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The Coming Intelligent 10T Era

Intelligent
Internet of
Things based
on 5G

Autonomous
driving cars
with inter-
connections




Observation: Machine Learning Paradigm Extension

Towards a more

decentralized service This area gets more and more attention!

Many-agent “ Crowding sensing loT Al / City Al / Market Al
Multi-agent Ensemble GANs MARL
Single-agent LR/SVM Language model Atari Al
Prediction Generation Decision Makian
& detection

Give more access to machines



MARL Case: Multi-Agent Game Playing

* Multi-agent game playing
* Learning to cooperate and compete

Wolfpack game

* Red agents are the predators

* Blue agent is the prey

* Red agent gets close to blue
agent to make a capture, then
the whole team gets a reward

Results
* Red agents learn to cooperate.

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.



MARL Case: Multi-Agent Game Playing

* Multi-agent game playing
* Learning to cooperate and compete

Gathering game Results

* Red and blue agents compete for food * Red agents learn to compete

e Each agent can either move to eat or (shooting each other) when
attack the other to make it paused food resource is insufficient

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.



MARL Case: Multi-Agent Game Playing

* Multi-agent game playing
* Learning to cooperate and compete

i Dragon (Agent) — 1 B Marine (Agent)

* Agents learn to cooperate in a team to fight against another
team (here the other team is just hand-crafted Al)

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.



MARL Case: Army Align

 Let an army of agents align a particular pattern

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



MARL Case: City Traffic Simulation

-
‘.... -

* Designing

* Car routing
policy

 Traffic light
controller

* Fleet
management &
taxi dispatch

e Shortcomings

* Discrete
implementation
is not suitable
for traffic
simulation



Use Case: Storage Sorting Robots
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Haifeng Zhang, et al. “Layout Design for Intelligent Warehouse by Evolution with Fitness Approximation.” IEEE Access 2019.



REVIEW

Reinforcement Learning

* Learning from interaction

with the environment observation action
e
Ot At
* The agent

* senses the observations
from environment

e takes actions to deliver to
the environment

e gets reward signal from
the environment

* Normally, the
environment is stationary

Environment



Multi-Agent Reinforcement Learning

* Learning from interaction
with the environment i

* The environment contains
other agents that are
learning and updating

* Non-stationary
environment

Q000

Environment



Fundamental Difficulty 3 /1 =
in Multi-Agent RL i:w« Z\

* MARL is fundamentally
more difficult since
agents not only learn to
interact with the
environment but also
with each other

* Directly applying single-
agent RL algorithms will
have no guarantee of
effectiveness

e Solution: game theory!
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What is Game Theory

e Games theory studies
interaction of self-interested
agents

e What does “self-interested”
mean?

* Modeling an agent’s interests:
utility theory

 Utility function: mapping from
states to real numbers

* Things get more complicated with multiple agents
* One’s actions can affect others’ utilities
* Noncooperative game theory — individual



Prisoner’s Dilemma

Prisoners'
dilemma
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Prisoner’s Dilemma

* If two players tune their strategies interactively,
they will finally converge to defect-defect action

profile
Defect Cooperate Defect Cooperate
Defect -5, -5 0, -20 Defect a,a &= c,b
T 1 T 1 ]
Cooperate | -20, 0 4= -1, -1 Cooperate | b,c @ d, d

c>d>a>b




Normal-form Game (IENFZ T IEZE)

* Also known as the strategic or matrix form.

* It is a representation of every player’s utility for
every state of the world, where the states of the

world depend only on the player’s combined actions.

Player 2

* Most other
representations of
. games can be reduced
Action1| a,, a b,, b
Player v v to (maybe much larger)
1 normal-form games.
Action2 | ¢4, G, d,, d,

Action 1 | Action 2




Normal-form Game

Definition A (finite, n-player) normal-form gameiis a
tuple (N, 4,u), where:
* N is afinite set of n players, indexed by i;

e A =A4,X--XA,, where A; is a finite set of actions
available to player i;

* Each vectora = (a4, :+,a,) € Ais called an action
profile,

 u = (U X -*Xuy,) where u;: A - Ris a real-valued
utility (or payoff) function for player i.

e Standard representation: an n-dimensional matrix.



Common-payoft Game

Definition A common-payoff game is a game in which
for all action profiles a € A;X ---XA,, and for any pair
of agents i, j, itis the case that u;(a) = u;(a).

 Common-payoff games are also called pure
coordination games or team games.

* The agents have no conflicting interests.



Coordination Game: Example

* Two drivers driving towards each other in a country
having no traffic rules ...

Left Right
left right
& | et | 11 | 0,0

Right | 0,0 1,1




Zero-sum Game (ZF01EZE)

Definition A two-player normal-form game is
constant-sum if there exists a constant ¢ such that for
each strategy profile a € A; XA, itis the case that

u,(a) +u,(a) =c.

* Pure competition
* A constant-sum game is zero-sum if ¢ = 0.

e Zero-sum games are most meaningful for two
agents because if we allow more agents, any game
can be turned into a zero-sum game by adding a
dummy player.



/ero-sum Game: Matching Pennies

* Two players present a penny at the same time
* Player 1 wins if two pennies match
* Player 2 wins otherwise

Heads Tails

Heads 1, -1 -1,1

Tails -1,1 1, -1




* Two players with three actions

Zero-sum Game: Rock, Paper, Scissors

Rock | Paper |Scissors
Rock 0,0 -1,1 1,-1
Paper 1, -1 0,0 -1, 1
Scissors| -1,1 1, -1 0,0




Normal-form Game: Battle of the Sexes

* A couple wishes to go to watch boxing or shopping.
They have different preferences but prefer going

together.
Wife

Boxing Shopping

Husband | Boxing 2,1 0,0

Shopping 0,0 1, 2

It includes element of both coordination and
competition.



Strategies in Normal-Form Games

* Pure strategy: to select a single action and play it.

* Pure-strategy profile: An action profile where each
agent plays a pure strategy.

Introducing randomness in the choice of action

* Mixed strategy: randomizing over the set of
available actions according to some probability
distribution.



Mixed Strategy

Definition Let (N, A, u) be a normal-form game, and
for any set X let I[I(X) be the set of all probability
distributions over X. Then the set of mixed strategies

for player i is S; = I1(4;).

Definition The set of mixed-strategy profiles is simply
the Cartesian product of the individual mixed-

strategy sets, i.e., ;X ---X§,,.

Definition The support of a mixed strategy s; for a
player i is the set of pure strategies {a;|s;(a;) > 0}.




