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ABSTRACT
Business-to-consumer (B2C) emails are usually generated by
filling structured user data (e.g. purchase, event) into tem-
plates. Extracting structured data from B2C emails allows
users to track important information on various devices.

However, it also poses several challenges, due to the re-
quirement of short response time for massive data volume,
the diversity and complexity of templates, and the privacy
and legal constraints. Most notably, email data is legally
protected content, which means no one except the receiver
can review the messages or derived information.

In this paper we first introduce a system which can extract
structured information automatically without requiring hu-
man review of any personal content. Then we focus on how
to annotate product names from the extracted texts, which
is one of the most difficult problems in the system. Nei-
ther general learning methods, such as binary classifiers, nor
more specific structure learning methods, such as Condition-
al Random Field (CRF), can solve this problem well.

To accomplish this task, we propose a hybrid approach,
which basically trains a CRF model using the labels pre-
dicted by binary classifiers (weak learners). However, the
performance of weak learners can be low, therefore we use
Expectation Maximization (EM) algorithm on CRF to re-
move the noise and improve the accuracy, without the need
to label and inspect specific emails. In our experiments, the
EM-CRF model can significantly improve the product name
annotations over the weak learners and plain CRFs.
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1. INTRODUCTION
Email is arguably one of the most successful applications on
the Internet. In the early days email was primarily used for
short textual user-to-user communication. Today, this role
has been largely overtaken by chat and social network plat-
forms. Now email increasingly serves as a repository of trans-
actional information such as receipts from many business-to-
consumer (B2C) interactions. Email messages have several
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properties that make them appealing for such communica-
tion: the communication is asynchronous — it does not re-
quire both parties to be present at the same time; it is vir-
tually infallible; email provides persistent storage; finally it
is mostly private, requiring authentication for access.

While email is a very suitable communication medium for
such information exchange, it was originally designed for
PC screens with manageable amount of messages. However,
nowadays more and more people are checking emails from
mobile devices with smaller screens. It will be much more
convenient and efficient for users to track important informa-
tion without having to read every email on mobile devices.
Actually it is a key feature of Google Now, just as those
displayed in Figure 1.

Most B2C emails are generated by filling a template with
values from databases. We call it a templatized email. For
example, retailers make receipt emails by populating order
details (order number, items and prices, etc.) into a prede-
fined template, and shipment details (tracking number, de-
livery date, etc.) into another template. Usually users only
look for those details, not the templates or static contents.
In other words, users only want to see the structured data
from databases, which is embedded in the templates. In this
paper we will propose a system to extract those data from
emails, also known as “wrapper” [12] or “parser” [19] in the
literature.

A simple but accurate way is to manually create a parser
for each template. However, due to the privacy constraints,
it will rely on the vendors to provide the templates, or hire
people to craft the extraction rules using donated emails of
this template. However, both approaches are not scalable
and are vulnerable to changes of the template.

Another more desirable approach is to automatically ex-
tract the structured data from those templatized emails:
construct the template from similar documents, extract the
data, and annotate the semantic types (i.e., price, shipping
address, delivery date, etc.) of those data entries. Eventual-
ly, the extracted structure data can be rendered in a different
UI and served to the users, as what Google Now does. We
will introduce such a system in section 3.

1.1 Challenges
Privacy. By law and by policy commercial email providers
are held to a very high privacy standard. Users can assume
rightfully that their messages are not read by other humans.
Most major Internet companies have established protocols to
ensure such guarantees automatically. This makes it impos-
sible to generate broad training data of annotated emails, or
to visually inspect the results of extractors applied to emails.
In other words, unlike traditional information extraction sce-
narios, we have no access to both the input and output of the
extractors, except a very small amount of donated emails.
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Figure 1: Structured
information presentation
in Google Now (1/2014)
from B2C shipping email-
s on Android 4.4. The
product name, shipping
date, quantity and retail-
er are extracted and an-
notated. The user can
check shipment details vi-
a the extracted tracking
number rather than need-
ing to read the original e-
mails.

Every design and implementation shall respect and protect
user privacy. That is why it is hard for us to get more sam-
ples to analyze, find heuristics and train good models over
the data we cannot see.

Diversity. Different websites have very different templates,
the same site can have multiple templates (order confirma-
tion, cancellation, etc.), and even the same template may
yield different variants for personalized experience. In gen-
eral, we are generating millions of templates from billions of
emails. Each template has its own contents and character-
istics, but we only have some donated emails from a small
number of templates to train models, which in turn could
yield very biased models with poor performance when apply
to new templates. For example, a wrapper or model trained
from Google Play receipts may not work well on Newegg.com
receipts, but the problem is that we do not have donated
training samples from Newegg, nor allow to view any per-
sonal emails from Newegg.

Complexity. In early days, many email templates only
have one or a few simple tables, but now the HTML codes
used in email become much more complex and nested for
better visual presentation. In addition, a template consists
of various semantic types. For instance, a purchase receipt
may contain customer ID, order number, tracking number
and URL, delivery date, shipping address, product name,
total price, and so on, while an event email can have a totally
different set of types.

Scalability. We are dealing with extremely large data, and
have to process it in a very short time since people expect
emails to arrive instantly. The daily volume of emails are a
number of times larger than the web pages indexed per day
by well known search engines, and it grows fast. Therefore,
efficiency and scalability are the key issues of the system.

