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Learning to rank from logged user feedback, such as clicks or purchases, is a central component of many

real-world information systems. Different from human-annotated relevance labels, the user feedback is always

noisy and biased. Many existing learning to rank methods infer the underlying relevance of query-item pairs

based on different assumptions of examination, and still optimize a relevance based objective. Such methods

rely heavily on the correct estimation of examination, which is often difficult to achieve in practice. In this work,

we propose a general framework U-rank+ for learning to rank with logged user feedback from the perspective

of graph matching. We systematically analyze the biases in user feedback, including examination bias, and

selection bias. Then we take both biases into consideration for unbiased utility estimation that directly based

on user feedback, instead of relevance. In order to maximize the estimated utility in an efficient manner, we

design two different solvers based on Sinkhorn and Lambdaloss for U-rank+. The former is based on a standard

graph matching algorithm, and the latter is inspired by the traditional method of learning to rank. Both of the

algorithms have good theoretical properties to optimize the unbiased utility objective while the latter is proved

to be empirically more effective and efficient in practice. Our framework U-rank+ can deal with a general

utility function and can be used in a widespread of applications including web search, recommendation and

online advertising. Semi-synthetic experiments on three benchmark learning to rank datasets demonstrate the

effectiveness of U-rank+. Further, our proposed framework has been deployed on two different scenarios of a

mainstream App store, where the online A/B testing shows that U-rank+ achieves an average improvement

of 19.2% on click-through rate and 20.8% improvement on conversion rate in recommendation scenario, and

5.12% on platform revenue in online advertising scenario over the production baselines.
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1 INTRODUCTION
Ranking in Information Retrieval (IR) systems aims at providing a ranked list of items from a large

item pool to maximize a certain form of utility [47], e.g., the amount of clicks or purchases on an

e-commerce website [51] or the user engagement on a video streaming platform [15]. To maximize

this utility, a rankingmetric is often needed as an evaluation measure, which also serves as a training

objective of the ranking model. Many existing ranking metrics such as NDCG, describing this utility,

are based on the concept of relevance. However, human-labeled relevance judgments are costly and

time-consuming to obtain, especially in personalized IR systems such as a recommender system.

Therefore, in practice, users’ implicit feedback
1
(e.g., users’ click-through logs) are usually utilized,

as they are indicative of relevance judgments with low cost to collect, although biased [24, 25].

Existing unbiased learning to rankmethods aim at optimizing a relevance-based ranking objective

based on implicit feedback. They assume that the underlying relevance of all the items, which

is not directly observed, can be inferred from the observed clicks. For example, click models [7,

11, 13, 16, 18, 41] make assumptions about user browsing behavior and estimate relevance via

maximizing the likelihood of observed clicks. Such methods require multiple occurrences of the

same query-document pair and only work well on head queries. On the basis of click models, a

recent direction of counterfactual learning methods [3, 4, 17, 22, 27, 48] weight the clicks with

the Inverse Propensity Weights. Such methods are theoretically proved to be consistent with the

same model trained with true relevance judgements given the correct examination bias estimation.

However, the correct estimation of examination is a difficult task itself, which often relies on the

result of randomization [27, 48] or multiple occurrences of the same query-document pair [3, 17].

Besides, jointly optimizing bias estimation with relevance estimation [4, 22] is often biased unless

the relevance estimation is highly precise.

Another view is that the clicks themselves are indicative of users’ satisfaction and should be

maximized [40]. This is more straightforward since clicks are directly observable. Also, the objective

based on clicks is more aligned with online metrics (e.g., click-through rate, conversion rate, etc.)

than that based on relevance judgements. This objective is often adopted in Online Learning to

Rank (OLTR) [37, 44, 46, 52] where we can observe clicks upon changing the ranking policy. For

instance, Yue and Joachims [52] used Dual Bandit Gradient Descent (DBGD) to learn ranking models

based on user feedback from result interleaving. Schuth et al. [44] extended DBGD with Multileave

Gradient Descent. However, such methods are often restrictive in practice since interleaving of

ranking results hurts user experience.

In this work, we aim at deriving a ranking algorithm that optimizes click-based objectives, which

can work in offline settings with click datasets from historical logs. In such a setting, we need

to consider both intrinsic and extrinsic biases of the click datasets. The intrinsic biases are users’

internal behavior biases. For example, users tend to view the items ranked on top positions and

users tend to view the visually attractive items, leading to examination bias. The extrinsic bias
refers to selection bias which is caused by the historical ranking function previously deployed in

the system. The historical ranking function tends to place certain items at top positions, leading to

Missing-Not-At-Random (MNAR) of the collected training data. All these biases together bring

challenges in deriving an unbiased utility objective based on implicit feedback
2
.

1
Here implicit feedback include, but are not limited to, clicking, purchasing, viewing, add-to-cart, etc. For simplicity, in the

following parts of this paper, the term “click” is used as a representative of all types of user behaviors.

2
For a comprehensive analysis of bias issues and debias techniques in recommender systems and IR, we refer to [12].
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Fig. 1. The maximization of the utility can be formulated as solving a maximum-weight matching problem on
the item-position bipartite graph, where the weight of an edge between an item and a position denotes the
utility of placing the item at this position, e.g., the CTR or the expected revenue of the item at this position.

Based on all of these considerations, we present a general graph matching framework that

optimizes a target ranking metric directly based on implicit feedback. We formulate the ranking

problem as a maximum-weight matching problem on an item-position bipartite graph as denoted

in Figure 1, where the weight on an edge between an item and a position denotes the utility of

placing the item at this position. We define the utility as the product of the item’s click-through

rate (CTR) at this position and the benefit if the item is clicked, where the benefit takes different

definitions in various scenarios, e.g., the bid price of each ad in sponsor search [55, 56], the watch

time of each video in video recommendation [15].

Then the maximization of utility can be achieved by solving the maximum-weight matching

on the item-position bipartite graph. We divide our method into two steps: firstly, we obtain the

weight of each edge on the bipartite graph with a position-aware deep CTR model, which manages

to capture the click-position dependency considering both item attributes and user context and

thus models position bias and attention bias as a whole. Besides, we learn a propensity model

in advance to correct selection bias in the logging data. Secondly, to solve the maximum-weight

matching on the graph with learned weights, i.e., maximizing the expected utility, we incorporate

two different types of solvers into our framework, namely Sinkhorn and Lambdaloss. Sinkhorn
algorithm [2] learns a Doubly-Stochastic Matrices (DSM)-based ranking function and optimizes

the expected utility in an end-to-end manner. Lambdaloss [50] solves the matching problem by

learning a scoring function, which can reduce the complexity in inference stage from 𝑂 (𝑁 3) to
𝑂 (𝑁 ), where 𝑁 denotes the maximum size of the ranked list. Both of the algorithms have good

theoretical properties and the latter is empirically proved to be more effective in practice.

In this graph matching framework, we can deal with general utility maximization ranking

problems for different application scenarios, including web search, recommendation and online

advertising.We conduct semi-synthetic experiments based on three benchmark datasets for learning

to rank, where we demonstrate the superiority of our proposed framework over state-of-the-art

unbiased learning to rank baselines in utility based metrics like CTR. Furthermore, we deploy our

method on two different application scenarios (i.e., recommendation and online advertising) of a

mainstream App store, where the superiority of our proposed method is validated in industrial

applications on online metrics like CTR, conversion rate, and platform revenue.

The main contributions of this paper are as follows.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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• We propose a novel framework for learning to rank with implicit feedback, namely, U-rank+,
which formulates the ranking problem as finding the maximum-weight matching on an item-

position bipartite graph. Instead of optimizing a relevance-based ranking metric, we optimize

for a utility metric that directly based on clicks themselves. This framework deals with a general

utility function and can be used in a widespread of application scenarios including web search,

recommendation and online advertising.

• To obtain an unbiased utility estimation, we estimate the utility of placing each item at each

position with a position-aware deep CTR model, in which we take examination bias and selection

bias into consideration. To the best of our knowledge, this is the first work that addresses the

above-mentioned biases together in a unified framework for utility-oriented learning to rank.

To optimize the estimated utility metric directly, we incorporate two different solvers into the

framework, i.e., Sinkhorn and Lambdaloss, providing new paths for learning to rank with implicit

feedback from different views.

• Semi-synthetic experiments on three real-world benchmark datasets have demonstrated the

effectiveness of U-rank+. Further, U-rank+ has been deployed on two different scenarios of a

mainstream App store, and in our online A/B testing U-rank+ achieves an average improvement

of 19.2% on CTR and 20.8% improvement on conversion rate in recommendation scenario, and

5.12% on platform revenue in online advertising scenario over the production baselines.

2 RELATEDWORK
2.1 Click Models
Implicit feedback like click data is biased according to the observations in [25, 26]. Generative

click models are introduced to study user browsing behavior and extract unbiased relevance

estimation from click data. For example, Position Based model (PBM) [41] assumes that a click only

depends on the position and the relevance of the document. Cascade model [13] assumes that users

browse a search web page sequentially from top to bottom, until a relevant document is found.

Following these two classical click models, more sophisticated approaches, e.g., UBM [16], DBN [11],

CCM [18] have been proposed. The most recent model, Neural Click Model [7] utilizes recurrent

neural networks and vector representations of users to predict user behavior. However, click models

usually require same query-document pair to appear multiple times for reliable estimation [33],

thus invalid for tail queries and for personalized information systems.

2.2 Counterfactual Learning to Rank
Recently, a new line of research, referred to as counterfactual learning to rank, utilizes inverse

propensity weighting (IPW) to address position bias in a learning to rank framework. Wang et al.

[48] and Joachims et al. [27] proposed IPW-based methods of debiasing click data in a learning to

rank framework. In both works, the propensity estimation relies on randomizing search results

displayed to users, which obviously degrades users’ search experience. Considering this, Agarwal

et al. [3] proposed PBM to estimate propensity without Intrusive Interventions. CPBM [17], on

the basis of PBM, learns a query-dependent propensity estimation. However, multiple rankers are

required to learn, which makes them inconvenient to deploy in real-world applications. Besides,

another category of unbiased learning to rank works jointly learn the propensity model with a

relevance model, which results in a biased estimation of propensity unless the relevance estimation

is very accurate. Wang et al. [49] proposed a regression-based EM algorithm to estimate the

propensity by maximizing the likelihood of click data. [4] proposed a dual learning algorithm that

jointly learns the propensity estimation and an unbiased ranker. Hu et al. [22] also proposed to

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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jointly learn the propensity estimation and an unbiased ranker where the propensity at the click

and non-click positions are both estimated.