Expected Utility

Definition Given a normal-form game (N, 4, u), the
expected utility u; for player i of the mixed-strategy

profile s = (54, ..., S;,) is defined as

Joint policy

ui(s) = Y ui(a) H sj(aj) — m(a)



Best Response

* Formally, define s_; = (s;, ..., Sj_1, Sij+1, -+, S ), @
strategy profile s without agent i’s strategy. Thus
we can write s = (s;,5_; ).

* If the agents other than i (denoted as —i) were to
commit to play s_;, what is the best response of
agent i(?

Definition Player i’s best response to the strategy
profile s_; is a mixed strategy s; € S; such that
u; (s;,s_;) = u;(s;,s_;) for all strategies s; € S;.




Best Response

* The best response is not necessarily unique

 Some cases —there is a unique best response that is a
pure strategy

* Other cases —the number of best responses is infinite

* If the support of a best response s™ includes more
than one actions, the agent must be indifferent
among them

* i.e., the same expected utility u;(a,s_;) = u;(a,,s_;)
* As such, any blending of a; and a, is the best response



Nash Equilibrium

Definition

A strategy profile s = (s4, ..., S,) is
a Nash equilibrium if, for all agents

[, s; is a best response to s_;.

John Nash

* A Nash equilibrium is a stable strategy profile: no agent would
want to change his strategy if he knew what strategies the
other agents were following.

* Whether or not every agent’s strategy constitutes a unique
best response to the other agents’ strategies?
* Yes — strict Nash equilibrium
* No—weak Nash equilibrium



Finding Nash Equilibrium:

Prisoner’s Dilemma

* The only Nash equilibrium of prisoner’s dilemma is
both players defect

Defect Cooperate Defect Cooperate
Defect -5,-5 4 0, -20 Defect a,a & b
Cooperate | -20,0 €= -1, -1 Cooperate b,c « d,d

c>d>a>b




Finding Nash Equilibria

The Battle of the Sexes game has two pure-strategy
Nash equilibria.

Wife

Boxing Shopping

Husband Boxing 2,1 0,0

Shopping 0,0 1, 2

Are these two the only Nash equilibria?



Finding Nash Equilibria

* There is also another mixed-strategy equilibrium.

e Assume that husband’s strategy is to watch boxing with
probability p and go shopping with probability 1 — p.

* Then if the wife also mixes between boxing and shopping, she
must be indifferent between them, given the husband’s

strategy.
&Y Wife
Boxing Shopping
P | Boxing 2,1 0,0
Husband
1 — p | Shopping 0,0 1,2

Uyife (boxing) = Uyife (shopping)

I1xp+0x(1—p)=0xp+2x(1—p)

L2
P=3



Finding Nash Equilibria

The mixed-strategy Nash equilibrium of the Battle of the Sexes
game:

* The husband chooses boxing with probability 2/3 and
shopping with probability 1/3.

* The wife chooses to boxing with probability 1/3 and shopping
with probability 2/3. :
Wife

1 2
3 3

* The expected payoff of both

players is 2/3 in this

Boxing Shopping
equilibrium, so each of the

pure-strategy equilibria g Boxing | 2,1 0,0
Pareto-dominates the mixed- Husband 1
strategy equilibrium. 5 | Shopping | 0,0 1,2




Mixed Strategies Matter

What about the Matching Pennies game?

Heads Tails

Heads 1,-1 = -1,1

5 4
Tails | -1,1 4= 1,-1

* There is no pure-strategy Nash equilibrium.

* There exists a mixed-strategy equilibrium: each
player chooses Heads and Tails with probability 1/2.




Mixed Strategies Matter

For the popular rock-paper-scissors game?

Rock Paper | Scissors

Rock 0,0 1,1 €= 1,-1

Paper 1,-1 -1,1
1

Scissors| -1,1 4m 1 -1 0,0

* There is no pure-strategy Nash equilibrium.

* There exists a mixed-strategy equilibrium: each player
chooses Rock, Paper and Scissors with probability 1/3.



Existence of Nash Equilibrium

Theorem (Nash, 1951) Every game with a finite

number of players and action profiles has at least one
Nash equilibrium.

* The proof of this theorem is achieved by appealing to
fixed-point theorem.

* This theorem depends critically on the availability of
mixed strategies to the agents.



Thinking on Nash Equilibrium and MARL

* Given a normal-form game, every player i’s utility
depends on the joint strategy profile (s;,s_; ),
which makes the multi-agent decision making
unstable

* Nash equilibrium provides a peaceful place in such
an ‘unstable’ environment, where no player would
want to further change the strategy once getting to
the equilibrium

* Nash equilibrium of the normal-form game can be
set as the learning target of MARL

* Now we need to consider the case of multiple
states
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Sequential Decision Making

* 3 types of setting in Game Theory

* Markov decision processes
* one decision maker

MDPs
Single Agent
Multiple States

Repeated Games
Multiple Agents

* multiple states Single State

* Repeated games
* multiple decision makers
* one state (e.g., one normal form game)

Stochastic Games
Multiple Agents
Multiple States

e Stochastic games (Markov games)
* multiple decision makers

* multiple states (e.g., multiple normal
form games)



Stochastic Games

* A stochastic game has multiple states and multiple agents
* Each state corresponds to a normal-form game
e After a round, the game randomly transits to another state
* Transition probabilities depend on state and joint actions taken by
all agents

* Typically, rewards are discounted over time

0.2
Player 2 0.5 1’1 1’ 0 State 2
al { a2 0,1/0,0
a1|2,2|0,3 0.4
Player 1 |
a2|13,0]11,1 0.3
1,010, 1
State 1 0.6 State 3
State transition O, 1 1, 0)
probabilities

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of sciences 39.10 (1953): 1095-1100.