In summary, rigid user privacy constraints, diversity, com-
plexity and lack of data are new challenges to wrapper tech-
niques proposed previously for scalable email systems.

1.2 Problem Scope and Contributions
In this paper we address the problem of extracting per-

sonal structured information in the presence of reviewing re-
strictions and variations in emails. We take advantage of the
repetitive structure of emails to induce templates. For the
content that is not part of the template, i.e., the text regions
changing in every email, we need annotate the semantic type
so that it can be properly rendered to the user. Some types
are easy to annotate, such as date, address, price, etc. We
can pre-annotate them using some existing annotators. This
paper focuses on non-trivial types without mature annota-
tors, particularly the product name in email receipts, which
was one of the most difficult problems in the system. Specifi-
cally, after we extract a text without any pre-annotated type,

we need to predict if it is a product name or not. We can
also apply the same solution to other non-trivial types.

Due to the diversity and lack of training data on all tem-
plates, general supervised learning models, such as binary
classifiers, have poor performance for this task, although
they can be trained with limited data. On the other hand,
structure learning methods, such as Conditional Random
Field (CRF), are more specific and accurate for inducing
structures in templates of sufficient training samples, but it
usually requires training labels of every template. Please
note, here the elements of the structure learned by CRF are
semantic types, not the HTML nodes or text regions. When
we apply CRF on a templatized email, it can annotate the
types of each node or region1, such that we can use it to pre-
dict the type of any extracted text. If we train a CRF model
from some templates and then apply to others templates, its
predictions still could be poor, again due to diversity of the
data and complexity of the model.

To solve this dilemma, we propose a hybrid method, which
takes advantages of both the generality of classifiers and
specificity of structure learners. The former can generate
sufficient training labels, although it has low quality, and
then we rely on the latter to remove the noise and discover
high accurate structures, by applying an Expectation Maxi-
mization (EM) algorithm. In our experiments, the EM-CRF
model can significantly improve the product name annota-
tions over the weak learners and simple CRFs. In sum, our
main contributions are:

• We describe the problem of extracting private struc-
tured information from email messages under privacy
constraints and propose an appropriate training mech-
anism that does not require labels or human review.
• We propose an EM-style algorithm to compensate for

the noise of the weak classifier using a CRF.
• We demonstrate the effectiveness of the framework over

a large scale of emails, achieving 30% improvement in
F1 measure.

2. RELATED WORK
Information extraction on the Web. Information ex-
traction is a well-studied problem. In particular, since most
commercial emails contain HTML, it is reasonable to as-
sume that tools developed for Web pages could conceivably
be extended to apply to emails, too. In fact, we will take
advantage of this strategy in our model.

[7, 15] present heuristic rules to extract data from Web
pages using characteristics of HTML files. [8] uses HTML
tag strings to find useful patterns for extraction. In [30, 44],
the data records from the Web pages are detected by visual
features such as gaps between blocks, and then tagged based
on the pre-detected tree structure in the HTML. In [12, 13],
different extraction rules are incorporated in an automatic
fashion. The above work heavily relies on the induced We-
b page templates and lack of the advantages of leveraging
the other annotated data fields to adaptively improve the
extraction/annotation performance, which can be problem-
atic when the templates are mismatched. Therefore, learn-
ing based methods are proposed. In [46], the authors infer
a hierarchical CRF model to simultaneously detect the da-
ta records and label the attributes. [45] exploits additional
information about page element alignment by using a 2D-
CRFs model. A more integrated model which dynamically
learns the hierarchical structure of the Web page and labels
the attributes is proposed in [47]. A prerequisite of these
works is that the Web pages in the training data should be

1Region means the text of a particular node in the DOM
tree [18] of the email HTML. It is the unit for labeling here.
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fully labeled to train the CRFs models. This is impractical
in our scenario where emails are not human accessible.

Email. Email is always among the most sensitive data on
the Internet due to users’ privacy concerns. Thus data avail-
ability is one of the main constraints for any of research or
product work on emails [26]. Most work on emails content
mining is concerned with anti-spam [4, 9], where the task
is to perform binary classification to figure out whether an
email is a spam or not [43, 20]. Moreover, classification [26,
24] and clustering [29, 27] techniques are explored for email
message categorization into the user’s predefined hierarchi-
cal folders. This task has some unique challenges [6], such
as the varying of users’ email filing habits, and the strong
imbalance of different email folders. In previous works on
email content mining, the email data used is always in the
bag-of-words form [26], even if there are some sections (e.g.
from, to, subject and body). This is quite different from our
email data, where the HTML structure and tags can be heav-
ily utilized to improve performance and dynamically include
content (such as up-to-date advertisements). For machine
generate emails, templating and threading are also studied
to help re-organize the email list presenting [1]. Such work
is different with our problem because it does not need to
recognize the type of each text field (or region). Besides the
email content mining, there are some works on email social
network analysis and mining [3, 14] to infer email priority
[42], to detect spam [41], and to analyze the social hierarchy
[38] inherent in the data.

