

Offline Reinforcement Learning

Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net

Apr. 2023

Content

- Overview of offline RL
- Offline RL training methods
 - Imitation learning
 - Model-free methods
 - Model-based methods
- Offline policy evaluation
- Offline RL benchmarks

Overview of Offline RL (or Batch RL)

 Training an RL agent from zero in real environment is sometimes risky (auto-driving, health care) or costly (robot control, recommender system).

- Since there is often not a good simulator, the way of training the agent only from a pre-collected offline dataset is promoted, called offline RL, or batch RL.
- In offline setting, namely pure batch setting, the agent only has access to the offline data set, instead of interacting with the environment.

Overview of Offline RL

(a) online reinforcement learning

(b) off-policy reinforcement learning

(c) offline reinforcement learning

- Though both off-policy RL and offline RL evaluate the policy using the data sampled from a replay buffer, they are different.
- The key difference is whether the agent can interact with the environment while learning
- Offline RL techniques help deploy RL to realworld applications

Advantages of Offline RL

- Offline RL can help
 - 1. Pretrain an RL agent using existing datasets
 - 2. Empirically evaluate RL algorithms based on their ability to exploit a fixed dataset of interactions
 - 3. Bridge the gap between academic interest in RL and real-world applications
- Offline RL makes RL more like supervised learning

Gulcehre, Caglar, et al. "RI unplugged: Benchmarks for offline reinforcement learning." arXiv preprint arXiv:2006.13888 (2020).

Content

- Overview of offline RL
- Offline RL training methods
 - Imitation learning
 - Model-free methods
 - Model-based methods
- Offline policy evaluation
- Offline RL benchmarks

Behavior Cloning as Offline RL

• Behavior cloning, the simplest imitation learning method, requires no environment interaction

- Learning objective of BC Behavioral policy $\hat{\pi}^* = \arg\min_{\pi} \mathbb{E}_{s \sim \rho_{\pi_E}^s} \left[\ell \left(\pi_E(\cdot|s), \pi(\cdot|s) \right) \right]$
- Obvious shortcomings of BC
 - 1. The policy upper bound is the behavioral policy
 - 2. Distribution shift

Overview of Offline RL Methods

Model-free Methods

- Explicit
 constraint
 - BCQ
 - BEAR
 - BRAC
 - CQL

- Implicit constraint
 - AWR
 - REM
 - BAIL

Model-based Methods

- Uncertainty estimation with the learned model
 - MOReL
 - MOPO
 - COMBO
 - ...
- The most severe problem that offline RL faces is the extrapolation error, i.e., the out-of-distribution problem.
 - What if the agent performs unseen state-action?

Extrapolation Error in Offline RL

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a'))$$

• Extrapolation error is introduced by the What if a' is an out-ofmismatch between the dataset and true distribution action? state-action visitation of the current policy.

Gulcehre, Caglar, et al. "RI unplugged: Benchmarks for offline reinforcement learning." arXiv preprint arXiv:2006.13888 (2020).

Extrapolation Error in Offline RL

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a'))$$

 Extrapolation error will be propagated via value function backups.

What if a' is an out-ofdistribution action?

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max Q(s',a'))$

What if a' is an out-ofdistribution action?

- Extrapolation error $ho^\pi
 eq
 ho^\mu$
- Off-policy methods fail to work in offline setting due to extrapolation error

• Tabular setting: only update while the transition is in the batch.

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{\substack{a' \text{ s.t. } (s',a') \in \mathcal{B} \\ \uparrow}} Q(s',a'))$$
Batch-constrained policy

• General setting: use a VAE to give the action that may occur in real environment with high probability.

$$\pi(s) = rgmax_{a_i + \xi_{\phi}(s, a_i, \Phi)} Q_{ heta}(s, a_i + \xi_{\phi}(s, a_i, \Phi))$$

Perturbation in $[-\Phi, +\Phi]$
where $\{a_i \sim G_{\omega}(s)\}_{i=1}^n$ Generative model (VAE)

- The choice of n and Φ creates a trade-off between an imitation learning and reinforcement learning algorithm

CQL: Conservative Q-Learning

- Learn a conservative, lower-bound Q function to avoid overestimation.
- Add penalty terms on a standard Bellman error objective.
 - Penalize the overestimated Q on unseen actions (from new policy μ)

$$\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \alpha \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] + \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$$

- Maximize Q under a behavioral data distribution $\hat{\pi}_{\boldsymbol{\beta}}$ $\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \alpha \cdot \left(\mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s},\mathbf{a})\right] - \mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\hat{\pi}_{\boldsymbol{\beta}}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s},\mathbf{a})\right]\right)$ $+ \frac{1}{2} \mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim\mathcal{D}} \left[\left(Q(\mathbf{s},\mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s},\mathbf{a})\right)^{2} \right]$
- use max μ to approximate current policy π , and add regularizer

$$\min_{Q} \max_{\mu} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) \\
+ \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi_{k}} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right] + \mathcal{R}(\mu) \quad (\text{CQL}(\mathcal{R}))$$

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. NeuIPS 2020. https://sites.google.com/view/cql-offline-rl

CQL: Conservative Q-Learning

 $\min_{Q} \max_{\mu} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right)$

$$+\frac{1}{2} \mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim\mathcal{D}} \left[\left(Q(\mathbf{s},\mathbf{a}) - \hat{\mathcal{B}}^{\pi_k} \hat{Q}^k(\mathbf{s},\mathbf{a}) \right)^2 \right] + \mathcal{R}(\mu) \quad (\mathrm{CQL}(\mathcal{R}))$$

• Empirically, a good regularizer is

$$\mathcal{R}(\mu) = -D_{\mathrm{KL}}(\mu, \mathrm{Unif}(\mathbf{a}))$$

With SAC, π
 is updated in
 the same
 way as SAC.

