
LambdaFM: Learning Optimal Ranking with Factorization
Machines Using Lambda Surrogates

Fajie YUAN†[, Guibing Guo‡, Joemon M. Jose†, Long Chen†,
Haitao Yu>†, Weinan Zhang⊥

†University of Glasgow, UK ‡Northeastern University, China
>University of Tsukuba, Japan ⊥Shanghai Jiao Tong University, China

[Cloud Computing Center Chinese Academy of Sciences, China
f.yuan.1@research.gla.ac.uk, guogb@swc.neu.edu.cn, wnzhang@sjtu.edu.cn

ABSTRACT
State-of-the-art item recommendation algorithms, which ap-
ply Factorization Machines (FM) as a scoring function and
pairwise ranking loss as a trainer (PRFM for short), have
been recently investigated for the implicit feedback based
context-aware recommendation problem (IFCAR). However,
good recommenders particularly emphasize on the accuracy
near the top of the ranked list, and typical pairwise loss func-
tions might not match well with such a requirement. In this
paper, we demonstrate, both theoretically and empirically,
PRFM models usually lead to non-optimal item recommen-
dation results due to such a mismatch. Inspired by the suc-
cess of LambdaRank, we introduce Lambda Factorization
Machines (LambdaFM), which is particularly intended for
optimizing ranking performance for IFCAR. We also point
out that the original lambda function suffers from the issue
of expensive computational complexity in such settings due
to a large amount of unobserved feedback. Hence, instead
of directly adopting the original lambda strategy, we create
three effective lambda surrogates by conducting a theoret-
ical analysis for lambda from the top-N optimization per-
spective. Further, we prove that the proposed lambda sur-
rogates are generic and applicable to a large set of pairwise
ranking loss functions. Experimental results demonstrate
LambdaFM significantly outperforms state-of-the-art algo-
rithms on three real-world datasets in terms of four standard
ranking measures.

Keywords
Factorization Machines; PRFM; LambdaFM; Context-aware;
Pairwise Ranking; Top-N Recommendation

1. INTRODUCTION
Context-aware recommender systems exploit contextual

information such as time, location or social connections to
personalize item recommendation for users. For instance,
in a music recommender like www.last.fm, road situation or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983758

driver’s mood may be important contextual factors to con-
sider when suggesting a music track in a car [1]. To leverage
the context which users or items are associated with, several
effective models have been proposed, among which Factor-
ization Machines (FM) [21] gain much popularity thanks to
its elegant theory in seamless integration of sparse context
and exploration of context interactions. FM is originally
developed for rating prediction task [6], which is based on
explicit user feedback. However, in practice most observed
feedback is implicit [23], such as clicks, check-ins, purchases,
music playing, and thus it is much more readily available and
pervasive. Besides, the goal of recommender systems is to
find a few specific and ordered items which are supposed to
be the most appealing ones to the users, known as the top-
N item recommendation task [6]. Previous literature has
pointed out that algorithms optimized for rating prediction
do not translate into accuracy improvement in terms of item
recommendation [6]. In this paper, we study the problem of
optimizing item ranking in implicit feedback based context-
aware recommendation problem (IFCAR). To address both
context-aware and implicit feedback scenarios, the ranking
based FM algorithm by combining pairwise learning to rank

(LtR) techniques (PRFM [21, 18]) has been recently inves-
tigated. The main benefit of PRFM is the capability to
model the interactions between context features under huge
sparsity, where typical LtR approaches usually fail.

To our knowledge, PRFM works indeed much better than
FM in the settings of IFCAR. Nevertheless, it is reasonable
to argue that pairwise learning is position-independent: an
incorrect pairwise-wise ordering at the bottom of the list im-
pacts the score just as much as that at the top of the list [14].
However, for top-N item recommendation task, the learning
quality is highly position-dependent: the higher accuracy at
the top of the list is more important to the recommenda-
tion quality than that at the low-position items, reflected in
the rank biased metrics such as NDCG [16] and MRR [26].
Hence, pairwise loss might still be a suboptimal scheme for
ranking tasks. In this work, we conduct a detailed analy-
sis from the top-N optimization perspective, and shed light
on how PRFM results in non-optimal ranking in the setting
of IFCAR. Besides the theoretical analysis, we also provide
the experimental results to reveal the inconsistency between
the pairwise classification evaluation metric and standard
ranking metrics (e.g., AUC [23] vs. MRR).

Inheriting the idea of differentiating pairs in LambdaRank
[19], we propose LambdaFM, an advanced variant of PRFM
by directly optimizing the rank biased metrics. We point out
that the original lambda function [19] is computationally in-

227

tractable due to a large number of unobserved feedback in
IFCAR settings. To tackle such a problem, we implement
three alternative surrogates based on the analysis of lambda.
Furthermore, we claim that the proposed lambda surrogates
are more general and can be applied to a large class of pair-
wise loss functions. By applying such loss functions, a fam-
ily of PRFM and LambdaFM algorithms have been devel-
oped. Finally, we perform thorough experiments on three
real-world datasets and compare LambdaFM with state-of-
the-art approaches. Our results show that LambdaFM no-
ticeably outperforms all counterparts in terms of four stan-
dard ranking evaluation metrics.

2. RELATED WORK
The approach presented in this work is rooted in research

areas of context-aware recommendation and Learning to Rank
(LtR) techniques. Hence, we discuss the most relevant pre-
vious contribution in each of the two areas and position our
work with respect to them.

Context-aware Recommender Systems. Researchers
have devoted a lot of efforts to context-aware recommender
systems (CARS). Early work in CARS performed pre- or
post-filtering of the input data to make standard methods
context-aware, and thus ignored the potential interactions
between different context variables. Recent research mostly
focuses on integrating context into factorization models. Two
lines of contributions have been presented to date, one based
on tensor factorization (TF) [11] and the other on Factoriza-
tion Machines (FM) [21] as well as its variant SVDFeature
[4]. The type of context by TF is usually limited to cate-
gorical variables. By contrast, the interactions of context by
FM are more general, i.e., not limited to categorical ones.
On the other hand, both approaches are originally designed
for the rating prediction task [6], which are based on explicit
user feedback. However, in most real-world scenarios, only
implicit user behavior is observed and there is no explicit
rating [22, 23]. Besides, the goal of item recommendation is
preferred as a ranking task rather than a rating prediction
one. The state-of-the-art methods by combining LtR and
context-aware models (e.g., TF and FM) provide promising
solutions [24, 25, 18]. For example, TFMAP [25] utilizes TF
to model the three-way user-item-context relations, and the
factorization model is learned by directly optimizing Mean
Average Precision (MAP); similar work by CARS2 [24] at-
tempts both pairwise and listwise loss functions to learn a
novel TF model; PRFM [21, 18], on the other side, applies
FM as the ranking function to model the pairwise interac-
tions of context, and optimizes FM by maximizing the AUC
metric.