Semi-supervised Learning. To supplement expensive or
even unavailable labeled data researchers have started de-
vising semi-supervised learning algorithms which take ad-
vantage of additional unlabeled data. See e.g. [48] for an
extensive summary and review. Usually semi-supervised al-
gorithms take advantage of a reasonable hypothesis based on
which the unlabeled data could be utilized to improve the
learning model [49]. In the context of NLP, such a hypoth-
esis can be modeled e.g. via generalized expectation criteria
[31] which assumes that conditional class probabilities satisfy
moment constraints; regularization via posterior constraints
[17]; or by using extrinsic objectives [19]. Optimization pro-
ceeds e.g. via Lagrangian relaxation and dual decomposition
[39, 40].

In our work we define a hypothesis class using structured
extraction via a CRF and employ automatically generated
(low-accuracy) annotations as (inconsistent) training data.
In other words, we learn constraints between adjacent labels
as a mechanism for extracting information about the struc-
ture of the documents. Moreover, we cannot assess the quali-
ty of the results directly since, due to privacy constraints, we
are not allowed to view the extractions. This is what makes
it highly challenging to apply moment constraints directly,
since this would require knowledge about the commercial
content of the emails in question.

Note that our work also links to information extraction
with weak supervision, which was originally proposed for
biomedical entity recognition [11] and then applied in other
scenarios such as entity recognition from multi-lingual corpo-
ra [25] and search queries [34], and entity relation extraction
[32, 21]. The ‘weak’ supervision, in previous work, normally
comes from direct text matches with some knowledge bases.
However, as pointed out in [37, 21], when the target text is
very diverse and not aligned with the knowledge bases, su-
pervision helps little. In our scenario with emails as input,
the text is quite different and most of the entities such as
product names and addresses have multiple variants. Thus
it provides little help from the direct match of the entity
names. Our approach can be viewed as a form of weak super-
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Figure 2: System components overview.

vision with a novel notion of weak signals (i.e. low-accuracy
annotations) coupled with domain adaptation.

3. SYSTEM OVERVIEW
This section introduces the information extraction system,

or wrapper, we developed for large scale email systems.
Some regions in a templatized email are static and do not

change for different users or orders, which we call “fixed re-
gions”. Other regions vary in every document, such as Order
Number, Product name. We call them “transient regions”.
Usually only transient regions contain user relevant data,
and the template is made from fixed regions. We need to
separate transient regions from fixed ones and annotate the
semantic type of each transient region.

Figure 2 illustrates the components of our system. Basi-
cally, the system has the following major components.

Clustering. The very first step is to split emails by senders,
then cluster similar emails which may be generated from a
common template. Emails from the same sender are not nec-
essarily from the same template, for instance some retailers
may use one email address to send both order confirmation
and shipment notification emails. It is also possible that mul-
tiple senders share the same template, which can be solved
by merging clusters of different senders.

To preserve user privacy and avoid templatizing consumer-
to-consumer (C2C) emails, we only induce templates from
large clusters which contain many receivers and similar e-
mails. Besides, it is easier to distinguish transient regions
and fixed regions using lots of similar emails from the same
cluster.

Templatization. We induce a template from emails of each
cluster. First we segment each email into regions. The major
difference between HTML and text emails is how we segment
and locate the regions. Each HTML page has a DOM tree
[18] and we can regard a text node as a region and use XPath
to locate a node in the tree, while for plain text emails we
need construct a finite-state machine (FSM) to represent the
structure. Moreover, HTML pages may contain tables or
hyperlinks, which can be used to get more features. The
processes are similar for HTML and text emails. Without
loss of generality, we only consider HTML emails below.

We declare regions with high document frequency as fixed.
The rest is transient. Eventually a template consists of a
dictionary of values in fixed regions (e.g. “Your order of”,
“Thank you!”) and the location (XPath) of transient regions.

We also pre-annotate easy types, such as Price, Address,
Date and store the mapping from XPath to its pre-annotated
semantic type in the template, because usually the same n-
ode among templatized emails has a consistent type. For
example, the cell of third row and fourth column of the sec-
ond table is always Price. In case it is inconsistent, we store
all the possible types with their probability.

Extraction. The previous steps are done offline, while ex-
traction is performed online. That is, when a non-spam B2C
email is received, we find its cluster and template, segment
the email to regions, match the regions in the template, de-
cide if it is a fixed region or transient, and finally get its type
by the annotation module. The outcome is a list of (type,
value) tuples, the structured data we need.
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Annotation. If a transient region only has one pre-annotated
type, we assign it this type. For regions with multiple can-
didate types, we either use the most likely type, or let the
annotator to decide which one to use based on the text val-
ue, potentially using the prior distribution of types, or apply
some heuristics according to the surrounding texts (context).
Usually only a small portion of transient regions in an email
have pre-annotated types. The others are Unknown.

For purchase emails, we currently only have one annota-
tor to predict whether the value of an unknown regions is
Product. However, it is a non-trivial task. Different prod-
ucts may have very similar names, and the same product
could have quite different names as well, because the retail-
ers can choose any form to present the products to users.
Some product names are very short, such as “9” (a movie)
or “hi” (a song). It is very common to include some product
specifications in the name, or intentionally add some terms
for “search engine optimization”. In addition, many emails
include recommendations or ads, which also contain produc-
tion names. As the growing of products available online, it is
almost impossible to maintain a database of product names.