In this work, we derive a ranking objective that directly based on clicks instead of relevance.

A click-based objective does not require an accurate estimation of examination bias/propensity,

which is hard to achieve in practice, and is also more aligned with online metrics like CTR, CVR,

etc. Besides, most of the existing works assume examination bias only depend on positions (except

CPBM), we can deal with a more complicated examination bias that depends on user contexts and

item contributes with position-ware deep CTR model.

Oosterhuis and de Rijke [38] focused on the item selection bias in top-𝑘 items of a ranking,

which is defined as the missing feedback caused by the selection of only 𝑘 items to display by the

historical ranking policy. In their work, the examination bias is known beforehand. We also use

the term selection bias, which is commonly used to refer to the bias caused by collecting data in a

non-uniform ranking policy [21], but there is clear difference with the item selection bias in [38]

which only appears in top-𝑘 rankings. In this work, selection bias refers to the over-estimation of

examination bias caused by the historical ranking policy when we estimate it from the click logs.

2.3 Online Learning to Rank
The central idea of Online Learning to Rank (OLTR) is to optimize the ranking model interactively

from user clicks. Dueling Bandit Gradient Descent (DBGD) based algorithms are commonly used

in OLTR. The original DBGD algorithm proposed by Yue and Joachims [52] randomly perturbs

parameters and updates models towards perturbed parameters that produces ranked lists with more

clicks. Extensive researches extend DBGD with different exploration strategies [37, 44, 46] and

variance reduction techniques [45]. Schuth et al. [44] propose Mutileave Gradient Descent (MGD)

based on DBGD by sampling multiple perturbed parameters each time to accelerate convergence.

Null Space Gradient Descent (NSGD) proposed by Wang et al. [46] reduces the exploration space

to the null space of recent poorly-performed gradients. Oosterhuis and de Rijke [37] propose

Pairwise Differentiable Gradient Descent (PDGD) which estimates unbiased gradients based on

pairwise preference from user clicks instead of interleaving or multileaving experiments. Wang

et al. [45] reduce the variance of PDGD by projecting the estimated gradients into a document space

spanned by the feature vectors of examined documents under current query. OLTR methods can

not be directly used in offline setting since they require the ranked list to be dynamically sampled

according to the ranking model while the ranked list in offline data is fixed. Instead, our proposed

method can work under pure offline settings and does not require a direct interaction with users,

which might damage their user experience.

3 PROBLEM FORMULATION AND PRELIMINARIES
3.1 Problem Formulation
When a user issues a new query 𝑞, the system delivers a ranked list (𝑓𝑖 , 𝑏𝑖 )

𝑛𝑞

𝑖=1
of 𝑛𝑞 items to the

user according to a ranking model over all the candidate items. The feature vector 𝑓𝑖 of each

item 𝑖 consists of item features, context features, and user/query features
3
. The scalar 𝑏𝑖 denotes

the benefit brought to the system if item 𝑖 is clicked, e.g., the watch time of each video in video

recommendation, or the bid price of each ad in sponsored search. Let F , B and K be the random

variables for item feature, benefit and position, respectively. Let C and O denote the random variable

for click and examination, respectively. We use 𝑘𝑖 to denote the position that item 𝑖 is assigned to by

the current ranking model. To represent the observed clicks of item 𝑖 at different positions, for each

3
We treat context features and user/query features as “special” item features for simplicity, such that the same items for

different queries/users are considered to be different.
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Fig. 2. The CTR analysis w.r.t. query/item features. The data is collected through 120-days’ click logs on
random recommendation traffic in a mainstream App store.

query 𝑞, we introduce a square matrix C ∈ {0, 1}𝑛𝑞×𝑛𝑞 , where C𝑖,𝑘 = 1/0 denotes click/non-click of

item 𝑖 at position 𝑘 .

The users’ click-through log is a set 𝑆 = {(𝑓𝑖 , 𝑘ℎ𝑖 , 𝑏𝑖 , 𝑐𝑖 )
𝑛𝑞

𝑖=1
}𝑞∈𝑄 . Besides the item feature 𝑓𝑖 and

benefit 𝑏𝑖 as mentioned above, 𝑘ℎ𝑖 is the position of item 𝑖 assigned by the historical ranking model,

and 𝑐𝑖 is the users’ click on item 𝑖 when displaying it at position 𝑘ℎ𝑖 in the logging data, i.e., 𝑐𝑖 = 1

for click and 𝑐𝑖 = 0 for non-click. We do not abuse different notations to represent position and

click, as different notations are used to distinguish them under current ranking policy from those

under historical ranking policy. More specifically, 𝑘𝑖 and C represent the position and click under

current ranking policy, while 𝑘ℎ𝑖 and 𝑐𝑖 notate the corresponding information under the historical

ranking policy.

The ultimate goal of this ranking system is to find the best permutation of candidate items for

each query 𝑞 to maximize the utility. The utility is defined as the expectation of weighted sum of

clicks on the items in the ranking list, as shown in Eq. (1).

𝑈𝑞 = E
[ 𝑛𝑞∑
𝑖=1

C𝑖,𝑘𝑖 · 𝑏𝑖
]
=

𝑛𝑞∑
𝑖=1

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) · 𝑏𝑖 , (1)

where 𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) is the probability of the item 𝑖 being clicked if displayed at

position 𝑘𝑖 . Maximizing utility 𝑈𝑞 is equivalent to solving a maximum-weight matching problem

on the item-position bipartite graph, where 𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) · 𝑏𝑖 is the weight of the edge
between the item 𝑖 and the position 𝑘𝑖 in the graph, as shown in Figure 1. In order to estimate

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) accurately, we need to consider several biases in the click-through log.

3.2 Examination Bias
To visualize the examination bias, we show CTR at different positions of different device types and

of different Apps respectively in Figure 2. The data is collected from the random recommendation

traffic of a mainstream App store. From Figure 2, we can draw two observations: 1) the CTR

decreases as the presented position goes from top to bottom; 2) the magnitude of the decreasing

differs among different items and different device types.

As supported by eye-tracking studies [30, 31], the decrease of CTRw.r.t position is the effect of the

decrease of user’s attention. Most existing works only consider position bias, which is considered to

be decorrelated with specific ranked items, i.e., making the same effect on all items. This assumption

is generally correct in the traditional ten blue links scenario. Under such an assumption, ranking

by relevance in descending order leads to the highest expected utility. However, in real world

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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applications, as indicated in the second observation, the users’ examination does not only depend

on positions but also on item attributes and user context. All of them will affect the accurate

estimation of users’ examination biases.

In web search, an example of item-specific examination bias is vertical bias, commonly observed

when the web page contains multiple vertical search results (such as images, videos, maps, etc.).

Metrikov et al. [35] found that an image in search results can raise CTR and flatten the CTR curve

at the same time. This is consistent with our observation in the App recommendation scenario.

A visually attractive content, such as an App with a fancy thumbnail, can attract users’ attention

even when it is placed at a lower position, which results in a flatter CTR curve. In other words,

such visually attractive items are less sensitive to the position change.

What is more, the item-specific examination biases lead to a different solution with the traditional

relevance-based ranking. Consider a non-personalized case for simplicity that we recommend App

1, App 2, and App 3 in Figure 2 to one user. If the Apps are sorted by Probabilistic Ranking Principle

(PRP) [42], the ranked list will be App 1, App 2, and App 3 by their relevance in terms of click-

through rate (CTR). However, the optimal ranked list with the maximum utility should be App 1,

App 3, and App 2, since the utility gain of promoting App 3 from the 3rd to the 2nd position is

0.196-0.177=0.019, which is larger than the utility loss 0.294-0.284=0.010 of dragging App 2 from

the 2nd to the 3rd position. For two items with close relevance estimation, putting the item which

is more sensitive to position change at a higher position will bring a higher expected utility, even if

it is slightly less relevant.

Based on the above considerations, a position-aware modeling of clicks, which takes item

attributes and user context into consideration, is indispensable for the correct estimation of expected

utility.

3.3 Selection Bias
Although we can attend to examination bias with the position-aware click modeling, we might

tend to overestimate the severity of examination bias due to the non-uniform historical ranking

policy. In other words, we might overestimate the click probability of items placed at top positions

and underestimate the click probability of items placed at bottom positions.

The bias caused by collecting data from a non-uniform logging policy is often referred to as

selection bias [21] or missing-not-at-random [29]. In the left panel of Figure 3, we show a simple

example to illustrate the selection bias in a position-aware click model. Assume that we recommend

two items to two individual users in the form of ranked lists (of two items). User 1 favors item 2

and user 2 favors item 1. The CTR of a user on a liked item at 1st position and 2nd position are

0.7 and 0.6, respectively, while the CTR of a user on a disliked item at two positions are 0.2 and

0.1, respectively. In a real-world recommender system, a well-trained historical ranking policy will

rank the liked item before the disliked one with a high probability. Assume that to user 1 for 90

times we present the ranked list to her in the order of (item 2, item 1) and only for 10 times we

present her with (item 1, item 2). To user 2, we do just the opposite. We will find that in the biased

click data the estimated CTR of the two items at position 1 and position 2 are
0.7×90+0.2×10

100
=0.65 and

0.1×90+0.6×10
100

=0.15, respectively, while the true CTR of these two items at position 1 and position 2

are
0.7×50+0.2×50

100
=0.45 and

0.1×50+0.6×50
100

=0.35, respectively.

The example shows that in a biased logging data, we tend to overestimate the click probability

at top positions and underestimate the click probability at bottom positions. This is consistent with

the real-world data analysis in the App recommendation scenario where we collect click data from

the biased and random traffic, respectively. Here, the biased traffic is the normal traffic served by

the production model while the random traffic is a small part of live traffic that we perform uniform

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 3. An analysis of selection bias by comparing the estimated CTR from biased and unbiased click datasets.
See the definition of 𝜌 in Eq. (2).

ranking policy on. We estimate the CTR for item 𝑖 at position 𝑘 as 𝐶𝑇𝑅𝑖,𝑘 . In order to present the

difference of 𝐶𝑇𝑅𝑖,𝑘 estimated from biased data and random traffic data, we compute 𝜌𝑖,𝑘 as in Eq.

(2).

