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ABSTRACT
Data science is concerned with mining data patterns from a data-
base, which is assembled by tabular data. As the routine of machine
learning, most of the previous work mining the tabular data’s pat-
tern based on a single instance. However, they neglect the similar
tabular data instances that could help make the label prediction
of the target data instance. Recently, some retrieval-based meth-
ods for tabular data label prediction have been proposed, which,
however, treat the data as sparse vectors to perform the retrieval,
which fails to make use of the semantic information of the tabular
data. To address such a problem, in this paper, we propose a novel
framework of dense retrieval on tabular data (DERT) to support
flexible data representation learning and effective label prediction
on tabular data. DERT consists of two major components: (i) the
encoder that makes the tabular data as embeddings, which could be
trained by flexible neural networks and auxiliary loss functions; (ii)
the retrieval and prediction component, which makes use of similar
rows in the table to make label prediction of the target row. We test
DERT on two tasks based on five real-world datasets and experi-
mental results show that DERT achieves consistent improvements
over the state-of-the-art and various baselines.

CCS CONCEPTS
• Information systems → Data mining.

KEYWORDS
Deep learning, tabular data, retrieval, representation learning

ACM Reference Format:
Lei Zheng, Ning Li, Xianyu Chen, Quan Gan, and Weinan Zhang. 2023.
Dense Representation Learning and Retrieval for Tabular Data Prediction.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3580305.3599305

∗The corresponding author W. Zhang is partially supported by NSFC (62177033).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 06–10, 2023, Long Beach, CA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599305

1 INTRODUCTION
An important domain of data science involves discovering the un-
derlying data patterns from databases, where the data is usually
organized as tables. Such patterns are useful for statistics, prediction,
and decision-making [3, 43], with various applications including
click-through rate (CTR) prediction [32], recommender systems [5],
fraud detection [44], anomaly detection [33], etc.

Most modern data science methods working on tabular data
utilize machine learning techniques. Basically, the machine learning
model is trained to make predictions of a column for each row
based on the values of the row’s other columns. Such a framework
includes various methods ranging from tree models, linear models,
Bayesian networks [4, 11, 15, 24], to more recent deep learning
models that account for complex feature interactions and inductive
biases [2, 9, 13, 29, 39, 46]. However, this framework only focuses
on exploring feature interaction patterns within one data instance
with an i.i.d.(Independent and identically distributed) assumption
of the tabular data, ignoring the potential complex dependencies
across data instances.

To address the shortcoming of the framework with i.i.d. assump-
tions, several attempts have been made to mine patterns across
multiple instances. To predict for a single row, instead of only ac-
counting for the row’s own features, these methods take in the
features of some other rows as well to further influence the output.
The instances are either randomly chosen [23, 42] or based on some
similarity metric defined on the row’s raw input features [35–37].

However, such a sparse retrieval method suffers from some short-
comings. First, the retrieval method may not be learned from the
data, e.g., cosine, TFIDF, BM25. Second, it is common that the mis-
match of the different discrete features is equally regarded in such
sparse retrieval methods, which results in the ignorance of possi-
ble semantic matching. We justify this by considering an example
of three data instances with a categorical column City, with val-
ues New York, Shanghai, and Boston, respectively. Metrics like
BM25 would treat mismatching elements equally, i.e. the difference
between Shanghai and New York is the same as that between
Boston and New York. However, Boston should have a smaller
semantic distance to New York than Shanghai since they are in
the same country. Such semantic differences can only be learned
from the data. Finally, the raw data itself is not sufficiently discrim-
inative to make the label prediction so as to be used in the retrieval
process.

In this paper, we perform a study on the dense retrieval meth-
ods on tabular data for label prediction tasks. First, we investi-
gate whether the dense vectors can be a more effective medium
to perform data retrieval than the sparse vectors. Intuitively, the
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representation vector learned by a supervised deep model for label
prediction is a naturally more informative indexer than the raw
sparse-feature data. Thus the close neighbor vectors in such a latent
space would be more helpful in making the label prediction of the
target instance. Second, as the dense vector of each data instance
can be learned by gradient, we explore whether an effective auxil-
iary learning objective would help the dense retrieval yield higher
prediction performance. Particularly, based on a retrieved neigh-
bor set, we leverage a supervised contrastive learning loss, which
shortens the distance between the target instance and the neighbor
one with the same label, and enlarges the distance between the
target instance and the neighbor one with different labels (in the
binary classification task). Such an auxiliary loss is proved to be
effective in tuning the dense vector of the data instances and yields
a further performance gain in dense vector retrieval enhanced label
prediction. Third, at the stage of aggregating the retrieved instance
vectors, previous methods simply leverage an attention aggregation
over the embedding vectors of the retrieved instance, which usually
drops the patterns of feature interactions and ignores feature-label
interactions. To this end, we design a label-aware interaction layer,
which explicitly explores feature interactions and feature-label in-
teractions of each retrieved instance before taking the aggregation.
Such a layer design is proved to be effective in learning the repre-
sentation of the retrieved instance and thus boosts the performance
of label prediction. The proposed framework is named DERT, which
is short for dense retrieval on tabular data.

To sum up, the main technical contributions of this paper are
threefold.

• We propose DERT, a novel framework that learns the dense
representation vectors of the tabular data instances and per-
forms retrieval-enhanced deep learning for the target data
label prediction. To our knowledge, DERT is the first work
on dense retrieval for tabular data prediction.