The rest of the paper focuses on how to annotate product
name in transient regions of unknown type.

4. STATISTICAL MODEL

4.1 Weak Annotations
The low accuracy estimators that we have at our disposal

are all binary. That is, for a given position they estimate e.g.
the probability of it being a number, or a product name, or
a date. In other words, for each position i for document xj
we have the probability

πij := pweak(yi = y∗i |i, xj) (1)

indicating the probability of the label yi, as inferred from a
weak, low-accuracy heuristic pweak, being equal to the true
label y∗i . Note that there is no need that these probabilities
are properly normalized, i.e. typically we will have

∑
yi
πij 6=

1, as another form of normalization will be given in (10).
We simply require that the probabilities are bounded, i.e.
πij ∈ [0, 1].

To convert this information into an actionable statistical
model we follow the lines of [23]. That is, we treat the above
problem as one of observing the correct label (denoted as
ti = TRUE) with probability πij for every position i, as
specified by the low-accuracy estimator. In this case, the
probability of inferring the correct labels for xj is given by

p(correct|xj , θ) =
∑

(y1,...,yn)

[ n∏
i=1

πij
]
p(y1, . . . , yn|xj , θ). (2)

Here p(y1, . . . yn|xj , θ) denotes the CRF modeling a non-
trivial joint probability over annotations. Moreover, we as-
sume that the correct label distribution factorizes, hence the∏
i πij term to capture the joint probability of the inferred

labels (y1, . . . , yn) being correct. The model of Figure 3 cap-
tures the basic idea.

In the special case of unstructured estimation this reduces
to the model of [23]. Moreover, in the case where πij ∈ {0, 1}
this reduces to the setting where we simply sum over a sub-
set of possible label combinations. Unfortunately, in all the
above settings p(correct|x, θ) is not log-concave in p(y|x, θ).
This complicates matters in terms of inference and we will
need to resort to DC programming [22], often also referred to
loosely as Expectation Maximization in this context, for op-
timization. Before going into specifics let us briefly describe
the statistical model.

xi

yi

tπ i

i {1..n}

Figure 3: Partial observation model. Data
xi is generated iid from some underlying
distribution p(xi), and labels are drawn
from p(yi|xi, θ), as parameterized by θ in
the form of a CRF. In turn, θ comes with
its prior p(θ|λ) e.g. in the form of a Nor-
mal distribution. Finally, ti, the binary
variable showing whether the label yi is
the correct label y∗i , is generated accord-
ing to πij . We dropped dependency of yi
on x−i as in standard CRF and the docu-
ment index j for figure simplicity (see text
for more details).

4.2 Conditional Random Fields
The primary benefit of using a CRF is that we may exploit

structural correlation between adjacent labels [28]. This is
achieved by expressing the entire chain of labels as a con-
ditional undirected graphical model by multiplying adjacent
clique potentials. In other words, we posit that the condi-
tional label distribution is given by an exponential family
model

p(y|xj , θ) = exp
(
〈φ(xj , y), θ〉 − g(θ|xj)

)
, (3)

where φ(xj , y) is the feature function and the parameter
θ acts as the coefficients of the features. Here g(θ|xj) is
the so-called conditional log-partition function ensuring that
p(y|xj , θ) is properly normalized as a distribution over y. It
is well known that g(θ|xj) is a convex function in θ. Com-
puting g(θ|xj) and its derivatives can be accomplished by
dynamic programming. For this purpose we exploit that

g(θ|xj) = log
∑
y

exp (〈φ(xj , y), θ〉) , (4)

∂θg(θ|xj) =
∑
y

φ(xj , y) exp (〈φ(xj , y), θ〉 − g(θ|xj)) (5)

= Ey∼p(y|xj ,θ) [φ(xj , y)] . (6)

Since the sufficient statistics φ(xj , y) decomposes into terms
on maximal cliques (. . . φ(yi, xj), φ(yi, yi+1, xj), . . .), it is suf-
ficient to have access to p(yi|xj , θ) and p(yi, yi+1|xj , θ) if we
deal with the chain CRF [28]. Both terms can be efficiently
computed using dynamic programming for Eyi|xj ,θ [φ(yi, xij)]

and E(yi,yi+1)|xj ,θ [φ(yi, yi+1, xj)] respectively. The forward-
backward algorithm suffices since we are dealing with a chain
model. For more sophisticated structural evaluation model-
s we would need to resort to a matching strategy satisfying
the conditions of the Generalized Distributive Law [2] on the
(log,+) semiring.

4.3 Expectation Maximization
Compared with standard CRF models, the key challenge

in our scenario is that we do not have access to the correc-
t labels y∗ directly but rather only via πij as obtained by
rather much weaker models. Hence, instead of dealing with
the log-likelihood log p(y|xj , θ) from (3), we are dealing with
log
∑
y[
∏
i πij ]p(y|xj , θ) from (2), which is a nonconvex ob-

jective function. More specifically, in the case of a CRF the
objective decomposes via

log
∑
y

[∏
i

πij
]
p(y|xj , θ) (7)

= log
∑
y

[∏
i

πij
]

exp (〈φ(xj , y), θ〉)− g(θ|xj). (8)

As can be seen, the first term is convex and the second is con-
cave. Hence, for the purpose of maximizing the log-likelihood
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Algorithm 1 CRF Inference with Side Labels (EM-CRF)

Require: Document set {xj}
Require: Initial distributions qj(y), e.g. qj(y) = const.