𝜌𝑖,𝑘 = log

𝐶𝑇𝑅𝑖,𝑘 observed from biased traffic

𝐶𝑇𝑅𝑖,𝑘 observed from random traffic

(2)

Then, we plot points (𝑘, 𝜌𝑖,𝑘 ) in the right panel of Figure 3. We can find that with the increase

of position 𝑘 , the CTR estimation of items gradually change from overestimation (𝜌 > 0) to

underestimation (𝜌 ≤ 0). We only show the results of top 15 positions, since at lower positions we

collect less data, which makes the CTR estimation unreliable.

The analysis of selection bias shows that we need to address the exaggerated position effect

caused by non-uniform training data in position-aware click modeling.

4 METHOD
In this section, we present a general ranking framework to maximize the utility𝑈𝑞 in Eq. (1) directly.

In Section 4.1, we estimate utility unbiasedly from click through logs. The examination bias and

selection bias are addressed by a position-aware click model and a position propensity model as

described in Section 4.1.1 and 4.1.2. In Section 4.2, we design two different solvers, namely Sinkhorn

(Section 4.2.1) and Lambdaloss (Section 4.2.2) to optimize this metric. The overall procedure of our

ranking method is illustrated in Algorithm 1.

4.1 Unbiased Estimation of the Ranking Metric
4.1.1 Position-aware Click Estimation. The main difficulty of learning to rank via implicit feedback

lies in the estimation of examination, since we do not observe it directly from the data. With the

new learning objective utility, we do not need to infer relevance or examination explicitly. Instead,

we need to deal with the mismatch between the CTR of the historically presented position and

that of the finally presented position. For example, if an item is ranked on the first position in the

click logs but presented at the 10th position in the final ranking, then its utility is overestimated.

To correct this bias, we need an accurate model of user’s CTR on different positions.

The estimation of the position-aware click probability 𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) refers to one of

the most well-studied tasks in recommender systems, i.e., the CTR prediction [39, 53]. Some recent

works [5, 20] pointed out that position is a very important feature in CTR prediction. However,

in inference stage of the ranking model, the position feature is often vacant. Therefore, we use a
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Algorithm 1: Graph Matching for Learning to Rank

Input: Click through logs S = {(𝑓𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑘ℎ𝑖 )
𝑛𝑞
𝑖

}𝑞∈𝑄 , solver ∈ {Sinkhorn, Lambdaloss}

Output: A family of functions Ψ, or a scoring function Φ
1 Step 1→ Unbiased position-aware click probability estimation;
2 for 𝑁0 iterations do
3 Choose a batch of (𝑓𝑖 , 𝑘ℎ𝑖 ) samples from 𝑆 ;

4 Update 𝜔 according to L𝑝 (𝜔) in Eq. (5);

5 end
6 for 𝑁1 iterations do
7 Choose a batch of (𝑓𝑖 , 𝑘ℎ𝑖 , 𝑐𝑖 ) samples from 𝑆 ;

8 Update 𝜃 according to L𝑐 (𝜃 ) in Eq. (8) and ℎ𝜔 (·, ·);
9 end

10 Step 2→ Unbiased utility maximization;
11 if solver is Sinkhorn then
12 for 𝑁𝑠 iterations do
13 Choose a set (𝑓𝑖 , 𝑏𝑖 )

𝑛𝑞
𝑖=1

from 𝑆 ;

14 Compute the Pre-Sinkhorn matrix 𝐴𝑛𝑞 according to Eq. (9).;

15 Compute the DSM𝑊𝑛𝑞 via Sinkhorn layers according to Eq. (11).;

16 Update the family of functions Ψ according to L𝑠 (Ψ, 𝑞) in Eq. (12) and 𝑔𝜃 (·, ·);
17 end
18 end
19 else

// solver is Lambdaloss

20 for 𝑁𝑟 iterations do
21 Choose a batch of paired samples (𝑓𝑖 , 𝑘ℎ𝑖 , 𝑐𝑖 , 𝑓𝑗 , 𝑘

ℎ
𝑗
, 𝑐 𝑗 ) from 𝑆 ;

22 Compute Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) of each pair according to Eq. (18).;

23 Update the scoring function Φ according to L′
𝑟 (Φ, 𝑞) in Eq. (19) and 𝑔𝜃 (·, ·);

24 end
25 end

position-aware click model to maintain an unbiased utility estimation instead of directly using it

as a ranking model. Assume that the probability function of item 𝑖 displayed at position 𝑘𝑖 , i.e.,

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) is a function of item feature 𝑓𝑖 and position 𝑘𝑖 and we use 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )
to approximate it. 𝑔𝜃 (·, ·) is a neural network with a sigmoid activation as output activation to

ensure the output value in the range of [0, 1]. Then we can estimate the parameter 𝜃 via maximum

likelihood estimation by minimizing the following loss:

L𝑐 (𝜃 ) =
∑
𝑞∈𝑄

𝑛𝑞∑
𝑖=1

𝑙

(
𝑐𝑖 , 𝑔𝜃

(
𝑓𝑖 , 𝑘

ℎ
𝑖

))
, (3)

where 𝑙 (𝑝, 𝑞) = −𝑝 log𝑞 − (1 − 𝑝) log(1 − 𝑞) is the cross entropy loss.

4.1.2 Positional Propensity Estimation. This position-aware click model that we described above

suffers from selection bias. From the perspective of domain adaptation [6], selection bias is caused

by the distributional mismatch between source distribution 𝑃𝑠 (F ,K), i.e., the distribution of (F ,K)
pair in the biased logging data and the target distribution 𝑃𝑡 (F ,K), i.e., the distribution of (F ,K)
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pair of an unbiased click data. Consider the density function of (F ,K),

𝑃 (F ,K) = 𝑃 (F )𝑃 (K|F ) (4)

where 𝑃 (F ) denotes the distribution of item feature and 𝑃 (K|F ) denotes the distribution of

displayed positions of an item in the logging data conditioned on the item feature. We notice

that 𝑃 (F ) is consistent in source distribution and target distribution. However, 𝑃 (K|F ), which
is influenced by the historical ranking policy, shows inconsistency between source distribution

and target distribution. 𝑃𝑡 (K|F ) is a uniform distribution, which means each item can be placed

at each position with equal probability. However, 𝑃𝑠 (K|F ) is often influenced by the historical

ranking policy, which results in a non-uniform distribution.

We address the distribution mismatch with inverse propensity weighting. Firstly, we use a

conditional propensity model ℎ𝜔 (𝑓𝑖 ), to estimate the position propensity
4
given item feature, i.e.,

𝑃𝑠 (K = 𝑘𝑖 |F = 𝑓𝑖 ), where ℎ𝜔 (𝑓𝑖 ) is a neural network with a softmax layer as the output layer.

It takes the item feature 𝑓𝑖 as input and outputs probabilities of this item to appear on different

positions. The 𝑘𝑖-th output of ℎ𝜔 (𝑓𝑖 ) is denoted as ℎ𝜔 (𝑓𝑖 , 𝑘𝑖 ), and the loss function of ℎ𝜔 (𝑓𝑖 , 𝑘𝑖 ) is
defined as

L𝑝 (𝜔) = −
∑
𝑞∈𝑄

𝑛𝑞∑
𝑖=1

log(ℎ𝜔 (𝑓𝑖 , 𝑘ℎ𝑖 )) . (5)

Now we rewrite the loss function to estimate the click probability of target distribution with the

data from source distribution as

L𝑇 (𝜃 ) =
∫ ∑

K
𝑙
(
𝐶𝑖,𝑘𝑖 , 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )

)
𝑃𝑡 (F = 𝑓𝑖 ,K = 𝑘𝑖 )𝑑F

=

∫ ∑
K
𝑙
(
𝐶𝑖,𝑘𝑖 , 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )

)
𝑃𝑡 (F = 𝑓𝑖 )𝑃𝑡 (K = 𝑘𝑖 |F = 𝑓𝑖 )𝑑F

=

∫ ∑
K
𝑙
(
𝐶𝑖,𝑘𝑖 , 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )

)
𝑃𝑡 (F = 𝑓𝑖 )

1

𝑛𝑞
𝑑F

=

∫ ∑
K

1

𝑛𝑞𝑃𝑠 (K = 𝑘𝑖 |F = 𝑓𝑖 )
𝑙
(
𝐶𝑖,𝑘𝑖 , 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )

)
𝑃𝑠 (F = 𝑓𝑖 )𝑃𝑠 (K = 𝑘𝑖 |F = 𝑓𝑖 )𝑑F

(6)

where 𝑙 is the cross entropy as in Eq. (3). This loss can be estimated with sample average as

ˆL𝑇 (𝜃 ) =
∑
𝑞∈Q

𝑛𝑞∑
𝑖=1

1

𝑛𝑞𝑃𝑠 (K = 𝑘ℎ
𝑖
|F = 𝑓𝑖 )

𝑙

(
𝑐𝑖 , 𝑔𝜃

(
𝑓𝑖 , 𝑘

ℎ
𝑖

))
. (7)

Finally we can remove the selection bias and obtain the unbiased estimation of position-aware

click model 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 ), the unbiased loss function of which is defined as

L𝑢𝑐 (𝜃 ) = ˆL𝑇 (𝜃 ) =
∑
𝑞∈Q

𝑛𝑞∑
𝑖=1

1

𝑛𝑞ℎ𝜔 (𝑓𝑖 , 𝑘ℎ𝑖 )
𝑙

(
𝑐𝑖 , 𝑔𝜃

(
𝑓𝑖 , 𝑘

ℎ
𝑖

))
. (8)

4
In this work we assume that we do not know the logging policy or there is multiple ranking policy, which is quite common

in a real-world platform. If we know the logging policy exactly, then we can use the true position propensities instead of

learning it from click logs.
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Fig. 4. Sinkhorn Normalization of two layers. The square inside the box denotes the value of each element
in the matrix. The square at the end of each column/row outside the box denotes sum of the elements in
the column/row. In each Sinkhorn layer, row and column normalization are performed to the matrix. After
several layers, the row-wise and column-wise sums are almost indistinguishable.

4.2 Learning to Optimize the Ranking Metric
4.2.1 Sinkhorn. The Sinkhorn Algorithm [2] is an elegant method to solve the graph matching

problem in an end-to-end differentiable way. One successful application for Sinkhorn algorithm is

[43], which adopted it to solve image matching problem in a deep learning framework. According to

the analysis in [34], Sinkhorn algorithm is an approximate and differential version of the Hungarian

algorithm. Thus, it is a direct solution to the graph matching problem defined in Section 3.1.