Algorithm 1 Conservative Q-Learning (both variants)

- 1: Initialize Q-function, Q_{θ} , and optionally a policy, π_{ϕ} .
- 2: for step t in $\{1, ..., N\}$ do
- 3: Train the Q-function using G_Q gradient steps on objective from Equation 4 $\theta_t := \theta_{t-1} - \eta_Q \nabla_{\theta} CQL(\mathcal{R})(\theta)$
 - (Use \mathcal{B}^* for Q-learning, $\mathcal{B}^{\pi_{\phi_t}}$ for actor-critic)
- 4: (only with actor-critic) Improve policy π_{ϕ} via G_{π} gradient steps on ϕ with SAC-style entropy regularization: $\phi_t := \phi_{t-1} + \eta_{\pi} \nabla_{\phi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \pi_{\phi}}(\cdot|\mathbf{s}) [Q_{\theta}(\mathbf{s}, \mathbf{a}) - \log \pi_{\phi}(\mathbf{a}|\mathbf{s})]$ 5: end for

https://sites.google.com/view/cql-offline-rl

CQL: Conservative Q-Learning

Task Name	SAC	BC	BEAR	BRAC-p	BRAC-v	$CQL(\mathcal{H})$
halfcheetah-random	30.5	2.1	25.5	23.5	28.1	35.4
hopper-random	11.3	9.8	9.5	11.1	12.0	10.8
walker2d-random	4.1	1.6	6.7	0.8	0.5	7.0
halfcheetah-medium	-4.3	36.1	38.6	44.0	45.5	44.4
walker2d-medium	0.9	6.6	33.2	72.7	81.3	79.2
hopper-medium	0.8	29.0	47.6	31.2	32.3	58.0
halfcheetah-expert	-1.9	107.0	108.2	3.8	-1.1	104.8
hopper-expert	0.7	109.0	110.3	6.6	3.7	109.9
walker2d-expert	-0.3	125.7	106.1	-0.2	-0.0	153.9
halfcheetah-medium-expert	1.8	35.8	51.7	43.8	45.3	62.4
walker2d-medium-expert	1.9	11.3	10.8	-0.3	0.9	98.7
hopper-medium-expert	1.6	111.9	4.0	1.1	0.8	111.0
halfcheetah-random-expert	53.0	1.3	24.6	30.2	2.2	92.5
walker2d-random-expert	0.8	0.7	1.9	0.2	2.7	91.1
hopper-random-expert	5.6	10.1	10.1	5.8	11.1	110.5
halfcheetah-mixed	-2.4	38.4	36.2	45.6	45.9	46.2
hopper-mixed	3.5	11.8	25.3	0.7	0.8	48.6
walker2d-mixed	1.9	11.3	10.8	-0.3	0.9	26.7

 Offline settings with different experts in Gym environments, CQL performs (almost) the best

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. NeuIPS 2020.

Overview of Offline RL Methods

Model-free Methods

- Explicit
 constraint
 - BCQ
 - BEAR
 - BRAC
 - CQL

- Implicit constraint
 - AWR
 - REM
 - BAIL

Model-based Methods

- Uncertainty estimation with the learned model
 - MOReL
 - MOPO
 - COMBO
 - ...
- The most severe problem that offline RL faces is the extrapolation error, i.e., the out-of-distribution problem.
 - What if the agent performs unseen state-action?

AWR: Advantage-Weighted Regression

Policy optimization objective

$$J(\pi) = \mathbb{E}_{\tau \sim p_{\pi}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right] = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{a \sim \pi(\mathbf{a}|\mathbf{s})} \left[r(\mathbf{s}, \mathbf{a}) \right]$$

Expected improvement

$$\begin{split} \eta(\pi) &= J(\pi) - J(\mu) \quad \text{[as derived in TRPO]} \\ &= \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[A^{\mu}(\mathbf{s}, \mathbf{a}) \right] = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mu} - V^{\mu}(\mathbf{s}) \right] \end{split}$$

• Based on reward-weighted regression (RWR)

$$\pi_{k+1} = \arg \max_{\pi} \quad \mathbb{E}_{\mathbf{s} \sim d_{\pi_k}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi_k(\mathbf{a}|\mathbf{s})} \left[\log \pi(\mathbf{a}|\mathbf{s}) \exp\left(\frac{1}{\beta} \mathcal{R}_{\mathbf{s},\mathbf{a}}\right) \right]$$

return

 Regarded as solving a maximum likelihood problem that fits a new policy to samples collected under the current policy, where the likelihood is weighted by the exponentiated return.

