
Pattern Recognition 123 (2022) 108353

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Learning to select cuts for efficient mixed-integer programming

Zeren Huang

a , Kerong Wang

a , Furui Liu

c , ∗, Hui-Ling Zhen

c , ∗, Weinan Zhang

a , ∗,
Mingxuan Yuan

c , Jianye Hao

c , Yong Yu

a , Jun Wang

b

a Shanghai Jiao Tong University, China
b University College London, United Kingdom

c Noah’s Ark Lab, Huawei Technologies, China

a r t i c l e i n f o

Article history:

Received 1 April 2021

Revised 23 September 2021

Accepted 25 September 2021

Available online 4 October 2021

Keywords:

Mixed-Integer programming

Cutting plane

Multiple instance learning

Generalization ability

a b s t r a c t

Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming

(MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely

reducing the computational burden without hurting the solution accuracy. However, the major cut selec-

tion approaches heavily rely on heuristics, which strongly depend on the specific problem at hand and

thus limit their generalization capability. In this paper, we propose a data-driven and generalizable cut

selection approach, named Cut Ranking , in the settings of multiple instance learning. To measure the

quality of the candidate cuts, a scoring function, which takes the instance-specific cut features as inputs,

is trained and applied in cut ranking and selection. In order to evaluate our method, we conduct ex-

tensive experiments on both synthetic datasets and real-world datasets. Compared with commonly used

heuristics for cut selection, the learning-based policy has shown to be more effective, and is capable of

generalizing over multiple problems with different properties. Cut Ranking has been deployed in an in-

dustrial solver for large-scale MIPs. In the online A/B testing of the product planning problems with more

than 10 7 variables and constraints daily, Cut Ranking has achieved the average speedup ratio of 12.42%

over the production solver without any accuracy loss of solution.

© 2021 Elsevier Ltd. All rights reserved.

1

p

s

l

c

a

w

s

o

i

a

f

[

p

a

s

L

A

[

i

x

x

m

w

c

a

t

c

t

s

h

M

c

n

d

h

0

. Introduction

Combinatorial optimization (CO) is a subclass of optimization

roblems, where the goal is to find the optimal solution with re-

pect to a given objective function from a finite candidate so-

ution set. Due to its combinatorial nature (for example, integer

onstraints), it is usually NP hard and can mostly be formulated

s mixed-integer programming (MIP) problems [1–4] . It covers a

ide range of industry applications such as production planning,

cheduling and manufacturing [5–8] .

The difficulty of solving MIP problems lies on the non-convexity

f its feasible region, which makes the general MIPs unsolvable

n polynomial time. Instead of solving the MIP directly, one usu-

lly solves the corresponding LP relaxations first, and then per-

orms rounding to generate the approximately optimal solution

9] . To facilitate such a process, a classic approach is the cutting

lane method, which generates valid inequalities in the LP iter-

tions to cut off the fractional solutions or the infeasible integer

olutions, so that the convergence to optimum is accelerated [10] .
∗ Corresponding authors.

E-mail addresses: liufurui2@huawei.com (F. Liu), zhenhuiling2@huawei.com (H.-

. Zhen), wnzhang@sjtu.edu.cn (W. Zhang).

b

i

g

ttps://doi.org/10.1016/j.patcog.2021.108353

031-3203/© 2021 Elsevier Ltd. All rights reserved.
nother approach to solve MIP is the branch-and-bound algorithm

11,12] , which creates branches by selecting variables to add round-

ng bounds to form two sub-LP problems (for a integer variable

 i with fractional value v as example, add two rounding bounds

 i ≥ � v � and x i ≤ � v �), and then solve these sub-LP problems. In

odern MIP solvers, the cutting plane technique is often combined

ith the branch-and-bound method to constitute the branch-and-

ut framework [13] , where each branch contains cutting planes as

dditional constraints. Heuristics are also employed in this process

o cope with problems such as branching variable selection and

utting plane (cut) selection, i.e., selecting the most promising cuts

o add. Such heuristics in MIP solvers are usually manually de-

igned and heavily dependent on the problem. As a result, it shows

igh vulnerability with respect to the structure or the size of the

IP [14] .

As a promising methodology for address above issues, many re-

ent works [15–18] have leveraged machine learning (ML) tech-

iques to construct efficient heuristics which is problem indepen-

ent, and the majority are focusing on decision problems in the

ranch-and-bound algorithm, thus leaving room for machine learn-

ng methods on the direction of cut selection.

A good set of cuts is essential for the efficiency of the CO al-

orithms. Cuts serve the purpose to reduce the LP solution space,

https://doi.org/10.1016/j.patcog.2021.108353
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108353&domain=pdf
mailto:liufurui2@huawei.com
mailto:zhenhuiling2@huawei.com
mailto:wnzhang@sjtu.edu.cn
https://doi.org/10.1016/j.patcog.2021.108353

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

w

t

H

w

d

n

m

b

a

i

c

s

a

n

m

t

c

t

i

b

(

i

o

s

i

s

o

a

R

t

s

t

t

i

w

i

1

t

a

2

b

T

f

p

a

s

w

o

o

t

t

g

t

s

t

T

p

M

i

l

w

t

f

e

c

N

p

t

s

a

M

t

m

h

e

p

t

t

n

e

a

s

f

i

m

n

s

c

m

a

s

p

m

e

i

o

g

3

c

o

n

3

a

hich results in a smaller tree in branch-and-cut algorithm so

hat the number of nodes to be searched are significantly reduced.

owever, excessive quantity of cuts causes heavy computational

orkload on solving corresponding LP problems. As a consequence,

eriving a good cut selection policy is of high value to the commu-

ity, which has unfortunately received few attention so far. This

otivates us to develop a general data-driven, machine learning

ased cut selection algorithm.

The purpose of this work is to construct an efficient and gener-

lizable cut selection policy based on machine learning. The basic

dea is to learn a scoring function that can measure the quality of

uts, and we formulate it as a cut ranking problem, in which we

core each generated cut by a learned scoring function, and select

 subset of cuts with the highest scores. However, such a task is

on-trivial, with several remarkable technical challenges. First, in

any cases, labels for individual cuts are not easy to obtain, since

he impact of a single cut on MIP is relatively weak and imper-

eptible. Labeling good cuts individually may be infeasible. Thus,

he cut selection problem naturally fits the scenarios of multiple

nstance learning (MIL), in which the collection of labels is at the

ag level [19–21] . The training instances are organized into sets

also called bags), and the label is not assigned to any individual

nstance, but to the bag of cuts to measure the overall quality. An-

ther important problem is the generalization ability of the learned

coring function. To enable the scoring function module to general-

ze to new problems, we design both static and dynamic problem-

pecific cut features as the inputs. Inspired by the training process

f Reinforcement Learning (RL), we collect the supervised labels in

n exploratory way [22] . Our proposed method is named as Cut

anking .

To summarize, the technical contributions of our work are

hreefold.

1. We propose a novel Cut Ranking method for cut selection in

the settings of multiple instance learning, which is suitable for

the nature of cut selection tasks.

2. We study generalization ability to the cut selection policy since

the designed cut features are determined by the characteristics

of MIPs.

3. The Cut Ranking module can be applied as a subroutine in the

branch-and-cut algorithm, which is generally adopted by mod-

ern MIP solvers.

The extensive experiments on various MIP problems demon-

trate the superiority of Cut Ranking over previous solutions in

erms of solving time and the node size of the branch-and-bound

ree. Furthermore, we deploy Cut Ranking on Huawei’s proprietary

ndustrial large-scale MIP solver for production planning problems

ith more than 10 7 variables and constraints daily. The A/B test-

ngs show that our solution can reduce the overall solving time by

4.98% and 12.42% on average for offline and online phases respec-

ively without the accuracy loss of solution, which is a significant

cceleration for the industrial solver.