The Sinkhorn Algorithm shows that each non-negative square matrix can be converted to a

Doubly Stochastic matrix (DSM) [34], which is a differentiable relaxation of permutation matrix [2].

Then the matching objective can be computed with the DSM and thus be optimized in an end-to-end

manner.

The target for the Sinkhorn solver is to learn a family of functions, Ψ = {𝜓𝑛𝑞 : 𝑞 ∈ Q}.
Each function in this family takes the features of items (𝑓𝑖 , 𝑏𝑖 )

𝑛𝑞

𝑖=1
as input and outputs a DSM

W. Each column and each row in a DSM sums to one. We define each function in the family as

𝜓𝑛𝑞 : (F ,B)𝑛𝑞 → W𝑛𝑞 where (F ,B)𝑛𝑞 denotes the set of features associate with each of the 𝑛𝑞

documents, and W𝑛𝑞 ∈ [0, 1]𝑛𝑞×𝑛𝑞 refers to the space of 𝑛𝑞 × 𝑛𝑞 doubly stochastic matrices.

The process of the sinkhorn solver is shown from line 11 to line 17 in Algorithm 1. Before

we apply sinkhorn layers, we need to construct a non-negative square matrix A ∈ R𝑛𝑞×𝑛𝑞+ from

the item features (𝑓𝑖 , 𝑏𝑖 )𝑛𝑞 (see line 14 in Algorithm 1). We call this non-negative matrix as Pre-
Sinkhorn matrix. To obtain the Pre-Sinkhorn matrix, we use another function 𝜑 : (F ,B,K) → R+.
Specifically, 𝜑 (𝑓𝑖 , 𝑏𝑖 , 𝑘𝑖 ) is a neural network which outputs a single value. Note that the activation

function of last layer should be carefully chosen to ensure the non-negativity. Each element of the

Pre-Sinkhorn matrix A is computed by

A𝑖,𝑘 = 𝜑 (𝑓𝑖 , 𝑏𝑖 , 𝑘) . (9)

After that, the DSMW is obtained from the Pre-Sinkhorn matrix A by repeatedly normalizing

rows and columns (see line 15 in Algorithm 1). Specifically, we defined the row and column

normalization functions as

TR (A) = A ⊘
(
A11T

)
, TC (A) = A ⊘

(
11TA

)
, (10)

where ⊘ is the elementwise division and 1 is a vector of ones. Then, the Sinkhorn layers are defined

recursively as

Sinkhorn
(𝑙) (A) =

{
A if 𝑙 = 0

TR
(
TC

(
Sinkhorn

(𝑙−1) (A)
))

otherwise

(11)
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where 𝑙 denotes number of layers. As 𝑙 increases, Sinkhorn(𝑙) (A) converges to DSM W. Each

element in the DSM, for example, W𝑖,𝑘 , denotes the probability of placing item 𝑖 at position 𝑘

according to the family of functions Ψ. To maximize the expected utility, we can define the objective

function w.r.t Ψ as,

L𝑠 (Ψ, 𝑞) = −
𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑘=1

𝑔𝜃 (𝑓𝑖 , 𝑘) · 𝑏𝑖 ·W𝑖,𝑘 . (12)

We prove that minimizing the loss defined in Eq. (12) is equivalent to maximizing the expected

utility in Section 4.3.1. We minimize this objective to update the parameters in Ψ (see line 16 in

Algorithm 1). Then repeat the process until convergence and we obtain the optimal Ψ. The most

exciting part about Sinkhorn algorithm is that all of the operations in Eq. (9), Eq. (10) and Eq. (11)

are differentiable and can be optimized in an end-to-end manner.

During testing, we have to apply Hungarian algorithm with cubic complexity [34] to the DSM

W to obtain the permutation matrix S. Each permutation matrix corresponds to a ranking result

with each row representing an item, each column representing a position, where each element in

permutation matrix S is defined as

S𝑖,𝑘 =

{
1 𝑘𝑖 = 𝑘

0 𝑘𝑖 ≠ 𝑘
. (13)

However, the cubic complexity becomes a bottleneck in a real-world ranking system. Thus in

practice, according to [2], we can compute a global ordering according to the expected rank of each

document as

E𝑊 [𝑘𝑖 ] =
𝑛𝑞∑
𝑘=1

𝑊𝑖,𝑘 · 𝑘 , (14)

such that Hungarian algorithm can be performed on top 𝑃 < 𝑛𝑞 items instead of on all 𝑛𝑞 items to

improve the inference efficiency. Thus the complexity in inference stage is reduced to 𝑂 (𝑁 2 + 𝑃3),
where 𝑁 is the maximum number of 𝑛𝑞 .

4.2.2 LambdaLoss. Although we reduce the complexity of sinkhorn as in Eq. (14) from 𝑂 (𝑁 3) to
𝑂 (𝑁 2 + 𝑃3), it is still too consuming for a real-world production system. In this section, we aim to

learn a parameterized scoring function Φ(·) to approximate the maximum-weight graph matching

procedure on each query, still aiming at the maximization of the utility, so that the complexity in

the inference stage can be reduced to 𝑂 (𝑁 ).
The scoring function Φ(·) takes item feature and bid as inputs and outputs a ranking score 𝑠𝑖 :

Φ : (F ,B) → R. The scoring function Φ(·) can be a neural network or a tree model. (Both of the

implementations are proposed in the experiment section.) For each query 𝑞, we compute the score

𝑠𝑖 of each item 𝑖 and the result list is generated by sorting their scores in descending order.

To elicit the objective for the scoring function, based on users’ click through logs, we derive an

unbiased metric of utility as

𝑈 ′
𝑞 =

𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘𝑖 ) (15)

where the utility 𝑢 (𝑖, 𝑘𝑖 ) of displaying item 𝑖 at position 𝑘𝑖 is defined as

𝑢 (𝑖, 𝑘𝑖 ) =
𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 )
𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)
· 𝑐𝑖 · 𝑏𝑖 =

𝑔𝜃 (𝑓𝑖 , 𝑘𝑖 )
𝑔𝜃

(
𝑓𝑖 , 𝑘

ℎ
𝑖

) · 𝑐𝑖 · 𝑏𝑖 . (16)

The reason that we choose𝑈 ′
𝑞 instead of 𝑈𝑞 is its resemblance to existing ranking metrics. We

will leave the detailed discussion of such resemblance in Section 4.4, in which we also show the
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unbiasedness of 𝑈 ′
𝑞 . With 𝑘∗𝑖 being the optimal position assigned to item 𝑖 , we define the regret of

the utility as:

L𝑟 (Φ, 𝑞) =
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘∗𝑖 ) −
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘𝑖 ) (17)

which defines the objective of a ranking model. However, minimizing the regret of the utility

L𝑟 (Φ, 𝑞) directly w.r.t the positions is infeasible since positions are discrete values. Therefore, we

adapt the LambdaLoss framework [50] to learn a ranking model towards the optimal ranking by

optimizing our proposed loss function (which will be presented in Eq. (19)) with iterative pairwise

permutation. Like in LambdaLoss we follow an EM procedure where in E step we obtain the ranked

list based on current scoring function Φ(𝑡 )
and in M step we re-estimate the scoring function Φ(𝑡+1)

to minimize our loss function. The learning procedure of our learning algorithm is as follows (see

line 19 to line 25 in Algorithm 1).

We first initialize the ranking model with a random initialization of Φ(0)
. Inspired by the re-

weighting technique used in LambdaRank [10], we compute the difference between the unbiased

utility Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) when the positions of two items 𝑖 and 𝑗 are flipped (see line 22 in Algorithm 1), as

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) = 𝑢 (𝑖, 𝑘 𝑗 ) + 𝑢 ( 𝑗, 𝑘𝑖 ) − 𝑢 (𝑖, 𝑘𝑖 ) − 𝑢 ( 𝑗, 𝑘 𝑗 ) . (18)

Then this difference value is used as the weight in the pairwise loss for each pair of items. Follow-

ing [8, 10], we design our loss function in the form of logistic loss, as

L ′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) log
2

(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )

)
, (19)

where 𝑘𝑖 and 𝑘 𝑗 denote the position assigned to item 𝑖 and 𝑗 by ranking model at the last step (by

the scoring function Φ(𝑡 )
). This loss is minimized, so that we get a new scoring function Φ(𝑡+1)

(see

line 23 in Algorithm 1). Then we repeat the process until convergence.

Notice that in a standard LambdaLoss framework, the LambdaLoss is defined as

L𝜆 (Φ, 𝑞) =
𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑦𝑖>𝑦 𝑗

|Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗) | log
2

(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )

)
. (20)

Note that the differences between our objective (19) and the LambdaLoss objective (20) lie in (1)

the subscript of the summation symbol and (2) the absolute value symbol of the difference term Δ.
In LambdaLoss framework, the absolute value of the difference term is used and the subscript of the

summation symbol is 𝑦𝑖 > 𝑦 𝑗 . The pairwise label of each item pair (𝑖, 𝑗) is determined. The optimal

ranking order is known to us by ranking all the items according to relevance label or click label,

(denoted by 𝑦𝑖 for item 𝑖), in descending order. However, in our framework, we cannot obtain an

explicit label 𝑦𝑖 for item 𝑖 . An item is treated as the positive item if it is placed at a lower position

by scoring function Φ(𝑡 )
and the exchange brings utility gain or it is placed at a higher position

and the exchange introduces utility drop. We do not know the optimal ranking order in each query

beforehand, where the optimal order is achieved through iterative pairwise permutation.

4.3 Theoretical Analysis
4.3.1 Sinkhorn. In this section, we theoretically prove that Sinkhorn algorithm maximizes the

utility defined in Eq. (1), by relaxing permutation matrix to DSM.

