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Overview

* Introduction to imitation learning

* Core methods of imitation learning

* Advanced methods of imitation learning

* Connection between imitation learning and GANs

* Recent applications of IL for robotics



Where does the Reward Function Come from?

Computer Games Real World Scenarios
reward robotics dialog autonomous driving

7N

T
Mnih et al. ‘15 what is the reward?
often use a proxy

* Frequently easier to provide expert data than reasonable reward
function

* Inverse reinforcement learning: infer reward function from
demonstrations (rollouts) of expert policy

Slide credit Sergey Levine



Imitation Learning for Auto-driving

Waymo has made simulation one of the pillars of its autonomous vehicle development program. But

Latent Logic © could help Waymo make its simulation more realistic by using a form of machine learning
called imitation learning.

Imitation learning models human behavior of motorists, cyclists and pedestrians. The idea is that by
modeling the mistakes and imperfect driving of humans, the simulation will become more realistic and
theoretically improve Waymo’s behavior prediction and planning.

https://techcrunch.com/2019/12/12/waymo-buys-latent-logic-drives-deeper-into-simulation-and-europe/



https://techcrunch.com/2019/12/12/waymo-buys-latent-logic-drives-deeper-into-simulation-and-europe/

Imitation Learning in a Nutshell

e Given: demonstrations or demonstrator
 Normally without any reward signals

e Goal: train a policy to mimic demonstrations
* And achieve good policy performance

Expert Demonstrations (s, a) pairs Imitation Learning
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Agent Experience (s, a,r,s,a’)tuples Reinforcement Learning

Images from Stephane Ross



Imitation Learning Approaches on
Super Tux Kart

https://www.youtube.com/watch?v=V00npNnWzSU



What is Imitation Learning

* Where from?
e Learning from expert demonstration (LfD)
* Try to imitate from the expert demonstrations.

Imitation Behavior
(" Learning Cloning
LfD
. Apprenticeship Inverse
Learning

(General) Imltatlon Learning



What is Imitation Learning

General setting (in this talk):

* The learning agent

1. can obtain pre-collected trajectories ((s,a) pairs) from
uninteractive expert

2. can interact with the environments (with simulators)
3. cannot access reward signals.

Environment

Interaction Interaction
< > < >

Expert Learning Agent

| . @ $

Expert Trajectories




What is Imitation Learning

Other optional settings

* No actions and only state / observations ->
Imitation Learning From Observations (ILFO)

* With reward signals -> Imitation Learning with
Rewards

* Interactive expert for correctness and data
aggregation -> On-policy Imitation Learning (begin
as Dagger, Dataset Aggregation)

e Cannot interact with Environments -> A special case

of Batch RL (data in Batch RL can contain more than
expert demos)



What is Imitation Learning

More Considerations

* Imitation loss

* Suboptimal demonstrations

 Partial demonstrations (e.g., weak feedback)
 Domain transfer (e.g., few-shot learning)

* Structured domains (e.g., multi-agent systems,
structured prediction)



What is Imitation Learning

* When we necessarily want IL?
 Hard to define the reward in some tasks
e Hand-crafted rewards can lead to unwanted behavior

* What we want from IL?

* Less interact with the real-world environments with
expert demonstrations to improve sample efficiency and
learn good policies

* A fast and not bad policy initialization

* A good solution that is robust to environment slight
changes (compared to RL normally overfitting the env.)



Applications

Helicopter Acrobatics [1,2] Robotics Arm [3]
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Sports Analysis [4] Robotics Movement [5]



Formulation

* Notation & setup 1
e State: s
e State may only be partially observed, i.e., o
* Action: a
* Policy:
* Policy maps states to actions: m(s) = a
* or distributions over actions: m(s) = P(a)
* State transition dynamics: P(s’|s, a)
* Typically not known to policy.
* Essentially the simulator/environment



Formulation

* Notation & setup 2

* Rollout: sequentially execute (sy) on an initial state
* Produce trajectory T = (sg, ag, S1,aq, .- )

* P(t|m) : distribution of trajectories induced by a policy
* 1. Sample sgfrom pg (distribution over initial states), initialize
t =0.
* 2.Sample action a; from m(s;)

* 3. Sample next state s;,1 from applying a; to s; (requires
access to environment)