LtR. There are two major approaches in the field of LtR,
namely pairwise [2, 23, 7, 16] and listwise approaches [3, 26,
25]. In the pairwise settings, LtR problem is approximated
by a classification problem, and thus existing methods in
classification can be directly applied. However, it has been
pointed out in previous Information Retrieval (IR) litera-
ture that pairwise approaches are designed to minimize the
classification errors of objective pairs, rather than errors in
ranking of items [3]. In other words, the pairwise loss does
not inversely correlate with the ranking measures such as
Normalized Discounted Cumulative Gain (NDCG) [16] and
MAP [25]. By contrast, listwise approaches solve this prob-
lem in a more elegant way where the models are formalized
to directly optimize a specific list-level ranking metric. Gen-
erally, it is non-trivial to directly optimize the ranking per-

formance measures because they are often not continuous
or differentiable, e.g., NDCG, MAP and MRR. Moreover,
due to the sparsity characteristic in IFCAR settings, list-
wise approaches fail to make use of unobserved feedback,
which empirically leads to non-improved or even worse per-
formance than pairwise ones [24]. The other way is to add
listwise information into pairwise learning. The most typi-
cal work is LambdaRank [19], where the change of NDCG
of the ranking list if switching the item pair is incorporated
into the pairwise loss in order to reshape the model by em-
phasizing its learning over the item pairs leading to large
NCDG drop.

It is worth noticing that previous LtR models (e.g. Rank-
ing SVM [9], RankBoost [7], RankNet [2], ListNet [3], Lamb-
daRank [19]) were originally proposed for IR tasks with
dense features, which might not be directly applied in recom-
mender systems (RS) with huge sparse context feature space.
Besides, RS target at personalization, which means each user
should attain one set of parameters for personalized rank-
ing, whereas the conventional LtR normally learns one set
of global parameters [3], i.e., non-personalization. Hence, in
this paper we build our contributions on the state-of-the-art
algorithm of PRFM. By a detailed analysis for the ranking
performance of PRFM, we present LambdaFM motivated
by the idea of LambdaRank. However, computing such a
lambda poses an efficiency challenge in learning the model.
By analyzing the function of lambda, we present three al-
ternative surrogate strategies that are capable of achieving
equivalent performance.

3. PRELIMINARIES
In this section, we first recapitulate the idea and imple-

mentation of PRFM based on the pairwise cross entropy loss.
Then we show that PRFM suffers from a suboptimal rank-
ing for top-N item recommendations. Motivated by this, we
devise the LambdaFM algorithm by applying the idea from
LambdaRank.

3.1 Pairwise Ranking Factorization Machines
In the context of recommendation, let U be the whole

set of users and I the whole set of items. Assume that the
learning algorithm is given a set of pairs of items (i, j) ∈ I
for user u ∈ U , together with the desired target value P

u
ij for

the posterior probability, and let P
u
ij ∈ {0, 0.5, 1} be defined

as 1 if i is preferred over item j by user u, 0 if item i is less
preferred, and 0.5 if they are given the same preference. The
cross entropy (CE) [2] loss is defined as

L =
∑
u∈U

∑
i∈I

∑
j∈I

−Puij logPuij −
(
1− Puij

)
log
(
1− Puij

)
(1)

where Puij is the modeled probability

Puij =
1

1 + exp
(
−σ
(
ŷ(xi)− ŷ(xj)

)) (2)

where σ determines the shape of sigmoid with 1 as default
value, x ∈ Rn denotes the input vector, and ŷ(x) is the
ranking score computed by 2-order FM

ŷ(x)=w0 +

n∑
k=1

wkxk +
1

2

d∑
f=1

((n∑
k=1

vk,fxk
)2− n∑

k=1

v2
k,fx

2
k

)
(3)

where n is the number of context variables, d is a hyper-
parameter that denotes the dimensionality of latent fac-
tors, and w0, wk, vk,f are the model parameters to be esti-

228

Algorithm 1 Ranking FM Learning

1: Input: Training dataset, regularization parameters γθ, learn-
ing rate η

2: Output: Parameters Θ = (w,V)
3: Initialize Θ: w ← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: Uniformly draw u from U ;
6: Uniformly draw i from Iu ;
7: Uniformly draw j from I\Iu ;
8: for k ∈ {1, ..., n} ∧ xk 6= 0 do
9: Update wk as in Eq. (9)

10: end for
11: for f ∈ {1, ..., d} do
12: for k ∈ {1, ..., n} ∧ xk 6= 0 do
13: Update vk,f as in Eq. (10)
14: end for
15: end for
16: until convergence
17: return Θ

mated, i.e., Θ = {w0, w1, ..., wn, v1,1, ..., vn,d}={w0,w,V }1.
As previously mentioned, we focus on the recommendation
problem in IFCAR settings, where only implicit feedback is
available. To simplify Eq. (1), we formalize implicit feedback
training data for user u as

Du = {〈i, j〉u|i ∈ Iu ∧ j ∈ I\Iu} (4)

where Iu represents the set of items that user u have given
a positive feedback, i and j are an observed and unknown
item for u, respectively. Thus, we have P

u
ij=1. Now the CE

loss function and gradient for each 〈i, j〉u pair in our settings
becomes

L
(
〈i, j〉u

)
= log

(
1 + exp

(
− σ

(
ŷ(xi)− ŷ(xj)

)))
(5)

∂L(〈i, j〉u)

∂θ
= λi,j

(
∂ŷ(xi)

∂θ
− ∂ŷ(xj)

∂θ

)
(6)

where λi,j is the learning weight2 for 〈i, j〉u pair and is de-
fined as
λi,j =

∂L(〈i, j〉u)

∂
(
ŷ(xi)− ŷ(xj)

) =−
σ

1 + exp
(
σ
(
ŷ(xi)− ŷ(xj)

)) (7)

According to the property of Multilinearity [21]. The gradi-
ent of Eq. (3) can be derived

∂ŷ(xi)

∂θ
=

{
xik if θ is wk

xik
∑n
l=1 vl,fx

i
l − vk,fxik

2
if θ is vk,f

(8)

By combining Eqs. (5)-(8), we obtain

wk←wk−η
(
λi,j(x

i
k − xjk) + γwkwk

)
(9)

vk,f← vk,f− η
(
λi,j
(n∑
l=1

vl,f (xikx
i
l − xjkx

j
l) (10)

− vk,f (xik
2 − xjk

2
)
)

+ γvk,f vk,f
)

where γθ (i.e., γwk , γvk,f) is a hyper-parameter for the L2
regularization. To handle the large number of unobserved
feedback (i.e., I\Iu), the common practice is to apply Stochas-
tic Gradient Descent (SGD) with bootstrapping [23]. Fi-
nally, the pseudo code of PRFM in the settings of IFCAR is
shown in Algorithm 1.
1
In the remainder, scalar variables are set in the default math font,

e.g., w0, wk, vk,f , while vectors (lower case) and matrices (upper
case) are in bold face, e.g., w, V .
2
λi,j can be read as how much influence 〈i, j〉u has for updating Θ.