. Related works

The traditional approaches to tackle the MIPs mainly include:

ranch-and-bound [11,23,24] and cutting-plane methods [10,25] .

hey are widely deployed in modern solvers as the core algorithm

or solving problems. However, in the era of big data, large scale

roblems with a lot of variables are often encountered, and those

pproaches suffer from very low efficiency. For scalability and

peeding up the solvers, they are usually enhanced with heuristics,

hich are often designed by experts, based on the unique property

f the problems at hand, and are not transferable or reusable when

ne switches to a new situation.
2
Therefore, there emerges a need for generalizable methods

hat are ubiquitous applicable to MIPs. Attentions are thus paid

o machine learning and other data driven science due to their

eneralizability. Given training data, intelligent models are able

o learn to solve the problem, with good performance on un-

een data. Based on the role that the machine learning model

akes, related literatures can be categorized into two clusters [26] .

he first cluster contains methods that use ML models to re-

lace traditional solving techniques. They can directly solve the

IP problems (such as TSPs), in which an end-to-end learn-

ng model is often used to predict the solution given the prob-

em instance. Vinyals et al. [27] proposed the pointer network

ith a sequence-to-sequence architecture, and train the model

hrough supervised learning. Bello et al. [28] introduced a rein-

orcement learning method to train the pointer network. Other lit-

ratures including [29,30] also use the sequence-to-sequence ar-

hitecture to tackle the vehicle routing problems. More recently,

air et al. [31] showed that the deep learning model is able to

redict a good partial solution for MIP problems. The aforemen-

ioned works often use blackbox and unexplainable AI models,

upported by empirical evidences but no theoretical guarantees. As

 result, they sometimes show performance vulnerability in solving

IPs.

For the second cluster, in which our work can be placed,

he main algorithmic framework is based on the traditional opti-

ization algorithm, and machine learning is used to improve the

euristics. During the solution process, the ML model is repeat-

dly called to assist in making decisions. There have been multi-

le studies [15–17] about learning a branching policy in the con-

ext of branch-and-bound, in which the policy is usually trained

hrough imitation learning to approximate a powerful heuristics

amed strong branching, which is effective but too slow. Khalil

t al. [16] addressed the branching variable selection problem as

 ranking problem.

In addition to learning a branching strategy, there are also

tudies on learning other core elements in the branch-and-bound

ramework. He et al. [32] proposed to learn a node selection pol-

cy to improve the heuristics. Khalil et al. [33] adopted a ML-based

odel to decide running a given heuristic or not at a branching

ode.

To our knowledge, the direction of deriving a ML-based cut

election policy for MIP problems have been rarely explored ex-

ept Tang et al. [18] , in which the authors introduced a MDP for-

ulation for the problem of iteratively selecting cuts for a MIP,

nd train a reinforcement learning (RL) agent using evolutionary

trategies. Our work differs from it in two aspects: first, we pro-

ose a ranking formulation, and model the learning problem in

ultiple instance learning settings; second, the main goal of Tang

t al. [18] is to improve the efficiency of the cut selection module,

.e. to reduce the total number of cuts added, while the objective

f our work is to improve the performance of the optimization al-

orithm, i.e. to reduce the total running time.

. Background

Our algorithm combines MIL technique with the branch-and-

ut framework. In this section, we firstly introduce the background

f MIP and branch-and-cut framework. Then, MIL related tech-

iques are presented.

.1. Mixed-integer programming background

Mixed-integer programming problem

The general formulation of a MIP is as follows:

rg min

x

{
z 	 x | Ax ≤ b , x ∈ Z

p × R

n −p
}
, (1)

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

w

c

t

r

d

s

t

r

c

s

(

t

s

T

C

t

a

t

o

m

i

t

t

t

D

b

t

i

l

a

P

w

m

c

P

w

t

t

t

fi

t

r

w

v

o

o

f

e

M

M

3

v

t

p

o

t

a

b

l

i

b

o

t

f

b

c

4

4

t

a

s

e

t

t

D

M

t

b

D

e

here x is the vector of decision variables, z ∈ R

n is the objective

oefficient vector, b ∈ R

m is the right-hand side vector, A ∈ R

m ×n is

he constraint matrix.

Branch-and-cut

The branch-and-cut (BC), a combination of two classical algo-

ithms, is widely adopted in modern MIP solvers. To address the

ifficulty brought by the nonconvexity on searching the optimal

olution, it builds a search tree with each node corresponding

o a linear programming problem. At the beginning of the algo-

ithm, the root node corresponds to the problem with all integer

onstraints dropped. Then, it iteratively generates child nodes by

electing variables to branch on, that is, adding new constraints

bounds) on it. Along the paths of the tree, the space of solu-

ion is regularized by more constraints. For the problems corre-

ponding to each node, valid cuts are added to assist searching.

aking the root node for example, assume that the added cut set

′ = { α	
i

x ≤ βi } | C ′ | i =1
is a subset of generated cut set C, the optimiza-

ion problem becomes

rg min

x

{
z 	 x | Ax ≤ b , α	 x ≤ β, x ∈ Z

p × R

n −p
}
. (2)

The algorithm terminates when there exists no feasible solu-

ions for one node, or we cannot obtain a better solution than the

ptimal one found so far. It is worth noting that the cuts are pri-

arily added at the root node, which will often bring significant

mprovements.

Metric for cut quality For a given MIP, its solvability is defined as

he capability of being solved, which relates to the size, the struc-

ure and other problem properties. A formal quantitative descrip-

ion of problem solvability is provided in Definition 1 .

efinition 1 (Problem Solvability) . Let O be the set of all the feasi-

le optimization algorithms for solving MIPs, and S be the set of all

he feasible MIP solvers. Assume that the computing environment

s kept the same, we define the problem solvability of a MIP prob-

em χ with respect to parameters A, b, z and integrality constraints

s

 S(χ) = E o∼O,s ∼S

[
1

T χ

∣∣∣o, s

]
, (3)

here T χ is the solving time of the MIP problem χ .

To measure the quality of selected cut subset C ′ , we propose a

etric named problem solvability improvement (PSI), which is cal-

ulated after adding cuts via

 SI = P S(χ ′) − P S(χ) , (4)

here χ ′ and χ represent the MIP with and without cuts, respec-

ively.

In real practice, it is impractical to calculate P SI since obtaining

he problem solvability is infeasible. However, when the optimiza-

ion algorithm, the MIP solver and the computing environment are

xed, we can substitute P SI with the reduction ratio of solution

ime as the feedback r of selecting C ′ :

 = E

[
T χ − T χ ′

T χ

∣∣∣o, s

]
, (5)

here o is the optimization algorithm, s is the solver. A higher

alue of r implies a higher-quality cut subset for the MIP.

Typical cut types In cutting plane tasks, there exist various types

f cuts which can be generated. Here, we list several typical types

f cuts:

• Cover Cut. For a set of binary variables X = { x 1 , x 2 , . . . , x k } , a

so-called knapsack constraint takes the form as

a 1 x 1 + a 2 x 2 + . . . + a x ≤ b, (6)
k k

3
where a 1 , a 2 , . . . , a k , b are all non-negative. Let X ′ =
{ x ′

1
, x ′

2
, . . . , x ′

l
} ⊂ X . A minimal cover cut related with the

above knapsack constraint is of the form as

x ′ 1 + x ′ 2 + . . . + x ′ l ≤ l − 1 . (7)

• Gomory Cut. The gomory cuts are generated from the rows

of the simplex tableau, returned by the simplex algorithm for

solving LPs. Here we use the similar notations as in Tang et al.

[18] . Denote the constraint matrix and the constraint vector of

the tableau as A

′
and b

′
, respectively. For the i th row, the cor-

responding gomory cut can be generated by applying integer

rounding as

(−A

′
i + � A

′
i �) x ≤ −b ′ i + � b ′ i � . (8)

• Clique Cut. For a set of binary variables X = { x 1 , x 2 , . . . , x k } , a

clique cut is of the form as

x 1 + x 2 + . . . + x k ≤ 1 , (9)

where at most one variable can be positive.

For a more detailed introduction of other cut types, one can re-

er to the surveys for cutting planes [10,25] . Note that these differ-

nt types of cuts are enabled in general MIP solvers. For a given

IP instance, we can use the cut generators incorporated in the

IP solver to generate the candidate cuts.

.2. Multiple instance learning

Multiple instance learning (MIL) concerns the problem of super-

ised learning where the model prediction and training are put at

he level of bag of instances [19] . Each bag is composed of multi-

le unlabeled training instances. The goal is to predict the labels

f unseen data at the bag level or at the instance level.

