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ABSTRACT
Programmatic display advertising, which enables advertisers to
make real-time decisions on individual ad display opportunities
so as to achieve a precise audience marketing, has become a key
technique for online advertising. However, the constrained budget
setting still restricts unlimited ad impressions. As a result, a smart
strategy for ad impression selection is necessary for the advertisers
to maximize positive user responses such as clicks or conversions,
under the constraints of both ad volume and campaign budget. In
this paper, we borrow in the idea of top-N ranking and filtering
techniques from information retrieval and propose an effective ad
impression volume ranking method for each ad campaign, followed
by a sequential selection strategy considering the remaining ad
volume and budget, to smoothly deliver the volume filtering while
maximizing campaign efficiency. The extensive experiments on
two benchmarking datasets and a commercial ad platform demon-
strate large performance superiority of our proposed solution over
traditional methods, especially under tight budgets.

1 INTRODUCTION
Nowadays, programmatic display advertising has become the main-
stream advertising paradigm [29]. The programmatic buying mech-
anisms, including programmatic direct (PD) and real-time bidding
(RTB), enable the advertisers to leverage fine-grained audience
modeling and making real-time ad impression picking or bidding
decisions to achieve precise marketing, which leads to high adver-
tising efficiency [26].

A typical process for the programmatic buying is illustrated in
Figure 1. When a user visits a web page or an app, an ad request is
triggered and sent with the contextual information (such as user
data or web page information) to the advertisers. Typically, there
is a cascade of ad asking, where the first stage is to ask the PD
insertion orders (with a predefined priority) for their decisions of
whether to pick the ad impression; if there is no acceptance from
the insertion orders, the ad request will be forwarded to private
marketplace (PMP) and finally the open RTB auction for bidding via
ad exchanges. With computer algorithms on the demand-side plat-
forms (DSPs), each programmatic buying advertiser canmake a real-
time estimation of the utility, e.g., probability of the positive user
response, and the cost of showing each specific ad impression to the
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corresponding user, and further dynamically determine whether to
show the ad (for insertion orders) or how much to bid (for PMP or
RTB) so as to maximize the campaign profit in real time [32, 48].
In this work, we focus our scope on the strategy optimization for
ad impression in PD insertion orders, which is to make binary de-
cisions of whether to accept each received ad display opportunity
at a fixed pre-negotiated price. According to Google’s report [36],
the number of video ad impressions served monthly through PD
insertion orders on its DoubleClick Ad Exchange has doubled from
January 2016 to September 2016. Moreover, the PD insertion order
advertising is expected to achieve a year-over-year increasing of
150% to 200% in 2016. The high quality of the impression and the
growing market sharing have already made programmatic direct
an essential part in programmatic digital advertising.

When participating in the real-world online advertising, the
advertisers would quickly confront a natural contradiction between
the nearly unlimited ad volume flow and, however, the limited
budget. On one hand, the daily volume of ad requests is significantly
huge for each advertiser [16, 44]. While on the other hand, the
budget, or the allowed impression volume of the ad campaign is
very limited, which requires carefully volume ranking and selection
strategy to resolve the contradiction.

To solve this problem, researchers have proposed several scien-
tific solutions. Firstly, as discussed above, one major task for the
advertisers is to estimate the utility of the ad impression, which
is modeled as a prediction problem for estimating the probability
of positive user responses, such as clicks or conversions. We take
click-through rate (CTR) estimation1 as our running example. The
estimated CTR value provides a quantitative utility modeling for
the ad impression, which has been widely adopted for user ranking
and volume selection [9, 11, 27, 38] in online advertising. Secondly a
smart volume filtering strategy dealing with sequential ad requests
is needed to deliver budget pacing [1, 8, 10]. The pacing methodol-
ogy has been considered as an adaptive mechanism for controlling
budget spending efficiency and smoothness.

However, these algorithms have some issues in our PD insertion
orders scenario. For CTR estimation, these models pay more atten-
tion on the overall performance for CTR estimation, e.g., log loss
and area under ROC curve (AUC) [30]. The obtained model may
perform poor in the high predicted probability cases, which we call
as the top-N case. Moreover, for budget pacing, many literatures cut
the whole campaign running period as several time slices [1, 8] and
adjust the impression strategy based on threshold settings, which
may not be optimal because of the variance of different request
arrivals.

In this paper, we propose a two-phase method to solve this prob-
lem. In the first phase, we formulate the programmatic display
advertising problem as a top-N ad volume ranking task. Borrowing

1Without loss of generality, we focus on CTR estimation in this paper, while the CVR
estimation can be done by following the same token.
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Figure 1: An illustration of the logic of a publisher to ask
programmatic display ads, from the prioritized insertion or-
ders to the private marketplace and the RTB open auctions.

the idea from top-N document/item ranking techniques in infor-
mation retrieval, we derive an ad volume ranking method with
dynamic negative sampling (DNS) strategy [45], which leads to a
more precise prediction focused on the top ranked ad volume. To
the best of our knowledge, this is the first work to explicitly address
such a problem with a ranking methodology and adopt strategic
negative down sampling to train the user response predictionmodel.
In the second phase, based on the learned ranking estimator, the
advertiser agent is able to estimate the relative rank (by the poten-
tial user response rate) of each ad request in the whole ad volume.
Since the ad requests come to the agent in sequence and the agent
needs to decide whether to pick (as an impression) or discard the
current ad request in real time, we adopt a reinforcement learning
model to make such sequential decisions with the remaining ad
volume and budget constraints into consideration. Note that, in
our scenario, since the price of each impression is pre-negotiated,
so the budget constraints here means the total impression number
that the advertiser can deliver (against almost unlimited ad request
volume).