AWR: Advantage-Weighted Regression

Replace the weight with the advantage function deriving the AWR

Algorithm 1 Advantage-Weighted Regression

- 1: $\pi_1 \leftarrow$ random policy 2: $\mathcal{D} \leftarrow \emptyset$ 3: for iteration $k = 1, ..., k_{\text{max}}$ do add trajectories $\{\tau_i\}$ sampled via π_k to \mathcal{D} 4: 5: $V_k^{\mathcal{D}} \leftarrow \arg \min_V \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left| \left| \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V(\mathbf{s}) \right| \right|^2 \right]$ $\pi_{k+1} \leftarrow \arg \max_{\pi} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\log \pi(\mathbf{a} | \mathbf{s}) \exp \left(\frac{1}{\beta} \left(\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V_k^{\mathcal{D}}(\mathbf{s}) \right) \right) \right]$ 6: 7: end for
- For offline setting, regard behavior policy as a mixture of policies.

$$\eta(\pi) = J(\pi) - \sum_{i} w_{i} J(\pi_{i}) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\sum_{i} w_{i} A^{\pi_{i}}(\mathbf{s}, \mathbf{a}) \right]$$
Expected improvement
$$A^{\pi_{i}}(\mathbf{s}, \mathbf{a}) = \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\pi_{i}} - V^{\pi_{i}}(\mathbf{s})$$

Xue Bin Peng et al. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

AWR: Advantage-Weighted Regression

• Performance of various algorithms on off-policy learning tasks with static datasets. AWR is able to learn policies that are comparable or better than the original demo policies.

Xue Bin Peng et al . Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

BAIL: Best-Action Imitation Learning

- BAIL does not suffer from the extrapolation error, since it does not maximize over the actions space.
- Step 1: learn an upper envelope of state by solving a constrained optimization problem: 500

$$\min_{\phi} \sum_{i=1}^{m} [V_{\phi}(s_i) - G_i]^2 + \lambda ||w||^2$$

s.t.
$$V_{\phi}(s_i) \ge G_i, \qquad i = 1, 2, \dots, m$$

or its unconstrained penalty-loss

version

Returns and Upper Envelope Returns and Upper Envelope 300 200 100 Upper Envelope MC Returns -1000 state state Walker2d Hopper Returns and Upper Envelope 100 -Upper Envelope Upper Envelope Returns and MC Returns 100 50 50 0 -50 Upper Envelope MC Returns -50-1000 state state Ant

Upper Envelope

MC Returns

400

X. Chen et al. BAIL: Best-action imitation learning for batch deep reinforcement learning. NeuIPS 2020.

BAIL: Best-Action Imitation Learning

• Step 2: Select actions satisfying $G_i > x V(s_i)$ to perform simple imitation learning (BC). x is set such that 25% samples are selected.

Algorithm 1 Static BAIL

```
Initialize upper envelope parameters \phi, \phi', policy parameters \theta. Obtain batch data \mathcal{B}. Randomly split data into training set \mathcal{B}_t and validation set \mathcal{B}_v for the upper envelope.
```

Compute return G_i for each data point i in \mathcal{B} .

Obtain upper envelope by minimizing the loss $L^{K}(\phi)$:

```
for j = 1, \ldots, J do
```

Sample a mini-batch B from \mathcal{B} .

```
Update \phi using the gradient: \nabla_{\phi} \sum_{i \in B} (V_{\phi}(s_i) - G_i)^2 \{\mathbb{1}_{(V_{\phi}(s_i) > G_i)} + K \mathbb{1}_{(V_{\phi}(s_i) < G_i)}\} + \lambda \|\phi\|^2
```

if time to do validation for the upper envelope then

Compute validation loss on B_v

Update ϕ and ϕ' according to the validation loss

end if

end for

Select data point *i* if $G_i > xV_{\phi}(s_i)$, where *x* is such that p% of data in \mathcal{B} are selected. Let \mathcal{U} be the set of selected data points.

for l = 1, ..., L do

Sample a mini-batch U of data from \mathcal{U} .

```
Update \theta using the gradient: \nabla_{\theta} \sum_{i \in U} (\pi_{\theta}(s_i) - a_i)^2
```