Firstly, we define a family of functions Ψ∗ = {𝜓 ∗
𝑛𝑞

: 𝑞 ∈ Q}. Each function in this family

takes the features of items (𝑓𝑖 , 𝑏𝑖 )
𝑛𝑞

𝑖=1
as input and outputs a permutation matrix S. It is denoted as
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Ψ∗
𝑛𝑞

: (F ,B)𝑛𝑞 → S𝑛𝑞 , where S𝑛𝑞 is the space of permutation matrices of dimension 𝑛𝑞 × 𝑛𝑞 . To
maximize the utility defined in Eq. (1), the loss function w.r.t Ψ∗

is defined as

L𝑠 (Ψ∗, 𝑞) = −𝑈𝑞 = −
𝑛𝑞∑
𝑖=1

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) · 𝑏𝑖

= −
𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑘=1

S𝑖,𝑘𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘) · 𝑏𝑖

= −
𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑘=1

S𝑖,𝑘 · 𝑔𝜃 (𝑓𝑖 , 𝑘) · 𝑏𝑖

(21)

The loss L𝑠 (Ψ∗, 𝑞) in Eq. (21) is not differentiable w.r.t. S𝑖,𝑘 . Thus, Sinkhorn considers the

expectation of this loss, which is computed by the marginal probability of S𝑖,𝑘 = 1, as follows,

EΨ∗ [L𝑠 (𝑞)] = −
𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑘=1

𝑔𝜃 (𝑓𝑖 , 𝑘) · 𝑏𝑖 · EΨ∗ [S𝑖,𝑘 ] = −
𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑘=1

𝑔𝜃 (𝑓𝑖 , 𝑘) · 𝑏𝑖 ·W𝑖,𝑘 (22)

which means optimizing the loss function for Ψ defined in Eq. (12) is equivalent to optimizing the

loss function for Ψ∗
defined in Eq. (21), which is also equivalent to maximizing𝑈𝑞 .

4.3.2 Lambdaloss. In this section, we theoretically prove that the training objective L ′
𝑟 (Φ, 𝑞) is an

upper bound of the utility regret L𝑟 (Φ, 𝑞). To make the proof easier to understand, we construct a

function:

L ′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑠𝑖<𝑠 𝑗

|𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ) |. (23)

We start with several lemmas which will be used in our proof.

Lemma 4.1. Given an indicator function 𝑓 (𝑥) = I(𝑥 ≤ 0) and a function 𝑔(𝑥) = log
2
(1 + 𝑒−𝜎𝑥 )

where 𝜎 is a constant in R, it holds that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ R.

Lemma 4.2. Given an indicator function 𝑓 (𝑥) = I(𝑥 ≥ 0) and a function 𝑔(𝑥) = max{log(1 +
exp(𝜎𝐶)), 2} − log

2
(1 + 𝑒−𝜎𝑥 ) where 𝜎 is a constant in R, it holds that 𝑓 (𝑥) ≤ 𝑔(𝑥) for 𝑥 ∈ [−𝐶,𝐶].

Lemma 4.3. Given a sum function 𝑓 (𝑥) = ∑
𝑖 𝑥𝑖 and a max function 𝑔(𝑥) = max𝑖 𝑥𝑖 , it holds that

𝑓 (𝑥) ≥ 𝑔(𝑥) for 𝑥𝑖 ≥ 0,∀𝑖 .

Now we are ready to derive the main theoretical result.

Theorem 4.4. Assume the utility function 𝑢 (𝑖, 𝑘𝑖 ) is a monotonic decreasing function w.r.t 𝑘𝑖 and
the ranking score 𝑠𝑖 is bounded in the range of [-C,C]. Let 𝐶1 = 𝑚𝑎𝑥{log(1 + exp(2𝜎𝐶)), 2} and
𝐶2 = 𝐶1 ·

∑𝑛𝑞

𝑗=1

∑
𝑖:𝑘𝑖>𝑘 𝑗

(𝑢 ( 𝑗, 𝑘 𝑗 ) − 𝑢 ( 𝑗, 𝑘𝑖 )). Then we have L ′′
𝑟 (Φ, 𝑞) ≤ L ′

𝑟 (Φ, 𝑞) +𝐶2.
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Proof.

L′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑
𝑖=1

𝑛𝑞∑
𝑗=1

|𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ) |I(𝑠𝑖 < 𝑠 𝑗 )

=

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ))I(𝑠𝑖 < 𝑠 𝑗 ) +
𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗>𝑘𝑖

(𝑢 (𝑖, 𝑘𝑖 ) − 𝑢 (𝑖, 𝑘 𝑗 ))I(𝑠𝑖 < 𝑠 𝑗 )

=

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ))I(𝑠𝑖 < 𝑠 𝑗 ) +
𝑛𝑞∑
𝑗=1

∑
𝑖:𝑘𝑖>𝑘 𝑗

(𝑢 ( 𝑗, 𝑘 𝑗 ) − 𝑢 ( 𝑗, 𝑘𝑖 ))I(𝑠 𝑗 < 𝑠𝑖 )

≤
𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 )) log2
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )

)
−

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 ( 𝑗, 𝑘 𝑗 ) − 𝑢 ( 𝑗, 𝑘𝑖 )) [log2
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )

)
+𝐶1]

=

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ) − 𝑢 ( 𝑗, 𝑘 𝑗 ) + 𝑢 ( 𝑗, 𝑘𝑖 )) log2 (1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 ) ) +𝐶2

=

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑘 𝑗<𝑘𝑖

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) log
2

(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )

)
+𝐶2 (24)

=L′
𝑟 (Φ, 𝑞) +𝐶2 (25)

where the inequality holds due to Lemma 4.1 and Lemma 4.2. □

Theorem 4.4 states that L ′′
𝑟 (Φ, 𝑞) is upper bounded by our objective L ′

𝑟 (Φ, 𝑞) plus 𝐶2. 𝐶2 is a

constant since in the M step 𝐶2 only depends on the current scoring function Φ(𝑡 )
. Notice that

the assumptions in the theorem are not restrictive in practice. As illustrated in Figure 2, the real

utility basically satisfies the monotonic decreasing assumption. Moreover, the ranking score is

often clipped in implementation to avoid explosion in exponential function.

Theorem 4.5. Assume the utility 𝑢 (𝑖, 𝑘𝑖 ) is a monotonic decreasing function w.r.t 𝑘𝑖 . Then L𝑟 (Φ, 𝑞)
is upper bounded by L ′′

𝑟 (Φ, 𝑞).
Proof.

L′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑
𝑖=1

∑
𝑗 :𝑠𝑖<𝑠 𝑗

|𝑢 (𝑖, 𝑘 𝑗 ) − 𝑢 (𝑖, 𝑘𝑖 ) | =
𝑛𝑞∑
𝑖=1

𝑘𝑖−1∑
𝑘=1

|𝑢 (𝑖, 𝑘) − 𝑢 (𝑖, 𝑘𝑖 ) |

=

𝑛𝑞∑
𝑖=1

𝑘𝑖−1∑
𝑘=1

(𝑢 (𝑖, 𝑘) − 𝑢 (𝑖, 𝑘𝑖 )) ≥
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 1) −
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘𝑖 )

≥
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘∗𝑖 ) −
𝑛𝑞∑
𝑖=1

𝑢 (𝑖, 𝑘𝑖 ) = L𝑟 (Φ, 𝑞) (26)

where the first inequality holds due to Lemma 4.3. □

Theorem 4.6. Under the assumption of Theorem 4.4 and Theorem 4.5, we have that L𝑟 (Φ, 𝑞) ≤
L ′

𝑟 (Φ, 𝑞) +𝐶2.

The proof of Theorem 4.6 is trivial due to Theorem 4.4 and Theorem 4.5. Theorem 4.6 demonstrates

that the utility regret L𝑟 (Φ, 𝑞) is bounded by our proposed objective L ′
𝑟 (Φ, 𝑞) plus a constant. It
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Table 1. Comparison of learning metrics in previous works.

Discount factor D𝑖 Propensity Q𝑖 Benefit 𝑏𝑖
SVMRank [23] -𝑘𝑖 1 1

PropSVMRank [27] -𝑘𝑖 𝜃𝑘ℎ
𝑖

1

PBM [49] -𝑘𝑖 𝜃𝑘ℎ
𝑖

1

CPBM [17] -𝑘𝑖 𝑓 (𝑘ℎ𝑖 , 𝑞) 1

LambdaRank (NDCG) [10] 1/log(𝑘𝑖 + 1) 1 1

Sponsored search [55, 56] 1 1 𝑏𝑖

U-rank+ 𝑓 (𝑘𝑖 , 𝑞, 𝑖) 𝑓 (𝑘ℎ𝑖 , 𝑞, 𝑖) 𝑏𝑖

implies that optimizing our proposed objective is actually minimizing the upper bound of the utility

regret, which guarantees the effectiveness of our ranking algorithm theoretically.

4.4 Relations to Previous Works
Many existing relevance based ranking metrics [54] approximate the utility in Eq. (1) by the inner

product of a relevance vector J and a rank discount vector D. For simplicity, a binary relevance

label, 𝑟𝑖 ∈ {0, 1} is typically considered. Then, the mainstream relevance based metric/objective

function is in the following form

Metric =

𝑛𝑞∑
𝑖=1

D𝑖 · 𝑟𝑖 , (27)

where the discount factor D𝑖 is normally a decreasing function of position 𝑘𝑖 (note that no item

features are considered), indicating users’ decreasing attention from top to bottom positions

of a list. For example, in DCG, D𝑖 = 1/𝑙𝑜𝑔(𝑘𝑖 + 1) and in Prec@K, D𝑖 = I{𝑘𝑖 ≤ 𝐾}/𝐾 . The
discount factor D𝑖 is often interpreted as the examination probability at the displayed position, i.e.,
𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) where O is a binary variable denoting whether the item 𝑖 is examined at

position 𝑘𝑖 . The underlying assumption of these metrics is the examination hypothesis [41] that a

user clicks an item only when it is examined and relevant, i.e.,

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) = 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ) · 𝑃 (𝑟𝑖 = 1) . (28)

Moreover, in order to facilitate learning from users’ click through logs, counterfactual learning

to rank methods [22, 27, 48, 49] address the mismatch between the binary relevance 𝑟𝑖 and click

feedback 𝑐𝑖 in the historical data with inverse propensity weighting. The propensity Q𝑖 used in

counterfactual learning to rank methods also refers to an examination probability. Different from

the discount factor, here the examination probability refers to that of item 𝑖 displayed at position

𝑘ℎ𝑖 in the logging data, i.e., 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ𝑖 ).
According to the general setting of counterfactual learning, an estimate of Metric is defined as

Metric𝐼𝑃𝑆 =

𝑛𝑞∑
𝑖=1

D𝑖 · 𝑐𝑖
Q𝑖

, (29)

which is essentially an unbiased estimation of Eq. (27) since

E[Metric𝐼𝑃𝑆 ] =
𝑛𝑞∑
𝑖=1

D𝑖 · 𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘ℎ𝑖 )
𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)

=

𝑛𝑞∑
𝑖=1

D𝑖 · 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ𝑖 ) · 𝑟𝑖
𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)

=

𝑛𝑞∑
𝑖=1

D𝑖 · 𝑟𝑖 .
(30)
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More generally, if we further consider the benefit 𝑏𝑖 of each item, then we have an unbiased

metric of utility based on implicit feedbacks as

Metric =

𝑛𝑞∑
𝑖=1

D𝑖

Q𝑖

· 𝑐𝑖 · 𝑏𝑖 , (31)

where discount factor D𝑖 and propensity Q𝑖 , as we mentioned before, correspond to 𝑃 (O = 1|F =

𝑓𝑖 ,K = 𝑘𝑖 ) and 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ𝑖 ), respectively. Following the general form in Eq. (31), we

summarize and compare several existing (counterfactual) learning to rank methods in Table 1.