Figure 1: A set of items ordered for a given user
using a binary relevance measure. The blue bars
represent the items preferred by the user, while the
light gray bars are those not preferred by the user.
(a) is the ideal ranking; (b) is a ranking with eight
pairwise errors; (c) and (d) are a ranking with seven
pairwise errors by moving the top items of (b) down
two rank levels, and the bottom preferred items up
three. The two arrows (black solid and red dashed)
of (c) denote two ways to minimize the pairwise er-
rors. (d) shows the change in NDCG by swapping
the orders of two items (e.g., item 7 and item 1).

3.2 Lambda Motivation
Top-N item recommendation is often referred to as a rank-

ing task, where ranking measures like Normalized Discounted
Cumulative Gain (NDCG) are widely adopted to evaluate
the recommendation accuracy. However, it has been pointed
out in previous IR literature (e.g., [19]) that pairwise loss
functions might not match well with these measures. For
easy reading, we start to state the problem by an intuitive
example in the form of implicit feedback.

Figure 1 is a schematic that illustrates the relations of
pairwise loss and NDCG. By comparison of (b) and (c), we
observe two mismatch between them. First, the pairwise
errors decrease from eight (b) to seven (c), along with the
value of NDCG decreasing from 0.790 to 0.511. However, an
ideal recommender model is supposed to increase the NDCG
value with the drop of pairwise errors. Second, in (c), the
arrows denote the next optimization direction and strength,
and thus can be regarded as the gradients of PRFM. Al-
though both arrows reduce the same amount of pairwise
errors (i.e., three), the red dashed arrows lead to more gains
as desired. This is because the new NDCGs, after the op-
timization, are 0.624 and 0.832 by the black solid and red
dashed arrows, respectively.

According to the above counterexamples, we clearly see
that the pairwise loss function used in the optimization pro-
cess is not a desired one as reducing its value does not neces-
sarily increase the ranking performance. This means, PRFM
might still be a suboptimal scheme for top-N recommenda-
tions. This motivates us to study whether PRFM can be
improved by concentrating on maximizing the ranking mea-
sures.

To overcome the above challenge, Lambda-based meth-
ods [19] in the field of IR have been proposed by directly
optimizing the ranking biased performance measures. In-
heriting the idea of LambdaRank, we design a new recom-
mendation model named Lambda Factorization Machines
(LambdaFM), an extended version of PRFM for solving top-
N context-aware recommendations in implicit feedback do-
mains. Following this idea, we can design a similar lambda

229

function as f(λi,j , ζu), where ζu is the current item ranking
list for user u (under context c). With NDCG as target,
f(λi,j , ζu) is given

f(λi,j , ζu) = λi,j |4NDCGij | (11)

where 4NDCGij is the NDCG difference of the ranking
list for a specific user if the positions (ranks) of items i, j
get switched. LambdaFM can be implemented by replacing
λi,j with f(λi,j , ζu) in Eqs. (9) and (10)3.

We find that the above implementation is reasonable for
multi-label learning tasks in typical IR tasks, but not ap-
plicable into IFCAR settings. This is because to calculate
4NDCGij it requires to compute scores of all items to ob-
tain the rankings of item i and j. For the traditional LtR,
the candidate URLs returned for a given query in train-
ing datasets have usually been limited to a small size [31].
However, for recommendation, since there is no query at all,
all unobserved (non-positive) items should be regarded as
candidates, which leads to a very large size of candidates
(see the items column in Table 1). Thus the complexity
to calculate each training pair in IFCAR settings becomes
O(|I| · Tpred), where Tpred is the time for predicting a score
by Eq. (3). That is, the original lambda function devised
for LambdaRank is impractical for our settings.

4. LAMBDA STRATEGIES
To handle the above problem, we need to revisit Eqs. (11),

from which 4NDCGij can be interpreted as a weight func-
tion that it rewards a training pair by raising the learn-
ing weight (i.e., λi,j) if the difference of NDCG is larger
after swapping the two items, otherwise it penalizes the
training pair by shrinking the learning weight. Suppose
an ideal lambda function f(λi,j , ζu) for each training pair
〈i, j〉u is given with the current item ranking list ζu, if we
design a scheme that generates the training item pair 〈i, j〉u
with the probability proportional to f(λi,j , ζu)/λi,j (just like
4NDCGij in Eqs. (11)), then we are able to construct an
almost equivalent training model. In other words, a higher
proportion of item pairs should be drawn according to the
probability distribution pj ∝ f(λi,j , ζu)/λi,j if they have a
larger 4NDCG by swapping.

On the other hand, we observe that item pairs with a
larger4NDCG contribute more to the desired loss and lead
to a larger NDCG value. In the following, we refer to a train-
ing pair 〈i, j〉u as an informative item pair, if 4NDCGij
is larger after swapping i and j than another pair 〈i, j′〉.
The unobserved item j is called a good or informative item.
Thus two research questions arise: (1) how to judge which
item pairs are more informative? and (2) how to pick up
informative items? Figure 1 (d) gives an example of which
item pairs should have a higher weight. Obviously, we ob-
serve that the quantity of 4NDCG71 is larger than that of
4NDCG75. This indicates 4NDCGij is likely to be larger
if unobserved (e.g., unselected) items have a higher rank (or
a relatively higher score by Eq. (3)). This is intuitively cor-
rect as the high ranked non-positive items hurt the ranking
performance (users’ feelings) more than the low ranked ones.
The other side of the intuition is that low ranked positive
items contribute similarly as high ranked non-positive items
during the training process, which would be provided with
more details later.

3
Due to space limitations, we leave out more details and refer the

interested readers to [29, 19] for the technical part.

In the following, we provide three intuitive lambda sur-
rogates for addressing the two research questions and refer
to PRFM with suggested lambda surrogates as LambdaFM
(LFM for short in some places).

4.1 Static & Context-independent Sampler
We believe that a popular item j ∈ I\Iu is supposed to

be a reasonable substitute for a high ranked non-positive
item, i.e., the so-called informative item. The reason is in-
tuitive as an ideal learning algorithm is expected to restore
the pairwise ordering relations and rank most positive items
with larger ranking scores than non-positive ones. As we
know, the more popular an item is, the more times it acts as
a positive one. Besides, popular items are more likely to be
suggested by a recommender in general, and thus they have
higher chances to be positive items. That is, the observa-
tion that a user prefers an item over a popular one provides
more information to capture her potential interest than that
she prefers an item over a very unpopular one. Thus, it is
reasonable to assign a higher weight to non-positive items
with high popularity, or sampling such items with a higher
probability.

In fact, it has been recognized that item popularity dis-
tribution in most real-world recommendation datasets has a
heavy tail [17, 13], following an approximate power-law or
exponential distribution4. Accordingly, most non-positive
items drawn by uniform sampling in Algorithm 1 are un-
popular due to the long tail distribution, and thus contribute
less to the desired loss function. Based on the analysis, it is
reasonable to present a popularity-aware sampler to replace
the uniform one before performing each SGD. Let pj denote
the sampling distribution for item j. In this work, we draw
unobserved items with the probability proportional to the
empirical popularity distribution, e.g., an exponential dis-
tribution (In practice, the distribution pj can be replaced
with other analytic distributions, such as geometric and lin-
ear distributions, or non-parametric ones).

pj ∝ exp
(
−
r(j) + 1

|I| × ρ

)
, ρ ∈ (0, 1] (12)

where r(j) represents the rank of item j among all items
I according to the overall popularity, ρ is the parameter of
the distribution. Therefore, Line 7 in Algorithm 1 can be
directly replaced as the above sampler, i.e., Eq. (12). Here-
after, we denote PRFM with the static popularity-aware
sampler as LFM-S.