Definition of Stochastic Games

* A stochastic game is defined by

(87‘A17"’7‘AN7T17"'?TN7p7’Y)

e State space: S
» Action space of agentj: A’, j € {1,...,N}
* Reward function of agent S x Al x - x AV 5 R

« Transition probability p: S x Al x -+ x AV — Q(S)

The collection of probability
distributions over S

» Discount factor across time y € [0,1)



Policies in Stochastic Games

* For agentj, the corresponding policy is

7 . 7 The collection of probability
™S8 — Q(‘A ) distributions over A/

* The joint policy of all agents is 7 = [r1,..., 7]

* State value function of agentj
vl(s) = ! (s;7) Z’ytEwp rl|so = s, 7]

» Action value function ofagentj Q% : S x A' x--- x AV - R

Q% (s,@) =17(s,a) +VEgp[v3(s')]

[al,...,a"]



Independent Learning in SG

* For each agent j, assume the other agents’ policies
are stationary, thus the environment for j is
stationary to perform Q-learning

Q/(5,07) — Qi(s,07)+

a('rj (s, a’, a_j) + 7y max Qj(s', aj’) — Qj(sa aj))

* The agent does not know opponents’ actions, thus may
use the last-step actions or build opponent models

* Unfortunately, in SG with MARL, every agent is learning
and updating its policy, making the environment non-
stationary



Nash Equilibrium in SG

vl (s) = v (s; ) Z'ytIEwp 7“7|30 = s, 7]
* Optimizing ’037( ) for agent j depends on the joint policy it

* Nash equilibrium in SG is represented by a particular joint

policy
T« = [7‘(‘)1,,,,,7‘(‘5]

such that nobody would like to change his policy given the
others’

v (s;my) = (85, w7 >0 (s, w )

—jA

—1 +1 N
T, 77T§|7< yoeey Ty ]

[Ty ooy



Nash Q-learning

* Given a Nash policy i+, the Nash value function

0"R(5) £ [ol, (s), .., 0. (s)]

* Nash Q-learning defines an iterative procedure

1. Solving the Nash equilibrium .« of the current stage
defined by {Q;}

2. Improving the estimation of the Q-function with the
new Nash value yNash

* But Nash Q-learning suffers from
* Very high computational complexity
* May not work when other agents’ policy is unavailable

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q-learning

Initialize Q(s,a) arbitrarily

Initialize s
loop

a; < probabilistic outcome of Nash policy derived from Q(s,a), for
player ¢ {Mixed with exploration policy}

Take action a;, observe reward r, next state s’ and the joint action of
other players a_;

fory=1..ndo

Qi(s, (a3, as)) — Qu(s, (as, ai)) + a(r; HyVi(s')i— Qi(s, (ai,a—;)))

end for = temmmeees

________________________________________________________________________________

s+ &
end loop

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q-learning

Player 2 0.2
al a2 0-5 1,1/1,0
State 2
a1/2, 210, 3 52 |0,1/0,0
Player 1 |
a2|13,011,1 0.3
g 1,00, 1
State 1 \ 0.6 State 3
* Entry valuesare _ .-~ 0,111,0
immediate reward
Player 2 0.2
yal a2 05 QlIQZ QllQZ
State 2
all Q,Q; | Q1. Q; 0.4 Q,Q; | QuQ;
Player 1 |
d 2 Qll QZ Qll QZ O . 3
| \ Q]_)QZ Q]_IQZ
Statel 0.6 State 3
N Entry values o Q| A

become Q values

Qi(s, (a;,a—;)) — Qi(s,(ai, a—;)) + O‘(Ti +Vi(s") — Qi(s, (as,a z)))



Minimax Q-learning

* Minimax-Q is desighed to work with zero-sum
stochastic games

* in zero-sum games a Nash equilibrium can be found
using linear programming

V(s) = o ggga EAW(S a)Q(s, (d',0"))

Probability Own action Opponent

distribution action(s)
of actions

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.



Minimax Q-learning

Initialize Q(s, (a,0)) and m(s) arbitrarily
Initialize s
loop

a < probabilistic outcome of 7(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s’ and opponent action o

Q(5,(a,0)) — Q(s,(a,0) + a(r + 1V (s) = Q(s, (a,0))) |~ = 5"
with V(s) = max min > 7(s,da’) Q(s, (a',0')) | . '
| T EPD(A) o' €0 2y | » 0: opponent
L ave xS (s N O Tal Y actions
m(s) ~arg max min ), w(s,d) Qs (@), 0)) « PD(A): prob.
s o distribution
end loop of actions

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.



Recent Progress of MARL

« Communications between agents

* Build local communication schemes between agents via the
hidden states of deep neural networks

* CommNet, BiCNet etc.

e Centralized training & decentralized execution

* Train a centralized critic to guide the update of each actor
policy, and execute the actor policies in a decentralized way

* COMA, MADDPG, QMIX etc.

* Opponent modeling

* Observe and predict the actions of other agents, so as to
perform better decision making

* LOLA, PR2, ROMMEO etc.

 And many other aspects such as bi-level opt., signal
coordination, “win or learning fast” (WoLF) etc.



Training Paradigms of MARL

Fully Decentralized

* Each agent independently
senses the local env. and
learns its policy

* Like multiple single-RL tasks
* E.g., Independent Q learning

Fully Centralized

Training and execution are both
centralized

All agents sync at each step,
which is costly

E.g., Single Q learning,
CommNet

Centralized Training &
Decentralized Execution

* Train the agents together but
execute each of them
independently

* Agents number and indices are
fixed

* E.g., COMA, MADDPG, QMIX

Decentralized Training with
Networked Agents

Agents senses the local env. but
can locally sync their info over the
network neighbors

Robust over time-varying network
E.g., AC with networked agents




Decentralized Training & Execution

Independent Q-Learning

* For each agent j, assume the other agents’ policies
are stationary, thus the environment for j is
stationary to perform Q-learning

Q’(s,a?) — Q(s,al)+
(i (s,a?,a77) + ymax Q' (s, a’’) — QI (s, a))

al

e Unfortunately, in SG with MARL, every agent is
learning and updating its policy, making the
environment non-stationary

Tan, Ming. "Multi-agent reinforcement learning: Independent vs. cooperative agents." ICML. 1993.



Decentralized Training & Execution (with Opponent Modeling)

PR2: Probabilistic Recursive Reasoning for MARL

Perspective of Agent «: _—
m(a',a”"|s) « 7' (a’|s)p""(a""|s,a’) . Opponent Effect

'
(] - - e = P

Perspective of Opponent: .
m(a’,a~|s) « 7' (a""|s)p' (a']s,a") . Best Response
Agent Considering
Execution Impact on Opponent
Recursive i —i i i —i —i i —i —1i i i —i
_ nmgla,a '|s)=nmn,als)nr, . (a |s,a)=mn,_,(a "|s)m,(als, a
e mg(ala”ls) = my(als)my (a7 s ') = xy L (a7 ) e (a' s a )
Agent i’s perspective The opponents’ perspective
Policy [ ( [ [ —i —i i )
arg max Ty \a |s _:.la "|s,a
ke angmax ' (m (@ls)py’ o ls.a)

Policy Vgini _ Esz,aiNyri [V@i log ﬂéi (ai\s) / | 7T,9_—ii (a_i\s, ai)Qi(S, ai, a—i> da™"

gradient q—

Wen, Ying, et al. "Probabilistic recursive reasoning for multi-agent reinforcement learning." ICLR 2019.