• Taking advantage of the learnable dense vectors, we incorpo-
rate a novel supervised contrastive learning in the retrieval
batch as an auxiliary loss in DERT, which demonstrates the
effectiveness of representation learning on the tabular data
in DERT.

• In the final predictor, We design a novel label-aware interac-
tion layer, which manages to perform fine-grained feature
interactions and feature-label interaction pattern mining for
further improving the label prediction performance of DERT.

We conduct extensive experiments on five real-world tabular
datasets, where DERT achieves consistent performance gain over
the state-of-the-art methods for tabular data label prediction with
the tasks of CTR prediction and top-N ranking.

We claim that DERT opens a new direction of data science on
tabular data, which is significant. First, dense vector based retrieval-
enhanced deep learning yields a new dimension of model capacity,
i.e., the capacity from the retrieved data instances and their labels.
Such a framework makes use of single-instance representation
learning on tabular data. Second, with the tabular data encoder,
DERT can be seamlessly extended to retrieve over other types
of data, such as text and images. Finally, it is notable that DERT
could inspire a new paradigm of tabular data index and retrieval in
database applications since dense retrieval may inspire data science
on fuzzy search on multiple tables beside a single table.

Notation Description
Dtrain, Dtest, Dretrieval Training set, test set, retrieval set

D· The embeddings of the data instances in the corresponding set
𝑋𝑧 , 𝑥𝑧 The raw feature and the embedding of 𝑧-th sample
𝑋𝑡 , 𝑥𝑡 The raw feature and the embedding of target sample
𝐸, 𝜔 The encoder and its parameters
𝑅, 𝜙 The retriever and its parameters
𝑓 , 𝜃 The predictor and its parameters
𝑑 The embedding vector dimension
𝑆 The set of retrieved data instances
S The set of retrieved data instance embeddings
𝑘 The size of retrieval set

Table 1: Notations and corresponding descriptions.

The remaining part of this paper is organized as follows. We first
present the problem formulation of DERT in Section 2. In Section 3,
the overall DERT framework and the detailed model instantiation
are discussed. We report the experimental results in Section 4. Then
we discuss the related work in Section 5. Finally, we conclude this
paper in Section 6.

2 PROBLEM FORMULATION
This paper focuses on predicting a single column for a table,which
is a common task in data science with various applications. We
follow the task formulation of RIM [36] which is the first model
applied retrieval-based method on tabular data.

In recent years, many sequential models in tabular data are pro-
posed. Thesemodels usually aim to capture the sequential pattern of
a user’s behavior. For this purpose, the common way is to use some
architectures like RNN, Transformer, and other attention mecha-
nisms to leverage the most recent consecutive data [35, 52, 53]. The
other way is to retrieve relevant data from history [36, 37] and feed
the retrieved instances and the target data instance into a predictor.

In such a setting, the entire dataset could be split into three
disjoint parts as Dtrain, Dtest, Dretrieval, representing the subset
allowed for supervision, the subset for evaluation, and the subset
allowed as alternative help rather than direct supervision respec-
tively.

In order to use tabular data’s deep representation to help data
instance (𝑋𝑧 , 𝑦𝑧) find its neighbors. The framework has three cou-
pled components: an encoder that maps each tabular data sample
𝑋𝑧 into a dense vector 𝑥𝑧 , a retriever that uses the target sample as
the query and retrieves the neighbor samples from Dretrieval, and a
predictor that makes the label prediction given the retrieved set 𝑆𝑧
and 𝑥𝑧 .

Different from the representation learning in other fields such
as NLP [21, 25], where the data encoder is usually trained with
unsupervised learning methods, e.g., self-supervised learning, for
tabular data, as the final task is the label prediction, we can lever-
age the label-discriminative representation learned by a supervised
model to build the encoder and then use an unsupervised method
to boost the encoder further to learn a better dense vector represen-
tation. And we use the same encoder to encode target instance and
retrieval dataset. Generally, the training objective of the encoder
𝐸𝜔 parameterized by 𝜔 is written as

𝜔∗ = arg min
𝜔

1
|Dtrain |

∑︁
(𝑋𝑧 ,𝑦𝑧 ) ∈Dtrain

Lencoder (𝐸𝜔 (𝑋𝑧), 𝑦𝑧) . (1)
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We could use the 𝐸𝜔∗ to get dense vector representation 𝑥𝑧 for
every tabular data sample𝑋𝑧 inDtrain andDretrieval. Then for each
sample 𝑋𝑧 we can obtain the neighbor set 𝑆𝑧 using the retriever 𝑅𝜙
as

𝑆𝑧 = 𝑅𝜙 (𝑥𝑧 ,Dretrieval), (2)
where the retriever𝑅𝜙 is written as parameterized by 𝜙 . Gener-
ally, 𝑅𝜙 could be trained using with typical learning-to-rank (LTR)
formulation [30], and it may also be implemented with some non-
learning methods.