end for

BAIL: Best-Action Imitation Learning

Environment	BAIL	BCQ	BEAR	BC	MARWIL
$\sigma = 0.1$ Hopper B1	2173 ± 291	1219 ± 114	505 ± 285	626 ± 112	827 ± 220
$\sigma = 0.1$ Hopper B2	2078 ± 180	1178 ± 87	985 ± 3	579 ± 141	620 ± 336
$\sigma = 0.1$ Walker B1	1125 ± 113	576 ± 309	610 ± 212	514 ± 17	436 ± 24
$\sigma = 0.1$ Walker B2	3141 ± 300	2338 ± 388	2707 ± 425	1741 ± 239	1810 ± 200
$\sigma = 0.1 \text{ HC B1}$	5746 ± 29	5883 ± 43	0 ± 0	5546 ± 29	5573 ± 35
$\sigma = 0.1 \text{ HC B2}$	7212 ± 43	7562 ± 31	0 ± 0	6765 ± 108	6828 ± 111
$\sigma = 0.5$ Hopper B1	2054 ± 158	1145 ± 300	203 ± 42	919 ± 52	946 ± 103
$\sigma = 0.5$ Hopper B2	2623 ± 282	1823 ± 555	241 ± 239	694 ± 64	818 ± 112
$\sigma = 0.5$ Walker B1	2522 ± 51	1552 ± 455	1248 ± 181	2178 ± 178	2111 ± 52
$\sigma = 0.5$ Walker B2	3115 ± 133	2785 ± 123	2302 ± 630	2483 ± 94	2364 ± 228
$\sigma = 0.5 \text{ HC B1}$	1055 ± 9	1222 ± 38	924 ± 579	570 ± 35	512 ± 43
$\sigma = 0.5 \text{ HC B2}$	7173 ± 120	5807 ± 249	-114 ± 140	6545 ± 171	6668 ± 93
SAC HOPPER B1	3296 ± 105	2681 ± 438	1000 ± 110	2853 ± 318	2897 ± 227
SAC HOPPER B2	1831 ± 915	2134 ± 917	1139 ± 317	2240 ± 367	2063 ± 168
SAC WALKER B1	2455 ± 211	2408 ± 84	-3 ± 5	1674 ± 277	1484 ± 140
SAC WALKER B2	4767 ± 130	3794 ± 398	325 ± 75	2599 ± 145	2651 ± 268
SAC HC B1	10143 ± 77	8607 ± 473	7392 ± 257	8874 ± 221	9105 ± 90
SAC HC B2	10772 ± 59	10106 ± 134	7217 ± 273	9523 ± 164	9488 ± 136
SAC ANT B1	4284 ± 64	4042 ± 113	3452 ± 128	3986 ± 112	4033 ± 130
SAC ANT B2	4946 ± 148	4640 ± 76	3712 ± 236	4618 ± 111	4589 ± 130
SAC HUMANOID B1	3852 ± 430	1411 ± 250	0 ± 0	543 ± 378	589 ± 121
SAC HUMANOID B2	3565 ± 153	1221 ± 207	0 ± 0	1216 ± 826	1033 ± 257

Overview of Offline RL Methods

Model-free Methods

- Explicit constraint
 - BCQ
 - BEAR
 - BRAC
 - CQL

- Implicit constraint
 - AWR
 - REM
 - BAIL

Model-based Methods

- Uncertainty estimation with the learned model
 - MOReL
 - MOPO
 - COMBO
 - ...
- The most severe problem that offline RL faces is the extrapolation error, i.e., the out-of-distribution problem.
 - What if the agent performs unseen state-action?

- Model-based methods allow (pseudo) exploration.
- Construct a Pessimistic MDP (P-MDP) using the offline dataset.
 - Require a careful use of the model in regions outside of support, to ensure that policies do not visit states where the model is inaccurate.
 - Partition the (s, a) space into known and unknown regions.
 - Give penalty to unknown regions.

Kidambi R, Rajeswaran A. MOReL: Model-Based Offline Reinforcement Learning. NeurIPS 2020.

Unknown state-action detector (USAD)

(α -USAD) Given a state-action pair (s, a), define an unknown state action detector as Total variation distance

 $U^{\alpha}(s,a) = \begin{cases} FALSE \ (i.e. \ Known) & \text{if} \ D_{TV}\left(\hat{P}(\cdot|s,a), P(\cdot|s,a)\right) \leq \alpha \ can \ be \ guaranteed \\ TRUE \ (i.e. \ Unknown) & otherwise \end{cases}$

HALT is an additional absorbing state

• Pessimistic MDP $\hat{\mathcal{M}}_p := \{S \cup HALT, A, r_p, \hat{P}_p, \hat{\rho}_0, \gamma\}$

 $\hat{P}_{p}(s'|s,a) = \begin{cases} \delta(s' = \text{HALT}) & \text{if } U^{\alpha}(s,a) = \text{TRUE or } s = \text{HALT} \\ \hat{P}(s'|s,a) & otherwise \end{cases}$ $r_{p}(s,a) = \begin{cases} -\kappa & \text{if } s = \text{HALT} \\ r(s,a) & otherwise \end{cases}$

Kidambi R, Rajeswaran A. MOReL: Model-Based Offline Reinforcement Learning. NeurIPS 2020.

- Planning: the final step in MOReL is to perform planning in the P-MDP with various MBRL methods like MPC, MBPO etc.
- Give penalty to unknown regions by learning optimal policy in P-MDP.

Algorithm 1 MOReL: Model Based Offline Reinforcement Learning

- 1: Require Dataset \mathcal{D}
- 2: Learn approximate dynamics model $\hat{P}: S \times A \to S$ using \mathcal{D} .
- 3: Construct α -USAD, $U^{\alpha} : S \times A \to \{\text{TRUE}, \text{FALSE}\}$ using \mathcal{D} (see Definition 1).
- 4: Construct the *pessimistic* MDP $\hat{\mathcal{M}}_p = \{S \cup \text{HALT}, A, r_p, \hat{P}_p, \hat{\rho}_0, \gamma\}$ (see Definition 2).
- 5: (OPTIONAL) Use a behavior cloning approach to estimate the behavior policy $\hat{\pi}_b$.
- 6: $\pi_{\text{out}} \leftarrow \text{PLANNER}(\hat{\mathcal{M}}_p, \pi_{\text{init}} = \hat{\pi}_b)$
- 7: **Return** π_{out} .