Decentralized Training & Execution (with Opponent Modeling)

LOLA: Learning with Opponent-Learning Awareness

* Main idea: not only consider the opponent’s
current policy, but further consider how it will
change for the next step!

* Naive learner: ¢!,

0? , = argmaxg: Vz(Bl-l, 0%)
=0, + Vg V(6;,0%) -6

1271

| = argmaxgi vie!, 912)

* LOLA learner optimizes
max V(01,0 + A0?) ~ V1(0',0%) + (A6%) V4. V1(6!,6°)

> ! !
Consider opponent First-order Taylor
policy learning expansion approximation

Foerster, Jakob, et al. "Learning with opponent-learning awareness." AAMAS 2018.



Fully Centralized

CommNet: Learnable Communication Scheme

* Design learnable explicit communication scheme is
important for directly achieving agent coordination

Module for agent j 7t communication step CommNet model
+1 - - : ; =\~
‘}%j /’/,—’/ f’l f’L f’l, fz \\\‘\ | {_ala *aAa'J} \
( \ /, tu 11; Tn 1u [ ]
tanh [ Y
AN mean [ ) @
cillai|]” | U
\ )/ 1/— 1 1 1 z'/ [ f ]J
i ' - [ [ .
C] h; ‘ {81,...,8J}
+1 _ prppt 2
hj =f (h ¢ ) Possible skip connections:
] 1 , . ...
+1 Z i+1 z.+1 — fl(pt Al 0
/

Sukhbaatar et al. Learning Multiagent Communication with Backpropagation. NIPS 2016.



Fully Centralized

BiCNet: Bidirectionally-Coordinated Net for MARL

> & 3
Attention Neron .’ Bi-directional RNN .’ Policy Action @ Value Function @ Reward Shaping ﬁ Agent

(a) Multiagent policy networks with grouping (b) Multiagent Q networks with reward shaping

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.



Fully Centralized

BiCNet: Bidirectionally-Coordinated Net for MARL

* Multi-agent game playing
* Learning to cooperate and compete

e Dragon (Agent)

* Agents learn to cooperate in a team to fight against another
team (here the other team is just hand-crafted Al)

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to
Play StarCraft Combat Games. NIPS workshop 2017.



Centralized Training & Decentralized Execution

COMA: Counterfactual Multi-Agent PG

Al

t 7® =m(h?, €) A%
(h, &) t }
(e)—+ (u®, 7°)- COMA
ul
o et fowsug )
; (h*_ )= GRU —=(h*) NS
011 JU1t + A
[ Environment ] (0%, a,u? ) (u?,s, 0% au)
COMA Model Actor Critic

» Actor-critic policy gradient

T
J(0) = Ery[Ro]  VoJ(0) = Espp [Z A%(s, u)V log (utlst)]
* Counterfactual advantage function *=°

A%(s,u) = Zw (W) Q(s, (u™2, u'®))

Foerster, Jakob N., et al. "Counterfactual multi-agent policy gradients." AAA/ 2018.



Centralized Training & Decentralized Execution

MADDPG: Multi-Agent DDPG

* Centralized action-value function D — \.
Q?(x,al,...,aN) E m LY .

- B} L | i gl

L:(Hi) o Ex,a,r,x’ [(Qz <X7 LICEERE aN) _ y) ] NS \O A\ d J.

y:T’L—i_’YQ{[-,L (Xlaallv"'aaiN> a;:p;(oj) Q v e e Q

* Deterministic policy gradient via chain rule
vez‘](p”b) — EX,CLND[veill’i(ailoi)vGi bel: (Xa A1y -eny aN)

* Comparing with COMA, MADDPG

* Learn a centralized critic for the agents
e Continuous policies

;=K (Oi )]

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.



Centralized Training & Decentralized Execution

Learning Multi-Agent Interactions

predator 1 predator 2 ‘
predator 3 .
prey
@, -
0® o
n
Predator-prey task DDPG MADDPG
N Predator-prey I Phys dec, N=2 Phys dec, N=4 I Covert comm
* Evaluation protocol :
. . (/J .
* Avs. Bfortraining & test z
. . 0
e If A gets higher score in A- 3 o4
vs-B than A-vs-A, then it §
means A is better than B g |
MADDPG v MADDPG v DDPG v DDPG v DDPG
MADDPG DDPG MADDPG

Comparison of MADDPG and DDPG (Agent v Adversary)

Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." NIPS 2017.



Decentralized Training & Execution (with Models)

Two Parts of Sample Complexity in MARL

Environment for the ego agent

——————————————————————————————————

' Dynamics ! State S

I I
, samples |

i Opponent1 Opponent2
fm - —

IOpponentI i g
' samples | joint actlon (@', a’)

ls
=

Ego Agent

la

e mm e ak E Em e o o o e B B B B B A e e Em o Em S o oEm WP

——————————————————————————————————

* Dynamics sample co deeX|ty num of real environment transitions
(observations sampled from p(s'|s, a4, ..., ay))

* Opponent sample complexity: num. of real opponent actions
(observations sampled from m;(als))



Decentralized Training & Execution (with Models)

Decentralized Model-based MARL

Multi-agent real environment

" » i
Opponent 1 = 5 !
»9

é e

Opponent 2

Multi-agent environment model Multi-agent interaction experience
JSTTTTTTE TR T TRy \ I""""""":: """""""
E 0 state @
_________ , Learning : : : real state simu. states
: env.' X : :
| dynamios Opponent 1 | | E 200t OO O—0-O
™ model ! 1 @ction
' Opponent ! | : o 1
i modeling vy Opponent 1 ey am, ey
_Egoagent . Env. dynamics ! E action = 00
A \ model Lo simu. actions  real actions
' ' | Opponent 2
; Opponent 2 | ! pz ction ’_"_m
' model ' (k=5)
Ve LT R
Policy optimization for ego agent
* Multi-agent environment model
. . / T —1
e Environment dynamics model 7 (s'|s,a’,a™") )
' —i =k

- Opponent model 7 “(a™"|s)

e Decentralized MARL: each agent independently maintains
its multi-agent environment model as above

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.