Extensive experiments are conducted based on two benchmark-
ing datasets and a commercial advertising platform. The experimen-
tal results verify the performance superiority and practicality of
our method over the compared baselines. We also perform theoretic
derivation and empirical ablation study to analyze the relationship
of DNS hyperparameters and the volume ranking performance.

The rest of the paper is organized as follows. We discuss the
related work in Sec. 2. Then we formulate the problem and present
our methodology in Sec. 3. The experiment settings and the corre-
sponding results are illustrated in Sec. 4. Finally we conclude our
work and discuss some future work in Sec. 5.

2 RELATEDWORK

User Response Prediction.User response prediction, particularly
click-through rate (CTR) or conversion rate (CVR) estimation, plays
as a key role in various online advertising scenarios [19]. For auc-
tion based advertising mechanisms, such as sponsored search [17]

and real-time bidding (RTB) based display advertising [40], the esti-
mated CTR (or CVR) will be utilized as a utility estimation. Thus the
existing works commonly train a CTR/CVR estimation model to im-
prove the performance over the entire ad volume, such as log-loss
[15], area under ROC curve (AUC) [30] and relative information
gain (RIG) [11].

From modeling perspective, linear models such as logistic re-
gression [19] trained with stochastic gradient descent (SGD), and
non-linear models such as boosted trees [13] and (field-aware) fac-
torization machines [15, 28] are widely used in the industry. And
there are also some deep learning solutions dedicating to tackle
this problem by building deep neural nets to explore high-order
feature interactions [30]. Online learning methods immediately
perform updating when observing each data instance with ground
truth, such as Bayesian probit regression [11] and logistic regres-
sion trained with follow-the-regularized-leader (FTRL) learning
[25]. However, the performance over small portion of the samples
with high predicted probability has gained little attention.

To our knowledge, all above work on user response prediction
tries to optimize the overall performance on the entire ad volume,
whereas in our work, we only care about the user responses on the
selected (i.e., top) ad volume, which has not been explicitly modeled
in programmatic display advertising.

Note that learning to decide when (not) to show ad impressions
has been studied in web textual advertising [7], where the authors
focused on the relevance between the web page and the textual ad
and adopted a binary classifier trained based on human judgments.
The studied advertising paradigm, involved data and the delivered
decision makers are different from our scenario.

Top Optimization. Bipartite ranking [2] aims at learning a rank-
ing function that places positive instances above negative instances
according to the predicted ranking scores. For the wide applica-
tion in several areas such as information retrieval, recommender
systems and computational advertising [24, 33], this topic has at-
tracted much attention. Since in these fields, only the top ranked
documents/items/ads will be exposed to users, there has been a
growing interest in learning ranking functions that perform espe-
cially well at the top of the ranking list [35, 42]. We refer to this
problem as top optimization.

There are several methods designed to solve top optimization.
Some literatures aim at optimizing task-specific top ranking metrics
[14, 18, 21] while some focus on pairwise ranking with listwise
information [3, 31, 39]. Recently, in [6] the authors proposed an
algorithm called Accuracy At The Top (AATP) to optimize the
accuracy at top τ fraction. And in [5] the authors presented a large-
scale convex optimization solution of AATP. Then an effective
TopPush algorithm is introduced to place the positive instances
in prior to the first negative instance in the ranking list in [20].
Moreover, in [22] the authors proposed a method trying to find the
optimal decision boundary by modeling the top-N precision as a
Mixed-Integer-Programming problem.

In our work, we start to derive our model from TopPush formu-
lation [20] to solve the large-scale top R optimization, where R is
a certain percentage of impressions against the total ad volume in
our target campaign to select. There is an example for better under-
standing. In the real-world application, assume that we can only
select R = 1% in the whole request stream of this campaign, then
the goal of our selection phase can be understood as picking the top
1% request within the ad requests under the guide of our ranking



function. Therefore, we only need to focus on the performance of
ranking function on top 1% volume.

In TopPush algorithm, they focus on the optimization of Preci-
sion@Top, which measures the precision of the samples prior to
the first negative sample. It is a suitable metric in some applications
such as recommendation system that only care the very top items
which are recommended to the user. However, the derivation in
[20] is problematic in our situation since the optimization goal is
the samples ranked before the first negative one, rather than the
precision in top R proportion of samples.

To solve this problem, instead of optimizing the Precision@Top,
we propose an effective framework to directly optimize the top
R percentage volume precision and utilize the predicted ranking
score of each ad request for sequential impression selection in the
next phase.

Reinforcement Learning. Reinforcement learning (RL) has been
widely used in many scenarios that involve sequential decision
making or budget smoothing, including ad selection for publisher
[43], music recommendation [46] and information retrieval [41],
for learning an automatic and adaptive decision maker from the
interaction with users.

RL provides techniques for optimizing the decision maker in a
sequential interaction process with the environment to achieve a
specific goal [37]. Consider the interaction process as a Markov
Decision Process (MDP), which can be defined by a tuple (S, {As },
{P (s, s ′,a)}, {R (s,a)}), where the set of states is presented by S ; the
set of available actions in a state s ∈ S is denoted as As ; P (s, s ′,a)
represents the state transition probability from state s ∈ S to an-
other state s ′ ∈ S when taking action a ∈ As ; the reward function
R (s,a) represents the reward received when taking action a in state
s . Under the MDP framework, the goal of the agent is expressed via
the maximization of the received cumulative reward starting from
an initial state.