With the data sample 𝑋𝑧 and the retrieved set 𝑆𝑧 , the predictor
makes the final label prediction, denoted as 𝑦𝑧 = 𝑓𝜃 ∗ (𝑥𝑧 , 𝑆𝑧). Thus,
the optimization objective of the prediction model 𝑓𝜃 can be written
as

𝜃∗ = arg min
𝜃

1
|Dtrain |

∑︁
(𝑥𝑧 ,𝑦𝑧 ) ∈Dtrain

Lprediction (𝑓𝜃 (𝑥𝑧 , 𝑆𝑧), 𝑦𝑧) . (3)

3 THE DERT MODEL
In this section, we present the details of dense retrieval on tabular
data (DERT). As mentioned in Section 2, there are three major
components in DERT, namely, encoder, retriever, and predictor. The
encoder 𝐸𝜔 encodes each data sample in Dtrain, Dtest, Dretrieval.
The retriever 𝑅𝜙 fetches the relevant samples from Dretrieval. The
predictor 𝑓𝜃 makes use of the target sample features 𝑋𝑧 and the
retrieved set 𝑆𝑧 to make the label prediction.

We will first take a brief overview of the whole DERT framework
and then discuss the three components separately. Finally, we will
perform an analysis of the time complexity of DERT.

3.1 Framework Overview
Figure 1 illustrates the overview of DERT framework and its dif-
ference from previous work. The goal of the DERT framework is
to index all the data in Dretrieval in low-dimensional and continu-
ous spaces such that the retriever could make use of the semantic
similarity between data samples to find the top-𝑘 relevant samples
in the retrieval pool in order to help the predictor make the label
prediction for any target instance 𝑋𝑡 .

First, we train the encoder 𝐸 for each target instance 𝑋𝑡 and
Dretrieval. Although in principle the encoder could be implemented
by any parametric model such as neural network and we could use
independent encoders for samples in Dtrain and Dretrieval. Particu-
larly, we use an identical encoder to encode all samples from the
training set and retrieval set. Then we build a dense vector index
on the Dretrieval for the retriever. For implementation, we use the
offline deployment of FAISS (Facebook AI Similarity Search) [20],
which is an open-source library for efficient similarity search and
clustering of dense vectors.

At run-time, given a target instance 𝑋𝑡 , we use the encoder
𝐸 to project the target instance from sparse format 𝑋𝑡 to the 𝑑-
dimensional real-valued vectors 𝑥𝑡 . The target instance 𝑥𝑡 is then
used to retrieve top-𝑘 instances 𝑆𝑡 from Dretrieval. After obtaining
the dense vectors of the target instance and the retrieved ones, we
feed 𝑥𝑡 and 𝑆𝑡 into the predictor 𝑓𝜃 (𝑥𝑡 , 𝑆𝑡 ). In predictor, there is
an aggregation layer using an attention mechanism to aggregate
the embeddings in 𝑆𝑡 to a constant length dense vector. In addi-
tion, the label of instances in 𝑆𝑡 is also essential, we both aggregate
embeddings and labels in 𝑆𝑡 . After the aggregation layer, we con-
catenate the output vector and the target 𝑥𝑡 and then input the

vector to a multi-layer perceptron (MLP) to generate the output
label prediction.

3.2 Encoder
The encoder 𝐸𝜔 maps a data instance 𝑋 to a 𝑑-dimensional real-
valued vector. The encoder is shared among the retrieval pool
Dretrieval, the training set Dtrain and the test set Dset.

We can use any neural network to encode the data instances as
long as it can handle discrete values. In this work, we use RIM [36]
as our encoder since it is the state-of-the-art deep model on tabular
data prediction. In our experiments, we encode the categorical
values into embedding vectors, and pass the concatenation into an
MLP. Namely, consider a data instance 𝑋𝑧 = {𝑐𝑧

𝑖
}𝐹
𝑖=1, where 𝑐

𝑧
𝑖
is

the categorical value on the 𝑖-th column of data instance 𝑋𝑧 . We
encode each 𝑐𝑧

𝑖
with a column-specific learnable embedding matrix

𝑒𝑖 and pass it into an MLP:

𝑥𝑧 = 𝐸𝜔 (𝑋𝑧) = 𝑀𝐿𝑃 (∥𝐹𝑖=1𝑒𝑖 (𝑐
𝑧
𝑖 )), (4)

where the encoder’s parameters 𝜔 consist of the embedding matri-
ces 𝑒𝑖 and the MLP’s weights.

For training the encoder, we use both supervised learning and
unsupervised learning methods, as described in detail below.

Supervised learning loss.We use the data inDtrain to train the en-
coder. The loss function form follows the original tabular prediction
task, e.g. cross entropy for binary classification:

Llabel = − 1
|Dtrain |

∑︁
Dtrain

(𝑦𝑧 log𝑦𝑧 + (1 − 𝑦𝑧) log(1 − 𝑦𝑧)), (5)

𝑦𝑧 = sigmoid(𝑤⊤𝑥𝑧 + 𝑏), (6)

where 𝑦𝑧 is the label of the target data instance 𝑧, and 𝑤 and 𝑏

are learnable parameters. If the original tabular prediction task is
regression, we could change the supervised learning loss to mean
squared error.

Note that although we are training the encoder with supervision
from the training set labels, we do not directly use the encoder to
make predictions. Instead, the encoder is a mere intermediate step
that produces dense embeddings for further use in the retriever 𝑅
and downstream predictor 𝑓𝜃 .

Contrastive learning loss. The second task is the contrastive
learning task, which provides an auxiliary loss to the supervised
learning loss. It is generally difficult to judge whether the two
sentences or images are in the same group. In contrast, tabular
data (𝑋𝑧 , 𝑦) is composed of categorical features and numerical
features which are normally discretized into categorical features
for the unified processing by neural networks [7, 12]. The feature
columns of tabular data could be features such as "Age", "Sex", "City",
and etc. It is very easy for computers to identify two samples of
tabular data by categorical features.[16, 45, 48] So the important
thing for contrastive learning is to distinguish positive and negative
pairs from the similar samples in the dataset. Previous contrastive
learning methods on tabular data overlook this problem [1]. As
such, the existing negatives sampling method from a random batch
is not suitable for contrastive learning.