Decentralized Training & Execution (with Models)

Bound of Policy Value Discrepancy

* Multi-agent branched rollout scheme
1. Learn environment dynamics 7 and opponent models 7~

2. Start from an experienced state and start the rollout with
ego policy 7 and above models to collect simulated data

3. Train ego policy based on simulated data

* Then the value discrepancy bound is

after branch

Dt B S NNC SEORNC R )
before branch k+1/ i j
. | e 2 ey )
k ™ je{—i}
< [+ (6 +1) T M (et Y ) ¢ T I
. JEL- je{—i} J
model generz‘ﬁization error \ policy distr\i?)ution shift

. / 7 —z —z
= Clem, €€ €5 k) different opponent models contribute differently

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.



e e e W e e e e e e e e e e e

Decentralized Training & Execution (with Models)

Algorithm Derived from Theoretic Analysis

Multi-agent interaction experience

state @

real state simu. states

Fgo agent - 0-0-0-0
action
Opporent1 g o & @@
action
simu. actions real actions

Oppor_1ent2 ‘ ‘ '

action

- e e e e e e e e G G G S S e e e e e e -

Environment model starts
from real state and then
samples the next states

Ego agent takes actions
following its current policy

Opponent models sample

actions based on their errors

* If the erroris large(small),
it samples few(more)
actions

Then use real opponent

agents to sample further

actions

Weinan Zhang et al. Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts. IJCAI 2021.



episode rewards

Decentralized Training & Execution (with Models)

AORPO Experiments

* Multi-Agent Particle Environment (cooperative setting)

* On sample efficiency, AORPO and AORDPG outperform MASAC and MADDPG
respectively, indicating the efficacy of building multi-agent environment model

Cooperative communication

0 10K 20K 30K
episodes

Cooperative scheduling

—300 -150
n —350 wn —200
° °
g _400 g —-250
-300
L 450 Qv
0) G) —350
—500
e} T _
o o 400
g__ —550 D 450
O -600 MADDPG —— MASAC —— AORDPG —— AORPO
—650 T T T T l —550 l T ll T T T
0 10K 20K 30K 0 10K 20K 30K
episodes normalized agent interactions

|

Complex env. & simple opponents

Simple env. &
complex opponents




Content

* Introduction to Reinforcement Learning
* Fundamentals of Game Theory
* Multi-Agent Reinforcement Learning

* Many-Agent Reinforcement Learning

* Algorithms
e Platforms



From Multi- to Many-Agent RL

 What will happen when agent number grows?

* Reward function of agent I Sx A x---x AV SR

* Transition probability p: S x Al x -+ x AN — Q(S)

* Both reward function and state transition
probability get exponentially larger
* More difficult to model
* The environment is more dynamic and sensitive
* Need more exploration data
* More computational resources



MAgent Battle Game Demo 1

by Geek .AI
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by Geek .AI

MAgent Battle Game Demo 2
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ldea 1: Taking Other Agents as A Whole

* In some many-body systems, the interaction
between an agent and others can be approximated
as that between the agent and the “mean agent” of
others



Mean Field Multi-Agent RL

* Mean field approximation

* Approximate the joint
action value by factorizing

tth?fur?ction in.to '/./"//A/F/.//./

palrwise interactions &

kEN () e

||
‘ o
O
Neighboring agent set of j L l /

 Significantly reduces the global interactions among agents
* Still preserves global interactions of any agent pair

Yaodong Yang, Weinan Zhang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.



Action Representation

Qs.a) = > @ls,0,ab)
keN(j)

* Consider discrete action space
* Action ¢ of agentjis one-hot encoded as

o . _
al & [a]l, . ,a,JD] Only one element is 1

 The mean action based on the neighborhood of j is
: 1
I k
W= =
k
* Thus the action a* of each neighbor k can be represented as

. . 1 _
o =al + 6P — Zaj”“ =0
N
k
mean residual Residual sumis O
action



Mean Field Approximation

* A 2-order Taylor expansion on Q-function

@(5,0)= ;@600 a" = al + dal*
k

N7

1 . . . . . 1 . . . .
= N7 2 [Qﬂ(s, o), @) + Vg Q'(s,d,@) - 607" + 5 8" - V5;,Q' (s,07,67F) - 607"
k

: . . o 1 : 1 : . . .
= Q'(s,a?,@) + V5 Q' (s,a?,d’) - ~7 Z satk + TN E :60,3”“ . V?Lj,kQJ(s,aJ,&J,k) . dat*
k k

=Q/(s,0,@) +WZ 501

~ QI(s,al,al) External random signal for agent j
Q-function model j ( ") & §a?* . V2, Q7 (s, a? ,@F) - §aP*
the interaction
between the ik = gl 4 eIk§alk

agent’s action and
the mean action



Mean Field Q-Learning

* A softmax MF-Q policy |
. , — J J gl
TI'Z(CL‘7|$,C_E]) _ exp( IBQt(S??’ y 4 )’) —
ZajleAj €Xp ( — ﬁQt (87 a’ ,aJ))
* Given an experience (s,a,r,s’,a) sampled from
replay buffer

« Sample the next action a’_ from Q¢j_

* Set yj — 'rj + 7Q¢3 (8,7 afia aj)
* Update Q function with the loss function

L(¢7) = (V¥ — Qui(s, a7, %))



Experiment of Ising Model

* Each spinis an agent to
decide up or down (action)

 Measure: order parameter
e— NN
N

* The closer OPisto 1, the
more orderly the system is.




Experiment Performance [M

1.0 IIIIIIII...

= MCMC e Ground truth: MCMC

5 - i . |
aEJO-S v simulation
S 0.6 *\  Goal: MF-Q learns
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O] Y .
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Ty o - :
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Experiment Performance [M

T<1c:1=0.9 T~Tc:1=1.2 T>1c:1=2.0
0
5
10
15
0 5 10 15 0 5 10 15
(a) MF-Q
T<1c:1=0.9 T~Tc:1=1.2
0 = omg
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(b) MCMC
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Supported by MAgent

Battle

T

turnd [

'shp

S minimap

s hp
group2’s minimap

1,
2
2,

wall
group1
group1
group
group
group

| Last action/reward | Relative pos |
attack

ID Embedding

Grid World

Experiment

Observation Space
Action Space

o
>
o
S

Lianmin Zheng, Weinan Zhang et al. "MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence." NIPS 2017.
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Experiment Performance Battle

400
Bl vsiL B vs MF-AC 350 Bl vsiL B vs MF-AC

e vs MF-Q B vs AC - pm vs AC
300
‘U

MF-Q MF-AC

(a) Average wining rate. (b) Average total reward.
* For 64 vs 64 battle, MF-Q works the best among all
compared models

 MF-AC may not work that well particularly when
the agent number is large



Experiment Performance Battle

—800 — MFAC

— MFQ

0 250 500 750 1000 1250 1500 1750 2000
Epoch

 MF-Q has a fast convergence property
* MF-AC has a phase changing point



Case Study of MF-Q vs. IL

::.:5-: £
ol .._-:.E'E .5.
'@. L L

S '5-."":".._:::-!:.'-21

Blue: MF-Q
Red: IL

MF-Q presents a
go-around-and-
besiege strategy

MF-Q agents are
more consistent
with neighbors



ldea?: Factorization Machine

Feature vector of agents

Agent 2

hondi - 000000000
Agent 000000000

* Computing the Q-value with the independent Q-
function and the interactive ingredients inspired
from factorization machine



Factorized Q-learning

* A composite deep neural network architecture
whose components share the model parameters
among all the agents within the same group

* Reduce the model complexity
* Still preserves global interactions of any agent pair

* Accelerate the learning process.