The proposed sampler has three important properties:

• Static. The sampling procedure is static, i.e., the dis-
tribution does not change during the training process.

• Context-Invariant. The item popularity is indepen-
dent of context information according to Eq. (12).

• Efficient. The sampling strategy does not increase the
computational complexity since the popularity distri-
bution is static and thus can be calculated in advance.

4.2 Dynamic & Context-aware Sampler
The second sampler is a dynamic one which is able to

change the sampling procedure while the model parameters
Θ are updated. The main difference of dynamic sampling
is that the item rank is computed by their scores instead
of global popularity. As it is computationally expensive to

4
We have examined the long tail property of our example datasets,

while details are omitted for space reasons.

230

Algorithm 2 Rank-Aware Dynamic Sampling

1: Require: Unobserved item set I\Iu, scoring function ŷ(·),
parameter m, ρ

2: Draw sample j1,...,jm uniformly from I\Iu
3: Compute ŷ(xj1),...,ŷ(xjm)

4: Sort j1,...,jm by descending order, i.e., r(jm) ∝ 1
ŷ(xjm)

5: Return one item from the sorted list with the exponential
distribution pj ∝ exp(−(r(j) + 1)/(m× ρ)).

calculate all item scores in the item list given a user and
context, which is different from the static item popularity
calculated in advance, we first perform a uniform sampling
to obtain m candidates. Then we calculate the candidate
scores and sample the candidates also by an exponential
distribution. As the first sampling is uniform, the sampling
probability density for each item is equivalent with that from
the original (costy) global sampling. A straightforward al-
gorithm can be implemented by Algorithm 2. We denote
PRFM with the dynamic sampler as LFM-D. It can be seen
the sampling procedure is dynamic and context-aware.

• The sampler selects non-positive items dynamically ac-
cording to the current item ranks which are likely to
be different at each update.

• The item rank is computed by the FM function (i.e.,
Eq. (3)), which is clearly context-aware.

• The complexity for parameter update of each training
pair is O(mTpred (Line 3)+m logm (Line 4)), where
the number of sampling items m can be set to a small
value (e.g., m=10, 20, 50). Thus introducing the dy-
namic sampler will not increase the time complexity
much.

4.3 Rank-aware Weighted Approximation
The above two surrogates are essentially based on non-

positive item sampling techniques, the core idea is to push
non-positive items with higher ranks down from the top po-
sitions. Based on the same intuition, an equivalent way is
to pull positive items with lower ranks up from the bot-
tom positions. That is, we have to place less emphasis on
the highly ranked positives and more emphasis on the lowly
ranked ones. Specifically, if a positive item is ranked top in
the list, then we use a reweighting term Γ

(
r(i)

)
to assign a

smaller weight to the learning weight λi,j such that it will
not cost the loss too much. However, if a positive item is not
ranked at top positions, Γ

(
r(i)

)
will assign a larger weight

to the gradient, pushing the positive item to the top.

f(λi,j , ζu) = Γ
(
r(i)
)
λi,j (13)

By considering maximizing objectives e.g., reciprocal rank,
we define Γ

(
r(i)

)
as

Γ
(
r(i)
)

=
1

Γ
(
I
) r(i)∑
r=0

1

r + 1
(14)

where Γ
(
I
)

is the normalization term calculated by the the-
oretically lowest position of a positive item, i.e.,

Γ
(
I
)

=
∑
r∈I

1

r + 1
(15)

However, the same issue occurs again, i.e., the rank of the
positive item i is unknown without computing the scores of
all items. In contrast with non-positive item sampling meth-
ods, sampling positives is clearly useless as there are only a

Algorithm 3 LFM-W Learning

1: Input: Training dataset, regularization parameters γ, learn-
ing rate η

2: Output: Parameters Θ = (w,V)
3: Initialize Θ: w ← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: Uniformly draw u from U
6: Uniformly draw i from Iu
7: Calculate ŷ(xi)
8: Set T=0
9: do

10: Uniformly draw j from I
11: Calculate ŷ(xj)
12: T+=1
13: while

(
ŷ(xi)− ŷ(xj) > ε ‖ Puij 6= 1

)
∧
(
T < |I| − 1

)
14: if ŷ(xi)− ŷ(xj) ≤ ε ∧ Puij = 1 then

15: Calculate λi,j ,Γ
(
I
)

according to Eqs. (7) and (15)
16: for k ∈ {1, ..., n} ∧ xk 6= 0 do
17: Update wk:

18: wk←wk−η
(
λi,j(x

i
k−x

j
k)

∑d |I|−1
T
e

r=0
1

r+1

Γ
(
I
) −γwkwk

)
19: end for
20: for f ∈ {1, ..., d} do
21: for k ∈ {1, ..., n} ∧ xk 6= 0 do
22: Update vk,f :

23: vk,f ← vk,f− η
(
λi,j

(∑n
l=1 vl,f (xikx

i
l − x

j
kx
j
l)

−vk,f (xik
2 − xjk

2
)
)∑d |I|−1

T
e

r=0
1

r+1

Γ
(
I
) − γvk,f vk,f

)
24: end for
25: end for
26: end if
27: until convergence
28: return Θ

small fraction of positive items (i.e., |Iu|), and thus all of
them should be utilized to alleviate the sparsity. Interest-
ingly, we observe that it is possible to compute the approx-
imate rank of positive item i by sampling one incorrectly-
ranked item. More specifically, given a 〈u, i〉 pair, we re-
peatedly draw an item from I until we obtain an incorrectly-
ranked item j such that ŷ(xi)− ŷ(xj) ≤ ε and P

u
ij=1, where

ε is a positive margin value5. Let T denote the size of sam-
pling trials before obtaining such an item. Apparently, the
sampling process corresponds to a geometric distribution

with parameter p = r(i)
|I|−1

. Since the number of sampling

trials can be regarded as the expectation of parameter p, we

have T ≈ d 1
p
e = d |I|−1

r(i)
e, where d·e is the ceiling function.

Our idea here is similar to that used in [27, 28] for a dif-
ferent problem. Finally, by using the estimation, we rewrite
the gradient

∂L(〈i, j〉u)

∂θ
=

∑d |I|−1
T
e

r=0
1
r+1

Γ
(
I
) λi,j

(
∂ŷ(xi)

∂θ
−
∂ŷ(xj)

∂θ

)
(16)

We denote the proposed algorithm based weighted approx-
imation as LFM-W in Algorithm 3. In this algorithm, we
iterate through all positive items i ∈ Iu for each user and
update the model parameters w, V until the procedure con-
verges. In each iteration, given a user-item pair, the sam-
pling process is first performed so as to estimate violating

5
We hypothesize that item j is ranked higher than i for user u only

if ŷ(xi)− ŷ(xj) ≤ ε, the default value of ε in this paper is set to 1.