When considering the dynamics of the environment, i.e., the
modeled state transition probability and the reward function, maxi-
mizing the cumulative rewards can be achieved through dynamic
programming [4], typically value iteration and policy iteration in
RL. [8] presented an MDP method for RTB scenario and we follow
the idea about the framework and improve the method with top
optimization for sequential selection of ad impressions.

3 PROBLEM AND FORMULATION
In our scenario, we consider an agent, representing the advertiser,
confronts the sequential arriving huge ad volume flow and deter-
mines whether to pick or discard each individual ad impression
to achieve the advertiser’s specific target (typically user responses
on the delivered ad impressions). Without loss of generality, we
consider clicks as the target objective, and other KPIs such as con-
versions can be adopted similarly. To obtain as many clicks as
possible under the constrained budget, i.e., affordable impression
number, a volume ranking method is required to filter low quality
ad requests while preserving those with high probability of positive
user responses.

In this section, we introduce a two-stage solution for this prob-
lem as illustrated in Figure 2. First, we obtain a ranking function
which can provide better performance at the top of the ranking
list, since we care more about the top ranked ad requests under
the constrained budget of the impression numbers. Second, with
the obtained ranking function, we derive the optimal sequential
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Figure 2: A diagram of our solution of volume ranking and
sequential ad selection.

selection policy in a reinforcement learning fashion to smoothly
spend the impression budget within each episode.

3.1 Preliminaries: Top Optimization
In the bipartite ranking (Sec. 2), let S = {x } be the instance set,
which can be further divided into S+ = {x+i }

m
i=1, the set of all

m positive instances, and S− = {x−i }
n
i=1, the set of all n negative

instances. To optimize the overall performance upon the whole
instance set S, e.g. in terms of AUC [12], the ranking models are
typically trained to minimize the loss:

L (f ; S) =
1

mn

m∑
i=1

n∑
j=1

1(f (x +i ) ≤ f (x −j )), (1)

where f is the bipartite ranking function and 1(·) is the indicator
function.

When the optimization target is the performance over top in-
stances in the ranking list, e.g., in information retrieval, rather than
the overall performance, then the loss function in Eq. (1) is not
suitable. Instead, the authors in [20] proposed an alternative loss
function, which aims to place all the positive samples prior to the
first negative one by learning the optimal ranking function f :

L (f ; S) =
1
m

m∑
i=1

1(f (x +i ) ≤ max
1≤j≤n

f (x −j )). (2)

While in our scenario, we hope to maximize the proportion
of positive instances within top R (e.g., top 2%) instances in the
ranking list (Precision@R), which corresponds to the proportion
of ad impressions that the advertiser is affordable to buy with
limited budget w.r.t. the whole ad volume. Since we hold a different
optimization target, directly applying the loss function of Eq. (1) or
Eq. (2) can be problematic. In the following Sec. 3.2, we introduce
an effective solution for directly optimizing Precision@R.

3.2 DNS Solution for Optimizing Precision@R
In real-world applications such as online advertising, the bipartite
ranking confronts large bias since there are much fewer positive
samples (clicks) than the negative ones, which results in difficul-
ties in learning and prediction [13]. The researchers usually take
negative down sampling as the solution [13, 45], which randomly
samples negative training data to balance the ratio between the two
contrarily labeled datasets. In our solution, we propose a dynamic
negative down sampling method to deliver comprehensive volume
ranking results in the top proportion. In this section we will at first
discuss a two-step iterative improvement method to gradually im-
prove the performance of volume ranking and then we delve more
deeply into the strategy and control of the sampling operation.



Iterative Improvement Method. For optimizing Precision@R,
similar to Eq. (2), we propose a new loss function:

L ( f ;S) =
1
m

m∑
i=1

1( f (x+i ) ≤ f (x−r ∗ )) (3)

where x−r ∗ is at the position of top R in the ranking list. Intuitively,
this method wants to maximize the number of positive instances
above the position of top R . Since it is difficult to derive the closed-
form solution for Eq. (3), instead we use an iterative improvement
method through Dynamic Negative Sampling (DNS) to solve this
problem.

The algorithm will be split up into 2 steps. Firstly, we call it
as “sampling step”, which means sampling the negative instances
according to the ranking scores predicted by the current model.
And the sampling condition is as Eq. (3). However, it is not practical
to directly use a single negative instance for the next training step.
For stable model training, a balanced ratio between positive and
negative is significant. Therefore, during the sampling step, we
try to sample a number of negative instances around x−r ∗ with the
ratio defined as the “sampling ratio” like that in [13] for balancing
negative and positive samples. Secondly we update our model pa-
rameterw according to the loss function, i.e., cross entropy [34] in
our setting, with {x−r ∗ } sampled from the last sampling operation
and all positive instances as the training data, and we refer to this
stage as “training step”. We iterative these two steps until the model
convergence.

Top-1-of-k Sampling and Control Strategy. The efficiency is a
great challenge in the sampling operation. Finding the instances at
the exact top R position of the ranking function is really expensive
in computation, since we may need to calculate the ranking scores
for all the instances. But the instance space in display advertising is
extremely large, which makes the computation cost not acceptable.
To solve this problem, we propose an effective sampling and control
strategy in the following.

