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Reinforcement Learning
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A set of autonomous agents that share a common environment 



MARLApplication:AI PlaysMultiplayers OnlineGames

Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, Wang J. MultiagentBidirectionally-Coordinated Nets for Learning to Play StarCraft 
Combat Games. NIPS17 Emergent Communication Workshop.(StarCraftAI beatingFacebookmethods)

https://www.youtube.com/watch?v=kW2q15MNFug

http://v.youku.com/v_show/id_XMjcyMTE0MDkwNA%3D%3D.
html

https://www.youtube.com/watch?v=kW2q15MNFug
http://v.youku.com/v_show/id_XMjcyMTE0MDkwNA==.html


MARLApplication:Bidding Machinein OnlineAdvertising

Advertiser
with ad budget

Environment

auction result̆
user response

bid request 
xt+1

bid request xt bid price at

The goal is to maximise the user responses on displayed ads

Cai, H., K. Ren, W. Zhag, K. Malialis, and J. Wang. "Real-Time Bidding by Reinforcement Learning in Display Advertising." 
In The Tenth ACM International Conference on Web Search and Data Mining (WSDM). ACM, 2017.



MARLApplication: Text Generation

Long Text Generation via Adversarial Training with Leaked Information
LianminZheng, JiachengYang, Han Cai, WeinanZhang, Jun Wang, and Yong Yu
arXiv:1709.08624v1,AAAI-2018

Å The generator is responsible to 
generate the next word, and the 
discriminatoradversariallyjudges 
the generated sentence

Å The discriminator reveals its 
internal state to guide the generator 
more informatively and frequently. 



Difficulty in Multi -agent Learning(MAL)

ÅMALis fundamentally difficult 
ïsince agents not only interact with the 

environment but also with each other 

ÅIf usesingle-agentQlearning by
consideringother agents as a part of the 
environment 
ïSucha settingbreaks the theoretical 

convergence guarantees and makes the 
learning unstable,

i.e., the changes in strategy of one agent would 
affect the strategies of other agents and vice 
versa
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Sequential Decision Making

Includes:

ÅMarkov decision processes
ïone decision maker

ïmultiple states

ÅRepeated games
ïmultiple decision makers

ïone state(e.g.,onenormalform game)

ÅStochastic games (Markov games) 
ïmultiple decision makers

ïmultiple states(e.g.,multiple normalform games)
28/03/2017	 30	

Many well known techniques from reinforcement learning, e.g., value/policy  

iteration can still be applied to solving these games 



Recall:Markov Decision Processes
ÅMDPisa single-agent, multiple state framework
Å A Markov decision process (MDP)  is a tuple, (S, A, T , R), 
ïwhere S is the set of States, 
ïA is the set of actions, 
ïT is a transition function S ×A×{ ҦώлΣмϐΣ 

Å(The transition function defines a probability distribution over next states as a 
ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŎǳǊǊŜƴǘ ǎǘŀǘŜ ŀƴŘ ǘƘŜ ŀƎŜƴǘΩǎ ŀŎǘƛƻƴ), and 

ïR is a reward function S ×! Ҧ wΦ 
Å(The reward function defines the reward received when selecting an action 

from the given state)

Å Solving MDPs consists of finding a policy, ˉ Υ { Ҧ !Σ ƳŀǇǇƛƴƎ ǎǘŀǘŜǎ 
to actions so as to maximize discounted future reward with 
discount factor ɹ



Recall:Matrix Games
ÅMatrix gamesarea multi-agent(player), single state framework
ÅA matrix game or normal-form gameis a tuple (n,A1...n,R1...n), 

where 
ïn is the number of players, 
ïAi is the set of actions available to player i
ï(and A is the joint action space A1 × · · · × An), and 
ïRiƛǎ ǇƭŀȅŜǊ ƛΩǎ ǇŀȅƻŦŦ ŦǳƴŎǘƛƻƴ ! Ҧ wΦ 

ÅThe players select actions from their available set and 
receive a payoff that depends on all ǘƘŜ ǇƭŀȅŜǊǎΩ ŀŎǘƛƻƴǎΦ 
ÅThese are often called matrix games, since the Ri functions can 

be written as n-dimensional matrices

218 M. Bowling, M. Veloso / ArtiýcialIntelligence136(2002)215ï250

Table1

Examplematrix games. Games (a) and (b) are zero-sum games, and (c) is ageneral-sum game

R1 =
1 ī1

ī1 1

R2 = īR1

R1 =

ợ

ụ
0 ī1 1

1 0 ī1

ī1 1 0

Ủ

Ứ

R2 = īR1

R1 =
2 0

0 1

R2 =
1 0

0 2

(a) Matchingpennies (b) Rock-paper-scissors (c) Coordinationgame

i.e.,Aīi = A 1¦¥¥¥¦A iī1¦A i + 1¦¥¥¥¦A n. And weuseůīi to refer to ajoint, possibly

mixed, strategy for theseplayers, i.e.,ůīi ŗPD(Aīi ).
Examplematrix gamesareshown in Table1. Table1(a)showsthematricesfor asimple

two-playergamecalledmatchingpennies. In thisgameeachplayermayselecteitherHeads

or Tails. If the choices are the same, then Player 1 takes a dollar from Player 2. If they are

different,thenPlayer1 givesa dollar to Player 2. The matricesR1 andR2 represent the

payoffs for players1 and 2, with the row andcolumnscorresponding to the two actions

Heads and Tails. Table 1(b) shows the game Rock-Paper-Scissors. In this game players

select an action and a winner is determined by the rules: Paper beatsRock, Scissors beats

Paper, and Rock beatsScissors. The winner, if there is one, takes a dollar from the loser.