Initialize CRFs parameters θ, e.g. θ = 0.
while not converged do

for each document xj do
E-step: Update label distribution qj(y) via (10)

end for
M-Step: Train CRFs parameters θ maximizing (7)

end while
return θ

we can lower-bound it by linearizing the first term via a Tay-
lor approximation. This yields

log
∑
y

[∏
i

πij
]
p(y|xj , θ)

≥c+
〈
θ, ∂θ log

∑
y

[∏
i

πij
]

exp (〈φ(xj , y), θ〉)
〉
− g(θ|xj)

=c+
〈
θ,
∑
y

qj(y)φ(xj , y)
〉
− g(θ|xj), (9)

where the distribution qj(y) is given by

qj(y) =
[
∏
i πij ] exp (〈φ(xj , y), θ〉)∑

y′ [
∏
i πij ] exp (〈φ(xj , y′), θ〉)

∝
[∏

i

πij
]
p(y|xj , θ).

(10)

Comparing with (3), the likelihood calculation in (9) takes
the weighted average of φ(xj , y) across the candidate labels y
w.r.t. qj(y). In other words, we re-weight the conditional la-
bel estimates according to the outcomes of the low-accuracy
annotators and the CRF model prediction using the current
weight θ. Subsequently terms are renormalized.

Optimization proceeds by alternating between maximiza-
tion of the lower bound of the log posterior over θ using the
current estimate of label distribution qj(y) and by recomput-
ing a new approximation qj(y) using the current estimate of
CRF-weights θ. Note that by construction the lower bound
is tight at the point of expansion. This follows directly from
the fact that Taylor expansions are exact at the point of ex-
pansion. To train the CRF in the M-step, we generate a
set of candidate labels for each sequence and weight each of
them using qj(y), and then use a standard convex solver to
maximize (7). We add an L2 penalty on the weights θ of the
CRF for regularization as is common in structured estima-
tion. Algorithm 1 summarizes the inference procedure.

5. NEEDLES IN THE HAYSTACK

5.1 Setup
The key challenge in the experimental setup is to demon-

strate the efficacy of the algorithm without the need for ex-
plicitly labeled training or test data and without the need to
inspect the data, e.g. by means of editors. Yet, at the same
time we want to have more directly quantifiable quantities
than, say, predictive log-likelihoods. This makes assessment
of the approach rather difficult.

The assumption is that while the templates might differ,
we can at the very least assume that within a given template,
the structure is sufficiently similar to apply a given CRF
model. That is, we assume that each template comes with its
own CRF model. In production, the data flow is as follows:

1. Human labeled region data from text unrelated to us-
er’s emails is used to train a random forest as the low-
accuracy learner. This data contains only two possible
labels — Product and Other. All the training data are
performed over emails and templates that do not occur
in test templates.
Given the low quality estimator, we apply it to unla-
beled emails to infer new templates. This allows us to
mark up potential regions as Product.

2. In addition to the manually labeled auxiliary data we
use a set of pre-annotators (independent of the email)
to annotate easy types such as Price, Email Address
and Order Number based on the textual description of
the field. These annotators can be made from some
heuristics or regular expressions.

3. For each new template (i.e. the templates from other
senders or the new templates from the same senders)
use the weak learner’s prediction as weighted labels to
train an EM-CRF model.

4. For each new email in the template we use the corre-
sponding EM-CRF to predict the labels.

Figure 4 describes the data flow in such an environment.
Note that training and test set are entirely disjoint. That is,
emails required for testing the EM-CRF model are not used
in the training of the EM-CRF.

In the above description, we assumed that the HTML tem-
plate structure is fully given, that is, the template is entirely
static with the only changes being relevant fields in ques-
tion (e.g. purchase emails from a given sender). Section 6.2
provides results on the performance of the EM-CRF model
in this context. Secondly, whenever the HTML structure is
variable, with a similar method from [1], we can induce vari-
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Your package is being shipped by USPS and the tracking number is 
9261297642094757559542. Depending on the ship speed you chose, it 
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Product: 0.7
Other: 0.3

Total Price: 0.8
Price: 0.2Price: 1.0
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Low-Accuracy Annotator Predictions

Figure 5: Ingestion of an HTML email. Text is segmented into snippets according to the DOM tree. The labels for the variable
regions are unknown. The low-accuracy predicted labels are used to initialize the CRF.

able and static contents using standard automatic methods
based on text frequencies across emails in the same template.

5.2 From Email HTML to CRFs Data
Given an email in HTML, we need to transform it into a

representation amenable to a CRF. This requires two stages
— the actual segmentation and the annotation of content
with low-accuracy classifiers, as illustrated in Figure 5.

Step 1. We begin by segment emails to regions using the
system we described in section 3. The sequence of the text
regions follows their order in the DOM tree of the HTML
file. Some text regions are fixed, as part of the template, and
some are transient, which may already have semantic types
from pre-annotators. Moreover, some text regions may be
highly relevant and specific to a receipt although they share
the same DOM tree node with surrounding template text.
For example, the order number 9261297642094757559542 as
shown in step 1 of Figure 5. In such cases, the text regions
will be further segmented (see step 2 of Figure 5).