231

condition and obtain a desired item j6. Once j is chosen, we
update the model parameters by applying the SGD method.

We are interested in investigating whether the weight ap-
proximation yields the right contribution for the desired
ranking loss. Based on Eq. (16), it is easy to achieve a
potential loss induced by the violation of 〈i, j〉u pair using
back-stepping approach

L
(
〈i, j〉u

)
=

∑d |I|−1
T
e

r=0
1
r+1

Γ (I)
log

(
1+exp

(
−σ
(
ŷ(xi)−ŷ(xj)

)))
(17)

To simplify the function, we first omit the denominator term
since it is a constant value, then we replace the CE loss with
the 0/1 loss function.

∂L(〈i, j〉u)

∂θ
=

r(i)∑
r=0

1

r + 1
I
[
ŷ(xi)− ŷ(xj)

]
(18)

where I[·] is the indicator function, I[h] = 1 when h is true,
and 0 otherwise. Thus, we have I

[
ŷ(xi)− ŷ(xj

]
= 1 in all

the cases because r is smaller than r(i). Moreover, for each
positive item i, there are r(i) items that are ranked higher
than i (i.e., item j), and thus each j has the probability of
p = 1

r(i)
to be picked. Finally, the formulation of the loss

for each user u is simplified as7

Lu =
∑
i∈Iu

r(i)∑
r=0

1

r + 1
(19)

As previously demonstrated in Section 3.2, the difference of
pairwise losses between (b) and (c) in Figure 1 is inconsis-
tent with that of NDCG values. Instead of using standard
pairwise loss function, here we compute the losses based on
Eq. (19), from which we achieve the losses of (b) and (c) are
2.93 and 4.43, respectively. This means, a smaller loss leads
to a larger NDCG value, and vice versa. Similarly, we no-
tice that the black (solid) arrows in (c) after movement lead
to a larger loss than the red (dashed) ones, and in reason,
the new NDCG value generated by the black ones is smaller
than that by the red ones. Therefore, the movement direc-
tion and strength of red arrows is the right way to minimize
a larger loss, which also demonstrates the correctness of the
proposed lambda strategy. Based on Eq. (19), one can draw
similar conclusions using other examples.

Regarding the properties of LFM-W, we observe that the
weight approximation procedure is both dynamic (Line 9-
13 of Algorithm 3) and context-aware (Line 11) during each
update, similarly like LFM-D. Moreover, LFM-W is able
to leverage both binary and graded relevance datasets (e.g.
URL click numbers, POI check-ins), whereas LFM-S and
LFM-D cannot learn the count information from positives.
In terms of the computational complexity, using the gradient
calculation in Eq. (16) can achieve important speedups. The
complexity to compute 4NDCG is O(Tpred|I|) while the
complexity with weighted approximation becomesO(TpredT).
Generally, we have T � |I| at the start of the training and
T < |I| when the training reaches a stable state. The reason
is that at the beginning, LambdaFM is not well trained and
thus it is quick to find an offending item j, which leads to
a very small T , i.e., T � |I|, when the training converges
to a stable state, most positive items are likely to be ranked
correctly, which is also our expectation, and thus T becomes
a bit larger. However, it is unlikely that all positive items
are ranked correctly, so in general we have T < |I|.
6
Item j is not limited to a non-positive item, since it can also be

drawn from the positive collection Iu with a lower preference than i.
7
Please note that Lu is non-continuous and indifferentiable, which

means it is hard to be directly optimized with this form.

5. LAMBDA WITH ALTERNATIVE LOSSES
From Section 3.1, one may observe that the original lambda

function was a specific proposal for the CE loss function used
in RankNet [2]. To our knowledge, there exists a large class
of pairwise loss functions in IR literature. The well-known
pairwise loss functions, for example, can be margin ranking
criterion, fidelity loss, exponential loss, and modified Huber
loss, which are used in Ranking SVM [9], Frank [15], Rank-
Boost [7], quadratically smoothed SVM [30], respectively.
Motivated by the design ideas of these famous algorithms,
we build a family of LambdaFM variants based on these loss
functions and verify the generic properties of our lambda
surrogates.

Margin ranking criterion (MRC):

L =
∑
u∈U

∑
i∈Iu

∑
j∈I\Iu

max
(

0, 1− (ŷ(xi)− ŷ(xj))
)

(20)

MRC assigns each positive-negative (non-positive) item pair
a cost if the score of non-positive item is larger or within a
margin of 1 from the positive score. Optimizing this loss is
equivalent to maximizing the area under the ROC curve
(AUC). Since MRC is non-differentiable, we optimize its
subgradient as follows

λi,j =

{
−1 if ŷ(xi)− ŷ(xj) < 1

0 if ŷ(xi)− ŷ(xj) ≥ 1
(21)

As is known, the pairwise violations are independent of their
positions in the ranking list [10]. For this reason, MRC
might not optimize top-N very accurately.

Fidelity loss (FL): This loss is introduced by Tsai et
al. [15] and has been applied in Information Retrieval (IR)
task and yielded superior performance. The original func-
tion regarding the loss of pairs is defined as

L =
∑
u∈U

∑
i∈I

∑
j∈I

(
1−
√
P ij · Pi,j −

√
(1− P ij) · (1− Pi,j)

)
(22)

where P ij and Pij share the same meanings with the CE
loss in Eq. (1). According to the antisymmetry of pairwise
ordering scheme [23], we simplify the FL in IFCAR settings
as follows

L =
∑
u∈U

∑
i∈Iu

∑
j∈I\Iu

(
1−

1√
1 + exp

(
−ŷ(xi) + ŷ(xj)

)) (23)

In contrast with other losses (e.g., the CE and exponential
losses), the FL of a pair is bounded between 0 and 1, which
means the model trained by it is more robust against the
influence of hard pairs. However, we argue that (1) FL is
non-convex, which makes it difficult to optimize; (2) adding
bound may cause insufficient penalties of informative pairs.

Modified Huber loss (MHL):

L =
∑
u∈U

∑
i∈Iu

∑
j∈I\Iu

1

2γ
max

(
0, 1−

(
ŷ(xi)− ŷ(xj)

))2

(24)

where γ is a positive constant and is set to 2 for evalua-
tion [30]. MHL is quadratically smoothed variant of MRC
and proposed for linear prediction problems by Zhang et
al. [30].

It is worth noting that both Fidelity and Huber loss func-
tions have not been investigated yet in the context of recom-
mendation. Besides, to the best of our knowledge, PRFM
built on these two loss functions are novel. On the other
hand, we find that exponential loss function is aggressive

232

Table 1: Basic statistics of datasets. Each entry
indicates whether a user has interacted with an item.

Dataset Users Items Artists Albums Entries
Yelp 10827 23115 - - 333338
Lastfm 983 60000 25147 - 246853
Yahoo 2450 124346 9040 19851 911466

and seriously biased by hard pairs, which usually result in
worse performance during the experiment. Thus the trial of
PRFM with exponential loss have been omitted.