We propose a retrieval-based negative sampling method for tabu-
lar data.

Given a sample 𝑋𝑧 = {𝑐𝑧
𝑖
}𝐹
𝑖=1 in Dtrain, we retrieve 𝑘-most rele-

vant instances in 𝐷train according to the relevance value defined as
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Figure 1: An overview of DERT framework and its comparisons to traditional models and a previous retrieval-based model.
The model in the top subfigure is the traditional model. They only take the sparse feature vector as the input and output the
prediction result. The middle subfigure illustrates the diagram of the sparse retrieval model, e.g., RIM [36]. RIM makes use of
the sparse data in two ways. The common way is to use the feature as the input of the prediction model. The other way is to
use data as the retrieval set. RIM uses the target instance as a query and performs the sparse retrieval method BM25 to find
relevant instances in the retrieval set. Our model DERT is illustrated the bottom subfigure, where the dataset is split in the
same way as RIM. The key difference lies in that we adopt a learnable encoder to obtain the dense vector of each data instance
and use the vector of the target instance to find the relevant data instances in the retrieval set.

below:

Relevance(𝑋𝑧 , 𝑋 𝑗 ) =
𝐹∑︁
𝑖=1

IDF(𝑐𝑧𝑖 ) · 1(𝑥
𝑧
𝑖 = 𝑥

𝑗
𝑖
), (7)

IDF(𝑥𝑧𝑖 ) = log
𝑁 − 𝑁 (𝑐𝑧

𝑖
) + 0.5

𝑁 (𝑐𝑧
𝑖
) + 0.5

, (8)

where 1(·) is the indicator function, 𝑁 is the number of data in-
stances in Dtrain and 𝑁 (𝑥𝑧

𝑓
) is the number of data instances that

have feature value 𝑥𝑧
𝑓
. This follows the practice of RIM [36], where

it is shown to be equivalent to BM25 [41].
Let 𝑆𝑧 be the set of instances retrieved from above, we now

compare the labels of 𝑋𝑧 and 𝑆𝑧 . For binary classification tasks, we
partition 𝑆𝑧 into a positive set 𝑆+𝑧 and a negative set 𝑆−𝑧 , with the
former containing the instances with the same label as 𝑋𝑧 and the
latter containing those with different labels. Additionally, we follow
SimCSE [8] to perform dropout on 𝑥𝑧 to generate 𝑥 ′𝑧 so that we
always have one (artificial) instance with the same label. Thus, the
contrastive loss can be defined as

Lcontra = − log
∑︁

|Dtrain |

𝑒dist(𝑥𝑧 ,𝑥 ′
𝑧 )/𝜏 +∑

𝑋 +
𝑗
∈𝑆+𝑧 𝑒

dist(𝑥𝑧 ,𝑥+
𝑗 ) )/𝜏

𝜖 +∑
𝑋 −

𝑗
∈𝑆−

𝑧
𝑒

dist(𝑥𝑧 ,𝑥−
𝑗
)/𝜏 , (9)

where the distance function dist(·, ·) can be defined as the L2 dis-
tance of two dense vectors, 𝜖 is a constant value in the denominator,
𝜏 is a hyperparameter, and 𝑥 ·· = 𝐸𝜔 (𝑋 ·

· ) as we recall from Eq. 4.
Moreover, the contrastive learning loss Lcontra does not rely on

other parts of DERT, and it can be applied to any tabular data related
neural networks, such as DeepFM [13], DCN [46], and RIM [36] to
enhance these models with a better tabular data representation and
achieve improved performance for their downstream tasks.

To sum up, the learning objective of the encoder of DERT is a lin-
ear combination of the supervised learning loss and the contrastive
learning loss with a tradeoff hyperparameter 𝜆 as

Lencoder = Llabel + 𝜆Lcontra . (10)

3.3 Retriever
Give the insight that similar tabular data instances could help make
the label prediction of the target instance, the goal of the retriever
𝑅 is to find the most relevant samples of target instance 𝑋𝑡 in
the retrieval set Dretrieval. For using dense representation to find
the most relevant samples, we first use the encoder 𝐸𝜔 to embed
Dretrieval as

Dretrieval = {𝐸𝜔 (𝑋 ) : 𝑋 ∈ Dretrieval}. (11)
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Figure 2: The architecture of predictor in DERT.

Then given the data instance to predict 𝑋𝑡 , we encode it to a
dense embeddings 𝑥𝑡 = 𝐸𝜔 (𝑋𝑡 ), and retrieve S𝑡 ⊆ Dretrieval, the
set of top-𝑘 relevant instances sorted by the dot product between
their dense embeddings:

sim(𝑥𝑡 , 𝑥𝑖 ) = 𝑥⊤𝑡 𝑥𝑖 , 𝑥𝑖 ∈ Dretrieval . (12)

We additionally retrieve the ground truth labels of the retrieved
subset Y𝑡 = {𝑦𝑧 : 𝑋𝑧 ∈ S𝑡 }.