For the binary classification problems, where the label is posi-

ive or negative, the standard setting of MIL is that, bags containing

t least one positive instances are assigned positive labels while

ags containing only negative instances are assigned with negative

abels [19] . This can be relaxed to the collective assumption, which

s related to problems where the label assignment is determined

y more than one instances. The MIL measures the effect of a set

f instances by interpreting labels of bags, and this naturally fits

he scenario of our cut selection. For large-scale problems, the ef-

ect of a single cut to the solution is rather minor and impercepti-

le. Therefore, we use MIL related techniques as our ML model for

ut selection.

. Methodology: cut ranking

.1. A cut ranking formulation in MIL settings

In the branch-and-cut framework, we introduce cut selection at

he root node of the branching tree. Since the majority of cuts are

dded to the root LP in general cases, the cuts are disabled at other

ub-nodes for a better evaluation of effects on the algorithm. How-

ver, we argue that the learned cut selection policy can generalize

o other sub-nodes (sub-MIPs) due to that the designed cut fea-

ures are of the same properties with a MIP instance.

efinition 2 (MIP Problem Property) . For a MIP with parameters

 = { A, b, z} , after its root LP relaxation being solved, the LP solu-

ion x ∗
LP

is accessible. We define the problem property of the MIP

efore cut selection as P = { x ∗
LP

, M} .
For a given MIP, its problem property P is defined in

efinition 2 . Let C = { c 1 , c 2 , . . . , c l } be the candidate cut set gen-

rated at the root node, the cut selection problem is equivalent to

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

s

a

C

D

t

l

i

i

i

m

c

j

d

X

b

t

f

b

i

c

f

a

p

4

b

s

s

t

e

i

b

4

c

s

fi

p

i

A

m

t

u

m

o

a

p

s

t

t

e

o

c

o

t

fi

r

s

t

M

p

r

t

t

l

t

p

w

t

C

w

d

s

c

t

i

w

t

s

4

f

e

s

f

h

c

f

T

m

t

t

t

t

a

t

e

i

s

t

c

f

r

f

p

o

x

T

b

a

c

a

t

s

elect an optimal cut subset C ∗ with respect to the problem solv-

bility improvement (PSI) mentioned in Eq. (4) :

∗ = arg max
C ′

{
P SI | C ′ ⊂ C, P

}
. (10)

ue to its combinatorial structure, finding an exact solution is in-

ractable, especially when the size of C becomes larger.

To tackle such a problem, we present a Cut Ranking formu-

ation in the branch-and-cut framework. The process of cut rank-

ng involves the training phase and the test phase. In the train-

ng phase, the learning process is modeled in MIL settings, that

s, the training data are grouped into bags, and the label assign-

ent is at the bag level. Specifically, each bag consists of several

uts sampled from the candidate cut set, and the bags are not dis-

oint. Denote u i ∈ R

H as the feature vector of cut c i , which can be

erived given the problem property P and the cut parameters. Let

 = { x 1 , x 2 , . . . , x h } be the set of feature vectors for the collected

ags, where each bag feature vector x i ∈ R

H can be constructed

hrough a feature mapping function φ(·) , taking the aggregated

eatures of cuts within the bag as the input. Let Y = { y 1 , y 2 , . . . , y h }
e the labels of X . Given the training set, our goal is to train a scor-

ng function f θ (u) which can predict the score for each candidate

ut u , with the cut feature vector as the input.

In the test phase, for the given MIP, we use the trained scoring

unction f θ to assign scores to all the generated candidate cuts,

nd select the top K% cuts with the highest scores (K is a hyper-

arameter).

.2. Constructing training data

The training data is composed of features X and labels Y at the

ag level. To construct it, we first collect the training samples (each

ample corresponds to a bag of cuts) using a certain searching

trategy on multiple randomly generated instances; next we ex-

ract the designed instance-specific cut features for the cuts within

ach training sample; after that, we construct the bag features us-

ng the aggregated features of cuts in each bag; finally, we assign

inary label to each sample through a designed labeling scheme.

.2.1. Strategies of collecting training samples

For a given MIP, after its root LP being solved, a set of candidate

uts C are generated by the cut generators incorporated in the MIP

olver first. Note that for a MIP instance, when the MIP solver is

xed, the generated candidate cuts are also fixed. Denote hyper-

arameter K% as the cut selection ratio, a subset C ′ is selected us-

ng a stochastic cut selection policy, and under the selection ratio.

fter adding the selected cuts, the algorithm continues until ter-

inating and returns the solution time. To measure the quality of

he selected subset C ′ , since the pre-defined problem solvability is

navailable in practice, we use the reduction ratio of solution time

entioned in Eq. (5) , as an alternative to P SI. The reduction ratio

f solution time can also be regarded as the feedback r of selecting

 cut subset.

For each MIP instance, we repeat running the solver for multi-

le times, and collect a number of training samples. Since our cut

election policy is stochastic, we are able to explore different cut-

ing results and obtain training samples with much diversity. Note

hat though collecting training samples leads to multiple rounds of

xecution of the MIP solver, the whole process is conducted in an

ffline way, and thus the incurred training cost is acceptable. The

ollected training sample can be seen as a tuple (P, C ′ , r) consisting

f the MIP property P , the selected cut subset C ′ (bag of cuts), and

he feedback r. To improve the exploration and also the data ef-

ciency, we collect the training samples based on two strategies,

andom sampling and active sampling, which are similar to the

earching strategies adopted by Bello et al. [28] .
4
Random sampling The cut selection is based on a fixed stochas-

ic policy, which randomly selects a subset of cuts to add to the

IP. For each generated MIP training instance, the algorithm is re-

eatedly called for a certain number of times, in which we apply

andom sampling to collect the initial training samples.

Active sampling In this case, we select the cuts using a pre-

rained cut selection policy, which can lead to more promising

raining samples compared with random sampling. However, col-

ecting samples only based on the pre-trained policy will reduce

he sample diversity, which may result in learning a sub-optimal

olicy. To alleviate this issue, we adopt an ε-greedy policy [34] ,

hich is a common approach in reinforcement learning to balance

he exploration and exploitation:

′ =

{
sample from policy π, with probability 1 − ε

sample randomly , with probability ε
(11)

here C ′ is the selected cut subset, π is the cut selection policy

erived from the model. During the active sampling phase, the cut

election policy is still being refined using the training samples

ollected in this phase. The flow chart is displayed in Fig. 1 . Note

hat active sampling is on-policy, that is, we improve the same pol-

cy which is used to collect samples. However, the whole frame-

ork of Cut Ranking is in an offline settings, that is, during the

est phase, we do not continue to train our model on new MIP in-

tances.

.2.2. Constructing bag features from cut features

Since the bag features are constructed from the aggregated cut

eatures, thus the first issue is the specification of cut features. To

nable better generalization of the model, we design 14 problem-

pecific atomic features for the cut selection task. Similar to the

eatures of branching variables as provided in Khalil et al. [16] ,

ere we list our designed features for each candidate cut. Specifi-

ally, for a given MIP instance with problem property P = { x ∗
LP

, M} ,
or any generated cut c i : α

	
i

x ≤ βi , its cut features are shown in

able 1 .

The top two atomic features correspond to the statistical infor-

ation of coefficients related to the cut, which help to capture

he structural information of the cut. The other features measure

he cut characteristics through different measurements as men-

ioned by Wesselmann and Suhl [35] , which capture the associa-

ion between the MIP property and the cut. Moreover, all the above

tomic features can be computed quite efficiently, and thus making

he time to construct features negligible in the algorithm.