Ming Zhou, Weinan Zhang et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.



Factorized Q-learning

V(Sioai;ﬂl)TU(Siioaii;ﬂz) scalar
dot
o vector eeeeeeeeeeU(s",a';3)
Q(Slsal;e) averfiged
0000000000 o
scalar [ © | vector soooooooee| matrix eeeeeeeeee U(s',a’;[,)
T T 0000000000
Q — Network V — Network U — Network
(0) (B) (5,)
(s',a") (s',a') {s’,a’}
Gelecron)

Ming Zhou, Weinan Zhang et al. Factorized Q-Learning for Large-Scale Multi-Agent Systems. DAI 2019.



Factorized Q-learning

* Q-Network: Denote the i-th agent’s value function

Q(Si: ai: 9)

e \/-Network & U-Network

* The outputs of V and U denote the feature vectors of
focused agent and other agents, respectively. And the dot
product of U and V denotes the interactive ingredients of
the focused i-th agent and other j-th agents

V(s’i’, ai? ,51>T Z U(S‘ja C‘j? B2)

je—i



Factorized Q-learning

* We redefine the Q-function for the high-order
tensor relationship between states and actions as
follows

Q' (s, a',a’, - cal: O) = Q'(s,a",a™"; O)
~Qi(s,0%0) +X° Y Vi(s,a'i 1) Uls, o/ Bo)
je—i
~ Q(s*,a%;0) + X°-V(s*,a*; 5T Z U(s?,a’;Ba)

jE—i

= Q(s',a%0) + X - V(s',a’; 81)T (N — \ > U(s,a7; Bo)
w5, A

Jei

= Q(s*,a%0) + \- V(s a"; f)AU(s7%,a7% B2),

i 1 o . . . . . .
U™ a7, 8% = 57— 2. U, 5) implies the equivalent force in place of complex interactions

JE—I



Experiment Performance Battle

FQL FQL —
- —
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20 1 4
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0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
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Epochs (N=64) Epochs (N=64)

(a) Killing Index (c) Total Rewards Index

(b) Mean-Rewards Index

3 self-play trainining curves. The Killing Index shows the ability of killing
enemies, the Mean-Rewards Index shows the rewards of every agent in every

step, and the Total Rewards Index shows the ability of gaining rewards in an

episode.



Rewards
o o

Experiment Performance Battle

300
o2
©
-
©
=
()
o
10(
MF-Q MF-Q
D-laL D-laL
FaL

FaL
0 laL

QL
FQL vs D-IQL FQL vs IQL FQL vs MF-Q

(b) Total Rewards Index

FQL vs D-IQL FQL vs IQL FQL vs MF-Q

(a) Mean-Rewards Index

* The battle results between FQL and other three
competitors indicate the effectiveness of FQL
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* Fundamentals of Game Theory
* Multi-Agent Reinforcement Learning

* Many-Agent Reinforcement Learning

* Algorithms
e Platforms



From Multi- to Many-Agent RL

 What will happen when agent number grows?

 Reward function ofagent 7/ : S x Al x -+ x AV -5 R

* Transition probability p:S x Al x --- x AN = Q(S)

* Both reward function and state transition
probability get exponentially larger
* More difficult to model
* The environment is more dynamic and sensitive
* Need more exploration data
* More computational resources



Key Factors for Successtul MARL

 Computation: High computational resource for
reinforcement learning

e Data: a huge amount of data for training the
models

* Environment: a low-cost environment for RL agents
to interact with

e Solution: an effective simulator



What accounts for an effective simulator?

High Efficiency High Reality

* Interact with multiple  The simulation results
agents in a high speed should be as close to

e Multi-thread and reality as possible
multi-machine  Match in both micro
deployment and macro levels

Extendibility Interaction

* Flexible to adapt to e Easy to visualize and
new tasks with little friendly for human
effort interaction




MARL Case: Online Taxi Order Dispatch

Blue points:
orders

Red points:
taxis

Ming Zhou, Weinan Zhang. Multi-Agent Reinforcement Learning for Order Dispatching via Order-Vehicle Distribution Matching. Working paper.



Featured Simulators

* Discrete world: MAgent
* https://github.com/geek-ai/MAgent

e Continuous world: Cityflow
 https://github.com/cityflow-project/CityFlow/

* Self-driving cars: SMARTS
 https://github.com/huawei-noah/SMARTS



https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

The Challenges

* High demand of
computation
* Large scale computation

in training, inference
and simulation

* Scalable and dynamic
solution

 The number of agents is
highly dynamic. Agents
can enter and exit

 Complicated interaction

* Itis hard to exactly
model the interaction
among agents

e Visualization




The Challenges

Grid World

[ TTTT T - —I

=0
HEE B - |

Observation Space

wall

group1

group1’s hp
group1’s minimap
group2

group?2’s hp
group2’s minimap

| IDEmbedding | Lastaction/reward | Relative pos |

Action Space

move * attack turn] [




Other MARL Platforms

Platform Number of Learning Interface
agents
OpenAl Gym <10 J
Malmo <1000 J
Starcra_lft Learning < 2000 J
Environment
Arcade Learning
Environment <10 :
NetLogo ~ 1000,000 X
MAgent ~ 1,000,000 N/




Decentralized MARL

* When agent number is too large to maintain a centralized
meta-agent for controlling
* Sharing Q-network for scalability
* Agent ID for personalization

Agent Group 1 observation:

1
: Gridworld Configuration
| spatial view &

I

I

1

non-spatial feature

Agent Group 2

Agent Registration

.

! Action

Reward Description

I , : ,
Shared Weight + ID Embedding | ! Parallel Simulation Engine
|

RL Algorithm

Environment



Use Case: Many-Agent Interactions

* MAgent game: alighing

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.



Use Case: Many-Agent Interactions
* MAgent game: battle
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Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Atrtificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.
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Use Case: Many-Agent Interactions
* MAgent game: battle

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Atrtificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.