To begin with, we define the relative rank in a ranked list. An
item can be presented by a vector x which is a high-dimensional
representation vector in display ads. And we make r (x ) stand for
the relative rank of item x in the ranking function, e.g., if an item
is ranked at 20% in the top, and the relative rank score will be 0.2.
Therefore, the relative rank of all items in the list actually follows
a uniform distribution. And we introduce the notation of sampling
probability density function as P (r (x )), which presents the prob-
ability of the item x with relative rank r (x ) to be sampled. Then
for different sampling strategies, we can derive the corresponding
P (r (x )), the ideal P (r (x )) for Eq. (3) is a step function,

P (r (x )) =



1 if R − ϵ < r (x ) < R + ϵ
0 otherwise

, (4)

which means we only sample the negative instances whose relative
rank is around R.

Obviously, the complexity varies with different sampling proba-
bility functions. For instance, when the probability density function
P (r (x )) is the step function as described in Eq. (4). The sampling
process will be in the complexity of O (N logN ), N is the size of
the whole negative set (we need to sort the predicted scores to get
the relative rank). However, when the size of dataset is large, the
computation will be too costly. From this perspective, we can de-
sign effective approximation strategies and make the corresponding
P (r ) be close to the ideal situation. Now considering a particular

case of a k −1 degree polynomial function, when P (r ) ∝ (1−r )k−1,
and the sampling process is equal to randomly sampling k negative
samples, and selecting the top ranked one [45]. If T− negative sam-
ples are needed for the training step, the complexity isO (T−k logk ).
And the k is always a constant value less than 100, so the complexity
actually is O (T−), consider the down sampling situation (T− ≪ N ),
this sampling strategy is highly effective. And we call this strategy
as top-1-of-k sampling.

Then the correlation between the sampling probability function
P (r ) and R is crucial for sampling control. The expected sampled
relative rank is a major characteristic of a sampling strategy. For a
sampling strategy π with probability function P (r ), the expected
sampled relative rank can be computed as follows:

E = Eπ [r ] =
∑

r∼U (0,1)
P (r )r =

∫ 1

0
P (r )r dr . (5)

And in top-1-of-k sampling framework, the expected sampled rela-
tive rank is:

EP [r ] =
∫ 1

0
P (r )r dr =

∫ 1
0 (1 − r )k−1r dr∫ 1
0 (1 − r )k−1 dr

=
1

k + 1
(6)

Therefore, towards different R, we can adjust k accordingly. For
instance, if we want to optimize performance at the very top, which
means the proportion R is small, then we can set a large k in
sampling step. More details about the relationship between k and
R are provided in Sec. 4.4.

3.3 RL Solution for Sequential Selection
In online advertising, after the ranking of the ad volume, the next
problem is to sequentially select high quality impressions from the
continually received ad requests.

Sequentially selecting the top ranked impressions in the nearly
unlimited ad request flow to maximize a specific target (typically
number of clicks or profit) can be naturally modeled as an episodic
RL problem [8], where the agent makes decisions onwhether to pick
the impression at each step and is allowed to deliver at maximum
B impressions, i.e. the budget of the agent, while every episode
comprises T (≫ B) ad impressions in total. We define the budget
ratio R = B/T . To make the optimal decision to maximize the
target in each episode, the agent needs to intelligently adjust its
policy according to the remaining ad impressions t ∈ {0, · · · ,T },
the unspent budget b ∈ {0, · · · ,B}, and the current ad impression
which is represented by a high dimensional feature vector x via one-
hot encoding when making each decision. In this section, we firstly
show such an environment can be easily modeled with MDP and
further provide a dynamic programming solution for optimizing
the agent’s policy in the MDP.
Model-Based RL. An MDP, which can be represented by the tuple
(S, {As }, {P (s, s

′,a)}, {R (s,a)}), provides a general framework for
modeling the sequential agent-environment interaction process
(Sec. 2). In our scenario, we consider the tuple (t ,b,xt ) as a state s
where xt is drawn i.i.d. from a probability density function px (x ).
The full state space S is given as S = {0, · · · ,T } × {0, · · · ,B} × X ,
where X represents the whole feature vector space. And a state
with t = 0 is a terminal state which corresponds to the end of an
episode. At each non-terminal s , the agent determines whether to
pick or discard the impression. As such, the set of available actions
in the state s is given as As = {pick, discard }. If the agent decides
to pick the current impression, it will transit to (t − 1,b − 1,xt−1)
and can transit to (t − 1,b,xt−1) if the agent decides to discard



Table 1: A summary of our notations.

Notation Description
x The feature vector that represents a bid request.

px (x ) The probability density function of x .
r (x ) Relative ranking score of the impression x .
pr (r ) The probability density function of the ranking score r .

V (t ,b,x ) The expected total reward with starting state (t ,b,x ),
taking the optimal policy.

V (t ,b) The expected total reward with starting state (t ,b),
taking the optimal policy.

a(t ,b,x ) The optimal action in state (t ,b,x ).
B The budget of the allowed impression number in each period.
T The volume size of the ad request flow in each period.