This retrieval procedure is known as Maximum Inner Product
Search (MIPS), which has highly-efficient sub-linear approximate
solutions, e.g. FAISS [20].

3.4 Predictor
The predictor takes in the embedding 𝑥𝑡 of the target instance 𝑋𝑡 ,
the set of embeddings S𝑡 as well as their labels Y𝑡 yielded by the
retriever 𝑅, and produces the prediction 𝑦𝑡 .

Attention weight computation. Before feeding 𝑥𝑡 , S𝑡 and Y𝑡 to
the final prediction layer, we aggregate the S𝑡 to a single vector
with the same size of 𝑥𝑡 . We use attention mechanism to do so. Let
S𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑘 } and Y𝑡 = {𝑦1, 𝑦2, ..., 𝑦𝑘 }. The attention weight
is defined as

𝛼𝑖 =
𝑒𝑥

⊤
𝑖 𝑾𝑥𝑡∑𝑘

𝑗=1 𝑒
𝑥⊤
𝑗
𝑾𝑥𝑡

, (13)

where𝑾𝑑×𝑑 is the attention layer parameter matrix.

Label-aware interaction layer. RIM’s predictor aggregates the
retrieved instance set S𝑡 as well as Y𝑡 separately. This does not
allow pairwise interaction between the features and labels within
each individual instance in S𝑡 , which we claimed and verified to

be important. To this end, we leverage an interaction layer which
transfers each 𝑥𝑖 and its label 𝑦𝑖 to a 𝑑-dimensional vector 𝑒𝑖 ∈ R𝑑
that enables explicit feature-feature and feature-label interactions,
denoted as

𝑒𝑖 = interaction(𝑥𝑖 , 𝑦𝑖 ) . (14)

We instantiate interaction(·, ·) with PNN [38], one of the earliest
explicit feature interaction models with product operators. Finally,
the aggregated embedding 𝑒agg can be defined as

𝑒agg =

𝑘∑︁
𝑖=1

𝛼𝑖𝑒𝑖 . (15)

Output layer. Besides the label-aware interaction layer, we also
apply the attention coefficient to 𝑆𝑧 , and the aggregated retrieved
data representation is calculated as

𝑥agg =

𝑘∑︁
𝑖=1

𝛼𝑖𝑥𝑖 , (16)

We then feed the concatenation of 𝑥𝑧 , 𝑥agg and 𝑒agg into an MLP to
produce the final output as

𝑦𝑧 = 𝜌 (MLP( [𝑥𝑧 , 𝑥agg, 𝑒agg])). (17)

The 𝜌 (·) is a non-linear layer with sigmiod function when the task
is binary prediction task and the 𝜌 (·) is a linear function when the
task is regression task. The loss function is different for different
tasks. We use cross-entropy loss for binary prediction and ranking
task. For regression task, we use mean square error loss.

3.5 Time Complexity During Inference
The difference of DERT from other traditional tabular data predic-
tion models is the usage of encoder 𝐸𝜔 and retriever 𝑅. We note
that once the encoder 𝐸𝜔 is learned, the embeddings of the retrieval
pool Dretrieval can be done offline and reused thereafter. Therefore,
here we just analysis the dense retrieval operation in DERT. As
discussed in Section 3.3, we use FAISS to implement the retriever.
FAISS has an optimal time complexity of𝑂 (log log |Dretrieval |) [20],
giving approximate solutions to MIPS problems that are usually
good enough.

4 EXPERIMENTS
In this section, we evaluate DERT1 on two types of tasks: click-
through-rate (CTR) prediction (which is binary classification) and
top-N ranking. Additionally, we conduct several ablation studies
to validate the components of our model. The specific research
questions to study from the experiments are as follows.
RQ1 Does DERT beat all baselines and does the dense retrieval

outperform sparse retrieval in tabular data?
RQ2 How do the proposed modules, i.e., contrastive learning,

label-aware interaction, and retrieval method, have an im-
pact on the prediction?

RQ3 How do the hyperparameters (𝜆 and 𝑘) influence the perfor-
mance of DERT?

RQ4 Is DERT efficient enough in the inference stage?

1The experiment code is available at https://anonymous.4open.science/r/DERT-1C7B.
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4.1 Datasets
We conduct experiments for CTR prediction on three large-scale
datasets, i.e., Tmall2, Alipay3, Taobao4. For top-N ranking, we use
two widely-used public recommendation datasets, i.e., MovieLens5,
LastFM6. For MovieLens, we designate the instances with rating
greater than or equal to 4 as positive examples, and the rest as
negative examples. The detailed information of the five datasets is
summarized in Table 2.

Datasets # Instances # Fields Task
Taobao 100,150,807 4 CTR Prediction
Tmall 54,925,331 9 CTR Prediction
Alipay 35,179,371 6 CTR Prediction

Movielens-1M 1,000,209 7 Top-N Ranking
LastFM 18,993,371 5 Top-N Ranking

Table 2: Dataset statistics.

We split each dataset following the protocols in the previous
work RIM [36], where the oldest data instances are grouped into
the retrieval set, the most recent data instances form the test set,
while the intermediate data instances form the train set. Although
we are aware of other possible settings of data splitting, such as
stacking, due to the page limit we focus on the above one and leave
the empirical study in other settings in future work.

4.2 Evaluation Metrics
For CTR prediction, we use the evaluation metrics including area
under the ROC curve (AUC) and negative log-likelihood (LogLoss).
For top-N ranking, we use hit ratio (HR@N), normalized discounted
cumulative gains (NDCG@N), and mean reciprocal rank (MRR).
Significance test on each metric between the first and second per-
formed methods is conducted, with * marked for positive test re-
sults.