Step 2. We align these text regions to build the linear
CRFs data. The label of each fixed region of the template is
set as Fixed, while the other regions will be given by the low-
accuracy annotator (e.g. Product, Other) and pre-annotated
types (e.g. Price, Email Address, etc.)

Compared with a more traditional word-level CRF anno-
tator, we allow for the segments to contain several words.
As such a possible problem is that the text features may not
match across documents. In practice this turns out to be less
of a problem than anticipated. This is due to two reasons:
firstly, the template text regions are almost always repeti-
tive; secondly, even for a new non-template node text, its
label can be initially induced by the low-accuracy annotator
or the manually crafted rules.

5.3 Training the Low-accuracy Annotator
The low-accuracy annotators are essentially binary classi-

fiers which generate a conditional class probability. There
are 32 high-level features of the following categories:

Content Based Number of words, number of digits, having
a hyper-link, inside a table, etc.

Context Based Minimum and average distance to regions
of price, order number, table header, etc.

Search Based If we send this text as a query to a search
engine, how many results are from retailer domains.

Knowledge Based Find the knowledge graph entities in
the text, and see how many of them are related to
product or brand.

Annotation Based How much this text look like a price,
date, address, time, etc.

We tried using N-Gram features, but it did not work well
because first it largely increases the dimensionality, and sec-
ond the feature distribution from one domain can be very
different from another domain. Feature selection or reduc-
tion does not help either.

In total, we have 66,494 labeled regions generated from
2,310 user donated emails. Among these labeled region-
s, there are 2,740 Product regions and 45,637 non-product
(Other) regions. As noted before, some of these regions are
pre-annotated as Price, Date, Time, Email Address, Ad-
dress, etc. These are highly accurate for easy fields and we
regard them as ground truth throughout the experiments.
We only focus on the harder task of detecting product name
in the emails. We use this data to train the low-accuracy an-
notator. In total, we compare 7 different binary classifiers,
as illustrated in Table 1.

LogRegL2 Logistic regression with `2 penalization [20]
LogRegL1 Logistic regression with `1 penalization [35]
CART Classification and Regression Trees [33]
MARS Multivariate Adaptive Regression Splines [16]
GBM Generalized Boosted Regression Models [36]
RandFor Random Forests [5]
SVM Support Vector Machines [10]

Model selection parameters inherent in the above algorithms
are adjusted using cross validation in an automatic fashion.
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Table 1: Low-accuracy annotator performance. The estima-
tors are trained on dataset that is not used anywhere else in
the rest of the experiments.

model precision recall F1 AUC runtime
LogRegL2 0.701 0.329 0.448 0.938 9.51
LogRegL1 0.692 0.399 0.507 0.943 11.26

CART 0.701 0.452 0.549 0.834 2.55
MARS 0.727 0.294 0.418 0.949 3.51
GBM 0.780 0.284 0.417 0.950 20.37

RandFor 0.872 0.664 0.754 0.974 17.02
SVM 0.846 0.445 0.583 0.935 957.66

LogRegL2, LogRegL1 and SVM are linear models, the others
are all nonlinear. We observe that RandFor provides the best
prediction performance while having high computational ef-
ficiency. This is not too surprising given that it approximates
a nonlinear Pitman estimator in the version space of trees.
Consequently we use Random Forests as our low-accuracy
region annotator in our work.

5.4 Training the EM-CRF
Based on the low-accuracy annotation we next infer the

EM-CRF model as discussed in Section 4. More specifical-
ly, the low-accuracy annotator is used to obtain an initial
estimate qj(y) of a region being a product. This allows us
to tag the emails for new (or unseen) templates. These are
then used to train the EM-CRF model for each template.
We proceed by alternating between computing a convex up-
per bound on the negative log-posterior of the model, i.e.
the negative log-likelihood and the Gaussian log-prior, and
by invoking an off-the-shelf CRF inference algorithm using
the probability estimates qj(y) for a weighted set of labels.

We perform 4-fold cross validation to test our model. For
each test template we sample 75% of its emails and remove
their labels to simulate regular unlabeled data. We apply a
hand-tuned region annotator to detect specific regions such
as Price, Email Address, and Order Number. For the re-
gions labeled as Product or Other, we apply the weak learn-
er to generate a probability of this region being labeled as
Product. After that, we train an EM-CRF model for this
template using the weighted (and noisy) labeled emails. Fi-
nally, for each template we test the EM-CRF model on the
remaining 25% labeled emails.

6. EXPERIMENTAL RESULTS

6.1 Baseline
To illustrate the benefit of the EM-CRF approach over a

plain CRF model we also trained a CRF model directly us-
ing the low-accuracy annotator’s predictions. In this case
we used the maximum likelihood annotation of the region-
s rather than the label probabilities. It is to be expected
that this approach will still benefit from the regularity prop-
erties of the document. For instance, if in a template the
Product region is always followed by a Quantity region and
then a Price region, one would expect that the potential
〈φ(yi, yi+1), θyy〉 capturing adjacent labels would model this
correlation. We call this model CRF-Max (since it used
the maximum likelihood estimation of the low-accuracy an-
notator).