4 Repeat fromStep 2 witht =t +1



Formulation

* Notation & setup 3

* P(s|mt) = p;(s): distribution of states induced by a
policy

pa(s) = (1 =) ) ¥t P(s¢ = s|m)
t=0

* P(s,a|m) = p,(s,a): distribution of state-action pairs
induced by a policy (known as occupancy measure)

pu(s,@) = (1 =) ) vt P(s; = 5, = a|m)
t=0

pr(s,a) = m(als)pr(s)



Formulation & Example 1

 Observation s = game screen

 Action a =turning angle

* Training set D = {t = [(s,a)]} from an expert policy T*

* Goal: learn a good policy m(s) — a that achieves high value




Formulation & Example 1
* NGSim dataset

I : History Data Replay . Policy Controlled Agent

Heavy Traffic




Formulation & Example 2

* Observation s = location of players & ball

 Action a = next location of player

* Training set D = {t = [(s,a)]} from an expert policy T*

* Goal: learn a good policy m(s) — a that achieves high value

Right Image from Yisong Yue



Formulation & Example 2
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Drew Gooden #90
Nene Hilario #42
John Wall #2

Bradley Beal #3
Otto Porter #22

https://github.com/linouk23/NBA-Player-Movements



Formulation & Example 2

 Observation s = location of players & ball

 Action a = next location of player

* Trainingset D = {t = [(s, a)]} from an expert policy *

* Goal: learn a good policy m(s) — a that achieves high value
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Formulation & Example 2

* Nantes vs. Lyon. Red/Blue are real trajectory. Yellow is the
generated

Nantes_Lyon 11:41.0
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100 A
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* Advanced methods of imitation learning

* Connection between imitation learning and GANs

* Recent applications of IL for robotics



Core Methods

e Behavior Cloning (BC)

* Learn a direct mapping from states/contexts to
trajectories/actions without recovering the reward
function

* Inverse Reinforcement Learning (IRL)
* Finds a reward function which makes expert trajectories
better than others.

* Generative Adversarial Imitation Learning (GAIL)

* Apply GAN under the structure of IRL to make close the
two occupancy measures between the expert and the

agent



General Imitation Learning

* Objective

m* = argminEs ps [0 (7(-[s), mE(:]$))]

703

e [ denotes some loss function or some distance metric.
e Distribution of s depends on rollout from .
* P(s|m) — py(s): distribution of states sampled by a

policy _
pul(s) = (1= 1) ) ¥* P(s; = s|m)
t=0

* Problem
* Cannot get access to the expert during sampling!



Behavioral Cloning

supervised

training learning

data

mo(at|o;)

* Learning objective of BC

7 = arg min ESNp;E [ (me(|s),m(|s))]

 Compared with the original objective

= argminEsps [€(7(-]s), mE(-|s))]

e Distribution provided exogenously
e Essentially a Maximum Likelihood Estimation (MLE) on
single step



Limitations of Behavioral Cloning

— training trajectory
— 7y expected trajectory

To(a¢|oy) Distributional
Shift

DralOL),

_pdata(ot) ‘

The problem is like a common problem
in supervised learning, but more serious

lID Assumption Reality
(Supervised Learning)

i)
[ (S;‘a')E ]
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Limitations of Behavioral Cloning

When g makes a mistake, i.e., starts to diverge

from the expert

* New state sampled not from pz!
 Worst case is catastrophic!



Limitations of Behavioral Cloning

o o1's
ised Approach

Expert Trajectories Behavioral Cloning
(Training Distribution) Makes mistakes, enters new states

Cannot recover from new states

Images from Stephane Ross



Imitation Learning vs. Supervised Learning

* The solution may have important structural
properties including constraints (for example, robot
joint limits), dynamic smoothness and stability, or
leading to a coherent, multi-step plan

* The interaction between the learner’s decisions
and its own input distribution (an on-policy versus
off-policy distinction)

* Along side of the policy similarity, IL further cares
about the policy performance

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.



When to use BC?