4.3 Compared Methods
On CTR prediction, we compare DERT with 8 strong baselines
which can be divided into three categories. The first category con-
tains traditional tabular models which could not use the retrieval
set. GBDT [3] is a widely used tree model and DeepFM [13] is a
common feature-interaction-based deep model. For fair compari-
son, we allow these models to train on the retrieval set as well, in
addition to the training set. The second category contains end-to-
end sequential CTR models. DIN [53] and DIEN [52] are examples
that are attention-based and recurrent. The third category contains
retrieval-based models including UBR [37] and RIM [36] which
only retrieves data instances based on raw input features directly.
In addition, FATE [47] is a tabular data representation learning
model that takes in a random minibatch of data instances as whole
input and outputs the prediction of all its elements simultaneously,
allowing interactions between the samples in the minibatch. This

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
5https://grouplens.org/datasets/movielens/1m/
6http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html

can be viewed as leveraging a random retrieval method to make
prediction.

On top-N ranking, we compare DERT with 6 baselines. FPMC
[40] and TransRec [14] are factorization-based models. Other base-
lines NARM [26], GRU4Rec [17], SASRec[22], and RIM [36] are
recently proposed neural network models.

4.4 Overall Performance (RQ1)
For CTR prediction, The overall performance comparison is pro-
vided in Table 3, from which one can have the following observa-
tions. (i) DERT consistently outperforms all the baselines on CTR
prediction. Specifically, compared to the best baseline RIM, DERT
achieves the improved AUC by 0.98%, 0.68% and 1.01% on three
datasets on Taobao, Tmall, and Alipay, respectively. This demon-
strates the effectiveness of dense retrieval that manages to fetch
semantically relevant neighbor instances. (ii) The retrieval-based
methods DERT and RIM are superior to the traditional methods
and sequential CTR models. The result indicates that the retrieval
methods are able to make use of the long-term history data, which
helps the prediction model work better. We show the results on
top-N ranking in Table 4. One can observe that DERT achieves
significant improvements over these baselines in almost all the
metrics on the two datasets. That shows dense retrieval works well
in top-N ranking tasks.

4.5 Ablation Study (RQ2)
4.5.1 Contrastive Learning. In this section, we discuss the impact
of adding contrastive loss in encoder training. We first verify the
effectiveness on the encoder’s learned representations by reporting
the AUC of the encoder’s own prediction (i.e. 𝑦𝑧 in Eq. 6) versus
the ground truth. Table 6 shows the result where the performance
without contrastive learning (named No CL in the table) was con-
sistently lower, showing that contrastive learning indeed made
encoder’s representation better. Table 5 also shows the end-to-end
impact of the contrastive loss on the dense retrieval. From the com-
parison between the first row and the third row of each dataset, we
could conclude that the contrastive loss could help the downstream
prediction model work better as well.

4.5.2 Label-aware Interaction Layer. We further study the usage of
the label-aware interaction layer in DERT. The result can be found
in Table 5 by comparing the first row and the second row in each
dataset. The result of DERT with label interaction and DERT with-
out label interaction both use the label information of the retrieved
set. The difference is that we remove the interaction of label and
feature interaction in the ablation experiment which is the way of
previous retrieval-based methods (e.g., RIM). After retrieval, the
previous retrieval-based methods only use an attention mechanism
to aggregate the feature embeddings and labels respectively, which
ignore the interaction between features and the label. From Table 5,
we could find that the label-aware interaction layer improves the
prediction consistently, which indicates that it is important to ex-
plore the fine-grained feature-label interaction patterns in each
retrieved instance before aggregating them.

4.5.3 Retrieval Mechanism in Contrastive Learning. As mentioned
in Section 3.2, contrastive learning in our encoder involves retriev-
ing relevant data instances using BM25 to generate the positive and
negative sets in Eq. 9. Here we compare it against retrieving the
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Models Taobao Tmall Alipay
LogLoss AUC Rel. Impr. LogLoss AUC Rel. Impr. LogLoss AUC Rel. Impr.

GBDT 0.6797 0.6134 40.97% 0.5103 0.8319 10.59% 0.9062 0.6747 19.86%
DeepFM 0.6497 0.6710 28.87% 0.4695 0.8581 7.21% 0.6271 0.6971 16.01%
FATE 0.6497 0.6762 27.88% 0.4737 0.8553 7.56% 0.6199 0.7356 9.94%
DIN 0.6086 0.7433 16.33% 0.4292 0.8796 4.59% 0.6044 0.7647 5.75%
DIEN 0.6084 0.7506 15.20% 0.4445 0.8838 4.10% 0.6454 0.7502 7.80%
SIM 0.5795 0.7825 10.50% 0.4520 0.8857 3.87% 0.6089 0.7600 6.41%
UBR 0.5432 0.8169 5.85% 0.4368 0.8975 2.51% 0.5747 0.7952 1.70%
RIM 0.4644 0.8563 0.98% 0.3804 0.9138 0.68% 0.5615 0.8006 1.01%
DERT 0.4486* 0.8647* - 0.3585* 0.9200* - 0.5319* 0.8087* -

Table 3: Performance comparison of CTR prediction task baselines. GBDT and DeepFM are the traditional methods. Others are
sequential modeling methods. For fair comparison, traditional models are trained on both the retrieval set and the training set.
The best results are in bold fonts while the second best results are underlined. “Rel. Impr.” means the relative AUC improvement
of DERT against each baseline. Improvements are statistically significant with 𝑝 < 0.01.