Use Case: Many-Agent Interactions

* MAgent game: city simulation
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Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos.

* Designing
* Car routing
policy
 Traffic light
controller
* Fleet

management
& taxi dispatch



A Continuous-World Simulator is
Necessary to City Traffic Simulation

For example, traffic jams are caused by micro-scale acceleration
and deceleration.

Cathy Wu et al. Flow: Architecture and Benchmarking for Reinforcement Learning in Traffic Control. 2017.



Featured Simulators

* Discrete world: MAgent
* https://github.com/geek-ai/MAgent

* Continuous world: Cityflow
 https://github.com/cityflow-project/CityFlow/

* Self-driving cars: SMARTS
 https://github.com/huawei-noah/SMARTS



https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

Why is Simulator a
Necessity?

* Large number of training samples
required

e High trial and error cost

* Not possible in real world
environment

* Even more problematic in city
scenario




Current City Simulator

* Focus on traffic scenario
e Commercial:

* VISSIM VISSIM
 AIMSUN.NEXT aimsun.next

* Open source:

* Most Popular: SUMO P> 220
e Ours: CityFlow

* Microscopic Simulator
e Simulate the movement of each single vehicle or object



e Simulation of Urban Mobility
* Institute of Transportation Systems @ German Aerospace Center
* Project starts from 2000

SCREENCAST (®) MATIC


https://gfycat.com/hopefulsolidamericancreamdraft

C | ty F ‘ OW https://github.com/cityflow-project/CityFlow

 CityFlow is city simulator particularly focused on

speed and scale

Parallel Car Roadnet Excellent
Computing Following Design Implement
Parallel Computing New Car following Our hierarchical Improvement of
speeds up 4x with 8 algorithm designed roadnet structure fundamental code
core CPU by us is much faster serves for car speeds up 2x with

than SUMO following model same algorithm


https://github.com/cityflow-project/CityFlow

CityFlow Design

 Road structure

RoadLink

: Segment

LaneLink

Lane

Road

e Car flow structure: linked list

—— Gy —— G > G >
= O




CityFlow Design

 Car following model

no-collision-speed s:

Time Step t
Vg, gap,dg vy, dy
ol o
Gy

Time Stept + 1

1 1
— g2y g .
ZdFS +2mterval S s gap,d, v, =0,d,
2
1
= gap +v—L——interval-vF a‘ ﬁ‘
2d; 2
=
* Lane changing model
= O
O O

Shadow vehicle



CityFlow Design

* |ntersection model

Checkpoint




C | ty F ‘ OW https://github.com/cityflow-project/CityFlow

* Focus on speed
e Data structure design
e Simulation algorithm design
e Multithread
* Faster python api (compared to SUMO)

v 5 1 SUMO
§ ' CityFlow-1
“ I CityFlow-2
§20] == CcityFlow-4
© B CityFlow-8
S 15 -
£
"
S 10 -
Q.
=
g) ) Fa
w
0 ’_R- [N
1x1 6x6 30x30 6x6 6x6

w/o w/
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Compare Good/Bad Traffic Control
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Test on Real-World Road Network:

Los Angeles (4 Intersections)
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Real World City Simulator: Manhatton
(2510 Intersections)
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Real World City Simulator: Manhatton
(2510 Intersections)

Status Panel City Simulator
LS 940

BB 1800

EL0E-E Ve 294

SAEE 16.28%

Navigation Keys

(teft] right Jup [ down [ -] =
1(slowdown)

Info Box

roadnet file loaded.
simulation start!



T15CC2050

* Use a customized version of CityFlow as backend
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Featured Simulators

* Discrete world: MAgent
* https://github.com/geek-ai/MAgent

e Continuous world: Cityflow
 https://github.com/cityflow-project/CityFlow/

 Self-driving cars: SMARTS
 https://github.com/huawei-noah/SMARTS



https://github.com/geek-ai/MAgent
https://github.com/cityflow-project/CityFlow/
https://github.com/huawei-noah/SMARTS

Autonomous Driving

Step 1: Perception Step 2: Control

Recognize the objects around & Make action decisions in the
build the 3D world built world



S I\/l A RTS (W'th H uawel Tea m) https://github.com/huawei-noah/SMARTS

* A scalable multi-agent learning simulator for
autonomous driving control

* Flexibility and high efficiency in the physical
simulation and interacting with multi-agent
reinforcement learning algorithms

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Scenario: Multi-lane Cruising



Scenario: Crossroad,



Scenario: On-ramp



Multi-Agent Learning for Auto-Driving

Level | Description Possible MARL Approach to Double Merge
Rule-based planning & control
MO ; planfinig. N/A
without adaptive learning
. . oL Learning agent could learn to implicitly anticipate how
Single-agent learning with igno- e e . : 1
Ml e . < < other agents will react to its own actions but will likely
rance of other learning agents S ) . o
suffer from non-stationarity and lack generalizability [2].
. : . MARL to model other agents, e.g. “high likely they will
Decentralized multi-agent learning . e ©. LS
M2 with opponent modeline © | yield to me if [ start changing to their lane given how they
PP © have been driving in the past few seconds.” [3] [4]
. . . Coordinated learning of what to expect even when there
Coordinated multi-agent learning | . .. D ) . .
M3 : e © | 1s no explicit coordination during execution: ‘“some of
and independent execution S ©
them will give me the gap.” [5]
ey . Learn as a group to achieve a certain equilibrium such
Local (Nash) equilibrium oriented = )
M4 . ( ) qt that each will get the chance to go through the intersec-
multi-agent learning . ) © © ©
© © tion without too much trouble. [6, 7]
. . . . Learn broader repercussions of our actions as a group,
Social welfare oriented multi-agent NS . : S
M35 € e.g. “if [ force to the left now, I will cause a congestion on

learning

the left road, because of the fast and heavy traffic there.”

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.