Environment: Ant-v2					Environment: Hopper-v2						
Algorithm	BCQ [15]	BEAR [16]	brac [18]	Best Baseline	MOReL (Ours)	Algorithm	BCQ [15]	BEAR [16]	brac [18]	Best Baseline	MOReL (Ours)
Pure Eps-1 Eps-3 Gauss-1 Gauss-3	1921 1864 1504 1731 1887	2100 1897 2008 2054 2018	$ \frac{2839}{2672} \\ \frac{2602}{2602} \\ \frac{2667}{2640} $	2839 2672 2602 2667 2661	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pure Eps-1 Eps-3 Gauss-1 Gauss-3	1543 1652 1632 1599 1590	0 1620 2213 1825 1720	2291 2282 1892 <u>2255</u> 1458	2774 2360 2892 2255 2097	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Envi	ronment:	HalfCl	neetah-v2	<u>.</u>		E	nvironme	nt: Wal	ker-v2	
Algorithm	Envi BCQ [15]	ronment: BEAR [16]	BRAC [18]	neetah-v2 Best Baseline	MOReL (Ours)	Algorithm	Ei BCQ [15]	nvironme BEAR [16]	nt: Wal ^{BRAC} [18]	ker-v2 Best Baseline	MOReL (Ours)

- MORel achieves SOTA performance in 12 out of 20 tasks
- The error bar is the standard deviation of five random seeds

Kidambi R, Rajeswaran A. MOReL: Model-Based Offline Reinforcement Learning. NeurIPS 2020.

- The naïve MBRL approach first learns a dynamics model using the offline data, then runs MBRL without any safeguards against model inaccuracy
- The naive MBRL algorithm is highly unstable while MOReL leads to stable and nearmonotonic learning

- Idea: given the model will not be globally accurate
 - need an uncertainty-penalized MDP (for inaccurate state transitions)
 - discourage policy from visiting regions where model uncertainty is high.
- The gap of expected return under \widehat{M} with (\widehat{T}, r) and M with (T, r)

Let
$$G_{\widehat{M}}^{\pi}(s,a) := \underset{s' \sim \widehat{T}(s,a)}{\mathbb{E}} [V_M^{\pi}(s')] - \underset{s' \sim T(s,a)}{\mathbb{E}} [V_M^{\pi}(s')]$$

 $\eta_{\widehat{M}}(\pi) - \eta_M(\pi) = \gamma \quad \bar{\mathbb{E}} \quad \left[G^{\pi}_{\widehat{M}}(s,a) \right]$

Improper expectation over OM —

$$\eta_M(\pi) = \underbrace{\mathbb{\bar{E}}}_{(s,a)\sim\rho_{\widehat{T}}^{\pi}} \left[r(s,a) - \gamma G_{\widehat{M}}^{\pi}(s,a) \right] \ge \underbrace{\mathbb{\bar{E}}}_{(s,a)\sim\rho_{\widehat{T}}^{\pi}} \left[r(s,a) - \gamma |G_{\widehat{M}}^{\pi}(s,a)| \right]$$

• When the reward function is bounded $\forall (s, a), |r(s, a)| \le r_{\max}$: build a lower

$$|G_{\widehat{M}}^{\pi}(s,a)| \leq \frac{r_{\max}}{1-\gamma} D_{\mathrm{TV}}(\widehat{T}(s,a),T(s,a)) \xrightarrow{\text{bound of the true value}} true value$$

Yu T, Thomas G, Yu L, et al. MOPO: Model-based offline policy optimization. NeuIPS 2020.

• Optimize π in an uncertainty-penalized MDP $\widetilde{M} = (S, A, \widehat{T}, \widetilde{r}, \gamma)$, where $\widetilde{r}(s, a) := r(s, a) - \lambda u(s, a)$

If
$$u(s, a)$$
 is an admissible error estimator, i.e., upper bounds the error of $\hat{T}(s'|s, a)$, then for a particular choice of λ :

$$\eta_{M}(\pi) \geq \frac{\mathbb{\bar{E}}}{(s,a)\sim\rho_{\widehat{T}}^{\pi}} \left[r(s,a) - \gamma |G_{\widehat{M}}^{\pi}(s,a)| \right] \geq \frac{\mathbb{\bar{E}}}{(s,a)\sim\rho_{\widehat{T}}^{\pi}} \left[r(s,a) - \lambda u(s,a) \right]$$
$$= \frac{\mathbb{\bar{E}}}{(s,a)\sim\rho_{\widehat{T}}^{\pi}} \left[\tilde{r}(s,a) \right] = \eta_{\widetilde{M}}(\pi)$$

• Practical algorithm uses ensemble of models:

 $\{\widehat{T}^i_{\theta,\phi} = \mathcal{N}(\mu^i_{\theta}, \Sigma^i_{\phi})\}_{i=1}^N \qquad \widehat{T}_{\theta,\phi}(s_{t+1}, r|s_t, a_t) = \mathcal{N}(\mu_{\theta}(s_t, a_t), \Sigma_{\phi}(s_t, a_t))$

• Penalize reward function using heuristic uncertainty estimate:

$$u(s,a) = \max_{i=1}^{N} \|\Sigma_{\phi}^{i}(s,a)\|_{\mathrm{F}}$$

the maximum standard deviation of the learned models in the ensemble

Yu T, Thomas G, Yu L, et al. MOPO: Model-based offline policy optimization. NeuIPS 2020.