Datasets Metric FPMC TransRec NARM GRU4Rec SASRec RIM DERT

ML-1M

HR@1 0.0261 0.0275 0.0337 0.0369 0.0392 0.0645 0.0747*
HR@5 0.1334 0.1375 0.1418 0.1395 0.1588 0.2515 0.2540*
HR@10 0.2577 0.2659 0.2631 0.2624 0.2709 0.4014 0.4035*
NDCG@5 0.0788 0.0808 0.0866 0.0872 0.0981 0.1577 0.1634*
NDCG@10 0.1184 0.1217 0.1254 0.1265 0.1341 0.2059 0.2117*

MRR 0.1041 0.1078 0.1113 0.1135 0.1193 0.1704 0.1774

LastFM

HR@1 0.0148 0.0563 0.0423 0.0658 0.0584 0.0915 0.1488*
HR@5 0.0733 0.1725 0.1394 0.1785 0.1729 0.3468 0.3742*
HR@10 0.1531 0.2628 0.2227 0.2581 0.2499 0.5780* 0.5597
NDCG@5 0.0432 0.1148 0.0916 0.1229 0.1163 0.2165 0.2620*
NDCG@10 0.0685 0.1441 0.1185 0.1486 0.1409 0.2911 0.3217*

MRR 0.0694 0.1303 0.1083 0.1362 0.1289 0.2210 0.2694*

Table 4: Performance comparison of sequential top-N ranking task in terms of HR@N, NDCG@N, and MRR. The best results
are in bold values while the second best results are marked with underline. Significant improvements are judged with 𝑝 < 0.01.
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Figure 3: Performance of DERT w.r.t. different retrieval sizes 𝑘 .

data instances uniformly at random. From Table 6, we observe that
the relevance retrieval method incorporated in contrastive learn-
ing yields better encoder prediction AUC, hence better encoder
representations, than random retrieval.

4.6 Hyperparameter Study (RQ3)
Here we study two hyperparameters of DERT, namely, the hyperpa-
rameter 𝜆 in Eq. (10) for tuning the weight of contrastive loss when
training the encoder, and the hyperparameter 𝑘 for the number of
retrieved instances in DERT.
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Dataset Contrastive loss Label Interaction LogLoss AUC

Taobao

× × 0.4491 0.8643
× ✓ 0.4490 0.8644
✓ × 0.4488 0.8646
✓ ✓ 0.4486 0.8647

Tmall

× × 0.3641 0.9173
× ✓ 0.3586 0.9199
✓ × 0.3628 0.9185
✓ ✓ 0.3585 0.9200

Alipay

× × 0.5346 0.8065
× ✓ 0.5336 0.8081
✓ × 0.5335 0.8078
✓ ✓ 0.5319 0.8087

Table 5: Ablation Study on contrastive learning and label-
aware interaction layer.

Dataset No CL Random Retrieval Relevance Retrieval
LogLoss AUC LogLoss AUC LogLoss AUC

Taobao 0.4644 0.8563 0.4567 0.8580 0.4528 0.8583
Tmall 0.3804 0.9138 0.3721 0.9146 0.3678 0.9148
Alipay 0.5615 0.8006 0.5376 0.8012 0.5363 0.8022

Table 6: Encoder’s prediction performance with and without
contrastive learning (CL) and relevance-based retrieval.
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Figure 4: Predictor inference time of DERT and RIM.
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Figure 5: Retrieval time of DERT and RIM.

From Figure 6, we can observe that when 𝜆 is large, contrastive
loss has a negative impact on the performance because the loss
is not related label directly and it affects the label prediction loss.
If we tune 𝜆 to a proper value, it can help the encoder achieve

better performance. Furthermore, we can find that generally the
better encoder (with higher AUC) will help DERT get a better result
(higher AUC), which further verifies our intuition that if we use a
more effective encoder, we will get better retrieval results in DERT.

From Figure 3, we could find that the AUC bars of the three
datasets are similar. If 𝑘 is too small, the retrieved set could not
carry sufficient information for the prediction model, while if 𝑘 is
too large, the retrieved set would include too much noise which
may harm the performance.

4.7 Study of Efficiency (RQ4)
Tabular data prediction models are expected to be deployed in
online services, such as advertising platforms, fraud user detection
systems, and recommender systems. Hence, it is important for
the model to be efficient in the inference stage. We compare the
running time of retrieval and prediction processes between dense
retrieval (DERT) and sparse retrieval (RIM). In our experiment, both
predictors took roughly the same time during inference, while for
the retrieval process, dense retrieval is substantially faster than
sparse retrieval. Furthermore, we note that the scale of y-axis in
predictor inference time (Figure 4) is orders of magnitude smaller
than that in retrieval time (Figure 5), implying that DERT also
optimized a major bottleneck of retrieval-based models.