R = B/T The top proportion ratio of the budget over the volume size.

the impression. Furthermore, since we hope the agent to pick top
impressionswithin each episode, the agent is rewardedwith r (xt ) =
1 − r if the agent chooses to pick the impression xt , where r is the
relative rank defined in Sec. 3.2. As such, the agent can only get
the maximum reward if it picks top B impressions at each episode.
The summarized state transition function and reward function are
given as:

P
(
(t, b, xt ), (t − 1, b − 1, xt−1), pick

)
= px (xt−1),

P
(
(t, b, xt ), (t − 1, b, xt−1), discard

)
= px (xt−1),

R
(
(t, b, xt ), pick

)
= r (xt ); R

(
(t, b, xt ), discard

)
= 0. (7)

In this work, we hope to optimize a deterministic policy π , a
mapping from each state s ∈ S to action a ∈ As , i.e. a = π (s ),
which corresponds to the strategy for ad impression selection in our
scenario. With the policy π , we have the value function V π (s ): the
expected cumulative reward upon starting in state s and following
the policy π , which satisfies the Bellman equation with the discount
factor γ = 1 in our cases:

V π (s ) =
∑
s′∈S

P (s, s′, π (s )) ×V π (s′) + R (s, π (s )). (8)

The optimal value function isV ∗ (s ) = maxπ V π (s ) while the target
optimal policy is given as

π ∗ (s ) = argmax
a∈As

{∑
s′∈S

P (s, s′, a) ×V ∗ (s′) + R (s, a)
}
. (9)

For notation simplicity, in later sections, we use V (s ) to represent
the optimal value function and a(s ) to represent the optimal policy.

Dynamic Programming Solution.With the reward function and
state transition modeled as shown in Eq. (7), the optimal policy
(Eq. (9)) can be derived using a dynamic programming approach,
specifically value iteration in this work. As (t ,b,x ) represents the
state s , we have the optimal value function V (t ,b,x ). Meanwhile,
we need to consider situations where the next feature vector is not
observed, so we introduce another optimal value function V (t ,b)
by marginalizing out x : V (t ,b) =

∫
x px (x ) V (t ,b,x ) dx . Also the

optimal policy is expressed as a(t ,b,x ).
Firstly, at terminal states, the value functions should be zero,

i.e. V (0,b,x ) = V (0,b) = 0, from the definition. And the Bellman
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Figure 3: V (t ,b) in relative ranking setting.

equation of the optimal value function V (t ,b,x ) is given as:

V (t, b, x ) = max
{ ∫

xt−1
px (xt−1)V (t − 1, b − 1, xt−1) dxt−1 + r (x ),∫

xt−1
px (xt−1)V (t − 1, b, xt−1) dxt−1

}
= max

{
V (t − 1, b − 1) + r (x ), V (t − 1, b )

}
, (10)

where the first term corresponds to picking the current ad im-
pression while the second term corresponds to discarding the im-
pression. V (t ,b) is derived by marginalizing out x , and we define
β = V (t − 1,b) −V (t − 1,b − 1):

V (t, b ) =
∫
x
px (x )max

{
V (t − 1, b − 1) + r (x ), V (t − 1, b )

}
dx

=

∫
β<r (x )≤1

px (x )
(
V (t − 1, b − 1) + r (x )

)
dx +∫

0≤r (x )≤β
px (x )V (t − 1, b ) dx , (11)

Furthermore, since r (x ) is a deterministic mapping from x to the
relative rank, the relationship of their probability density function
is determined as:

pr (r (x )) =
px (x )

| |∇r (x ) | |
. (12)

With Eq. (12), the integration over the feature vector x in Eq. (11)
can be transformed into integration over the relative rank r :∫

β<r (x )≤1
px (x )

(
V (t − 1, b − 1) + r (x )

)
dx

=

∫
β<r (x )≤1

(
V (t − 1, b − 1) + r (x )

)
pr (r (x )) | |∇r (x ) | | dx

=

∫
β<r (x )≤1

(
V (t − 1, b − 1) + r (x )

)
pr (r (x )) dr (x )

=

∫ 1

β

(
V (t − 1, b − 1) + r

)
pr (r ) dr, (13)

where pr (r ) = 1 for that pr (r ) ∼ U (0, 1). Similarly, we have∫
0≤r (x )≤β

px (x )V (t − 1, b ) dx =
∫ β

0
pr (r )V (t − 1, b ) dr . (14)

As such, the optimal value function V (t ,b) can be expressed as:

V (t, b ) =
∫ 1

β

(
V (t − 1, b − 1) + r

)
pr (r ) dr +

∫ β

0
V (t − 1, b )pr (r ) dr

= (1 − β )V (t − 1, b − 1) +
1 − β 2

2
+ βV (t − 1, b ). (15)



Algorithm 1 Reinforcement Learning to Select
Input: episode length T , ad impression number budget B
Output: value function V (t, b )
1: initialize V (0, b ) = 0
2: for t = 1, 2, · · · , T − 1 do
3: for b = 0, 1, · · · , B do
4: set V (t, b ) via Eq. (15)
5: end for
6: end for

Input: ranking function θ (x ), value function V (t, b ), rank score function
M , current state (tc , bc , xc )

Output: decision ac on whether to pick or discard in current state
1: calculate the ranking score for the current ad request: θc = θ (xc )
2: compute the relative ranking score rc = M (θc )
3: if rc +V (tc − 1, bc − 1) −V (tc − 1, bc ) ≥ 0 then
4: ac ← pick
5: else
6: ac ← discard
7: end if