Algorithm 1 Framework for Model-based Offline Policy Optimization (MOPO) with Reward Penalty

Require: Dynamics model \widehat{T} with admissible error estimator u(s, a); constant λ .

- 1: Define $\tilde{r}(s, a) = r(s, a) \lambda u(s, a)$. Let \widetilde{M} be the MDP with dynamics \widehat{T} and reward \tilde{r} .
- 2: Run any RL algorithm on \widetilde{M} until convergence to obtain $\hat{\pi} = \operatorname{argmax}_{\pi} \eta_{\widetilde{M}}(\pi)$

Algorithm 2 MOPO instantiation with regularized probabilistic dynamics and ensemble uncertainty **Require:** reward penalty coefficient λ rollout horizon h, rollout batch size b.

- 1: Train on batch data \mathcal{D}_{env} an ensemble of N probabilistic dynamics $\{\widehat{T}^i(s', r \mid s, a) = \mathcal{N}(\mu^i(s, a), \Sigma^i(s, a))\}_{i=1}^N$ with Lipschitz-regularized $\mu^i(s, a)$.
- 2: Initialize policy π and empty replay buffer $\mathcal{D}_{\text{model}} \leftarrow \emptyset$.
- 3: for epoch 1, 2, ... do \triangleright This for-loop is essentially one outer iteration of MBPO
- 4: for $1, 2, \ldots, b$ (in parallel) do
- 5: Sample state s_1 from \mathcal{D}_{env} for the initialization of the rollout.
- 6: **for** j = 1, 2, ..., h **do**
- 7: Sample an action $a_j \sim \pi(s_j)$.
- 8: Randomly pick dynamics \widehat{T} from $\{\widehat{T}^i\}_{i=1}^N$ and sample $s_{j+1}, r_j \sim \widehat{T}(s_j, a_j)$.
- 9: Compute $\tilde{r}_j = r_j \lambda \max_{i=1}^N \|\Sigma^i(s_j, a_j)\|_{\mathsf{F}}$.
- 10: Add sample $(s_j, a_j, \tilde{r}_j, s_{j+1})$ to $\mathcal{D}_{\text{model}}$.
- 11: Drawing samples from $\mathcal{D}_{env} \cup \mathcal{D}_{model}$, use SAC to update π .

• Overall performance on D4RL

Dataset type	Environment	BC	MOPO (ours)	MBPO	SAC	BEAR	BRAC-v
random	halfcheetah	2.1	35.4 ± 2.5	30.7 ± 3.9	30.5	25.5	28.1
random	hopper	1.6	11.7 ± 0.4	4.5 ± 6.0	11.3	9.5	12.0
random	walker2d	9.8	13.6 ± 2.6	8.6 ± 8.1	4.1	6.7	0.5
medium	halfcheetah	36.1	42.3 ± 1.6	28.3 ± 22.7	-4.3	38.6	45.5
medium	hopper	29.0	28.0 ± 12.4	4.9 ± 3.3	0.8	47.6	32.3
medium	walker2d	6.6	17.8 ± 19.3	12.7 ± 7.6	0.9	33.2	81.3
mixed	halfcheetah	38.4	53.1 ± 2.0	47.3 ± 12.6	-2.4	36.2	45.9
mixed	hopper	11.8	67.5 ± 24.7	49.8 ± 30.4	1.9	10.8	0.9
mixed	walker2d	11.3	39.0 ± 9.6	22.2 ± 12.7	3.5	25.3	0.8
med-expert	halfcheetah	35.8	63.3 ±38.0	9.7 ± 9.5	1.8	51.7	45.3
med-expert	hopper	111.9	23.7 ± 6.0	56.0 ± 34.5	1.6	4.0	0.8
med-expert	walker2d	6.4	44.6 ± 12.9	7.6 ± 3.7	-0.1	26.0	66.6

• Performance on tasks requiring out-of-distribution generalization

- Ant-angle: the ant is rewarded for running forward in a 30 degree angle and the training offline dataset contains data of the ant running forward directly
- Halfcheetah-jump: the agent is asked to run while jumping as high as possible given a training offline dataset of halfcheetah running

Environment	Batch Mean	Batch Max	MOPO (ours)	МВРО	SAC	BEAR	BRAC-p	BRAC-v
halfcheetah-jump	-1022.6	1808.6	4016.6±144	2971.4±1262	-3588.2±1436	16.8 ± 60	1069.9 ± 232	871±41
ant-angle	866.7	2311.9	2530.9±137	13.6±66	-966.4±778	1658.2 ± 16	1806.7 ± 265	2333±139

Yu T, Thomas G, Yu L, et al. MOPO: Model-based offline policy optimization. NeuIPS 2020.