The main difficulty of estimating the utility metric in Eq. (1) from the users’ click through logs lies

in the estimation of the underlying examination probability 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 ), since we do
not have any direct supervised signal telling whether the item 𝑖 is observed by the user at position 𝑘𝑖 .

Due to the lack of supervision, strong assumptions aremade on 𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ𝑖 ) in different
models to make the propensity estimation feasible. For instance, in PropSVMrank [27] and PBM [49],

the propensity is only related to position 𝑘𝑖 ; in CPBM [17], the propensity is related to both position

𝑘𝑖 and query 𝑞. Still, we need to meet other strict requirements like online randomization [27] or

multiple rankers [17, 49]. Jointly learning a propensity model with a relevance model merely from

click logs [4, 22] does not need to meet these requirements, but is also challenging. In such methods,

the propensity estimation and the relevance estimation strongly depend on the unbiasedness of

each other. Due to the lack of direct supervision, there is no clear evidence to demonstrate the

unbiasedness of either model.

In this work, we do not rely on the separate estimation of relevance and propensity, which

simplify the problem. Thus, we can estimate a much more loose assumption that the examination

probability is a function of position 𝑘𝑖 and feature 𝑓𝑖 (containing user/query features, item features

and context features). Binding the estimation of discount factor with the estimation of propensity,

we notice that

D𝑖

Q𝑖

=
𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 )𝑃 (𝑟𝑖 = 1)
𝑃 (O = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)𝑃 (𝑟𝑖 = 1)

=
𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 )
𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)
. (32)

Since the relevance term 𝑟𝑖 is removed in Eq. (32), without relying on an accurate relevance

estimation, a ratio between discount factor and propensity can be obtained. We only need to

estimate the click probability of the item 𝑖 at position 𝑘𝑖 . Based on users’ click through logs, we

derive an unbiased metric of utility, inspired by Eq. (31) and Eq. (32), as

𝑈 ′
𝑞 =

𝑛𝑞∑
𝑖=1

𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘𝑖 )
𝑃 (C = 1|F = 𝑓𝑖 ,K = 𝑘ℎ

𝑖
)
· 𝑐𝑖 · 𝑏𝑖 . (33)

This is exactly the objective we optimize for in Section 4.2.2.

5 SEMI-SYNTHETIC EXPERIMENTS
The semi-synthetic setup is widely applied in the community of counterfactual learning to rank [4,

17, 22, 27] as it allows us to explore a range of different settings. In this section, we will evaluate the

performance of our proposed approaches and the baseline approaches with three semi-synthetic

benchmark datasets
5
.

5.1 Datasets
We base the semi-synthetic experiments on three real-world benchmark datasets. The detailed

description of these three datasets is as below.

5
The code with running instructions for our experiments is available at https://bit.ly/32J1pSF
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• Yahoo! LETOR set 16 is the dataset used in Yahoo! Learning-to-Rank Challenge. It contains

29,921 queries with 710k documents. The 700 features are extracted from query-URL pairs with all

the features normalized to be in the [0,1] range. The relevance judgments can take five different

values from 0 (irrelevant) to 4 (perfectly relevant).

• MSLR-WEB10K7
is a large-scale dataset released by Microsoft Research Asia in May 2010.

Microsoft datasets contains 10,000 queries and 1,200,193 documents. There are in total 136

features extracted from query-URL pairs. The relevance judgements are obtained from a retired

labeling set of Microsoft Bing search engine, which take five values from 0 (irrelevant) to 4

(perfectly relevant).

• Istella-SLETOR8
[32] is released by Istella in 2016, which is one of the largest public available

datasets. Istella-S is composed of 33,018 queries and 220 features representing each query-

document pair. The average examples in one query is 104. The relevance judgement ranges from

0 (irrelevant) to 4 (perfectly relevant).

5.2 Click Data Generation
We mainly follow Fang et al. [17] to generate synthetic click data with item-wise examination

probability for Yahoo! LETOR, MSLR-WEB10K and Istella-S LETOR datasets. In the following part,

oraclemodel refers to this click generationmodel. First of all, we follow the given train/validation/test

splits of the three datasets, and queries without relevant documents are filtered. Following [17], to

generate the initial positions of the items, we learn two ranking models by running SVMRank [23]

on two small randomly sampled subsets of the queries in the training data. Specifically, the two

ranking models are trained with 22 shared queries and 92 distinguished queries. Then, the initial

positions of the items for the remaining queries is generated by the two learned ranking models.

Each query-item pair in the remaining queries corresponds to two initial positions, generated by

the two ranking model, respectively. Note that two initial ranking models are required in [17] but

not in our method. We follow this setting for fair comparison. The maximal position 𝑘𝑚𝑎𝑥 is set to

be 10 in our experiments.

Following [17], the examination probability which is related to both position and the item is

calculated by 𝑃 (𝑜𝑖,𝑘𝑖 = 1|𝑘𝑖 , 𝑥𝑖 ) = 1

𝑘
max(𝑤·𝑥𝑖+1,0)
𝑖

. In our setting, 𝑥𝑖 is set of item features, while in the

setting of [17], 𝑥𝑖 is the set of query features which is shared among all the items for a same query.

The parameter vector𝑤 is drawn from a uniform distribution over [−𝜂, 𝜂) and is normalized such

that

∑
𝑗=1𝑤 𝑗 = 0. The parameter 𝜂 controls how the examination probability varies with context.

The relevance probability is defined as 𝑃 (𝑟𝑖 = 1) = 𝜖 + (1 − 𝜖) 2
𝑦𝑖 −1

2
𝑦max−1 (following [22]), where 𝑦𝑖

denotes the relevance label of 𝑥𝑖 and 𝑦𝑚𝑎𝑥 is the highest level of relevance. 𝜖 is set to 0.1, which

denotes the click probability of irrelevant documents.

5.3 Baselines
We implement eight baselines that explore the performance of two standard learning to rank

methods (i.e., SVMRank [23] and LambdaRank [10]), with four propensity estimation methods,

which are detailed as follows.

• None uses the original click data without debiasing.

• Randomization [27] estimates propensity with online randomized experiments.

• CPBM [17] estimates examination probability w.r.t different queries based on intervention

harvesting.

6
https://webscope.sandbox.yahoo.com

7
https://www.microsoft.com/en-us/research/project/mslr/

8
http://quickrank.isti.cnr.it/istella-dataset/
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Table 2. Comparison of different (counterfactual) learning to rank models on Yahoo! LETOR set 1.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

SVMRank

None 0.702 0.653 0.680 0.728 0.845 0.599 0.0641

Randomization 0.639 0.498 0.571 0.640 0.787 0.533 0.0573

CPBM 0.707 0.661 0.689 0.735 0.849 0.599 0.0645

Groundtruth 0.718 0.680 0.709 0.752 0.859 0.612 0.0655

LambdaRank

None 0.707 0.665 0.691 0.735 0.850 0.608 0.0648

Randomization 0.680 0.605 0.650 0.703 0.828 0.582 0.0621

CPBM 0.718 0.683 0.703 0.747 0.857 0.613 0.0651

Groundtruth 0.719 0.684 0.709 0.751 0.859 0.618 0.0657

DNN

DLA 0.665 0.500 0.582 0.654 0.792 0.593 0.0587

CTR-1 0.647 0.499 0.581 0.650 0.792 0.552 0.0577

U-rank 0.721* 0.692* 0.714* 0.755* 0.862* 0.614 0.0659*

U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 0.714 0.685 0.703 0.743 0.856 0.619* 0.0657*

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 0.722* 0.694* 0.716* 0.758* 0.863* 0.632* 0.0662*
KM (oracle model) 0.935 0.981 0.986 0.974 0.988 0.697 0.0737

∗ denotes statistically significant improvement (t-test with 𝑝-value<0.05) over all baselines (except Groundtruth).

• Groundtruth uses the groundtruth examination probability for oracle model as propensity. The
result of this method is the upper bound of the results of other IPS approaches based on the same

ranking model.

Other methods that we include for comparison are as follows.

• CTR-1 [20] is the position-aware click model used in our framework which assigns position 1

to each item during online inference.

• DLA [4] is a dual learning algorithm that jointly learns an unbiased ranker and an unbiased

propensity model. The ranker is a deep neural network.

We also explore the performance of KM (oracle model) which solves the maximum-weight

graph matching problem via Kuhn-Munkres (KM) algorithm with 𝑂 (𝑁 3) time complexity [28, 36],

given the groundtruth click probability . It is supposed to produce the best utility that can be achieved

on the testing data. As for our method, U-rank is the preliminary version of this work (published

in [14]), which is a lambdaloss based implementation without the debiasing of selection bias. In this

work, we further debias the selection bias and propose U-rank+sinkhorn and U-rank+lambda based

on the sinkhorn solver and lambdaloss solver, respectively. For fair comparison, the DNN based

ranking models adopt the same network architecture. We use a fully-connected neural network

with 4 hidden layers, where the hidden sizes are 1024,1024,512,50, respectively.

5.4 Overall Performance
In this section, we assume the benefit of each item brought to the system as 1 in order to consistently

and fairly compare U-rank+ with existing (counterfactual) learning to rank methods that rank

the items according to the relevance they estimate. We evaluate the performance of the baseline

approaches and our proposed model in terms of the relevance-based metrics, i.e., MAP and nDCG
(including nDCG@1, nDCG@3, nDCG@5, nDCG@10), and utility-based metrics, i.e., # Click and

CTR. Here, # Click and CTR are utility metrics based on oracle click model denoting number of clicks
per query and click probability per document, respectively. Specifically, # Click is average number of

clicks over the test queries where the click are sampled once for each query-item pair. CTR is the

average of the exact click probability for each query-item pair on the test set.