5 RELATEDWORK
5.1 Deep Learning on Tabular Data
Tabular data is an alternative but major data form to vision, audio,
and language, which is widely used in various application fields in-
cluding web services, banking, government, education, etc. The cell
of the tabular data is an either discrete or numeric value. Generally,
as deep neural networks may not deal with such a hybrid form of
data, it is common to discretize the numeric values [12], then each
row of the table can be regarded as a multi-field categorical data
[51]. As such, a majority of deep learning models on tabular data
prediction focus on exploring the feature interactions within one in-
stance, i.e., in a row of the tabular data [13, 14, 28, 39]. Wide&Deep
network [5] builds fully connected (FC) layers based on the feature
embeddings of the fields to implicitly mine the feature interactions.
CCPM [29] leverages the convolution operators to explore the local
feature interaction patterns based on a list of feature embeddings.
DeepFM [13] extends from factorization machine (FM) [40] and
Wide&Deep network to build a two-branch architecture to perform
explicit and implicit feature interaction learning simultaneously.
Fi-GNN [27] regards each data instance as a fully connected graph
and leverage graph neural network (GNN) to explore the feature
interactions. Despite numerous models proposed in this direction,
the model capacity may be limited as the input of the model is a sin-
gle instance, which requires the model to encode all the knowledge
in the parameters.

5.2 Retrieval-based Prediction Model
Retrieval-based methods for prediction on tabular data generally
originate from sequential recommendation tasks. It is natural to
leverage recurrent neural network (RNN) to build the user profile
representation so as to make recommendation predictions. How-
ever, when the user’s historical behavior sequence is much longer, it
is infeasible that RNN architectures could memorize and utilize the
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Figure 6: The performance of DERT and the base model (acting as the encoder of DERT) w.r.t. the hyperparameter 𝜆.

very early behavior patterns [34]. As such, retrieval methods play
as a practical implementation for replacing the long recurrence and
attention operations. UBR [37] builds a search index of the user his-
torical sequence data and uses reinforcement learning to formulate
the search query based on current prediction data. The retrieved
data is then aggregated via an attention operation and fed into an
MLP to make the label prediction. SIM [35] implements both hard
search based on item category information and soft search based
on item embedding vectors over the backbone model DIEN [52].
RIM [36] further extends the study scenario from the sequential
recommendation scenarios to the generic tabular data prediction
scenario. The query is the target row data while the retrieved data
instances are the relevant rows in the table with BM25 [41] as the
predefined relevance function between two rows.

Retrieval-enhanced machine learning has been positioned as an
important perspective of the frontier of machine learning research
[50]. Retrieval-based methods for prediction tasks have been well
explored in natural language processing and computer vision [31].
kNN-LM [22], as its name claims, combines k nearest neighbor and
neural language model to perform generalization via memorization
of the data. Besides, there is emerging research on reinforcement
learning tasks [10].

To our knowledge, for tabular data prediction, there has been no
previous work that performs data retrieval based on dense vectors
of the data, which is the main focus of our paper.

5.3 Representation Learning of Tabular Data
Compared to the sequential structure of natural language and the
matrix structure of images, tabular data is much different. Each row
of the table corresponds to a data instance and each column of the
table corresponds to a field with a predefined data schema. There is
relatively few work on learning the representation of tabular data.

As the cell data of the table has a strong underlying correlation
between each other, it is natural to build graph structures for the
tabular data and leverage graph neural networks (GNNs) to model
the representation of the data. GRAPE [49] builds a data-field bi-
partite graph, where the two sides of nodes are data instance (i.e.,
the row of the table) and field (i.e., the column of the table) while
the edges are labeled with the specific category of the cell. As such,
GRAPE formulates the feature imputation task as edge-level pre-
diction while formulating the label prediction task as node-level
prediction, both of which can be solved with GNNs. Compared
to GRAPE, FATE [47] builds a different form of a bipartite graph,
where one side is the data instances while the other side is the

specific feature categories. With such a setting, FATE can perform
inductive learning and extrapolate in the representation space.

TabTransformer [18] learns the contextual embeddings based
on the original embedding of each cell data of the table row using
column embedding, which is followed by an MLP to make label
prediction of the tabular data. TABBIE [19] learns the representa-
tion of cells, rows, and columns of the table with a scheme of cell
corruption & identification. With text as part of the data, TaPas [16]
and TaBERT [48] leverage the BERT model with masking recovery
training objective to pre-train the representation of tabular data
and text. TURL [6] is a table structure-aware Transformer model
that works on the tabular of text cells.

Note that most representation learning models that map the
tabular data instance to a dense vector can be leveraged as the
encoder implementation of DERT.

6 CONCLUSION
In this paper, we propose DERT, the first framework that learns
dense vector representation of tabular data instances and based on
it performs dense retrieval to improve tabular data prediction per-
formance. Compared to previous sparse retrieved-based methods
on tabular data, the dense retrieval method in DERT makes use
of semantic information rather than just term matching to better
distinguish positive and negative cases from top retrieved candi-
dates. In all experiments, DERT achieves superior performance over
strong baselines, which indicates that DERT can make better use
of data from the retrieval set than previous sparse retrieval.

With the dense vector representation learning for tabular data,
DERT opens a new direction of data science. In the long run, tab-
ular data prediction tasks would leverage external data sources,
not only the sources with the same format. Retrieval with dense
representation can help tabular prediction models make use of any
embedding data. DERT also bridges the gap between tabular data
and other types of data such as text, images, and graphs. If we treat
the dataset as a table assembled by many rows of tabular data, the
tabular data prediction task can be regarded as a task based on
one table in a database. The dense retrieval method could help the
model work across multiple tables. DERT is potentially capable of
enhancing these end-to-end tabular data prediction models.
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