Now that we are able to construct the bag features. For a gen-

rated MIP instance, we collect a number of training samples us-

ng certain sampling strategies. For each training sample with a

elected cut subset C ′ , we first compute and collect the cut fea-

ures for each cut within C ′ , and obtain the set of corresponding

ut features U C ′ = { u ′
1
, u ′

2
, . . . , u ′ | C ′ | } . To prevent feature dimensions

rom being on different scales, we apply Z-score normalization to

e-scale the feature values among all the training samples collected

rom the same MIP instance. Finally, we introduce a feature map-

ing function φ, which maps the aggregated cut features to the

riginal cut feature space, and we obtain the final bag features as

 C ′ = φ(u

′
1 , u

′
2 , . . . , u

′
| C ′ |) . (12)

he mapping function can be designed to capture the association

etween cuts within a bag, while in this work, we define φ as an

verage function for simplicity, which calculates an average of the

ut features. In other works [36,37] which are under the collective

ssumption in MIL settings, the similar average or weighted func-

ion is also adopted. Moreover, our empirical studies will show that

uch a mapping function is effective.

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

Fig. 1. The flow chart of active sampling.

Table 1

Cut features’ descriptions and counts.

Feature Description Count

stats. for cut coeffs. the mean, max, min, stdev. of cut coefficients αi 4

stats. for obj. coeffs. the mean, max, min, stdev. of objective coefficients of cut variables 4

support the proportion of non-zero coefficients in αi 1

integral support the proportion of non-zero coefficients w.r.t integer-constrained variables in αi 1

normalized violation max { 0 , α	
i

x ∗LP −βi

| βi | } , which measures the cut violation of the present LP solution 1

distance
| α	

i
x ∗LP −βi |
| αi | , which measures the Euclidean distance between the present LP solution and the hyperplane α	

i
x = βi determined

by the cut

1

parallelism

z 	 αi | z|·| αi | , which measures the parallelism between the objective function and the cut 1

expected improvement
| z|·| α	

i
x ∗LP −βi |

| αi | , which is an estimation for objective improvement with the cut 1

4

t

q

T

r

a

a

f

w

b

b

i

M

f

y

w

t

c

c

c

4

t

4

w

m

d

a

e

(

t

P

a

p

4

s

t

G

l

t

l

L

w

t

L
.2.3. Assigning ranking labels to training samples

The labels for our cut selection task are defined to be binary,

aking the value of 1 or 0. The positive labels are assigned to high-

uality cut subsets, which are preferable for the selection policy.

o measure the quality of a sampled bag, we use the pre-defined

eduction ratio of solution time as the feedback signal, and present

 labeling scheme based on the ranking of bags. Note that deriving

 precise labeling scheme requires collecting all the possible bags

or a MIP instance, which is infeasible in general cases. Therefore,

e adopt an approximation method, that is to sample a number of

ags for each MIP instance, and assign the corresponding bag la-

els according to their rankings. Empirically, we find that the train-

ng is stable under such a labeling scheme.

For training bags X = { x 1 , x 2 , . . . , x h ′ } collected from the same

IP instance, let R = { r 1 , r 2 , . . . , r h ′ } be the set of corresponding

eedbacks. For each sample x j , we define its label as

 j =

{
1 , r j ranks in the λ% highest feedbacks

0 , otherwise
(13)

here λ ∈ (0 , 100) is a tunable hyper-parameter, which controls

he percentage of positive samples.

The above ranking based binary labeling scheme is suitable for

ut selection since the main goal is to distinguish the high-quality

uts between the poor-quality ones without a full ranking of all

andidate cuts.

.3. Learning a scoring function

In this subsection, we first introduce the basic architecture of

he scoring function, and then present how to train the model.
5
.3.1. Scoring function architecture

We parameterize the scoring function as a neural network f θ (x)

ith parameters θ . In the training phase, for each training bag, the

odel takes its bag features x as inputs, and outputs a probability

istribution with two dimensions, which correspond to P (y = 1 | x)
nd P (y = 0 | x) , respectively.

The architecture of the model consists of two parts. First, it

xtracts the bag embeddings x e through a multi-layer perceptron

MLP), and then feed the embeddings to a softmax layer to output

he probability distribution as

x e = MLP (x ; θ)
 (y | x) = softmax (x e) .

(14)

Since the same form of bag features and the cut features, we

re able to apply the scoring function at the cut level in the test

hase.

.3.2. Training the scoring function

We define the probability P (y = 1 | x) output by the model as the

core for the input bag or the cut. The goal is to train the model

o output higher scores for positive samples, or high-quality cuts.

iven a set of training data { (x
j
i
, y

j
i
)

h j
i =1

} N
j=1

collected from N prob-

em instances, we optimize the model parameters θ to minimize

he loss function comprising the cross-entropy loss and the regu-

arization loss as

 (θ) = L ce (θ) + γ�(θ) , (15)

here γ is a hyper-parameter for regularization penalty, and L ce is

he cross-entropy loss as

 ce (θ) = −
N ∑

j=1

h j ∑

i =1

y j
i

log p θ (y j
i

= 1 | x) + (1 − y j
i
) log p θ (y j

i
= 0 | x) . (16)

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

T

u

p

�

m

A

1

1

1

1

1

d

d

a

a

t

s

5

5

5

r

s

n

p

c

a

a

a

s

m

5

r

n

t

b

o

n

i

t

t

s

a

5

a

l

fi

p

f

g

t

t

L

f

t

z

p

l

T

f

m

i

i

m

5

c

u

g

b

e

5

R

i

t

S

d

p

p

p

t

p

b

l

t

t

1 The code for reproducing the experiments on synthetic datasets is available at

https://github.com/logWin322/Learn2SelectCuts .
o avoid the overfitting of the model, we adopt a common L2 reg-

larization into the model, which places restrictions on the model

arameters as

(θ) = ‖ θ‖

2
2 . (17)

Finally, the major steps of our Cut Ranking method are sum-

arized in Algorithm 1 . The algorithm consists of three phases:

lgorithm 1 Cut Ranking in MIP settings.

1: Data Collection Phase:

2: Randomly generate a set of training instances D train .

3: For each instance in D train :

4: Sample training bags using strategies mentioned in Section

4.2.1;

5: Construct the bag features via Section 4.2.2;

6: Assign labels to the bags via Section 4.2.3.

7: Training Phase:

8: Initialize the scoring function f θ and the learning rate μ.

9: Repeat

0: For each batch in training data:

11: Calculate the loss L (θ) in Equation 15 ;

2: Optimize model parameters: θ ← θ − μ∇ θ L (θ) ;

3: until θ converge.

14: Test Phase:

5: For each instance in the test set D test :

6: Obtain the scores for each candidate cut using f θ ;

17: Select the top K% cuts with the highest scores.

ata collection phase, training phase and the test phase. In the

ata collection phase, we collect and construct the training bags

nd labels; in the training phase, we train our scoring function in

 supervised fashion; in the test phase, we apply the scoring func-

ion to each candidate cut, and select a cut subset with the highest

cores.

. Experiments

.1. Experimental setup

.1.1. Benchmarks

Our benchmarks consist of synthetic MIP problems and the

eal-world production planning problems. The synthetic MIPs con-

ist of four classical classes of problems: Set Cover, Knapsack, Plan-

ing and General MIP. For the ease of data collection, we find the

roblem instances which are solvable within 25 seconds. For each

lass of problems, we randomly generate 100 training instances

nd 30 test instances using different random seeds.

The large-scale real-world daily production planning problems

re divided into two phases, the Offline Phase during January 2021,

nd the Online Phase during March 2021. These two phases corre-

pond to the offline datasets and online datasets for our experi-

ents.

.1.2. Metrics

The cut selection policy will affect the branch-and-cut algo-

ithm from two aspects, the solution time and the number of

odes visited. Compared with the cases without cuts, we define

wo metrics for cut selection based on the above algorithm feed-

acks: the reduction ratio of solution time; and the reduction ratio

f the number of nodes visited.

Notably, the solution time is not directly determined by the

umber of nodes visited, since we need to also consider the solv-

ng time of each node relaxation. Therefore, the primary metric

o qualify the cut selection policy is the reduction ratio of solu-

ion time. For each conducted experiment, we show the mean and
6
tandard deviation of results on the test set, and highlight the best

verage results.

.1.3. Baselines

For synthetic datasets, we examine our Cut Ranking module

gainst five widely used manually-designed heuristics for cut se-

ection, including:

• Random : select cuts according to a stochastic policy.
• Violation : select the cuts with larger violation.
• Normalized Violation : select the cuts with larger normalized

violation.
• Distance : select the cuts with larger Euclidean distance from

the root LP solution x ∗LP .
• Parallelism : select the cuts which are more parallel to the ob-

jective function.