The overall performance on the three benchmark datasets is shown in Table 2, Table 3, and

Table 4. From the tables we have the following observations:
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Table 3. Comparison of different (counterfactual) learning to rank models on MSLR- WEB10K.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

SVMRank

None 0.496 0.443 0.509 0.570 0.735 0.818 0.0827

Randomization 0.433 0.351 0.416 0.484 0.686 0.777 0.0799

CPBM 0.494 0.434 0.502 0.564 0.732 0.827 0.0823

Groundtruth 0.513 0.481 0.525 0.588 0.747 0.863 0.0871

LambdaRank

None 0.500 0.456 0.508 0.569 0.736 0.829 0.0830

Randomization 0.451 0.380 0.440 0.507 0.700 0.813 0.0808

CPBM 0.508 0.461 0.515 0.580 0.740 0.836 0.0836

Groundtruth 0.516 0.482 0.525 0.588 0.747 0.891 0.0886

DNN

DLA 0.457 0.373 0.454 0.522 0.705 0.823 0.0828

CTR-1 0.476 0.425 0.478 0.545 0.722 0.829 0.0814

U-rank 0.492 0.428 0.484 0.554 0.724 0.906* 0.0915*

U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 0.473 0.398 0.463 0.532 0.712 0.928* 0.0918*

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 0.479 0.416 0.468 0.540 0.716 0.951* 0.0921*
KM (oracle model) 0.711 0.763 0.795 0.809 0.881 0.972 0.0969

∗ denotes statistically significant improvement (t-test with 𝑝-value<0.05) over all baselines (except Groundtruth).

Table 4. Comparison of different (counterfactual) learning to rank models on Istella-SLETOR.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

SVMRank

None 0.769 0.613 0.626 0.681 0.806 0.936 0.0937

Randomization 0.742 0.572 0.591 0.649 0.787 0.912 0.0911

CPBM 0.770 0.619 0.630 0.684 0.808 0.939 0.0938

Groundtruth 0.775 0.639 0.646 0.695 0.816 0.953 0.0952

LambdaRank

None 0.773 0.623 0.631 0.685 0.810 0.940 0.0941

Randomization 0.747 0.584 0.597 0.652 0.790 0.920 0.0917

CPBM 0.776 0.631 0.638 0.691 0.813 0.945 0.0946

Groundtruth 0.781 0.633 0.642 0.695 0.815 0.948 0.0948

DNN

DLA 0.690 0.363 0.435 0.515 0.703 0.840 0.0836

CTR-1 0.733 0.537 0.562 0.620 0.771 0.895 0.0895

U-rank 0.782* 0.637* 0.643* 0.695 0.815 0.952* 0.0953*

U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 0.776 0.640* 0.642* 0.693 0.815 0.954* 0.0952*

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 0.780* 0.637* 0.646* 0.697* 0.816 0.957* 0.0954*
KM (oracle model) 0.993 0.993 0.995 0.995 0.995 1.128 0.1126

∗ denotes statistically significant improvement (t-test with 𝑝-value<0.05) over all baselines (except Groundtruth).

• Our methods, including U-rank, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 , and U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 , achieve consistently the

best performance than the state-of-the-art baseline approaches on the utility-oriented metrics,

i.e., #Click and CTR. For example, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 achieves 1.7% improvement in Yahoo! LETOR

set 1 and 10.2% improvement in MSLR-WEB10K on CTR, compared to the best baseline methods

(the baseline in italic use the information from oracle click model, so they are not included for

comparison). Besides, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 improves substantially over U-rank on the utility-oriented

metrics on those three benchmark datasets, which demonstrates the effectiveness of debiasing

selection bias. Compared to lambdaloss-based U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 method, U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 performs

slightly worse.

• U-rank, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 , and U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 also outperform most of the baselines in terms of

the relevance-based metrics, i.e., MAP and nDCG, and U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 performs best among those

three methods. Though it does not always perform the best, especially on MSLR-WEB10K dataset

where CPBM generates the best ranking w.r.t. MAP and nDCG. We also observe that even the

KM algorithm, which computes the best item-position matching with the oracle examination
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probabilities, does not achieve a high MAP/nDCG on MSLR-WEB10K. This observation shows

that a model optimizing the utility-based metrics does not always optimize a relevance-based

ranking metric, which indicates that traditional ranking metrics such as nDCG are not proper

utility metrics. However, on Yahoo! LETOR set 1 and Istella-S LETOR, where the disagreement

is smaller, KM algorithm achieves almost the highest MAP and nDCG and our methods also

perform well on relevance-based metrices.

• The method Groundtruth achieves the best utility among the counterfactual learning approaches,

which demonstrates the effectiveness of the IPS-based framework when the propensity estimation

is accurate. Randomization does not perform well because it assumes that the examination

probability only relates to the position, which is not valid in our setting where the examination

probability relies on both the position and the item features. CPBM achieves the second-best

utility among IPS-based methods since it models the propensity by considering both position

and query features.

• U-rank and CTR-1 share the same click model. However, U-rank outperforms CTR-1 mainly

because CTR-1 ranks items by their estimated click probability at position 1, which is suboptimal

in case of item-wise examination probability. Our methods also outperform DLA since DLA

relies heavily on the accuracy of estimated propensity, which is hard to achieve.

5.5 Empirical Analysis
In this section, we conduct empirical analysis to answer the following research questions:

RQ1 How effective is the position propensity model in reducing selection bias?

RQ2 Can our proposed methods deal with position bias?

RQ3 How do our methods conduct direct revenue maximization?

RQ4 Does our framework generalize to different ranking model architectures?

5.5.1 RQ1: How effective is the position propensity model in reducing selection bias? In this section,

we study the effect of position propensity model in reducing selection bias. We use two kinds of

test datasets, biased and random datasets. The initial ranked lists of the biased test set are generated

from two same ranking models as in the training set while the initial ranked lists of the random

test set are randomly shuffled. Then the same click generation procedure as in Section 5.2 is used

to generate clicks based on the given ranked lists in the two kinds of datasets. We train U-rank and

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 on the same (biased) training set and then evaluate on the two kinds of test datasets.

The evaluation is based on two metrics: AUC (Area Under the ROC curve) and Logloss (cross

entropy). Usually, higher AUC and lower Logloss indicate better performance. Both the click model

and position propensity model are fully-connected neural networks. The network architecture are

the same as the ranking model.

The performance of U-rank and U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 on those two kinds of test datasets is shown

in Table 5. U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 and U-rank achieve similar performance on biased test set; however,

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 works consistently better than U-rank on random test set, which verifies that

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 is less affected by selection bias while still maintains a reasonable accuracy rate.

Table 5. Comparison of different click models on three datasets.

Model Metric

MSLR-WEB10K Yahoo! LETOR set 1 Istella-SLETOR

biased random biased random biased random

U-rank
AUC 0.6974 0.7456 0.7830 0.7463 0.7563 0.6711

Logloss 0.2699 0.1999 0.2019 0.2001 0.2695 0.1865

U-rank+𝑙𝑎𝑚𝑏𝑑𝑎
AUC 0.6973 0.7464 0.7831 0.7475 0.7566 0.6725

Logloss 0.2699 0.1994 0.2020 0.1998 0.2697 0.1839
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Fig. 5. Average click probability on each position.

5.5.2 RQ2: Can our proposed methods deal with position bias? In Figure 5, we show the average click

probability on each position of U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 , U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 , and LambdaRank based approaches

since they are the best baselines on average in terms of utility as shown in Table 2 and Table 3. We

also plot the results of KM (oracle model) for reference.
Comparing the results of the three datasets in Figure 5, we observe a steeper decline of average

click probability to positions of the KM (oracle model) method on the Yahoo! and Istella datasets

than that on the MSLR dataset. It means that the optimal matching tends to display the most

relevant items at the Yahoo! and Istella datasets’ top positions, which suggests that positions

have a powerful impact on users’ clicks in these two datasets. Thus, to optimize the utility, a

well-performed approach should put more relevant items at higher positions. In MSLR-WEB10K,

on the other hand, we find that the average click probability of the optimal matching tends to

be equally distributed on the positions, compared to the Yahoo! and Istella datasets. We find that

our methods are adaptive to different severity of position bias. In the Yahoo! and Istalla datasets,

our models, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 and U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 , focus more on top positions than LambdaRank,

while in the MSLR dataset, our models learn a flatter distribution. Notably, our models achieve

a more considerable sum of click probabilities in these three datasets over all the positions than

LambdaRank.

5.5.3 RQ3: How do our methods conduct direct revenue maximization? We analyze the result of a

single query in detail. The experiment is conducted on the first query of the MSLR-WEB10K dataset.

Figure 6 shows the click probabilities of the ten items for this query and their click probabilities

if placed at each position according to our oracle click data generation model. The position of

each item assigned by different methods is denoted in orange color. We can see that although

LambdaRank performs better in nDCG with a groundtruth propensity. It, however, achieves a

lower click probability than our methods, U-rank+𝑙𝑎𝑚𝑏𝑑𝑎 and U-rank+𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛 . This is because
similar to the KM (oracle model), our methods will take the position sensitivity of different items
into consideration. For example, document 6 is of high relevance and relatively not sensitive to the

position change. LambdaRank displays it in the second position while our methods and KM both

display it at a lower position so that the second position is kept for an item that is more sensitive

to the position change.

5.5.4 RQ4: Does our framework generalize to different ranking model architectures? In our initial

implementation, the ranking model is a neural network. To study the influence of different ranking

model architectures, we change our ranking model from a NN-based model to a Tree-based model.

We train the U-rank(Tree) and U-rank+ (Tree) with a similar procedure in LambdaMART [9]

according to our loss function. Note that here U-rank+ (Tree) is implemented with the lambdaloss

solver. As presented in Table 6, Table 7, and Table 8, U-rank+ (Tree) works consistently better

than LambdaMART w.r.t. utility-based metrics on three datasets. Our methods also outperform all

baselines in terms of the relevance-based metrics on Yahoo! and Istella datasets, which demonstrates
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Fig. 6. Comparison of the result lists of different methods on the first query of MSLR-WEB10K.