Content

- Overview of offline RL
- Offline RL training methods
 - Imitation learning
 - Model-free methods
 - Model-based methods
- Offline policy evaluation
- Offline RL benchmarks

OPE: Offline Policy Evaluation

• Offline (or off-policy) policy evaluation (OPE) concerns estimating the value of a target policy using only pre-collected data from other policies

• OPE serves for policy evaluation, policy ranking or selection for the final online deployment

Overview of OPE Methods

Direct Methods

FQE: Fitted Q Evaluation

Algorithm 3 Fitted Off-Policy Evaluation with Function Approximation: $FQE(\pi, c)$

Input: Dataset $D = \{x_i, a_i, x'_i, c_i\}_{i=1}^n \sim \pi_D$. Function class F. Policy π to be evaluated

- 1: Initialize $Q_0 \in F$ randomly
- 2: for k = 1, 2, ..., K do
- 3: Compute target $y_i = c_i + \gamma Q_{k-1}(x'_i, \pi(x'_i)) \quad \forall i$
- 4: Build training set $\widetilde{D}_k = \{(x_i, a_i), y_i\}_{i=1}^n$

5: Solve a supervised learning problem:

$$Q_{k} = \underset{f \in F}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (f(x_{i}, a_{i}) - y_{i})^{2}$$
Output: $\widehat{C}^{\pi}(x) = Q_{K}(x, \pi(x)) \quad \forall x$

- FQE takes a policy as input and performs policy evaluation on the fixed dataset by Bellman backup
- After learning the Q function of the policy, the performance is measured by the mean Q values on the states sampled from the dataset and actions by the policy.

Le, Hoang, Cameron Voloshin, and Yisong Yue. "Batch policy learning under constraints." ICML 2019.

Content

- Overview of offline RL
- Offline RL training methods
 - Imitation learning
 - Model-free methods
 - Model-based methods
- Offline policy evaluation
- Offline RL benchmarks

Offline RL Benchmarks

- D4RL: Datasets for Deep Data-Driven RL
 - UC Berkeley & Google Brain
 - https://sites.google.com/view/d4rl/
- RL Unplugged: Benchmarks for Offline RL
 - Google DeepMind & Brain
 - <u>https://github.com/deepmind/deepmind-</u> research/tree/master/rl_unplugged

NeoRL: A Near Real-World Benchmark for Offline RL

- Nanjing University, Polixir and SJTU
- http://polixir.ai/research/neorl

Discuss more on this benchmark here

Pipeline of Training & Deploying Offline RL

Realistic Challenges for Offline RL

- NeoRL considers the following reality gaps
 - 1. Conservative data
 - The behavior policy is not explorative (not diverse)
 - 2. Limited available data
 - Only a small batch of data is available
 - 3. Highly stochastic environments
 - Aleatoric uncertainty or non-stationary nature of the environment
 - 4. Offline evaluation before deployment
 - Due to the limited data, predicting the approximate accumulated rewards can be challenging
- In addition to Mujoco, three realistic environments are used
 - Industrial benchmark, FinRL, CityLearn

Experiments and Findings of NeoRL

Task	Expert Policy	Det. Policy	Behavior Policy	Random	BC	CQL	PLAS	BCQ	MOPO	MB-PPO w/ KL	MB-PPO w/o KL
IB-L-99	-180240	-344311	-344311	-317624	-333400	-298161	-341327*	-410860*	-379405*	-230455	-278524
IB-L-999	-180240	-344311	-344311	-317624	-339959	-341099*	-338732	-410531*	-372254*	-220832	-329973
IB-L-9999	-180240	-344311	-344311	-317624	-340716	-323374	-322796	-407141*	-409110*	-339899	-310140
IB-M-99	-180240	-283121	-283121	-317624	-281225	-277511	-410918*	-410196*	-345350*	-234696	-217471
IB-M-999	-180240	-283121	-283121	-317624	-382304	-279299	-283242	-862628*	-381155	-283838	-223842
IB-M-9999	-180240	-283121	-283121	-317624	-277010	-282285*	-410751*	-410820*	-406456*	-218091	-235499
IB-H-99	-180240	-220156	-220156	-317624	-217240	-223178*	-410869*	-406571*	-410431*	-272607*	-213269
IB-H-999	-180240	-220156	-220156	-317624	-220528	-213588	-411404*	-410517*	-314221*	-207958	-257114*
IB-H-9999	-180240	-220156	-220156	-317624	-220370	-280470*	-222682*	-410618*	-410726*	-261822*	-224130*
FinRL-L-99	631	150	152	206	136	487	447	330	369	136	328
FinRL-L-999	631	150	152	206	137	416	396	323	341	752	656
FinRL-M-99	631	300	357	206	355	700	388	376	357	593	1213
FinRL-M-999	631	300	357	206	504	621	470*	356*	373*	504	698
FinRL-H-99	631	441	419	206	252	671	464	426	531	640	484
FinRL-H-999	631	441	419	206	270	444	495	330	373	581	787
CL-L-99	50350	28500	29514	16280	29420	30670	29918	23238*	21135*	29902	23326*
CL-L-999	50350	28500	29514	16280	30317	31611	30141*	30451	21756*	23528*	23019*
CL-L-9999	50350	28500	29514	16280	30231	32285	30716	25107*	21396*	23293*	23431*
CL-M-99	50350	37800	36900	16280	27422	39551	40957	31398	21553*	18606*	23166*
CL-M-999	50350	37800	36900	16280	39132	42737	54742	25320*	22586*	38951*	23093*
CL-M-9999	50350	37800	36900	16280	38331	42917	40416	37222*	21499*	23365*	23467*
CL-H-99	50350	48600	48818	16280	53071	55158	53402	43254*	24867*	23289*	23733*
CL-H-999	50350	48600	48818	16280	54622	43437*	54397*	37040*	22151*	54900	23288*
CL-H-9999	50350	48600	48818	16280	52957	54696	55166	48427*	21849*	56874	23284*
Average Rank	-	5.06	6.04	9.04	4.63	2.45	4.61	5.63	7.08	3.90	6.29

