections)



TSCC2050
• Use a customized version of CityFlow as backend
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Featured Simulators
• Discrete world: MAgent

• https://github.com/geek-ai/MAgent

• Continuous world: Cityflow
• https://github.com/cityflow-project/CityFlow/

• Self-driving cars: SMARTS
• https://github.com/huawei-noah/SMARTS

https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS


Autonomous Driving

Step 1: Perception
Recognize the objects around & 

build the 3D world

Step 2: Control
Make action decisions in the 

built world



SMARTS (with Huawei Team)

• A scalable multi-agent learning simulator for 
autonomous driving control
• Flexibility and high efficiency in the physical 

simulation and interacting with multi-agent 
reinforcement learning algorithms

https://github.com/huawei-noah/SMARTS

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Scenario: Multi-lane Cruising



Scenario: Crossroad



Scenario: On-ramp



Multi-Agent Learning for Auto-Driving

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



SMARTS: 
Scalable Multi-Agent RL Training School

• SMARTS is an open-source scalable multi-agent 
reinforcement learning platform for autonomous 
driving.

Distributed/Parallel 
Computing

High fidelity Interaction 
Scenario Design

User friendly 
rendering

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Overview Demo of SMARTS

https://github.com/huawei-noah/SMARTS



SMARTS Architecture

Interaction scenarios are instantiated based on a (domain specific language) DSL 
specification. Social agents are instantiated from the Social Agent Zoo. Orange vehicles 
are controlled by learning agents, dark blue vehicles by social agents, light blue ones by 
traffic provider. All providers and agents in principle run in their own processes, possibly 
remotely. 

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Bootstrapping Realistic Interaction
• Key contextual factors of realistic and diverse:

• Physics
• Road users’ behavior
• Road structure & regulations

Interactive social
agents for scenario generation

Social Agent 
Zoo

Behavior model with 
realistic constraints

Data collected from 
simulated self-plays

• Rule-based agent
• Learning-based agent
• Optimal-control agent
• Community contributions

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Bubble Mechanism
• The bubble mechanism 

allows SMARTS to scale 
without sacrificing interaction 
relism.

• Goal: support large-scale 
simulation and distributed 
computing.

background traffic zone
airlocking zone
social agent zone

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Interaction Scenario Library
• Using the scenario 

DSL of SMARTS, 
we can create 
numerous 
scenarios that vary 
in road structure 
and traffic.

• Scenarios provide 
rich traffic flows 
and road 
conditions to help 
us study behavior 
and driving 
strategies.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



MARL Benchmarking
• Distributed training 

supported.

• Rich metrics.
• Customizable observation, 

action (controller) and 
reward function.

• Algorithms/Baselines
• Independent learning
• Centralized/decentraliz

ed learning
• Networked agent 

learning
• …

Evaluation metrics of multi-agent AD

Results on behavior metrics. 
“SV-” represents the algorithms interacting with social vehicles.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



SMARTS Supported MARL Algorithms

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Overall Evaluation Results

Observations from above table
• PPO is the empirically best single-agent RL method
• MADDPG is the empirically best multi-agent RL method

Average collision rate / completion rate of selected baselines

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Demo: Single Agent with PPO

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Demo: Intersection (Unprotected Left Turn)

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.

Easy flow

Hard flow



Summary of Many-Agent RL
• Main difficulties for many-agent RL

• Computational complexity
• Complicated agent interactions
• Highly dynamic neighborhood

• Possible solutions to many-agent RL
• Mean field approximation and factorized value functions
• Scalable MARL platforms

MAgent CityFlow SMARTS



• Traditional machine 
learning is to build
• a loss function
• a likelihood estimation
• an expectation of value

from a machine and the 
training data and to 
optimize the objective

model

data
objective

• Multi-agent machine 
learning is to build
• a loss function
• a likelihood estimation
• an expectation of value

from the two machines and 
the training data and to 
optimize the objective

model

data

objectives

model

Summary from Machine Learning Perspective



Summary of MARL
• Machine learning paradigm shift

• From prediction to decision making (RL)
• From single-agent to multi-agent to many-agent
• An intersection with game theory is essential

• Multi-agent RL
• Centralized training (with decentralized execution)
• Decentralized training (with networked agents)

• Many-agent RL
• Challenges

• Computational complexity
• Complicated agent interactions
• Highly dynamic neighborhood

• Possible solutions
• Mean field approximation and factorized value functions
• Scalable MARL platforms: Magent and CityFlow etc.



Thank You! 
Questions?
Weinan Zhang
Associate Professor at Shanghai Jiao Tong University
http://wnzhang.net
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