A second very natural baseline is to use the Weak Learning
(WL) directly, i.e. to output just the prediction of the low-
accuracy estimator. We expect this to perform the worst.

As has been noted previously, we focus the evaluation on
the accuracy of tagging Product regions, which is the most
difficult one. We use precision, recall and the F1 measure to
illustrate overall accuracy.

6.2 Templates with Known Structure
We first focus on analyzing the performance of our ap-

proach when the template structure is well known. By tem-
plate structure we mean which regions in the DOM tree are
fixed for all emails in the template and which regions are
specific to a given email instance from that template (e.g.
recipient name, address and product(s) in the purchase).
We use this setup to conduct a detailed analysis of our pro-
posed approach. Large scale experiments with variable struc-
ture are reported in Section 6.5.

We used 4 frequent templates of user donated emails, and
for any given template we manually engineer a template pars-
er to annotate data with almost perfect precision as fixed or
variable. This is a costly exercise. It is not scalable since
an engineer needs to analyze HTML code to accomplish this
task. Moreover, it requires us to continue investing resources
whenever the template changes.

template 1 2 3 4
emails 36 105 50 60
products 78 191 59 231

As can be seen, even the frequent templates only consist
of a rather small number of labeled emails.

6.3 Model Comparison
Figure 6 provides a comparison of F1, precision, and re-

call scores for all three algorithms (WL, CRF-Max and EM-
CRF). To render the results comparable we tuned all models
for maximum F1 score performance.

• EM-CRF outperforms all other algorithms on all test
templates. It provides a 30% improvement relative to
the WL annotator.
• The CRF-Max model also improves annotations gen-

erated by the WL model, albeit only by 26%. This
confirms that training CRFs on noisy labels can lead
to a denoising estimator.
• Compared to the plain CRF-Max model, EM-CRF is

approximately 3.5% better. This shows that the EM
iterations are helpful in reducing the noise further.

Particularly, for three out of these four templates, WL’s
achieved precision is lower than recall, which seems to be
inconsistent with the RandFor figures in Table 1. This is
just because the figures in Table 1 are calculated on the da-
ta across all the templates while the performance would be
different for each individual template.

Besides these three algorithms compared in Figure 6, we
also checked the performance of a CRF trained on the da-
ta across all other templates. The F1 performance on all
four tested templates is almost 0, caused by the structure
inconsistency brought from the huge difference across tem-
plates. This supports our motivation of training a CRF per
template. Another observation is EM-CRF can still boost
from WL although WL’s precision is lower than 0.5 (F1 is
still higher than 0.5). This is because T4 emails contain-
s many (3.85) products on average, which help CRFs learn
from abundant repeated structures.

Figure 7 illustrates the distribution of the F1 score across
a range of hyperparameter values. Note that the variance
of the EM-CRF model is lower than that of its alternatives.
Not only is the model more accurate, it also provides a more
reliable performance in large scale experiments where we do
not have access to a development set for each template.

Figure 6 illustrates precision and recall when the hyper-
parameters have been tuned for the best F1 score for all
models. Again, we may observe improved performance of
CRF-Max and EM-CRF over WL. Compared to EM-CRF,
the CRF-Max model occasionally exhibits higher precision
but lower recall. This is because CRF-Max is trained direct-
ly on the labels predicted by the low-accuracy estimator. For
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Figure 6: Comparison between the low-accuracy annotator (WL), a conventional conditional random field (CRF-Max), and
the proposed algorithm (EM-CRF). We report F1 scores, precision and recall overall and on all four templates (T1 to T4).
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Figure 7: Distribution of F1 performance scores on four tem-
plates over a range of hyperparameters.

the Product regions, which are correctly labeled by WL, the
CRF-Max will train good parameters to predict them. On
the other hand, the Product regions which are incorrectly
labeled as Other, CRF-Max will be relatively easily induced
to annotate these regions as Other. On the contrary, for EM-
CRF, when WL provides the wrong prediction on Product
regions, it just labels it as Product with a less-than-half prob-
ability. However, this probability will not be ignored during
the EM-CRF training. EM-CRF will evaluate the posterior
probability of when this region is labeled as Product, and
usually increases the probability of this region being labeled
as Product if it finds there is higher structural consistency.

Note that by construction the CRF-Max estimate is what
the EM-CRF algorithm obtains in its first iteration with only
max-likelihood label sequences. That is, EM-CRF creates a
continuum between the decidedly suboptimal annotations of
the low-accuracy annotators and the better CRF estimates
to a fully self-consistent estimate.

6.4 Ablation Study
Precision and Recall of the low-accuracy estimator.
Since EM-CRF is built on data labeled by the low-accuracy
WL annotator, it is important to analyze under which con-
ditions the EM-CRF results can improve. To conduct this
study we simulated a weak learner with performance that
spans the possible range of precision and recall. This can
be achieved by oversampling the weight of positive produc-
t instances when training the low-accuracy annotators. We
then compare the performance difference between EM-CRF
and WL to the precision and recall of WL. The results on
two large templates (2 and 4) are shown in Figure 8.
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Figure 8: Improvement in F1 score of EM-CRF over WL as
a function of precision and recall for templates 2 (left) and
4 (right). Some precision-recall regions are missing since the
associated conditions cannot be satisfied.