Table1(c) showsacoordinationgamewith two players, each with two actions. Theplayers

only receive a payoff when they select the sameaction, but the playershave dif ferent

preferencesasto which actionsthey would preferto agreeon.

Unlike MDPs, it is difýcult even to deýnewhat it meansto ñsolveòa matrix game.

A strategy can only be evaluated if the other playersôstrategies are known. This can be

illu stratedin the matching penniesgame (Table 1(a)). In this game, if Player 2 is going to

playHeads, thenPlayer 1ôsoptimal strategy isto play Heads, but if Player 2 isgoing to play

Tails, then Player 1ôs optimal strategy is to play Tails. So there is no optimal purestrategy

independent of the opponent. Similarly, there is no opponent-independent mixed strategy

that is optimal. What doesexist is an opponent-dependent solution, or set of solutions.This

is calleda best-response.

Deýnition 1. For a game, the best-response function for player i , BRi (ůīi ), is the set of

all strategiesthat areoptimal given theother player(s) play the joint strategyůīi .

Themajor advancementthathasdrivenmuchof thedevelopmentof matrix gamesand

gametheoryis thenotionof a best-responseequilibrium or Nashequilib rium [20].

Deýnition 2. A Nashequilib rium is acollection of strategiesfor all players,ůi , with

ůi ŗBRi (ůīi ).

So, no player can do better by changing strategies given that the other players continue to

follow the equilibrium strategy.

What makes thenotion of equilib rium compelling is that all matrix gameshave a Nash

equilibrium,althoughtheremay bemorethanone.



Recall:Matrix Games



Exercise :2x2 zero-sum game generalsolution

ÅConsider a general 2 × 2 zero-sumgame matrix 

where a, b, c, d are the rewards for player 1 (row player). Thereward
matrix for colplayerisςA.

Åfind the value of the game and at least one optimal 
strategy for each player?
ïStep1, testwhether there is pure strategy

ïStep2, if not, solve by find equalizing strategy (check 
previous slideson learningNE)

For large m¦n m atri ces it is tedious to check each entry of the m atri x to see if it
has the saddle poin t property. It is easier to com pute the m inim um of each row and the
m aximum of each colum nto see if there is a m atch. Here is an exam ple of the m ethod.

row m in

A =

ờ

Ở
ở

3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2

Ỡ

ỡ
Ợ

0
0
0
1

col max 3 2 2 2

row m in

B =

ờ

Ở
ở

3 1 1 0
0 1 2 0
1 0 2 1
3 1 2 2

Ỡ

ỡ
Ợ

0
0
0
1

col max 3 1 2 2

In matrix A , n o row minimum is equal to any column maximum, so there is no saddle
point . However, if the 2 in posit ion a12 w ere changed to a 1, then w ehave matrix B . H ere,
th e minimum of th e fourth row is equal to th e maximum of th e second column; so b42 is a
saddle poin t .

2.2 Solut ion of A l l 2 by 2 M at r ix Games. C onsider th e general 2¦2 game
m atri x

A =
a b
d c

.

Tosolve this game (i.e. toýnd the value and at least one optimal strategy for each player)
w eproceed as follows.

1. Test for a saddle poin t.

2. I f there is no saddle poin t, solve by ýndin g equalizin g strategie s.

W enow prove the method of ýnding equalizing strategies of Sect ion 1.2 works when-
ever there is no saddle point by deriving the value and the opt imal strategies.

A ssume th ere is no saddle point. If aůb,t hen b < c,a s otherwise b is a saddle poin t .
Since b < c,w e must have c > d,a s otherwise c is a saddle poin t. Cont in uin g thus, we see
th at d < a and a > b. I n other words, if aůb, t hen a > b < c > d < a. B y symmetry, if
aŮb, t hen a < b > c < d > a. T his shows that

If there is no saddle point, then either a > b, b < c, c > d and d < a, o r a < b, b > c,
c < d and d > a.

In equations (1), (2) and (3) belo w , we develop formulas for the optim al strategies
and value of the general 2¦2 game. If I chooses theýrst row with probability p (i .e. uses
th e mixed strategy (p,1īp)), we equate his averageretu rn w hen II usescolumns 1 and 2.

ap+ d(1 īp) = bp+ c(1 īp).