For real-world datasets, we compare Cut Ranking with the

ne-tuned manually heuristics which are adopted in Huawei’s pro-

rietary solver.

Note that RL2C [18] is not included in the baselines since their

ormulation is based on sequential decision making, and the main

oal of RL2C is to reduce the total number of added cuts to solve

he MIP to optimality. The main algorithmic framework of RL2C is

he cutting plane method, which iteratively adds cuts to the initial

P relaxation. Specifically, in RL2C, a new cut is selected and added

rom the candidate cut set at each step and the solver is required

o execute the LP instantly to obtain the change of objective value

	 x . However, our defined task is essentially a one-step decision

roblem, and the main goal of Cut Ranking is to improve the so-

ution time of MIP in the algorithmic framework of branch-and-cut.

herefore, RL2C is highly incompatible with our settings, and its RL

ormulation is impractical for large-scale MIPs since it may lead to

uch more sampling and computational costs. Moreover, the pol-

cy architecture of RL2C is based on LSTM, and the network inputs

nclude all the constraints and available candidate cuts, which also

akes it infeasible to apply in large-scale scenarios.

.1.4. Implementation of algorithms

The algorithmic framework for synthetic MIPs is branch-and-

ut. We implement the vanilla branch-and-bound algorithm, and

se the open-source solver Python-MIP [38] for solving LPs and

enerating cuts 1 For the real-world datasets, the optimization is

ased on a proprietary industrial solver of Huawei Company. We

nable cut selection before the rounding procedure.

.1.5. Hyper-parameters

Policy architecture The implemented policy network of Cut

anking is a 4-layer fully-connected neural network, including an

nput layer, two hidden layers with 30 and 15 hidden units respec-

ively and tanh activation, and an output layer. As mentioned in

ection 4.3.1 , the input layer accepts the cut (or bag) features with

imension 14 as the network inputs. The output layer outputs a

robability distribution with two dimensions, and we define the

ositive probability as the score for the input cut (or bag). Hyper-

arameters of algorithms

For both synthetic datasets and real-world datasets, we set

he hyper-parameter K to 30, λ to 50, and γ to 0.1 after hyper-

arameter tuning. For synthetic datasets, the number of sampled

ags for each MIP instance is 100, and the total number of col-

ected training samples is 10 4 . For real-world datasets, to improve

he sample efficiency, the exploring policy starts from a well-

uned heuristic combined with ε-greedy. The training samples are

https://github.com/logWin322/Learn2SelectCuts

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

Table 2

Evaluation results of cut selection policies in terms of the reduction ratio of solving time (higher is better), and the reduction ratio of visited nodes (higher is better).

Method Set cover Knapsack Planning General MIP

Time Nodes Time Nodes Time Nodes Time Nodes

Random 0 . 09 ± 0 . 45 0 . 27 ± 0 . 48 0 . 14 ± 0 . 27 0 . 62 ± 0 . 67 0 . 07 ± 0 . 14 0 . 40 ± 0 . 30 −0 . 10 ± 0 . 11 −0 . 03 ± 0 . 12

Violation 0 . 17 ± 0 . 19 0 . 35 ± 0 . 18 0 . 21 ± 0 . 33 0 . 50 ± 0 . 88 −0 . 01 ± 0 . 24 0 . 36 ± 0 . 35 0 . 11 ± 0 . 19 0 . 25 ± 0 . 20

Norm-Violation 0 . 16 ± 0 . 22 0 . 34 ± 0 . 22 0 . 25 ± 0 . 24 0.70 ± 0.38 0 . 17 ± 0 . 20 0.48 ± 0.30 0 . 13 ± 0 . 39 0 . 20 ± 0 . 35

Distance 0 . 12 ± 0 . 36 0 . 30 ± 0 . 40 0 . 10 ± 0 . 19 0 . 41 ± 0 . 44 0 . 01 ± 0 . 15 0 . 35 ± 0 . 33 0 . 10 ± 0 . 28 0 . 25 ± 0 . 20

Parallelism 0 . 06 ± 0 . 34 0 . 23 ± 0 . 37 0 . 16 ± 0 . 18 0 . 58 ± 0 . 34 −0 . 06 ± 0 . 17 0 . 34 ± 0 . 36 0 . 03 ± 0 . 20 0 . 26 ± 0 . 20

Cut Ranking 0.21 ± 0.16 0.49 ± 0.16 0.27 ± 0.20 0 . 69 ± 0 . 32 0.18 ± 0.17 0.48 ± 0.28 0.32 ± 0.25 0.38 ± 0.20

c

m

5

5

s

c

a

2

s

t

p

p

t

(

c

o

p

t

p

R

s

t

a

r

a

a

C

a

b

b

b

F

a

i

t

i

t

f

5

p

p

w

o

h

b

r

s

8

a

a

c

c

a

d

t

f

g

w

t

o

t

p

p

i

T

E

7

ollected from the daily production planning problems within a

onth.

.2. Experiments on synthetic MIP datasets

.2.1. Experiment I: the quality of selected cuts

To check the effectiveness of our proposed ranking-based cut

election policy, we conduct comparative experiments on four

lasses of MIP problems. For Set Cover, the number of elements

nd sets are both set to 200, and the resulting problem size is

00 × 200 ; for Knapsack, the number of items is 700, and the re-

ulting problem size is 701 × 700 ; for Planning, the number of fac-

ories and demands is 20 and 50, respectively, and the resulting

roblem size is 140 × 1420 ; for General MIP, owing to its complex

roblem structure, the problem size is set to be 30 × 30 . Although

he problem size varies from class to class, the mean solution time

without cuts) is close, thus the difficulty of MIP instances for each

lass is at the same level. For each class of instances, the number

f generated candidate cuts is roughly 20.

As shown in Table 2 , in terms of the problem solving time, our

roposed Cut Ranking policy has achieved higher average reduc-

ion ratio of solution time over other baseline policies on all the

roblems, which leads to less solution time. Moreover, the Cut

anking policy has also shown to be more stable on multiple in-

tances since the standard deviation is relatively smaller compared

o the mean. For the Knapsack and Planning problems, the aver-

ge performance of the heuristic Normalized Violation is compa-

able to us, while with a large variance, which indicates that such

 heuristic often suffers from performance fluctuations. The results

re similar for other human-designed heuristics, compared to the

ut Ranking policy, they have shown larger performance variance,

nd may slow down the solving process in many cases.

Considering the impact of cut selection on the size of the

ranch-and-cut search tree, for the Cut Ranking policy, the num-

er of nodes visited has decreased more significantly than other

aselines over the Set Cover and General MIP problem instances.

or the Knapsack and Planning problems, our proposed policy has

lso shown to be competitive, and also achieve smaller variance.

Overall, these results indicate that the Cut Ranking policy has

mproved the optimization algorithm more significantly compared

o the human-designed heuristics. Moreover, the Cut Ranking pol-
able 3

valuation results of cut selection policies on Knapsack problems with different scales. W

00 items.

Method 600 items 800 items

Time Nodes Time Nodes

Random 0 . 20 ± 0 . 29 0 . 69 ± 0 . 28 0 . 20 ± 0 . 24 0 . 64 ±
Violation 0 . 27 ± 0 . 31 0 . 75 ± 0 . 30 0 . 21 ± 0 . 25 0 . 67 ±
Norm-Violation 0 . 18 ± 0 . 31 0.75 ± 0.31 0 . 30 ± 0 . 26 0 . 74 ± 0

Distance 0 . 21 ± 0 . 28 0 . 62 ± 0 . 35 0 . 29 ± 0 . 27 0 . 67 ±
Parallelism 0 . 10 ± 0 . 24 0 . 58 ± 0 . 40 0 . 27 ± 0 . 26 0 . 66 ±
Cut Ranking 0.28 ± 0.15 0 . 74 ± 0 . 22 0.33 ± 0.24 0.80 ±

7
cy is capable of speeding up the solving time for all the generated

est cases, while the effects of other cut selection heuristics suffer

rom instability.