As can be seen, the results of both templates are quali-
tatively similar. That is, improvements are highest for WL
whenever the recall is sufficiently high. This is quite pos-
sibly due to the fact that we use conditional independence
assumptions on the weak learners, i.e. their estimates en-
ter as products of probabilities

∏
i πij . Hence, poor recall

immediately leads to a strong bias against the presence of a
given attribute. A more refined model to capture correlation
between the weak learners would probably ameliorate these
issues. By and large, for over 50% recall improvements are
pervasive.

Number of candidates in the E-Step. In (10) the pos-
terior probability of each possible label combination y for
the current document xj needs be calculated. A potential
problem here is that when there are many uncertainties over
the labeling of regions in one email, as there could be expo-
nentially large number of possible label combinations (2N ),
which much reduces the efficiency of training. In our so-
lution, we pick the top K candidate sequence labels with
largest posterior probability in the step of recalculating dis-
tribution qj(y). This reduces the time of the costly M-step
(7) significantly.

This raises the question as to how much the hyperparame-
ter K influences the EM-CRF performance? We train mod-
els with K ranging from 1 to 500 and evaluate the EM-CRF
performance on each template for each K, as shown in Figure
9. As can be seen, the F1 measure overall improves, albeit it
does not change dramatically with varying K. This suggests
that small values of K are perfectly acceptable. We finally
set K = 100.

Regularization of CRF weights. We tune the L2 regu-
larization penalty during the training of the CRF given the
current belief on each label combination qj(y). That is, we

add λ ‖θ‖2 to the negative log-likelihood in (7). Figure 10
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Figure 10: F1 as a function of the L2 regularization param-
eters. More regularization improves accuracy.

show the accuracy as a function of the regularization parame-
ter for λ ∈ [10−3, 10]. As expected, increasing regularization
improves generalization up to some point, since it restrict-
s the model class. Beyond that, accuracy decreases again
due to underfitting. Empirically, we set L2 regularization as
10−2 for the large scale experiments below.

6.5 Templates with Inferred Structure
In this section we demonstrate the behavior of our method

by a larger scale evaluation study on 200 templates. The
number of emails in each template ranges from 10 to 2500
emails.

We used simple frequency counting with exact textual
match as simple template extraction method. Those fixed
regions are labeled as Fixed during our CRF analysis, how-
ever, their textual context is used to as feature for the CRF
based models. We use the low-accuracy WL estimator from
Section 5.3 which was trained over a separate dataset as our
weak learner. The training method proceeds as discussed
earlier over each template separately. Once we learn a struc-
tural model for each template, we apply this model to predict
product regions in new and unseen emails under the same
template. We compare the performance of the three meth-
ods: WL, CRF-Max and EM-CRF. Those unseen emails are
donated with user consent and as such we hand-labeled them
strictly for evaluation purposes. During training of the CRF-
based models, no labels are needed and as such we do not
perform any manual tuning of the hyperparameters and we
rather fix them, across all templates, to default values ac-
quired in the previous section. The training of EM-CRF
is efficient because in practice we find the performance get-
s convergence within 10 EM iterations. The average real
runtime on a single machine is 1.6s for the large templates
studied in this section.
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Figure 11: F1 performance as a function of the number of
unlabeled emails in a given template.

We first compare the performance of the three methods
as a function of the number of emails in each template. As
show in Figure 11, both EM-CRF and CRF-Max provide a
higher overall performance than WL, which verifies the ef-
fectiveness of structural information extraction on large-scale
data. Furthermore, as the template email number increases,
the improvement over WL becomes more significant. This
is reasonable since more emails help CRF models learn the
template structure pattern better. Moreover, EM-CRF re-
sults in higher improvement for templates with large number
of emails (> 1000 emails) while its performance is similar to
the CRF-Max model for templates with small number of e-
mails. Thus one can use CRF-Max for cold start situations
(new templates) and then switch to using EM-CRF for large
templates (with over 1000 emails). We further focus on the
performance of the largest 20 templates and give a detailed
break-down of the performance in Figure 12. The perfor-
mance break-down over templates with small number of e-
mails is similar to the one shown in Figure 6 and is omitted
due to space constraints.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the challenging problem of in-

formation extraction from commercial emails. While super-
vised information extraction itself is a relatively well-studied
area, information extraction from emails presents distinc-
t privacy challenges that prevent us from even looking at
the emails to either annotate fields for training or tune the
hyper-parameters of the learning method.

We tackled this problem using a fully automatic approach
that requires almost no manual tuning and is unsupervised
in nature. The approaches presented in this paper (EM-
CRF and CRF-Max) make use of low-accuracy annotators
trained using weak features on a separate dataset. Our meth-
ods leverage those weak signals to learn, in an unsupervised
fashion, structural patterns specific to each template and
then use those patterns to extract information from future
emails in the same template. We provided a thorough eval-
uation of our approach over large scale emails and showed
that our proposed approaches result in significant perfor-
mance improvement. Moreover, we analyzed the model and
data conditions which could lead large improvement.

In the future we plan to investigate joint approaches for
template extraction and structural learning as well as explor-
ing the efficacy of transfer learning approaches of structural
patterns across different email templates.
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