SMARTS:
Scalable Multi-Agent RL Training School

* SMARTS is an open-source scalable multi-agent
reinforcement learning platform for autonomous

driving.
[ — O
o— S
— N[
b
Distributed/Parallel High fidelity Interaction User friendly
Computing Scenario Design rendering

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Overview Demo of SMARTS

https://github.com/huawei-noah/SMARTS



SMARTS Architecture

Interaction Scenario Qi A Bubble
I S U B I S TS 1 50 U |
InN D [@D-> i [0

v ;'
Background Traffic Xﬁh'?le M|;)It'°n
Provider ysics an Social Agents
Provider Provider

Distributed Computing

Instantiate T

T

Scenario
Specin
DSL

>

Social
Agent

Interaction scenarios are instantiated based on a (domain specific language) DSL
specification. Social agents are instantiated from the Social Agent Zoo. Orange vehicles

are controlled by learning agents, dark blue vehicles by social agents, light blue ones by
traffic provider. All providers and agents in principle run in their own processes, possibly

remotely.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Bootstrapping Realistic Interaction

* Key contextual factors of realistic and diverse:
* Physics
* Road users’ behavior
* Road structure & regulations

Data collected from
simulated self-plays

\4

Interactive social
agents for scenario generation

Rule-based agent
Learning-based agent
Optimal-control agent
Community contributions

Behavior model with

Social Agent o .
realistic constraints

Zoo

4
o o o o

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Bubble Mechanism

* The bubble mechanism
allows SMARTS to scale
without sacrificing interaction
relism.

e Goal: support large-scale
simulation and distributed
computing.

[] background traffic zone
[] airlocking zone
[] social agent zone

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Interaction Scenario Library

* Using the scenario
DSL of SMARTS,
we can create
numerous
scenarios that vary
in road structure
and traffic.

(a) U-turn (b) Lane merging (c) Intersection (d) Overtaking

K] -
op Lo

(f) Unprotected left turn

e Scenarios provide
rich traffic flows
and road
conditions to help (&) Two-way traffic
us study behavior
and driving
strategies.

(h) On-ramp merge

(i) Off-ramp merge (j) Cascading lane change (k) Bus stop merge (1) Roundabout

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



MARL Benchmarking

Distributed training
supported.

Rich metrics.

Customizable observation,
action (controller) and
reward function.
Algorithms/Baselines

* Independent learning

Centralized/decentraliz
ed learning

* Networked agent
learning

Evaluation metrics of multi-agent AD

Metric Type Description
Collision Rate Performance Collision rate over a group of episodes.
Completion Rate | Performance | Mission completion over a group of episodes.
Generalization Performance | Robustness of algorithms to scenario variation.
Safety Behavior Integrated metrics, e.g. non-collision rate.
Agility Behavior Integrated metrics, e.g. speed.
Stability Behavior Integrated metrics for driving smoothness.
Control Diversity Behavior Preference for longitudinal or lateral control.
Cut-in Ratio Behavior Probability of cut-in in traffic flow.
Stochasticity Behavior Stochasticity of decision making.
Collaborative Game theory | Compatible interests, e.g. ratio of giving way.
Competitive Game theory | Conflicting interests, e.g. ratio of overtaking.
B sV-PPO Safety B PPO B sv-PPO Safety . PPO Il sv-PPO Safety . PPO
Il SV-MADDPG 1.00 mm vapDPG I SV-MADDPG 1.00 I MADDPG g SV-MADDPG 1.00 I MADDPG
SV-CommNet CommNet SV-CommNet CommNet SV-CommNet CommNet
0.50
Diversity s Diversity Diversity
0 Agility \& Agility Agility
Stability Stability Stability
(a) Two-Way (b) Double Merge (c) Intersection

Results on behavior metrics.
“SV-" represents the algorithms interacting with social vehicles.

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.




SMARTS Supported MARL Algorithms
Paradigm Algorithm Communication | Framework
Fully centralized training BICNet « Yes malib
CommNet Yes malib
Indepedent Q No RLIib
Independent PG No RLIib
Fully decentralized Independent AC No RLIib/malib

PR2 No malib
ROMMEO No malib
Supervised Opponent Modeling No malib
Centralized V No RLIib
MAAC « No RLib
MADDPG No malib
MF-AC/Q No malib

CTDE COMA No PyMARL

VDN No PyMARL

QMIX No PyMARL

QTRAN No PyMARL

MAVEN No PyMARL

Q-DPP x No PyMARL
Networked agent learning Networked Fitted-Q % graph RLIib

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Overall Evaluation Results

Average collision rate / completion rate of selected baselines

Algorithm Scenario - No Social Vehicle Scenario - Random Social Vehicle
Two-Way Double Merge Intersection Two-Way Double Merge Intersection

DQN 0/0.97 0.77/0.23 0.83/0.20  0.40/0.60 0.60/0.23 0.92/0.05
PPO 0/1 0/1 0.1/0.07 0.25/0.75 0.02/0.98 0.50/0.45
MAAC 0/1 0.42/0.58 0/1 0.25/0.75 0.42/0.6 0.32/0.68
MFAC 0/0.8 0.6/0.4 0.54/0.4 0.45/0.5 0.7/0.3 0.62/0.37
Net-Q 0/0.3 0.7/0.25 0.4/0.23 0.4/0.2 0.8/0.2 0.75/0.2
CommNet 0/0.96 0.46/0.45 0.3/0.7 0.25/0.65 0.5/0.5 0.5/0.45
MADDPG 0/1 0.1/0.9 0/1 0.13/0.87 0.17/0.8 0.30/0.7

Observations from above table
* PPO is the empirically best single-agent RL method
* MADDPG is the empirically best multi-agent RL method

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Demo: Single Agent with PPO

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Demo: Intersection (Unprotected Left Turn)

Hard flow

Easy flow

Ming Zhou et al. SMARTS: A Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. CoRL 2020.



Summary of Many-Agent RL

* Main difficulties for many-agent RL
* Computational complexity
 Complicated agent interactions
* Highly dynamic neighborhood

* Possible solutions to many-agent RL

* Mean field approximation and factorized value functions
e Scalable MARL platforms

Status Panel CityFlow
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Su MIMAary from Machine Learning Perspective

* Traditional machine
learning is to build
* aloss function
* a likelihood estimation
* an expectation of value

from a machine and the
training data and to
optimize the objective

® @
OO @
obiectiy . O O O
objective ® e ®
data

* Multi-agent machine
learning is to build
* aloss function
* alikelihood estimation
* an expectation of value

from the two machines and
the training data and to
optimize the objective
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Summary of MARL

* Machine learning paradigm shift
* From prediction to decision making (RL)
* From single-agent to multi-agent to many-agent
* An intersection with game theory is essential

* Multi-agent RL
e Centralized training (with decentralized execution)
e Decentralized training (with networked agents)

* Many-agent RL

e Challenges
* Computational complexity
* Complicated agent interactions
* Highly dynamic neighborhood

* Possible solutions
* Mean field approximation and factorized value functions
e Scalable MARL platforms: Magent and CityFlow etc.



Thank You!
Questions?

Weinan Zhang

Associate Professor at Shanghai Jiao Tong University

http://wnzhang.net
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