Algorithm 2 Dynamic Negative Sampling
Input: negative (non-clicked) samples S−, positive (clicked) samples S+,

negative down sampling ratio r
Output: ranking function θ (x ), trained to optimize Precision@R
1: randomly initialize the ranking function θ (x )
2: while not converged do
3: (sampling step)
4: sample r proportion of negative samples from S− according to the

strategy described in Sec. 3.2, i.e. S−i
5: (training step)
6: train the ranking function θ (x ) with S−i and S+
7: end while

The derived optimal value function V (t ,b) is illustrated in Figure 3.
With the derived optimal value function V (t ,b), the optimal policy
can be expressed as:

a (t, b, x ) =



pick if r (x ) +V (t − 1, b − 1) ≥ V (t − 1, b )
discard if r (x ) +V (t − 1, b − 1) < V (t − 1, b )

. (16)

The final algorithm is shown in Algorithm 1.

4 EXPERIMENTS
In this section, we first describe detailed experiment settings, includ-
ing datasets, compared models, evaluation metrics. Then we present
performance comparison between our proposed DNS method for
Precision@R optimization, RL based model for sequential volume
selection and some other baselines. At last we conduct a case study
of hyperparameter tuning. And in the real scenario, the model will
be updated after receiving a bunch of new bid request with user
response ground truth. For experiment reproducibility we publish
our code2.

4.1 Datasets
We use two real-world datasets, iPinYou and YOYI, for the offline ex-
periments. We also conduct the experiments on BEBI, a commercial
programmatic display advertising platform.

2The experiment code is available at https://goo.gl/HqcZiF.

iPinYou is a leading demand side platform (DSP) in China, the
dataset released for the research comprises 19.5M impres-
sions and 14.79K clicks and 16.0K CNY expense on 9 different
campaigns over 10 days in 2013. The feature engineering
and the splitting of the train/test sets follows [47].

YOYI is another mainstream DSP in China, and mainly focuses
on the multi-device display advertising in China. And the
dataset [32] comprises 441.7M impressions, 416.9K clicks
and 319.5K CNY expense during 8 days in Jan. 2016. The first
7 days are set as the training data while the last day is set as
the test data.

BEBI Media Limited3 is a commercial programmatic display adver-
tising platform in Hong Kong, on which we test our model.
Note that, the ad agent on BEBI will accept all the ad re-
quests and deliver ad impressions, which establishes an ideal
test environment for our A/B testing. Specifically, the data
involved in the test set comprises 21.3M impressions and
34.2K clicks during 9 days from Feb. 22, 2017 to Mar. 2, 2017.
We take two largest campaigns from BEBI, namely BEBI-1
and BEBI-2.

4.2 Experiment Settings
As is mentioned previously, we focus on programmatic direct inser-
tion order, where the advertiser and publisher would sign a contact
of running a display ad campaign, including the campaign life pe-
riod, the guaranteed delivery ad volume and the predefined cost,
etc. Different from private marketplace or real-time bidding, the
advertiser does not need to bid with others, they just need to make
a binary decision, i.e., to pick or discard the given ad request. In
this scenario, if the advertiser decide to pick (as an ad impression),
they will directly response the ad request and show the ad, other-
wise they will miss the request. The ad flow from the publishers
is extremely large, while the budget (here is the total number of
impressions in the contract) is relatively limited for the agent. So,
for the advertiser agent, the main goal can be defined as to obtain as
many user clicks as possible from the ads flow with the constrained
impression budget B.

Our experiments will also be split up into 2 phases as discussed
in Sec. 3. First,we will show the results of the ranking function
learned with our DNS method in top R Precision. And then we
make discussions on the sequential volume selection with RL.

Compared Models. In display advertising, the researchers always
use the historical impression log to train a user response estima-
tor for each ad campaign. In our experiments, the targeted user
response is click and the problem turns out to be CTR estimation
[11, 34]. And we choose logistic regression (LR) as the baseline rank-
ing function, which is effective in handling large-scale data and
widely adopted in the industry. In our work, we take two-step DNS,
in the sampling phase the top-1-of-k sampling strategy (DNS-k) as
described in Sec. 3.2 is adopted.

Evaluation and Data Flow. Recall that, the main goal of our
method is to maximize the gained clicks under the given budget
B of ad impressions. We follow [48] when building the evaluation
flow, except that we will divide the test data into episodes. In each
period, the ad request in historical ad logs will be sent to the agent,
then the agent will decide the action of whether to pick or discard

3https://www.bebi.com/



the request. The performance of obtained click number and other
measurement results will be calculated after the period ends.

Episode Length and Budget. The episode length T is the total
volume size of the ad requests defined in Sec. 3.3. In the following
experiments, we set T as 100,000, which corresponds to about 10-
minute period of received display requests of a medium publisher.
The impression budget B is always much smaller than the size of
the whole ad volume T . To present this condition, in experiments,
we set B = R ·T , where R is 0.8%, 2% for different budget constraint
settings. According to the different budget settings, the optimization
goal R in Sec. 3 is different. And we can tune the parameter k in
top-1-of-k sampling according to the correlation between R and k ,
which is discussed in Sec. 3.2.

4.3 Experimental Results
In this section, we will present the experiment results on different
datasets. At first, we discuss the performance comparison of the
ranking models about top-optimization. Then, the results of the
sequential volume selection model based on RL will be described
in detail.