Table 6. Comparison of different Tree-based models on Yahoo! LETOR set 1.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

LambdaMART

None 0.714 0.694 0.707 0.747 0.657 0.611 0.0655

Randomization 0.701 0.679 0.689 0.732 0.850 0.606 0.0650

CPBM 0.717 0.698 0.709 0.749 0.859 0.615 0.0657

Groundtruth 0.718 0.696 0.710 0.749 0.859 0.619 0.0658
U-rank (Tree) 0.720 0.692 0.714* 0.756* 0.862 0.621* 0.0659

U-rank+ (Tree) 0.722* 0.694 0.714* 0.757* 0.863 0.622* 0.0660*
KM (oracle model) 0.935 0.981 0.986 0.974 0.988 0.697 0.0737

∗ denotes statistically significant improvement (measured by t-test with 𝑝-value<0.05) over all baselines.

Table 7. Comparison of different Tree-based models on MSLR-WEB10K.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

LambdaMART

None 0.509 0.493 0.528 0.581 0.747 0.845 0.0835

Randomization 0.501 0.476 0.516 0.573 0.741 0.835 0.0826

CPBM 0.517 0.492 0.530 0.589 0.749 0.845 0.0835

Groundtruth 0.520 0.495 0.538 0.592 0.752 0.851 0.0844
U-rank (Tree) 0.474 0.405 0.467 0.537 0.716 0.912* 0.0909*

U-rank+ (Tree) 0.479 0.412 0.471 0.538 0.717 0.916* 0.0912*
KM (oracle model) 0.710 0.763 0.795 0.809 0.881 0.972 0.0969

∗ denotes statistically significant improvement (measured by t-test with 𝑝-value<0.05) over all baselines.

the generalizability of our methods, taking both NN and Tree models as the ranking model. Though

our models do not always perform the best in regard to relevance-based metrics, especially on

MSLR-WEB10K dataset, it accords with the results in Table 3 and it is explainable. Besides, U-rank+
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Table 8. Comparison of different Tree-based models on Istella-SLETOR.

Ranking model

Relevance-based Utility-based

MAP nDCG@1 nDCG@3 nDCG@5 nDCG@10 # Click CTR

LambdaMART

None 0.772 0.609 0.619 0.675 0.803 0.932 0.0931

Randomization 0.773 0.617 0.628 0.682 0.807 0.943 0.0936

CPBM 0.775 0.623 0.630 0.686 0.809 0.930 0.0938

Groundtruth 0.780 0.627 0.637 0.691 0.812 0.938 0.0941
U-rank (Tree) 0.773 0.623 0.624 0.678 0.806 0.942 0.0947*

U-rank+ (Tree) 0.778 0.629* 0.640* 0.690 0.814* 0.970* 0.0952*
KM (oracle model) 0.993 0.993 0.995 0.995 0.995 1.128 0.1126

∗ denotes statistically significant improvement (measured by t-test with 𝑝-value<0.05) over all baselines.

(Tree) also outperforms U-rank (Tree) on both relevance-based metrics and utility-based metrics,

which indicates the effectiveness of debiasing selection bias.

6 ONLINE A/B TESTING
In order to verify the effectiveness of our proposed model in real-world applications, we conduct

experiments on the data from a recommendation scenario and an online advertising scenario

in a mainstream App store. This App store has hundreds of millions of daily active users who

create hundreds of billions of user logs everyday in the form of implicit feedback such as browsing,

clicking and downloading behaviors.

6.1 Recommendation Scenario
6.1.1 Setups. We conduct A/B testing in a recommendation scenario in a mainstream App store

with multiple sub-scenarios such as “Must-have Apps” and “Novel and Fun”. The proposed model U-
rank is compared with the current production baseline DeepFM [19]. The whole online experiment

lasts 24 days, from May 6, 2020 to May 29, 2020. We monitor the results of A/A testing for the first

seven days, conduct A/B testing for the following ten days, and conduct A/A testing again in the

last seven days. 15% of the users are randomly selected as the experimental group and another

15% of the users are in the control group. During A/A testing, all the users are served by DeepFM

model [19]. During A/B testing, users in the control group are presented with recommendation by

DeepFM, while users in the experimental group are presented with the recommendation by our

proposed model U-rank. Note that the click model of U-rank shares the same network architecture

and parameter complexity with DeepFM in order to verify whether the improvement is brought by

the objective function design of the ranker in U-rank.
To deploy U-rank, we utilize a single node with 48 core Intel Xeon CPU E5-2670 (2.30 GHZ),

400 GB RAM and as well as 2 NVIDIA TESLA V100 GPU cards, which is the same as the training

environment of the baseline DeepFM. For model training, U-rank requires minor changes to the

current training procedure due to the pair-wise loss function. For model inference, U-rank shares

the same pipeline as DeepFM, which means there is no extra engineering work needed in model

inference, to upgrade DeepFM model (or other similar deep models) to U-rank.

6.1.2 Metrics. We examine two metrics in the online evaluation. They are Click-through rate:
𝐶𝑇𝑅 = #𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠

#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠
and Conversion rate: 𝐶𝑉𝑅 = #𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠

#𝑢𝑠𝑒𝑟𝑠
, where # downloads, # impressions and

#users are the number of downloads, impressions and visited users, respectively.

6.1.3 Results. Figure 7 and Figure 8 show the improvement of the experimental group over the

control group w.r.t. CTR and CVR, respectively. We can see that the system is rather stable where

both CTR and CVR fluctuated within 8% during the A/A testing. Our U-rank model is launched to

the live system on Day 8. From Day 8, we observe a significant improvement over the baseline model
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Fig. 7. Online experimental results of click through rate (recommendation scenario).

Fig. 8. Online experimental results of conversion rate (recommendation scenario).

w.r.t. both CTR and CVR. The average improvement of CTR is 19.2% and the average improvement

of CVR is 20.8% over the ten days of A/B testing. These results clearly demonstrate the high

effectiveness of our proposed model in improving the total utility which refers to the number of

downloads in this scenario. From Day 18, we conduct A/A testing again to replace our U-rank model

with the baseline model in the experimental group. We observe a sharp drop in the performance of

the experimental group, which once more verify that the improvement of online performance in

the experimental group is indeed introduced by our proposed model.

6.2 Online Advertising Scenario
6.2.1 Setups. We also conduct A/B testing in an online advertising scenario “Boutique Apps” in

the same App store. In this scenario, each App is related to a benefit which is corresponding to the

price the campaign would pay to the platform if this App is downloaded once. The performance

of a model would be evaluated by how much profit it brings to the platform. In order to compare

the proposed model U-rank+ with the current production baseline model A 9
, we conduct online

experiment for 25 days, from October 21, 2020 to November 14, 2020. We monitor the results of

A/A testing for the first nine days, conduct A/B testing for the following sixteen days. The A/B

testing consists of several phases. In the beginning, 5% of the users are randomly selected as the

experimental group on October 30 (Day 10 in Figure 9). As we observe the positive performance of

U-rank+, we gradually increase the traffic of the experimental group to 17% (Day 15 in Figure 9) and

to 20% (Day 19 in Figure 9). Another 20% of the users are randomly selected as the control group.

During A/A testing, all the users are served byA . During A/B testing, users in the control group are

presented with recommendation by A , while users in the experimental group are presented with

the recommendation by our proposed model U-rank+. Note that the click model of U-rank+ shares

the same network architecture and parameter complexity with A , in order to verify whether the

improvement is brought by the objective function design of the ranker in U-rank+. The deployment

of U-rank+ is the same as U-rank.

6.2.2 Metrics. We examine effective Cost Per Mille: eCPM =
∑

𝑖 𝑏𝑖𝑑𝑖×1𝑖
#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

× 1000 in the online

advertising scenario where for the 𝑖-th instance in the log of the day of testing (referred to as

platform revenue in previous parts), 𝑏𝑖𝑑𝑖 is the bid of the item in the instance, 1𝑖 is the indicator

9
The baseline model is a point-wise CTR prediction model, which is not clearly described due to some commercial concerns.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:26 X. Dai et al.

Fig. 9. Online experimental results of eCPM (online advertising scenario).

function which equals 1 if the 𝑖-th instance is a positive sample, and # impressions is the number of

impressions.

6.2.3 Results. Figure 9 shows the improvement of the experimental group over the control group

w.r.t. eCPM. We can see that the system is stable where the improvement of eCPM fluctuated

within 5% during the A/A testing. The average improvement of the experimental group during

the nine days of A/A testing is −0.91%. Our U-rank+ model is launched to the live system on Day

10. From Day 10, we observe a significant improvement, 5.12%, over the baseline model. However,

the improvement drops to 0.5% on Day 11, then, it increases to 8.72%, 16.41% for the following

two days. The fluctuation of the improvement is caused by the small traffic of the experimental

group. Thus, we increase the traffic to 17% and 20% on Day 15 and Day 19, respectively. We can see

that the improvement of eCPM becomes stable as we increase of traffic of the experimental group.

The average improvement of eCPM is 4.19% over the sixteen days of A/B testing. Considering the

fluctuation of A/A testing, the actual improvement of eCPM is 4.19% − (−0.91%) = 5.1%. These

results clearly demonstrate the high effectiveness of U-rank+ in improving the total utility which

refers to the income of the platform in this scenario.

7 CONCLUSION
In this work, we propose a general graph matching framework for utility-oriented learning to rank

with logged user feedback. By formulating the ranking objective as the maximum-weight matching

on the item-position bipartite graph, we optimize the expected utility directly based on clicks

without any extra assumptions on relevance nor examination. Considering different utility forms in

real world applications, a general weighted form of ranking metric is proposed. We first estimate the

weight of the bipartite graph with a position-aware deep CTRmodel, which models the examination

bias explicitly by taking user context and item attribute into consideration. Besides, a propensity

model is learned in advance and used to correct for selection bias in the logging data, alleviating

the overestimation of examination bias. Then we propose two different solver, Sinkhorn and

Lambdaloss, to solve the maximum-weight matching problem, i.e., to optimize the expected utility.

Sinkhorn algorithm learns a Doubly-Stochastic Matrices (DSM)-based ranking function and solves

the graph matching problem in an end-to-end manner. Lambdaloss solves the matching problem by

learning a scoring function with pairwise permutations, and reduces the complexity in inference

stage from 𝑂 (𝑁 3) to 𝑂 (𝑁 ). Theoretical analysis shows that the lambdaloss objective proposed

in this work is an upper bound of the graph matching objective, and also a natural extension of

previous counterfactual learning to rank objectives. Extensive studies on three benchmark datasets

have shown the effectiveness of our work. We also deploy this ranking framework on two different

application scenarios, including recommendation and online advertising, where we observe a large

utility improvement over the production baselines.
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