Experiments and Findings of NeoRL

- OPE performance (FQE method)
 - RC score: ranking correlation
 - Top-k score: top selected policy value (normalized to [0,1])

Task Name	RC Score	Top-1 Mean Score	Top-3 Mean Score	Top-5 Mean Score	Top-1 Max Score	Top-3 Max Score	Top-5 Max Score	Policy Mean Score
Walker2d-v3-L-99	$282 \pm .062$	$.182 \pm .131$	$.172 \pm .019$	$.165 \pm .022$	$.182 \pm .131$	$.366 \pm .000$	$.384 \pm .012$	$.335 \pm .000$
Walker2d-v3-L-999	$.118 \pm .092$	$.039 \pm .034$	$.044 \pm .044$	$.054 \pm .030$	$.039 \pm .034$	$.083 \pm .096$	$.161 \pm .103$	$.390 \pm .000$
Walker2d-v3-L-9999	$.341 \pm .025$	$.009 \pm .001$	$.035 \pm .015$	$.047 \pm .009$	$.009 \pm .001$	$.054 \pm .019$	$.084 \pm .002$	$.427 \pm .000$
Walker2d-v3-M-99	$152 \pm .080$	$.264 \pm .353$	$.297 \pm .027$	$.357 \pm .080$	$.264 \pm .353$	$.832 \pm .097$	$.887 \pm .089$	$.473 \pm .000$
Walker2d-v3-M-999	$131 \pm .038$	$.006 \pm .001$	$.091 \pm .106$	$.143 \pm .095$	$.006 \pm .001$	$.240 \pm .306$	$.387 \pm .262$	$.466 \pm .000$
Walker2d-v3-M-9999	$.101 \pm .030$	$.031 \pm .015$	$.025 \pm .007$	$.022 \pm .004$	$.031 \pm .015$	$.043 \pm .001$	$.043 \pm .001$	$.459 \pm .000$
Walker2d-v3-H-99	$116\pm.078$	$.274 \pm .379$	$.364 \pm .126$	$.397 \pm .137$	$.274 \pm .379$	$.721 \pm .125$	$.734 \pm .136$	$.481 \pm .000$
Walker2d-v3-H-999	$216 \pm .083$	$.006 \pm .001$	$.005 \pm .001$	$.005 \pm .001$	$.006 \pm .001$	$.006 \pm .001$	$.007 \pm .000$	$.388 \pm .000$
Walker2d-v3-H-9999	$.296 \pm .015$	$.005 \pm .000$	$.007 \pm .004$	$.068 \pm .086$	$.005 \pm .000$	$.013 \pm .011$	$.315 \pm .420$	$.448 \pm .000$
Average	$005 \pm .222$	$.091 \pm .209$	$.116 \pm .138$	$.140 \pm .153$	$.091 \pm .209$	$.262 \pm .321$	$.334 \pm .340$	$.430 \pm .046$

Ineffective policy ranking and selection via OPE (FQE method)

Experiments and Findings of NeoRL

Baseline	CQL	PLAS	BCQ	MOPO	MB-PPO w/ KL	MB-PPO w/o KL
Behavior Policy	94.12%	72.55%	56.86%	21.57%	78.43%	29.41%
Deterministic Policy	88.24%	60.78%	43.14%	23.53%	64.71%	29.41%
BC	84.31%	54.90%	45.10%	25.49%	56.86%	29.41%

Ratio of winning the 3 baselines over the 51 tasks by online evaluation.

• Maybe-pessimistic findings with realistic challenges

- 1. Offline RL algorithms fail to outperform neither the simplest behavior cloning method nor the deterministic behavior policy, only except CQL.
- 2. Model-based methods are overall worse than modelfree ones in the realistic environments, although may have better potential to achieve the out-of-data generalization ability.

Summary

- Offline RL trains a policy from a batch of pre-collected data, which makes RL closer to real applications
- The most important problem studied in offline RL is about extrapolation (or out-of-distribution) problem
- Model-free offline RL methods build constraints on value function or policies
- Model-based offline RL methods measure the uncertainty of state transition and use it to penalize the out-of-distribution actions
- Offline RL performance is still far from perfect

Thank You! Questions?

SHANGHAI JIAO TONG UNIVERSITY

Weinan Zhang

Associate Professor

APEX Data & Knowledge Management Lab

Department of Computer Science and Engineering

Shanghai Jiao Tong University

http://wnzhang.net