4.3.1 Ranking performance. We put more concerns on the rank-
ing performance at top R proportion, rather than the global pair-
wise rank metric such as AUC. Thus we choose some top rank
metrics for our evaluation.
Precision@R [20] is the fraction of positive samples at top R in

the ranking list, which determines the upper bound of how
many clicks we can acquire with this ranking function.

NDCG@R [23] is the normalized discounted cumulative gain
which gives the more attention on the top of the ranking list.

As is described above, we take LR with uniformly negative down
sampling as our baseline. And we set the sample number k of our
method as 5 then the refered model is DNS-5.

Table 2 illustrates the Precision and NDCG performance with dif-
ferent R. It shows that DNS-5 outperforms LR in the Precision@R
and NDCG@R, especially when the top proportion R is low. Fig-
ure 4 shows the improvement in ranking metrics at the top R in
iPinYou dataset. We can find that, when the top proportion R is
smaller, DNS-5 achieves relatively better performance. Andwith the
increase of the top proportionR , performance of DNS-5 will decline,
and finally perform even inferior to LR. Associated with the AUC
metric in Table 2, it shows that for a determined k , DNS-k can not
improve the global rank performance, in contrary, it will sacrifice
the global ranking performance, while getting better performance
at the top of the ranking list. However, it is reasonable since we care
more about the top ranked samples for volume selection, which
will be discussed later.

4.3.2 Sequential Selection Performance. In this part, we will
discuss the performance of different sequential selection strategies.
And in the process of ads selection, we use the following evaluation
metrics:
Clicks - the number of the user clicks from the selected ad requests

flow. The goal of the selection is to get as many clicks as
possible.

CTR - the click-through rate, which means the ratio of clicks
against the total ad impressions in all the selected impres-
sions. In our programmatic direct scenario, as discussed in
Sec. 1, each impression is paid in a fixed pre-negotiated price,
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Figure 4: Precision and NDCG with different top proportion
R in iPinYou(all).

Table 2: Detailed Precision and NDCG on our datasets with
different top proportion R.

Dataset Algorithm AUC(10−2) Precision@R (10−3) NDCG@R (10−2)
0.4% 1.2% 2% 0.4% 1.2% 2%

iPinYou(all) LR 85.21 12.68 8.86 7.11 6.14 11.14 14.13
DNS-5 83.21 29.63 16.20 12.88 13.71 20.48 25.77

YOYI LR 91.08 22.26 17.79 14.67 9.12 17.93 23.15
DNS-5 86.00 25.44 15.59 12.99 9.88 15.92 20.68

BEBI LR 74.96 11.66 9.59 8.54 2.71 5.80 8.15
DNS-5 68.94 18.13 10.35 8.36 4.22 6.55 8.36

BEBI-1 LR 82.73 5.35 3.90 3.51 2.95 5.50 7.66
DNS-5 77.86 7.81 4.96 4.16 5.62 8.42 10.62

BEBI-2 LR 91.53 3.95 4.03 4.02 2.76 7.28 11.38
DNS-5 92.18 7.90 6.18 5.84 5.65 11.53 17.00

which means we can use Clicks and CTR to take place of the
price related metrics, e.g. cost per click (CPC), to evaluate
the effectiveness of our DNS algorithm.

RemainingVolume - the fraction of the remaining ad request
volume over the whole request flow after the budget runs
out.

RemainingBudgets - the fraction of the remaining budget over
the whole ad impression budget when the ad display episode
ends up.

In this part, our compared baseline is a threshold-based method
which sets the threshold according to the ranking score function
derived from the train data. For example, if budget is R percentage,
then the goal is to find the top R percentage impressions in the
test data. Therefore, the relative rank threshold will be set as R . For
each given ad request, if the estimated relative rank score is lower
than the threshold, the ad request will be discarded. Otherwise we
will deliver the ad impression. We regard this method as the con-
stant threshold (CT) method. And our method has been described
in Algorithm 1, and will be referred to as DP, named as dynamic
programming in the following experiments. To represent the selec-
tion models with different ranking score functions, we concatenate
the model names. For example, when referring to the DP selection
strategy with the ranking score function made by DNS-5, we name
it as DNS-5-DP.

Tables 3, 4, 5, 6 and 7 depict the performance of different models
with different selection strategies over the datasets. From the tables,
we can find that: (i) Methods with DNS-5 always achieve relatively
higher CTR and Clicks numbers than LR. It is reasonable since,
from the analysis in Sec. 4.3.1, we have already known that DNS
can effectively improve the precision at top. (ii) DP will spend all
the budget and meet all the display opportunities. Algorithm 1 can
be regarded as a budget pacing strategy. More discussions can be
seen in Sec. 4.4. (iii) The DNS-CT method always spends budget
too aggressively to see all the ad requests. However, the LR-CT



Table 3: Performance in Different Selection Strategies with
budget B = 0.8% ·T and 2% ·T in iPinYou .

Strategy B = 0.8% ·T
Clicks CTR (10−2) RemainingVolume RemainingBudgets

DNS-5-DP 860 2.62 0% 0%
DNS-5-CT 663 2.02 0% 0%
LR-DP 513 1.56 0 % 0.02%
LR-CT 361 1.10 9.97% 0%

B = 2% ·T
DNS-5-DP 1137 1.39 0% 0%
DNS-5-CT 1096 1.34 0.7% 0%
LR-DP 835 1.02 0 % 0%
LR-CT 692 0.84 10.24% 0%

Table 4: Performance in Different Selection Strategies with
budget B = 0.8% ·T and 2% ·T in YOYI .