* Advantages * Disadvantages
e Simple  State distribution mismatch
e Efficient between training and test

* No long-term planning

* When to use * When not to use
* 1-step deviations not * 1-step deviations can lead
EOO b?d . to catastrophic error
* Learning reactive . L. )
behaviors Op.tlm!zmg long-term
objective

* Expert trajectories
“cover” state space

Slide credit to Yisong Yue



BC with Dataset Aggregation

e Samples from a stable trajectory distribution
* Learning from a stabilizing controller (with noise)

* Add more on-policy data
* e.g. DAgger

* DAgger: Dataset Aggregation
* train mg(as, o;) from a human data
D = {01, ai, ..., 0pn, ClN}.
* run g (aslo,) to get dataset D, = {04,a4, ..., 0n, Ay ).
* |[Ask human to label states in D, with action a;
* Aggregate D <« D U D, Human-in-the-loop IL

Stéphane Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS 2011.



llustration of DAgger

Execute current policy and Query Expert

New Data

Steering

— ]
from expert o« <@l \
2=

RS

Aggregate
Dataset 4 All previous data E

Problems:

execute an unsafe/partially Supervised Learning
trained policy
repeatedly query the expert




Inverse Reinforcement Learning

“Forward” RL

* Given:
e States € §S,a € A

e (sometimes)
transitions p(s’[s, a)

* Reward function
r(s,a)

* Learn " (als)

Inverse RL

* Given:
e States € S,a € A
* (sometimes) transitions

p(s’ls,a)
e Samples {t;} sampled from
" (T;)

* Learn 1y (s, a)

* Then use it to learn T*(als)

Linear reward function

7“1/, S, CL szfz %D f S CL)

Neural het reward functlon

ry (S, a)

Parameters i




Inverse Reinforcement Learning

* Objective

" = argmax Es g)~p, 77 (5, a)]
w

* looks for a reward function r* under which the expert
policy is the optimal solution.

* Need to recover r”
* Principle: expert is optimal i.e., find r* such that

r —argmaX]E[27 salﬂ]— [Zyrsahr]

t=0
* Usually with a bi-level optimization This is ambiguous
° Outer Ioop- f|nd r and the solution of r
* Inner loop: train policy 7 with r may not be unique.

* Check whether V(*) — V(1) is minimized

Abbeel P, Ng A Y. Apprenticeship learning via inverse reinforcement learning. ICML 2004.



Inverse Reinforcement Learning

* A formulation of max-entropy IRL

¢ = IRL(wg) = arg max {(min —H(m) 4+ Ex[c(s,a)]) — Exp[c(s, a)]}
* Looks for a cost function ¢ € C that assigns low cost to the

expert policy and high cost to other policies while
maximizing the entropy of the policy.

* Recover the expert policy by running RL under the learned
cost function C:

T = RL(¢) =argmin_.g — H(7) + E:[¢(s,a)]
* Limitations: most of them do not gain the policy directly. Bi-

level optimization is usually expensive to run, especially in
high-dimensional and continuous space.



Generative Adversarial Imitation Learning
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* Review the occupancy measure of each policy interacting
with the environment

T
p(s,a) = (1 = V)Eq r(s), s'~p(s,) [zt_o)/t p(st =s,a; = a)]

* Theorem 1: for two policies , 5, and their occupancy
measures pt, p™2, it has p't = p™2 iff m; = m,

* Theorem 2: given an occupancy measure p, the only policy
generating pism, = p(s,a)/ X, p(s,a’)

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.



Generative Adversarial Imitation Learning

* GAIL: match the occupancy measures with GAN

min mgxIEWE llog D(s,a)] + Ex[log(1 — D(s,a))] — AH (m)

* GAN

m(i;n max Exnpyaa 108 D(x)] + Egngllog(l — D(z))]

e Occupancy measure is analogous to the data
distribution

* Discriminator D distinguishes between the
distribution of data generated by G (mr in GAIL) and
the true data distribution (g in GAIL)

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.



GAIL Algorithm

Algorithm 1 Generative adversarial imitation learning

I: Imput: Expert trajectories 7g ~ 7, initial policy and discriminator parameters 6o, wq
2: for:=0,1.2.... do

3:  Sample trajectories 7; ~ Ty,

4 Update the discriminator parameters from w; to w;+1 with the gradient

Objective of D:  Er, [V 10g(Dy (s, a))] + Er, [V log(1 — Dy (s, a))] (17)

n

Take a policy step from 6; to ¢; 1, using the TRPO rule with cost function log(D,,, , , (s, a)).
Specifically, take a KL-constrained natural gradient step with

A

E,. [Vologmg(a|s)Q(s,a)] — A\VgH (mg),
where Q(5,a) = ET,» 10g(Duw,,, (s.a)) | so = 5, a0 = @

(18)

6: end for

GAIL alternates between
 An Adam gradient step of w to increase the objective of D
 ATRPO step of 6 to decrease the objective of D

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.