.2.2. Experiment II: study of generalization ability

To test if our proposed policy has the generalization ability over

roblems with different structures or scales, we conduct three ex-

eriments to try to answer the following questions:

• Can the Cut Ranking policy generalize to the same class of

problems with different sizes?
• Can the Cut Ranking policy generalize to the same class of

problems with different coefficient ranges?
• Can the Cut Ranking policy generalize to the problems with

different structures?

Problem size Table 3 presents the results on Knapsack problems

ith different problem sizes. The learning-based policy is trained

n the problem instances with 700 items, and tested against other

euristics on instances with 600, 800, 900 and 1000 items. As can

e seen from the table, the Cut Ranking policy has shown a higher

eduction ratio of solution time over other baselines on test in-

tances with 60 0, 80 0 and 10 0 0 items. For problem instances with

00 items, although the heuristic Violation and Parallelism have

chieved a slightly higher averaged reduction ratio, our policy has

 much lower variance, thus is more preferable for cut selection.

The Cut Ranking policy also results in a smaller branching tree

ompared to most baseline heuristics. From these two aspects, we

onclude that our proposed policy trained on problem instances of

 certain scale can be applied to the same class of problems of

ifferent scales.

Coefficient ranges The parameters of Knapsack problems include

he maximal number, the maximal value and the maximal weight

or one type of item, which restricts the range of each randomly

enerated coefficient. We generate four sets of Knapsack instances

ith parameters set to 10, 20, 50 and 100. We train our cut selec-

ion module on the instances with parameters set to 10, and test

n other three sets of instances.

The results are set out in Table 4 , from which we can observe

hat the Cut Ranking policy clearly outperforms other baselines on

roblem instances with coefficients range between 0 and 20. For

roblems with coefficients range between 0 and 50, the Cut Rank-

ng policy is still superior to the baselines, while the performance
e train our learning module on 100 randomly generated Knapsack instances with

900 items 10 0 0 items

Time Nodes Time Nodes

0 . 31 0 . 26 ± 0 . 41 0 . 65 ± 0 . 70 0 . 21 ± 0 . 20 0 . 55 ± 0 . 40

0 . 32 0 . 31 ± 0 . 27 0.77 ± 0.27 0 . 23 ± 0 . 24 0 . 50 ± 0 . 54

 . 33 0 . 24 ± 0 . 28 0 . 71 ± 0 . 27 0 . 17 ± 0 . 24 0 . 50 ± 0 . 53

0 . 39 0 . 22 ± 0 . 39 0 . 65 ± 0 . 60 0 . 22 ± 0 . 22 0 . 57 ± 0 . 45

0 . 38 0.33 ± 0.40 0 . 74 ± 0 . 68 0 . 19 ± 0 . 20 0 . 53 ± 0 . 41

0.31 0 . 31 ± 0 . 16 0 . 71 ± 0 . 18 0.25 ± 0.18 0.61 ± 0.38

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

Table 4

Evaluation results of cut selection policies on Knapsack problems with the same size (700 items) but different ranges of coefficients. We train our learning module on

Knapsack instances with coefficients range between (0,10].

Method 0 < coeff. ≤ 20 0 < coeff. ≤ 50 0 < coeff. ≤ 100

Time Nodes Time Nodes Time Nodes

Random 0 . 42 ± 0 . 54 0 . 63 ± 0 . 87 0 . 36 ± 0 . 35 0 . 70 ± 0 . 58 0 . 14 ± 0 . 27 0 . 62 ± 0 . 67

Violation 0 . 43 ± 0 . 51 0 . 64 ± 0 . 80 0 . 35 ± 0 . 40 0.71 ± 0.44 0 . 21 ± 0 . 33 0 . 50 ± 0 . 88

Norm-Violation 0 . 41 ± 0 . 52 0 . 62 ± 0 . 80 0 . 37 ± 0 . 27 0 . 67 ± 0 . 40 0.25 ± 0.24 0.70 ± 0.38

Distance 0 . 30 ± 0 . 32 0 . 56 ± 0 . 38 0 . 32 ± 0 . 26 0 . 68 ± 0 . 30 0 . 10 ± 0 . 19 0 . 41 ± 0 . 44

Parallelism 0 . 33 ± 0 . 34 0 . 58 ± 0 . 41 0 . 33 ± 0 . 28 0 . 65 ± 0 . 34 0 . 16 ± 0 . 18 0 . 58 ± 0 . 34

Cut Ranking 0.52 ± 0.30 0.86 ± 0.23 0.39 ± 0.27 0 . 68 ± 0 . 39 0 . 23 ± 0 . 19 0 . 65 ± 0 . 30

Table 5

Evaluation results of cut selection policies on different classes of problems. We trained our learning module on Knapsack instances, and test on other classes of problem

instances which at the same difficulty level.

Method Set cover Planning General MIP

Time Nodes Time Nodes Time Nodes

Random 0 . 09 ± 0 . 45 0 . 27 ± 0 . 48 0 . 07 ± 0 . 14 0 . 40 ± 0 . 30 −0 . 10 ± 0 . 11 −0 . 03 ± 0 . 12

Violation 0 . 17 ± 0 . 19 0 . 35 ± 0 . 18 −0 . 01 ± 0 . 24 0 . 36 ± 0 . 35 0 . 11 ± 0 . 19 0 . 25 ± 0 . 20

Norm-Violation 0 . 16 ± 0 . 22 0 . 34 ± 0 . 22 0.17 ± 0.20 0.48 ± 0.30 0 . 13 ± 0 . 39 0 . 20 ± 0 . 35

Distance 0 . 12 ± 0 . 36 0 . 30 ± 0 . 40 0 . 01 ± 0 . 15 0 . 35 ± 0 . 33 0 . 10 ± 0 . 28 0 . 25 ± 0 . 20

Parallelism 0 . 06 ± 0 . 34 0 . 23 ± 0 . 37 −0 . 06 ± 0 . 17 0 . 34 ± 0 . 36 0 . 03 ± 0 . 20 0.26 ± 0.20

Cut Ranking 0.22 ± 0.18 0.52 ± 0.17 0 . 16 ± 0 . 11 0 . 33 ± 0 . 26 0.15 ± 0.23 0 . 23 ± 0 . 18

g

m

d

R

N

c

H

g

C

t

a

p

o

g

n

s

i

C

i

t

d

s

h

t

K

p

t

5

p

s

o

n

T

i

a

i

d

t

s

fi

d

t

M

t

i

o

d

t

s

s

c

1

s

h

t

t

l

r

p

t

t

d

t

t

i

h

t

w

f

ap between them has decreased much. Such a phenomenon is

ore striking for problems with larger ranges of coefficients, as

emonstrated in the rightmost two columns of Table 4 , the Cut

anking policy does not have clear advantages over the heuristic

ormalized Violation .

Taken together, the results reveal that our Cut Ranking policy

an generalize to the problems with different coefficient ranges.

owever, problems with a large range of coefficients will limit the

eneralization ability of the learned policy.

Problem structure To explore the generalization ability of the

ut Ranking policy on problems with different structures, we test

he policy trained on Knapsack instances on Set Cover, Planning

nd General MIP problems. The generated problem size in this ex-

eriment is kept the same as experiment I.

From the results shown in Table 5 , the Cut Ranking policy

utperforms other baselines on Set Cover problems, which shows

reater average improvement with a lower variance. For Plan-

ing problems, the heuristic Normalized Violation has achieved

lightly better average performance compared to the learned pol-

cy, however, the variance is much larger. For General MIPs, the

ut Ranking policy also outperforms other baselines, nevertheless,

t fails to reduce the solving time of some test instances. In view of

he more complex problem structure for General MIPs, it is more

ifficult for the learned policy to generalize to these problem in-

tances.

In summary, these results show that the Cut Ranking policy

as certain generalization ability on problems with different struc-

ures. The results also indicate that the General MIPs and the

napsack problems may have a relatively greater distinction in

roblem structures, which may lead to increased divergence be-

ween the distribution of training and test dataset.

.3. Experiments on large-scale real-world tasks

To further evaluate the quality of the proposed Cut Ranking

olicy, we embed the cut selection module in an industrial large-

cale MIP solver developed by Huawei Company, and conduct both

ffline and online experiments on the real-world production plan-

ing problems with more than 10 7 variables and constraints daily.

o our knowledge, this is the first study to apply machine learning
8
nto cut selection for large-scale MIPs with more than 10 7 variables

nd constraints.