Strategy B = 0.8% ·T
Clicks CTR (10−2) RemainingVolume RemainingBudgets

DNS-5-DP 162 1.84 0% 0%
DNS-5-CT 168 1.91 14.58% 0%
LR-DP 137 1.56 0 % 0.68%
LR-CT 69 2.72 0% 71.17%

B = 2% ·T
DNS-5-DP 305 1.39 0% 0%
DNS-5-CT 304 1.38 14.42% 0%
LR-DP 302 1.37 0 % 0.07%
LR-CT 152 2.01 0% 65.73%

Table 5: Performance in Different Selection Strategies with-
budget B = 0.8% ·T and 2% ·T in BEBI .

Strategy B = 0.8% ·T
Clicks CTR (10−2) RemainingVolume RemainingBudgets

DNS-5-DP 275 1.25 0% 0%
DNS-5-CT 269 1.23 6.63% 0%
LR-DP 207 0.95 0 % 0%
LR-CT 122 1.18 0% 53.06%

B = 2% ·T
DNS-5-DP 460 0.84 0% 0%
DNS-5-CT 445 0.84 0% 3.4%
LR-DP 438 0.80 0 % 0.4%
LR-CT 316 0.96 0% 40.02%

Table 6: Performance in Different Selection Strategies with
budget B = 0.8% ·T and 2% ·T in BEBI-1 .

Strategy B = 0.8% ·T
Clicks CTR (10−2) RemainingVolume RemainingBudgets

DNS-5-DP 139 0.50 0% 0%
DNS-5-CT 101 0.37 58.94% 0%
LR-DP 124 0.55 0 % 0%
LR-CT 101 0.51 0% 28.22%

B = 2% ·T
DNS-5-DP 272 0.39 0% 0%
DNS-5-CT 232 0.34 43.83% 0%
LR-DP 241 0.34 0 % 0.23%
LR-CT 197 0.36 0% 20.68%

method always fails to use up all the budget. This is for that the
distributions of the training data and the test data always differ
from each other, so the constant threshold set by CT model will suit
in training set but probably not on both. (iv) Moreover, it shows
that DNS-5-DP always makes the best performance in clicks and
CTR because this method focuses on the top precision and executes
a smart pacing strategy during the selection process.

Table 7: Performance in Different Selection Strategies with
budget B = 0.8% ·T and 2% ·T in BEBI-2 .

Strategy B = 0.8% ·T
Clicks CTR (10−2) RemainingVolume RemainingBudgets

DNS-5-DP 113 0.67 0% 0%
DNS-5-CT 105 0.63 28.41% 0%
LR-DP 71 0.43 0.66 % 0%
LR-CT 50 0.45 0% 33.67%

B = 2% ·T
DNS-5-DP 243 0.58 0% 0%
DNS-5-CT 227 0.54 16.09% 0%
LR-DP 162 0.39 0 % 0.5%
LR-CT 109 0.38 0% 31.33%
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Figure 5: Budget Pacing Performance of Single Episode in
BEBI-1 with Budget B = 2% ·T .

4.4 Ablation Study
In this section, we make some discussions about the budget pacing
of the compared models, and further conduct a case study on the
hyperparameter learning of our algorithm.

Budget Pacing Performance. The goal of Algorithm 1 is to select
the top ranked volume with the current ranking function in the ad
request flow under the impression budget constraint. As we can see
from Figure 3, intuitively, sequential selection is just like a budget
pacing mechanism. When the budget is loose, DP will improve the
selection threshold and when budget is tight, DP will contrarily
decrease the selection threshold dynamically. In other words, from
the budget perspective, when the spending speed is too fast, DP
method will adjust the speed to a lower level and vice versa. Figure
5 shows the varying budget spending w.r.t. the remaining budgets
under different strategies in BEBI-1. Wemay find that DPwill adjust
the spending speed and make the ad impression activity smooth in
the flow of large volume ad requests.

Sampling Parameter. As is discussed in Sec. 3.2, we find the op-
timal value of the sampling parameter k in Algorithm 2 varies
according to the top R proportion value. This correlation can be
observed in Figure 6. It shows when the budget is tight, the optimal
value of k is relatively large. With the budget constraint getting
looser, the optimal k reduces. Moreover, when the budget is ex-
tremely loose, e.g. 50%, the optimal k is just 1, which means that
we sample one negative instance at each sampling step (DNS-1) in
Algorithm 2. Note that DNS-1 is actually LR model with uniform
negative sampling.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we study the volume ranking and sequential selection
problem in programmatic display advertising. For volume ranking,
we proposed an effective top optimization method through strate-
gic negative down sampling. And we also proposed a solution of
sequential selection based on reinforcement learning. We show that
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Figure 6: Performance of Different Dynamic Sampling Pa-
rameters in Different proportion R in iPinYou .
these problems can be solved by an approximately top optimization
method and a model based reinforcement learning method. Experi-
mental results have shown that the proposed ranking model can
improve the top volume ranking metrics, based on which the se-
quential binary decision maker of ad request selection successfully
improves the achieved click number within the impression budget.

For future work, we plan to delve deeper into the investigation
of the relationship between the optimal parameter k and R as
described in Sec. 4.4. To solve this problem, we may need to give an
approximated closed-form explanation of DNS. Furthermore, we
would apply the proposed method in multi-advertiser scenario and
the header bidding problem.
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