Performance (scaled)

GAIL Experiments

Cartpole Acrobot Mountain Car HalfCheetah
1.0 A| L l |A 1.0 -I — -I N I- S— -I 1.0 | I I I— I I I I
M 4 f H w‘ 1.0 I-h-w({:_-—-_-—‘-
0.8} 1 os}l 7~0Z: 0.8 Lo & osl} N
0.6 |- 4 o6} 4 o6 -"'—"'z—-——cf 1 os} 4
04l 1 oa} 4 oa} 1 oal .
- o
0.2 | 4 o2} 4 02} 4 0.2 S
S

00| = = = = = == ——— S I ) S - 00| = = = = === 0.0y =l m = == = =
1 4 7 10 1 4 7 10 1 4 7 10 4 11 18 25

Number of trajectories in dataset

Expert Be===8  Behavioral cloning &% GTAL
- Random o=@ FEM = Ours GAIL

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.



Overview

* Introduction to imitation learning

* Core methods of imitation learning

* Advanced methods of imitation learning

* Connection between imitation learning and GANs

* Recent applications of IL for robotics



Recent Works

* One-pass IL methods with fixed reward function

* First estimate the reward then apply a forward RL
procedure

* Set the reward with specific intention

* Soft Q imitation Learning (SQIL)
 Random Expert Distillation (RED)
* Disagreement-Regularized Imitation Learning (DRIL)

* Energy-Based Imitation Learning (EBIL)



Soft Q Imitation Learning (SQIL)

* Reward definition
* Expertdatar(s*,a*) =1
* New interaction datar(s,a) = 0

e Off-policy learning
* A replay buffer initialized with expert data
 Then add new interaction data (50% each)
e RL algorithm: Soft Q-Learning (or Soft Actor-Critic)

Y A 1 S . i
0°(D,r) = W ZGD (Qg(s.(z) - <r + v log <Z exp (Qo(s', a ))>>)

(s,a,s’) a’€A

Reddy S, Dragan A D, Levine S. SQIL: imitation learning via regularized behavioral cloning. ICLR 2020.



Random Expert Distillation (RED)

« Random Network Distillation (RND) for exploration
* Fit a randomly initialized neural network fg(s, a)
* Use the MSE prediction error as the intrinsic reward

| £5(s,a) — fo(s,a)|?
 Similar idea for imitation learning
é — argmin ”f@/(S,CL) o fQ(Saa)||2 | D

0/
r(-) = exp(—a| f(s,a) — fo(s, a)|*)

Reward is high on familiar state-actions of expert

* Then run an RL algorithm with the reward function

Burda, Yuri, et al. Exploration by random network distillation. 2018.

Wang R, et al. Random expert distillation: Imitation learning via expert policy support estimation. ICML 2019.



Disagreement-Regularized IL (DRIL)

* Motivation

* Policy should move towards the expert data distribution if it is
away from it

* How to train the policy?

* Variance (uncertainty) minimization Cu(s,a) = Var, @ p)(7(als))

* Minimizing variance encourages the policy to return to
regions of dense coverage by the expert, where the variance

is low
e How to estimate the variance?

* Ensemble (bagging) of policies

* The disagreement in imitation serves as the prediction
variance

* Clipped reward definition ¢f®(s,a) = {_1 i Culs,a) < q

+1 otherwise

Brantley K et al. Disagreement-Regularized Imitation Learning. ICLR 2020.