MIP statistics The daily production-planning problems have sim-

lar problem structures, while problem properties change day by

ay. For a better description of problem characteristics, we record

he number of variables and constraints, the density of the con-

traint matrix, the mean and standard deviation of objective coef-

cients, and the number of integer variables.

Table 6 shows the mean MIP statistics of production planning

atasets. The upper six sub-figures of Figs. 2 and 3 demonstrate

he visualization of problem statistics during January 2021 and

arch 2021 for offline and online datasets, respectively. Moreover,

he number of generated candidate cuts for each problem instance

s between 1200 and 1400.

Comparison experiments Our learning module is trained on the

ffline collected samples, and applied to both offline and online

atasets. We compare our Cut Ranking policy against the produc-

ion planning solver with a manually heuristic for cut selection. As

hown in Figs. 2 and 3 , our Cut Ranking policy has led to less

olution time on both offline and online datasets without the ac-

uracy loss of solution, and the average speedup ratio has reached

4.98% and 12.42%, respectively. Interestingly, for the problem in-

tance of day 7 in offline datasets, the solver with the manually

euristic is unable to return a solution within a limited time; for

he problem instance of day 5 in online datasets, the solver with

he manually heuristic costs much more time to obtain the so-

ution compared to the solver with the learning module. These

esults have further demonstrated the importance of deriving a

roper cut selection policy. Our proposed ranking-based cut selec-

ion policy has shown to be more robust and efficient compared to

he baseline, and is also generalizable to the daily problems with

ifferent properties.

Strategy captured by Cut Ranking Cut Ranking will learn to find

he informative cut features or the informative feature combina-

ions for the given class of MIP problems. We analyze Cut Rank-

ng on the real-world production planning problems since they

ave particular problem structures. As we have tested, the heuris-

ic based on Parallelism performs well on the problem instances,

hich indicates that Parallelism is one of the informative cut

eatures for the production planning problems. We find that Cut

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

Fig. 2. The daily MIP statistics and the evaluation results for offline datasets.

Fig. 3. The daily MIP statistics and the evaluation results for online datasets.

9

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

Table 6

The mean MIP statistics of the large-scale production planning tasks.

Dataset # constraints # variables density mean of obj. coeff. stdev. of obj. coeff. integer variable ratio

Offline 12,192,747 21,334,700 3 . 2 × 10 −7 5041 68,642 0.030

Online 11,988,209 19,256,236 3 . 5 × 10 −7 12,763 152,782 0.037

Fig. 4. Box plot of informative cut features for production planning problems.

R

B

o

w

t

6

l

t

g

t

s

t

t

r

t

o

F

m

d

i

t

d

t

m

p

D

c

i

A

M

F

H

R

[

anking has learned to select cuts with larger Parallelism as well.

esides, Cut Ranking also prefers cuts with larger mean value of

bjective coefficients of cut variables. For a better demonstration,

e visualize the informative features found by Cut Ranking using

he box plot, which can be seen in Fig. 4 .

. Conclusion

In this paper, we presented Cut Ranking method for cut se-

ection in the context of branch-and-cut algorithm for MIPs. To

ackle the infeasibility of acquiring the supervised label for a sin-

le cut the task, we proposed to model the learning process in

he settings of multiple instance learning. Moreover, we designed

everal problem-specific features for cuts, and provided a scheme

o construct bag features and labels for training. The experimen-

al results on synthetic MIPs have demonstrated that our learned

anking-based cut selection policy is more competitive compared

o other manually heuristics, and also with generalization ability

n problems with different scales, coefficient ranges or structures.

or the real-world production planning tasks, our Cut Ranking

ethod has also significantly improved the efficiency Huawei’s in-

ustrial MIP solver without the accuracy loss of solution, achiev-

ng a speedup ratio of 14.98% and 12.42% in offline and online A/B

estings, respectively. The empirical findings of this work provide a

eeper insight into the generalization ability of machine learning

echniques for cut selection, and reveal that the machine learning

odule can be incorporated in the solver to improve the solution

rocess even for large-scale MIPs.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgments

Weinan Zhang is supported by “New Generation of AI 2030”

ajor Project (2018AAA010 090 0) and National Natural Science
10
oundation of China (62076161). The work is also sponsored by

uawei Innovation Research Program.

eferences

[1] R.E. Bixby , A brief history of linear and mixed-integer programming computa-

tion, Doc. Math. (2012) (2012) 107–121 .
[2] A. Richards , J. How , Mixed-integer programming for control, in: Proceedings of

the 2005, American Control Conference, 2005., IEEE, 2005, pp. 2676–2683 .

[3] T. Achterberg , R. Wunderling , Mixed integer programming: analyzing 12
years of progress, in: Facets of Combinatorial Optimization, Springer, 2013,

pp. 44 9–4 81 .
[4] R.E. Bixby , M. Fenelon , Z. Gu , E. Rothberg , R. Wunderling , Mixed-integer pro-

gramming: a progress report, in: The Sharpest Cut: The Impact of Manfred
Padberg and His Work, SIAM, 2004, pp. 309–325 .

[5] T. Wu , K. Akartunalı, J. Song , L. Shi , Mixed integer programming in produc-

tion planning with backlogging and setup carryover: modeling and algorithms,
Discrete Event Dyn. Syst. 23 (2) (2013) 211–239 .

[6] T. Schouwenaars , B. De Moor , E. Feron , J. How , Mixed integer programming
for multi-vehicle path planning, in: 2001 European Control Conference (ECC),

IEEE, 2001, pp. 2603–2608 .
[7] A.B. Keha , K. Khowala , J.W. Fowler , Mixed integer programming formulations

for single machine scheduling problems, Comput. Ind. Eng. 56 (1) (2009)

357–367 .
[8] A.R. Amaral , A mixed-integer programming formulation for the double row

layout of machines in manufacturing systems, Int. J. Prod. Res. 57 (1) (2019)
34–47 .

[9] L.A. Wolsey , Mixed integer programming, Wiley Encycl. Comput. Sci. Eng.
(2007) 1–10 .

[10] H. Marchand , A. Martin , R. Weismantel , L. Wolsey , Cutting planes in inte-

ger and mixed integer programming, Discrete Appl. Math. 123 (1–3) (2002)
397–446 .

[11] E.L. Lawler , D.E. Wood , Branch-and-bound methods: a survey, Oper. Res. 14 (4)
(1966) 699–719 .

12] M. Ris , J. Barrera , D.C. Martins Jr , U-curve: a branch-and-bound optimization
algorithm for u-shaped cost functions on boolean lattices applied to the fea-

ture selection problem, Pattern Recognit. 43 (3) (2010) 557–568 .

[13] J.E. Mitchell , Branch-and-cut algorithms for combinatorial optimization prob-
lems, Handb. Appl. Optim. 1 (2002) 65–77 .

[14] T. Achterberg , T. Berthold , G. Hendel , Rounding and propagation heuristics
for mixed integer programming, in: Operations Research Proceedings 2011,

Springer, 2012, pp. 71–76 .
[15] M.-F. Balcan , T. Dick , T. Sandholm , E. Vitercik , Learning to branch, in: Interna-

tional Conference on Machine Learning, PMLR, 2018, pp. 344–353 .
[16] E.B. Khalil , P.L. Bodic , L. Song , G. Nemhauser , B. Dilkina , Learning to branch in

mixed integer programming, in: Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, 2016, pp. 724–731 .
[17] M. Gasse , D. Chételat , N. Ferroni , L. Charlin , A. Lodi , Exact combinatorial op-

timization with graph convolutional neural networks, in: Proceedings of the
33rd International Conference on Neural Information Processing Systems-Vol-

ume 2, 2019, pp. 15580–15592 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0017

Z. Huang, K. Wang, F. Liu et al. Pattern Recognition 123 (2022) 108353

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Z
U

d

K

t
c

F

f

f

t
i

H
v

N

t
m

W
v

d
U

M

a
l

t
e

J

c
t

a
m

Y

U

m
a

o

J
l

a

t
S

t

[18] Y. Tang , S. Agrawal , Y. Faenza , Reinforcement learning for integer program-
ming: learning to cut, in: International Conference on Machine Learning, PMLR,

2020, pp. 9367–9376 .
[19] M.-A. Carbonneau , V. Cheplygina , E. Granger , G. Gagnon , Multiple instance

learning: a survey of problem characteristics and applications, Pattern Recog-
nit. 77 (2018) 329–353 .