6. EXPERIMENTS
In this section, we conduct experiments on the three real-

world datasets to verify the effectiveness of our proposed
LambdaFM in various settings.

6.1 Experimental Setup

6.1.1 Datasets & Evaluation Metrics
We use three publicly accessible Collaborative Filtering

(CF) datasets for our experiments: Yelp8 (user-venue pairs),
Lastfm9 (user-music-artist triples) and Yahoo music10 (user-
music-artist-album tuples). To speed up the experiments,
we follow the same procedures as in [5, 16] by randomly sam-
pling a subset of users from the user pool of Yahoo datasets,
and a subset of items from the item pool of Lastfm dataset.
On Yelp dataset, we extract data from Phoenix and follow
the common practice [23] to filter out users with less than 10
interactions. The reason is because the original Yelp dataset
is much sparser than Lastfm and Yahoo datasets11, which
makes it difficult to evaluate recommendation algorithms
(e.g., over half users have only one entry.). The statistics of
the datasets after preprocessing are summarized in Table 1.

To illustrate the recommendation quality of LambdaFM,
we adopt four standard ranking metrics: Precision@N and
Recall@N (denoted by Pre@N and Rec@N respectively) [12],
Normalized Discounted Cumulative Gain (NDCG) [16, 14]
and Mean Reciprocal Rank (MRR) [26], and one (binary)
classification metric, i.e. Area Under ROC Curve (AUC).
For each evaluation metric, we first calculate the perfor-
mance of each user from the testing set, and then obtain the
average performance over all users. Due to the page limita-
tions, we leave out the detailed formulas of these measures.

6.1.2 Baseline Methods
In our experiments, we compare our model with five pow-

erful baseline methods12. Most Popular (MP) [16, 23]:
It is to recommend users with the top-N most popular items.
User-based Collaborative Filtering (UCF) [8, 23]: This
is a typical memory-based CF technique for recommender
systems. The preference quantity of user u to a candidate
item i is calculated as an aggregation of some similar users’
preference on this item. Pearson correlation is used in our
work to compute user similarity and the top-30 most similar
users are selected as the nearest neighbors. Factorization
Machines (FM) [20, 21]: FM is designed for the rating

8
https://www.yelp.co.uk/dataset challenge

9
http://www.dtic.upf.edu/˜ocelma/MusicRecommendationDataset/

lastfm-1K.html
10

webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
11

Cold users of both datasets have been trimmed by official provider.
12

For the sake of understanding the ranking effectiveness of different
algorithms, we launch a random one (denoted as Rand) as in [8].

prediction task (known as a pointwise approach). Here we
adapt FM for the item recommendation task by binariz-
ing the rating value. Note that, to conduct a fair compar-
ison, we also develop the bootstrap sampling to make use
of non-positive items, which outperforms FM in libFM [21].
Bayesian Personalized Ranking (BPR) [23]: This is
one of the strongest context-free recommendation algorithms
specifically designed for top-N item recommendations based
on implicit feedback. Pairwise Ranking Factorization
Machines (PRFM) [18]: To the best of our knowledge,
PRFM is the state-of-the-art context-aware ranking algo-
rithm, optimized to maximize the AUC metric. In this pa-
per, we develop several PRFM13 algorithms by applying var-
ious pairwise loss functions introduced in Section 5.

6.1.3 Hyper-parameter Settings
Learning rate η: We apply the 5-fold cross validation

to find η for PRFM14, and then employ the same η to
LambdaFM for comparison. In addition, for BPR, the ex-
perimental results show that it performs the best with the
same set of parameters of PRFM; for FM, we apply the same
procedure to chose η independently. Latent dimension d:
The effect of latent factors has been well studied by previous
work, e.g., [23]. For comparison purposes, the approaches
(e.g., [16]) are usually to assign a fixed d value (e.g., d = 30
in our experiments) for all methods based on factorization
models. Regularization γθ: LambdaFM has several regu-
larization parameters, including γwk , γvk,f , which represent
the regularization parameters of latent factor vectors of wk,
vk,f , respectively. We borrow the idea from [21] by grouping
them for each factor layer, i.e., γπ = γwk , γξ = γvk,f . We
run LambdaFM with γπ, γξ ∈ {0.5, 0.1, 0.05, 0.01, 0.005} to
find the best performance parameters. Distribution co-
efficient ρ: ρ ∈ (0, 1] is specific for LFM-S and LFM-D,
which is usually tuned according to the data distribution.

6.2 Performance Evaluation
All experiments are conducted with the standard 5-fold

cross validation. The average results over 5 folds are re-
ported as the final performance.

6.2.1 Accuracy Summary
Table 2 and Figure 2(a-f) show the performance of all

the methods on the three datasets. Several insightful ob-
servations can be made: First, in most cases personalized
models (UCF, BPR, PRFM, LambdaFM) noticeably out-
perform MP, which is a non-personalized method. This im-
plies, in practice, when there is personalized information
present, personalized recommenders are supposed to outper-
form non-personalized ones. Particularly, our LambdaFM
clearly outperforms all the counterparts in terms of four
ranking metrics. Second, we observe that different mod-
els yield basically consistent recommendation accuracy on
different metrics, except for AUC, which we give more de-
tails later. Third, as N increases, values of Pre@N get lower
and values of Rec@N become higher. The trends reveal the
typical behavior of recommender systems: the more items
are recommended, the better the recall but the worse the
precision achieved.

Regarding the effectiveness of factorization models, we
find that BPR performs better than FM on the Yelp dataset15,

13
PRFM is short for PRFM with the CE loss if not explicitly declared.

14
η is set to 0.01 on Yelp and Yahoo datasets, and 0.08 on Lastfm.

15
Note that it is not comparable on the Lastfm and Yahoo datasets

since FM combines other contexts.

233

Table 2: Performance comparison on NDCG, MRR and AUC, where “*” means significant improvement in
terms of paired t-test with p-value < 0.01. For each measure, the best result is indicted in bold.

Dataset Metrics Rand MP UCF FM BPR PRFM LFM-S LFM-D LFM-W Improv.