Energy-Based imitation Learning (EBIL)

* Motivation

* Estimate the energy (can be regarded as an unnormalized
density) of expert’s occupancy measure and use it as the
surrogate reward to run an RL algorithm.

pr(s,0) = - exp(~E(s,a))

n* =argmaxE,; [—F;_.(s,a)] + H(7) .

i

* This can be regarded as minimizing the KL-divergence:

7" = arg min Dgy (px || pr )
v

Liu M et al. Energy-Based Imitation Learning. AAMAS 2021.
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GAN: A Minimax Game

v ;'
Real World ; §—>
Generator e—n

minmax J(G;D) max J(G;D)
G D D

__________

The joint objective function

J(G; D) = Egrpya(@) 108 D(@)] + Ez () [log(1 — D(G(2)))]



Connection between GAN and IL

* Analogy to Imitation learning

* In imitation learning, a value function is learned from expert data to
guide the policy optimization

* In GAN, a discriminator is trained with real (positive) data and
generated (negative) data to guide the generator optimization

* One step generation: stateless or one-step MDP

Real data instance as an expert action

©)

Go(z) (&) Dy ()

Data instance
Generator as a policy as an action Discriminator as a reward




Connection between GAN and IL

* Analogy to Imitation learning

* In imitation learning, a value function is learned from expert data to
guide the policy optimization

* In GAN, a discriminator is trained with real (positive) data and
generated (negative) data to guide the generator optimization

* Multi-step generation: MDP

Real data instance as an expert trajectory

[ L1..n J
4 I 4 N\

G@(xn‘xl...n—l)_{ Cz'ln J—' D¢(£U)

Data instance
Generator as a policy as a trajectory Discriminator as a value




GAN and RL on Learning Rules

For continuous data/action

e Deterministic policy 8J (o) 0Q™ (s, a) Omy(s)
gradient (DPG) 00 :ESNPW[ da 90

_—

* GAN for continuous 9J(Ge, D) _ [W(GO,D(@) 0Go(2)
data 90 “rpl2) O 90

o

For discrete data/action

* Stochastic policy gradient  9J(0) Ologmg(als) r,
(PG) 59~ Ero| Q™ (s,a)]

* GAN for discrete data = Ezq, [ 0 D(a:)]
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RoboFIamingo: VLMs as Effective Robot Imitators

e VVision-Language Foundation Models for Robotics

4 From scratch

-

/" Co-Finetune

/" LLM Planning
Caption: This is .
Action a very cute dog. Answer: An elephant. Action
Action T 1 1
T (1 1 e 1 [ | T
Po|icy — Language .
Policy MLP / RNN / Transformer Encoder Visual Language Model
MLP / RNN / Transformer
1 - Prompt: 1. Grasp the bottle [ I ] [ I ] [ I ] [ I ] [ ]
Vision Language Encoder Vision Vision Language Vision Language
Encoder Encoder Encoder Encoder Encoder Encoder Encoder

Instruction: 7 1 uestion: o

i IR e B W S BEEE o

plastic bottle the plastic bottle Bis this image? the; plastic bottle
into the bowl. into the bowl. into the bowl.
/_ Image caption Visual Q&A Manipulation
[ RoboFtamingo RoboFlamingo
Ception: Bhieile Answer: An elephant g
wer: .
a very c*te dog. ; P Action
Visual Language Model >>>>>>>>> Visual Language Model
-; - . [ - . Zopy - . -; - .
Weights
Vision Vision Language Vision Language
Encoder Encoder Encoder POPPEDID Encoder Encoder
| & | Question: Instruction: Put
i; What is in the plastic bottle
WA S this image? into the bowl.
Image caption Visual Q&A Manipulation

& Utilizing existing VLMs

& Decreasing the training and inference cost!

‘& Open-source!

Li, Xinghang, et al. "Vision-language foundation models as effective robot imitators." arXiv preprint arXiv:2311.01378 (2023).



RoboFIamingo: VLMs as Effective Robot Imitators

* Vision-Language Foundation Models for Robotics

Pooling

- } ~

) . m ) LSTM
Vision Encoder Self Attention l

| Cross Attention Action
Resampler
P - x 32 Policy Head
1
CT ] [ Chii Al J
. --- --- Pooled Feature Token
ViT Tokenizer VL Embedding Token
' Il Third View Image Token
»-‘;'; Gripper View Image Token
g Instruction: Pick up the red block H PP 9

L y and put it into the drawer. I Lang Token

Frozen

. } : pose apose gripper agripper
t

—— AN

position&rotation gripper

Li, Xinghang, et al. "Vision-language foundation models as effective robot imitators." arXiv preprint arXiv:2311.01378 (2023).



RoboFIamingo: VLMs as Effective Robot Imitators

* Experiments on CALVIN dataset

* Atotal of 34 distinct tasks and evaluates 1000 unique instruction chains for sequential tasks.