20] J. Foulds , E. Frank , A review of multi-instance learning assumptions, Knowl.
Eng. Rev. 25 (1) (2010) 1–25 .

21] V. Cheplygina , D.M. Tax , M. Loog , Multiple instance learning with bag dissimi-

larities, Pattern Recognit. 48 (1) (2015) 264–275 .
22] K. Arulkumaran , M.P. Deisenroth , M. Brundage , A .A . Bharath , Deep reinforce-

ment learning: a brief survey, IEEE Signal Process. Mag. 34 (6) (2017) 26–
38 .

23] J. Clausen , Branch and Bound Algorithms-Principles and Examples, Department
of Computer Science, University of Copenhagen, 1999, pp. 1–30 .

24] D.R. Morrison , S.H. Jacobson , J.J. Sauppe , E.C. Sewell , Branch-and-bound algo-

rithms: a survey of recent advances in searching, branching, and pruning, Dis-
crete Optim. 19 (2016) 79–102 .

25] G. Cornuéjols , Valid inequalities for mixed integer linear programs, Math. Pro-
gram. 112 (1) (2008) 3–44 .

26] Y. Bengio , A. Lodi , A. Prouvost , Machine learning for combinatorial opti-
mization: a methodological tour d’horizon, Eur. J. Oper. Res. 290 (2) (2021)

405–421 .

27] O. Vinyals , M. Fortunato , N. Jaitly , Pointer networks, in: Proceedings of the
28th International Conference on Neural Information Processing Systems-Vol-

ume 2, 2015, pp. 2692–2700 .
28] I. Bello , H. Pham , Q.V. Le , M. Norouzi , S. Bengio , Neural combinatorial opti-

mization with reinforcement learning, in: The Workshop Track of the 5th In-
ternational Conference on Learning Representations, 2017, pp. 1–5 .

29] W. Kool , H. Van Hoof , M. Welling , Attention, learn to solve routing problems!,

in: Proceedings of the 7th International Conference on Learning Representa-
tions, 2019, pp. 1–25 .

30] M. Nazari , A. Oroojlooy , M. Takáč , L.V. Snyder , Reinforcement learning for solv-
ing the vehicle routing problem, in: Proceedings of the 32nd International

Conference on Neural Information Processing Systems, 2018, pp. 9861–9871 .
31] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B.

O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al., Solving mixed in-

teger programs using neural networks, arXiv preprint arXiv: 2012.13349 (2020).
32] H. He , H. Daumé III , J. Eisner , Learning to search in branch-and-bound algo-

rithms, in: Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems-Volume 2, 2014, pp. 3293–3301 .

33] E.B. Khalil , B. Dilkina , G.L. Nemhauser , S. Ahmed , Y. Shao , Learning to run
heuristics in tree search, in: Proceedings of the 26th International Joint Con-

ference on Artificial Intelligence, 2017, pp. 659–666 .

34] R.S. Sutton , A.G. Barto , Reinforcement Learning: An Introduction, MIT Press,
2018 .

35] F. Wesselmann , U.H. Suhl , Implementing Cutting Plane Management and Se-
lection Techniques, Technical Report, University of Paderborn, 2012 .

36] Z. Wang , V. Radosavljevic , B. Han , Z. Obradovic , S. Vucetic , Aerosol optical
depth prediction from satellite observations by multiple instance regression,

in: Proceedings of the 2008 SIAM International Conference on Data Mining,
SIAM, 2008, pp. 165–176 .

37] N. Pappas , A. Popescu-Belis , Explaining the stars: weighted multiple-instance

learning for aspect-based sentiment analysis, in: Proceedings of the 2014 Con-
ference on Empirical Methods In Natural Language Processing (EMNLP), 2014,

pp. 455–466 .
11
38] M.J. Saltzman , Coin-or: an open-source library for optimization, in: Pro-
gramming Languages and Systems in Computational Economics and Finance,

Springer, 2002, pp. 3–32 .

eren Huang is a master student in computer science at the Shanghai Jiao Tong
niversity, Shanghai, China. His current research interest includes machine learning,

eep learning and reinforcement learning

erong Wang is a junior undergraduate student in School of Electronic Informa-

ion and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China. His
urrent research interest includes machine learning and reinforcement learning

urui Liu is a senior researcher at Huawei Noah’s Ark Lab. He obtained the Ph.D.
rom The Chinese University of Hong Kong in 2019, and the Bachelor in Engineering

rom Zhejiang University. He was a visiting student at Max Planck Institute for In-

elligent Systems, and Microsoft Research Asia. His research interests include causal
nference, deep learning and applications in large scale problems

ui-Ling Zhen received the Ph.D. degree on applied mathematics from Beijing Uni-
ersity of Posts and Telecommunications. She is a Senior Engineer with Huawei

oah’s Ark Lab, Hong Kong. Her current research interests include large-scale op-

imization, constraint programming, as well as their applications in supply chain
anagement and chip design

einan Zhang is now a tenure-track associate professor at Shanghai Jiao Tong Uni-
ersity. His research interests include reinforcement learning, deep learning and

ata science with various real-world applications. Weinan earned his Ph.D. from

niversity College London in 2016 and B.E. Shanghai Jiao Tong University in 2011

ingxuan Yuan received the Ph.D. degree from Hong Kong University of Science

nd Technology. He is a Principal Researcher with Huawei Noah’s Ark Lab. He has
ed several projects in telecommunication data mining and supply chain optimiza-

ion. His research interests include spatiotemporal data analytics and enterprise op-
ration optimization models

ianye Hao is now an associate professor at Tianjin University and Director of De-

ision Making and Reasoning Lab of Noah’s Ark Lab, Huawei. He was a postdoc-
oral research fellow in the Computer Science and Artificial Intelligence Laboratory

t MIT (2013–2015). His research interests include deep reinforcement learning, and
ultiagent systems.

ong Yu is a professor in the Department of Computer Science, Shanghai Jiao Tong

niversity. His research interests include information systems, web search, data

ining, and machine learning. He has published more than 200 papers and served
s a PC member of several conferences including WWW, RecSys, and a dozen of

ther related conferences (e.g., NIPS, ICML, SIGIR, ISWC, etc.) in these fields

un Wang is a professor of information systems and data science at University Col-
ege London. He has published more than 100 research papers in leading journals

nd conference proceedings including the ACM Transactions on Information Systems ,

he IEEE Transactions on Knowledge and Data Engineering , WWW, CIKM, SIGIR, KDD,
IGMM, AAAI, etc. He received the Doctoral Consortium award in ACM SIGIR’06, and

he Best Paper Prize in ECIR’09, ECIR’12, ADKDD’14, and SIGIR’17

http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0030
http://arxiv.org/abs/2012.13349
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00533-1/sbref0038

	Learning to select cuts for efficient mixed-integer programming
	1 Introduction
	2 Related works
	3 Background
	3.1 Mixed-integer programming background
	3.2 Multiple instance learning

	4 Methodology: cut ranking
	4.1 A cut ranking formulation in MIL settings
	4.2 Constructing training data
	4.2.1 Strategies of collecting training samples
	4.2.2 Constructing bag features from cut features
	4.2.3 Assigning ranking labels to training samples

	4.3 Learning a scoring function
	4.3.1 Scoring function architecture
	4.3.2 Training the scoring function

	5 Experiments
	5.1 Experimental setup
	5.1.1 Benchmarks
	5.1.2 Metrics
	5.1.3 Baselines
	5.1.4 Implementation of algorithms
	5.1.5 Hyper-parameters

	5.2 Experiments on synthetic MIP datasets
	5.2.1 Experiment I: the quality of selected cuts
	5.2.2 Experiment II: study of generalization ability

	5.3 Experiments on large-scale real-world tasks

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