Yelp
NDCG 0.1279 0.1802 0.1714 0.2130 0.2186 0.2186 0.2218 0.2232 0.2191 +2.10%*

MRR 0.0019 0.0451 0.0557 0.0718 0.0860 0.0852 0.0950 0.0997 0.0977 +15.93%*
AUC 0.5007 0.8323 0.6203 0.8981 0.9043 0.9044 0.8876 0.8787 0.874 -

Lastfm
NDCG 0.2330 0.3452 0.3449 0.3832 0.3830 0.3944 0.4095 0.4175 0.4191 +6.26%*

MRR 0.0057 0.2051 0.2634 0.2182 0.2588 0.2856 0.3433 0.3514 0.3914 +37.04%*
AUC 0.4987 0.8506 0.6661 0.9161 0.9055 0.9209 0.9145 0.9075 0.8949 -

Yahoo
NDCG 0.2232 0.3109 0.3362 0.3682 0.3478 0.3720 0.3791 0.3993 0.4016 +7.96%*

MRR 0.0039 0.1252 0.2219 0.1942 0.1909 0.2211 0.2467 0.2857 0.3004 +35.87%*
AUC 0.5005 0.8425 0.7491 0.9313 0.8720 0.9357 0.9256 0.9340 0.9273 -

5 10 20

0.01

0.015

0.02

0.025

0.03

0.035

N

P
re
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(a) P-Yelp

5 10 20

0.05

0.1

0.15

0.2

N

P
re
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(b) P-Lastfm

5 10 20

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N

P
re
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(c) P-Yahoo

5 10 20

0.02

0.04

0.06

0.08

N

R
ec
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(d) R-Yelp

5 10 20

0.02

0.04

0.06

0.08

N

R
ec
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(e) R-Lastfm

5 10 20

0

0.02

0.04

0.06

N

R
ec
@
N

MP UCF FM BPR

PRFM LFM-S LFM-D LFM-W

(f) R-Yahoo

Figure 2: Performance comparison with respect to top-N values, i.e., Pre@N (P) and Rec@N (R).

0.01 0.1 0.3 0.5 0.8 1.0

0.01

0.03

0.05

0.07

0.09

ρ

M
R
R

PRFM LFM-S LFM-D LFM-W

(a) Yelp

0.01 0.1 0.3 0.5 0.8 1.0

0.24

0.28

0.32

0.36

0.4

ρ

M
R
R

PRFM LFM-S LFM-D LFM-W

(b) Lastfm

0.01 0.1 0.3 0.5 0.8 1.0

0.05

0.1

0.15

0.2

0.25

0.3

ρ

M
R
R

PRFM LFM-S LFM-D LFM-W

(c) Yahoo

Figure 3: Parameter tuning with respect to MRR.

which empirically implies pairwise methods outperform point-
wise ones for ranking tasks. The reason is that FM is identi-
cal to matrix factorization with only user-item information.
In this case, the main difference of FM and BPR is that they
apply different loss functions, i.e., quadratic and logistic loss,
respectively. This is in accordance with the interesting find-
ing that BPR and PRFM produce nearly the same results

w.r.t. all metrics on Yelp. Furthermore, among all the base-
line models, the performance of PRFM is very promising.
The reason is that PRFM, (1) as a ranking-based factoriza-
tion method, is more appropriate for handling top-N item
recommendation tasks (vs. FM); (2) by applying FM as
scoring function, PRFM estimates more accurate ordering
relations than BPR due to auxiliary contextual variables.

234

(u, i) (u, i, a)

0.2

0.25

0.3

0.35

0.4

Context

M
R
R

PRFM LFM-S LFM-D LFM-W

(a) Lastfm

(u, i) (u, i, a) (u, i, a, a)

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Context

M
R
R

PRFM LFM-S LFM-D LFM-W

(b) Yahoo

Figure 4: Performance comparison in terms of MRR
with different context.

LFM vs. PRFM: We observe that in Figure 2 and Table
2 our LambdaFM (including LFM-S, LFM-D and LFM-W)
consistently outperforms the state-of-the-art method PRFM
in terms of four ranking metrics. In particular, the improve-
ments on Lastfm and Yahoo datasets w.r.t. NDCG and
MRR, are more than 6% and 35%, respectively. Similar
improvements w.r.t. Pre@N and Rec@N metrics can be ob-
served from Figure 216. Besides, we observe that LFM un-
derperforms PRFM in terms of AUC. The results validate
our previous analysis, namely, LambdaFM is trained to op-
timize ranking measures while PRFM aims to maximize the
AUC metric. This indicates that pairwise ranking models,
such as BPR and PRFM, may not be good approximators of
the ranking biased metrics and such a mismatch empirically
leads to non-optimal ranking.

6.2.2 Effect of Lambda Surrogates
In this subsection, we study the effect of lambda surro-

gates and parameter influence on the recommendation per-
formance. For LFM-S, we directly tune the value of ρ; for
LFM-D, we fix the number of sampling units m to a con-
stant, e.g., m = 10, and then tune the value of ρ ∈ {0.01,
0.1, 0.3, 0.5, 0.8, 1.0}; and for LFM-W the only parameter
ε is fixed at 1 for all three datasets in this work. Figure
3 depicts the performance changes by tuning ρ. First, we
see LFM-W performs noticeably better than PRFM, and by
choosing a suitable ρ (e.g., 0.3 for LFM-S and 0.1 for LFM-
D), both LFM-D and LFM-S also perform largely better
than PRFM. This indicates the three suggested lambda sur-
rogates work effectively for handling the mismatch drawback
between PRFM and ranking measures. Second, LFM-S pro-
duces best accuracy when setting ρ to 0.3 on all datasets but
the performance experiences a significant decrease when set-
ting ρ to 0.1. The reason is that the SGD learner will make
more gradient steps on popular items due to the oversam-
pling when ρ is set too small according to Eq. (12). In this
case, most less popular items will not be picked for training,
and thus the model is under-trained. By contrast, the per-
formance of LFM-D has not dropped on Yahoo dataset even
when ρ is set to 0.01 (which means picking the top from m
randomly selected items, see Algorithm 2). This implies, the
performance may be further improved by setting a larger m.
Third, the results indicate that LFM-D and LFM-W outper-
form LFM-S on Lastfm and Yahoo datasets17. This is be-

16
To save space, we only use MRR for the following discussion since

the performance trend on other ranking metrics is consistent.
17

The superiority is not obvious on the Yelp dataset. This might be
due to the reason that the Yelp dataset has no additional context and
the item tail is relatively shorter than that of other datasets.

cause the static sampling method ignores the fact that the
estimated ranking of a non-positive item j changes during
learning, i.e., j might be ranked high in the first step but
it is ranked low after several iterations18. Besides, LFM-S
computes the item ranking based on the overall popularity,
which does not reflect the context information. Thus, it is
more encouraged to exploit current context for computing
ranking such as LFM-D and LFM-W.

6.2.3 Effect of Context
Finding competitive contextual features is not the main

focus of this work but it is interesting to see to what ex-
tent LambdaFM improves the performance by adding con-
text. Therefore, we conduct a contrast experimentation and
show the results on Figure 4(a-b)19, where (u, i) denotes a
user-item (i.e., music) pair and (u, i, a) denotes a user-item-
artist triple on both datasets; similarly, (u, i, a, a) represents
a user-item-artist-album quad on Yahoo dataset. First, we
observe LambdaFM performs much better with (u, i, a) tu-
ples than that with (u, i) tuples on both datasets. This
result is consistent with the intuition that a user may like a
song if she likes another song by the same artist. Second, as
expected, LambdaFM with (u, i, a, a) tuples performs fur-
ther better than that with (u, i, a) tuples from Figure 4(b).
We draw the conclusion that, by inheriting the advantage
of FM, the more effective context incorporated, the better
LambdaFM performs.