* Atotal of 24,000 language-annotated demonstrations, which could be used for model training.

p—

S [ ,’4 ~
/

a | /|
e
i ’é - S ;ﬁ
) y

"Rotate the red block to the right" "Open the drawer" "Place the red block in the sliding cabinet" "Move the sliding door to the right"

Training Test Task Completed in a Sequence
Method Data Split 1 2 3 4 5  AvgLen
MCIL ABCD (Full) D 0.373 0.027 0.002 0.000 0.000 0.40
HULC ABCD (Full) D 0.889 0.733 0.587 0.475 0.383 3.06
HULC ABCD (Lang) D 0.892 0.701 0.548 0.420 0.335 2.90
RT-1 ABCD (Lang) D 0.844 0.617 0.438 0.323 0.227 2.45
RoboFlamingo (Ours) ABCD (Lang) D 0.964 0.896 0.824 0.740 0.66 4.09
MCIL ABC (Full) D 0.304 0.013 0.002 0.000 0.000 0.31
HULC ABC (Full) D 0.418 0.165 0.057 0.019 0.011 0.67
RT-1 ABC (Lang) D (533 0.222 0.094 0.038 0.013 0.90
RoboFlamingo (Ours) ABC (Lang) D 0.824 0.619 0.466 0.331 0.235 248

Li, Xinghang, et al. "Vision-language foundation models as effective robot imitators." arXiv preprint arXiv:2311.01378 (2023).



Mobile Aloha

A S32k-cost mobile manipulation system that is
bimanual and supports whole-body teleoperation.

Learned Policies

* I[mitation learning from expert demonstrations from
static ALOHA dataset and mobile ALOHA dataset

]E( )~ Dmobﬂe [L(agrmsvabaseﬂﬂ-m(ol))} +
E(oi,agrms)NDstatic [L( Qarms> [0 O] ( ))}

Fu, Z., Zhao, T.Z. and Finn, C. Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation. 2024.

g
o' s@arms ’abase

Loss



Mobile Aloha

Cook Shrimp

(autonomous)

3X speed

Fu, Z., Zhao, T.Z. and Finn, C. Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation. 2024.



Human2Humanoid (H20)

Task: control humanoid robots with human motion via teleoperation

(a) Retargeting (b) Sim-to-Real Training (¢) Real-time Teleoperation
Motion Dataset (Raw) Simulation (Issac Gym) ( Human h Humanoid
'} vy v n Teleoperator Robot
_ Inverse i
Kinematics [ PD Controller ]
Motion Dataset (Shape Fitted) Proprioception a Joint
"} v [} t |Targets
(™) 1 - N r \ - N
% ~ | \ ‘\ Sim-to-Real RGB Camera PD Controller
ﬁ , ﬁ \(“, Imitation Policy % L 200H7]
J ) : (vﬂ“ g Sf I a, Joint
T t
Retargeting l Ao 1 30Hz, p Ghge 'i
[ Privileged Imitation Policy ] Randomization S.1m—.to—Rea'1
 fion-based Frmmm—————— . ‘ Imitation Policy
Imitation-base ] : i <
Filtering i__Dynamics 3+, (™op Human L 50Hz

ittt 1 Pose Estimator g
Motion Dataset (Embodlment Feasible) Imitation Goal 1 Terrain ° o sf s}
VI einisisistisirsistl R IS L
,\> | Input Noises ||| < | L Ppproeention
| i 1 ° °
9 L ; o o O . Imitation Goal
t Y )L e 30sz (Real-Time)

He, Tairan, et al. "Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation." arXiv:2403.04436 (2024).




Human2Humaniod (H20)

-

s Kitar 15__,}:@ nang .

He, Tairan, et al. "Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation." arXiv:2403.04436 (2024).



Summary of Imitation Learning

Imitation learning is important when reward function is
unavailable or hard to properly define

Behavior cloning is straightforward and easy to implement,
but suffer from distribution shift or exposure bias

Inverse RL first recover the underlying reward of the expert
from the trajectory and then perform RL to obtain the policy,
but suffer from high-complexity of bi-level optimization

GAIL aims to match the occupancy measures with GAN

IL & GAN are highly related. You can say GAN is IL for data
generation tasks

IL has been recently leveraged to tuning large models for
agents or robotics



Thank You!
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