6.2.4 Lambda with Alternative Loss Functions
Following the implementations of well-known pairwise LtR

approaches introduced in Section 5, we have built a family
of PRFM and LambdaFM variants. Figure 5 shows the per-
formance of all these variants based on corresponding loss
functions. Based on the results, we observe that by imple-
menting the lambda surrogates, all variants of LambdaFM
outperform PRFM, indicating the generic properties of these
surrogates. Among the three lambda surrogates, the perfor-
mance trends are in accordance with previous analysis, i.e.
LFM-W and LFM-D perform better than LFM-S. Addition-
ally, most recent literature using pairwise LtR for recom-
mendation is based on BPR optimization criterion, which is
equivalent to the CE loss in the implicit feedback scenarios.
To the best of our knowledge, the performance of FL and
MHL loss functions have not been investigated in the con-
text of recommendation, and also PRFM and LambdaFM
based on FL and MHL loss functions achieve competitive
performance with the ones using the CE loss. We expect our
suggested PRFM (with new loss functions) and LambdaFM
to be valuable for existing recommender systems that are
based on pairwise LtR approaches.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel ranking predic-

tor Lambda Factorization Machines (LambdaFM). Inherit-
ing advantages from both LtR and FM, LambdaFM (i) is
capable of optimizing various top-N item ranking metrics
in implicit feedback settings; (ii) is very flexible to incor-
porate context information for context-aware recommenda-
tions. Different from the original lambda strategy, which is
tailored for the CE loss function, we have proved that our
proposed lambda surrogates are more general and applicable

18
In spite of this, non-positive items drawn by popularity sampler are

still more informative than those drawn by uniform sampler.
19
ρ is assigned a fixed value for the study of context effect, namely 0.1

and 0.3 for LFM-D and LFM-S, respectively.

235

CE MRC FL MHL

0.05

0.06

0.07

0.08

0.09

0.1

M
R
R

PRFM LFM-S LFM-D LFM-W

(a) Yelp

CE MRC FL MHL

0.2

0.25

0.3

0.35

0.4

M
R
R

PRFM LFM-S LFM-D LFM-W

(b) Lastfm

CE MRC FL MHL

0.15

0.2

0.25

0.3

M
R
R

PRFM LFM-S LFM-D LFM-W

(c) Yahoo

Figure 5: The variants of PRFM and LambdaFM based on various pairwise loss functions.

to a set of well-known ranking loss functions. Furthermore,
we have built a family of PRFM and LambdaFM algorithms,
shedding light on how they perform in real tasks. In our eval-
uation, we have shown that LambdaFM largely outperforms
state-of-the-art counterparts in terms of four standard rank-
ing measures, but underperforms PRFM methods in terms
of AUC, known as a binary classification measure.

LambdaFM is also applicable to other important rank-
ing tasks based on implicit feedback, e.g., personalized mi-
croblog retrieval and learning to personalize query auto-
completion. In future work, it would be interesting to inves-
tigate its effectiveness in these scenarios.

8. ACKNOWLEDGMENTS
Fajie thanks the CSC funding for supporting the research.

This work is also supported by the National Natural Science
Foundation of China under Grant No. 61402097.

9. REFERENCES
[1] Baltrunas. Incarmusic: Context-aware music

recommendations in a car. In EC-Web, pages 89–100, 2011.
[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML, pages 89–96, 2005.

[3] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to
rank: from pairwise approach to listwise approach. In
ICML, pages 129–136, 2007.

[4] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu.
Svdfeature: a toolkit for feature-based collaborative
filtering. JMLR, pages 3619–3622, 2012.

[5] K. Christakopoulou and A. Banerjee. Collaborative ranking
with a push at the top. In WWW, pages 205–215, 2015.

[6] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks.
In RecSys, pages 39–46, 2010.

[7] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
JMLR, pages 933–969, 2003.

[8] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal
effects for location recommendation on location-based
social networks. In RecSys, pages 93–100, 2013.

[9] R. Herbrich, T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. 1999.

[10] L. Hong, A. S. Doumith, and B. D. Davison.
Co-factorization machines: modeling user interests and
predicting individual decisions in twitter. In WSDM, pages
557–566, 2013.

[11] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: n-dimensional tensor
factorization for context-aware collaborative filtering. In
RecSys, pages 79–86, 2010.

[12] X. Li, G. Cong, X.-L. Li, T.-A. N. Pham, and
S. Krishnaswamy. Rank-geofm: a ranking based
geographical factorization method for point of interest
recommendation. In SIGIR, pages 433–442, 2015.

[13] Q. Lu, T. Chen, W. Zhang, D. Yang, and Y. Yu.
Serendipitous personalized ranking for top-n
recommendation. In WI-IAT, pages 258–265, 2012.

[14] B. McFee and G. R. Lanckriet. Metric learning to rank. In
ICML, pages 775–782, 2010.

[15] M.Tsai, T.Liu, T.Qin, H.Chen, and W.Ma. Frank: a
ranking method with fidelity loss. In SIGIR, pages 383–390,
2007.

[16] W. Pan and L. Chen. GBPR: Group preference based
bayesian personalized ranking for one-class collaborative
filtering. In IJCAI, pages 2691–2697, 2013.

[17] Y.-J. Park and A. Tuzhilin. The long tail of recommender
systems and how to leverage it. In RecSys, pages 11–18,
2008.

[18] R. Qiang, F. Liang, and J. Yang. Exploiting ranking
factorization machines for microblog retrieval. In CIKM,
pages 1783–1788, 2013.

[19] C. Quoc and V. Le. Learning to rank with nonsmooth cost
functions. 19:193–200, 2007.

[20] S. Rendle. Factorization machines. In ICDM, pages
995–1000, 2010.

[21] S. Rendle. Factorization machines with libFM. TIST, pages
57:1–57:22, 2012.

[22] S. Rendle and C. Freudenthaler. Improving pairwise
learning for item recommendation from implicit feedback.
In WSDM, pages 273–282, 2014.

[23] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: bayesian personalized ranking
from implicit feedback. In UAI, pages 452–461, 2009.

[24] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and
A. Hanjalic. Cars2: Learning context-aware representations
for context-aware recommendations. In CIKM, pages
291–300, 2014.

[25] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
A. Hanjalic, and N. Oliver. TFMAP: optimizing map for
top-n context-aware recommendation. In SIGIR, pages
155–164, 2012.

[26] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver,
and A. Hanjalic. CLiMF: learning to maximize reciprocal
rank with collaborative less-is-more filtering. In RecSys,
pages 139–146, 2012.

[27] N. Usunier, D. Buffoni, and P. Gallinari. Ranking with
ordered weighted pairwise classification. In ICML, pages
1057–1064, 2009.

[28] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up
to large vocabulary image annotation. In IJCAI, pages
2764–2770, 2011.

[29] F. Yuan, G. Guo, J. Jose, L. Chen, H. Yu, and W. Zhang.
Optimizing factorization machines for top-n context-aware
recommendations. In WISE, 2016.

[30] T. Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In ICML,
page 116, 2004.

[31] W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing top-n
collaborative filtering via dynamic negative item sampling.
In SIGIR, pages 785–788, 2013.

236