Solving for p,w eýnd

p =
cīd

(aīb)+ (cīd)
. (1)

II 1͠0

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Exercise :2x2 zero-sum game generalsolution

ÅConsider a general 2 × 2 zero-sum game matrix 

where a, b, c, d are the rewards for player 1 (col player)
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ïSince b < c, we must have c > d, as otherwise c is a pure 

strategy. Continuing thus, d<a and a>b. 
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II 1͠0



Exercise :2x2 zero-sum game generalsolution

ÅConsider a general 2 × 2 zero-sum game matrix 

where a, b, c, d are the rewards for player 1 (col player)

ÅStep2: optimal strategies and value of the game

ïPlayer 1 chooses the first row with probability p (i.e. 
ǳǎŜǎ ǘƘŜ ƳƛȄŜŘ ǎǘǊŀǘŜƎȅ όǇΣ м ҍ ǇύύΣ ǿŜ ƘŀǾŜ

ïwhich gives 

ïtƭŀȅŜǊ мΩǎ ŀǾŜǊŀƎŜ ǊŜǘǳǊƴ(the valueof the game)using 
this strategy 
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II 1͠0
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II 1͠0

Since there is no saddle poin t , (aīb) and (cīd) are either both posit ive or both negative;
hence, 0 < p< 1. P layer IĽsaveragereturn using this strategy is

v = ap+ d(1 īp) =
acībd

aīb+ cīd
.

If I I chooses theýrst colum n w it h probabilit y q (i .e. uses th e str ategy (q,1īq)), weequate
his averagelosses w henI uses rows 1 and 2.

aq+ b(1 īq) = dq+ c(1 īq)

H ence,

q =
cīb

aīb+ cīd
. (2)

A gain, since th ere is no saddlepoint, 0 < q< 1. P layer I IĽsaverageloss using this strategy
is

aq+ b(1 īq) =
acībd

aīb+ cīd
= v, (3)

th e same value achievable by I. This shows th at th e gamehas a value, and th at th e players
have optimal st rategies. (something the minimax theorem says holds for all ýnite games).

E xample 2.

A =
ī2 3

3 ī4

p =
ī4ī3

ī2ī3ī4ī3
= 7/ 12

q = same

v =
8ī9

ī2ī3ī4ī3
= 1/ 12

E xample 3.

A =
0 ī10
1 2

p =
2ī1

0 + 10 + 2ī1
= 1/ 11

q =
2 + 10

0 + 10 + 2ī1
= 12/ 11.

B ut q m ust be between zero and one. What happened? The trouble is weľforgot to test
th is matr ix for a saddle point, so of course it has oneĿ. (J . D. Williams T he C ompleat
Strategyst R evised Edit ion, 1966,M cG raw-Hill, page56.) Thelo wer left corner is a saddle
point . So p = 0 and q = 1 are opt imal strategies, and the value is v = 1.

2.3 Rem oving D om inated Strat egies. Som etim es, large matri x games m ay be
reduced in size(hopefully to the2¦2 case) by delet ing rowsand columnsthat areobviously
bad for the pla yer who uses them.

D eýn it ion . W esay the i th row of a matr ix A = (aij ) domin ates th e kth row if
aij ůak j fo r all j . W e say the i th row of A strictly domin ates th e kth row if aij > ak j

fo r all j . S imilarly, the j th column of A dom inates (stric t ly dom inates) the kth column if
aij Ůaik (r esp. aij < aik ) f or all i .

II 1͠1



Exercise :2x2 zero-sum game generalsolution

Å But q must be between zero and one. What happened? 
ï¢ƘŜ ǘǊƻǳōƭŜ ƛǎ ǿŜ άŦƻǊƎƻǘ ǘƻ ǘŜǎǘ ǘƘƛǎ ƳŀǘǊƛȄ ŦƻǊ ŀ ǇǳǊŜ ǎǘǊŀǘŜƎȅΣ ǎƻ ƻŦ ŎƻǳǊǎŜ ƛǘ 
Ƙŀǎ ƻƴŜέΦ 

ï The lower left corner is pure strategy. So p = 0 and q = 1 are optimal strategies, 
and the value is v = 1. 

Since there is no saddle poin t , (aīb) and (cīd) are either both posit ive or both negat ive;
hence, 0 < p< 1. P layer IĽsaveragereturn using this strategy is

v = ap+ d(1 īp) =
acībd

aīb+ cīd
.

If I I chooses theýrst colum n w it h probabilit y q (i .e. uses th e str ategy (q,1īq)), we equate
his averagelosses w henI uses rows 1 and 2.

aq+ b(1 īq) = dq+ c(1 īq)

H ence,

q =
cīb

aīb+ cīd
. (2)

A gain, since th ere is no saddlepoint, 0 < q< 1. P layer I IĽsaverageloss using this strategy
is

aq+ b(1 īq) =
acībd

aīb+ cīd
= v, (3)

th e same value achievable by I. This shows th at th e game has a value, and th at th e players
have optimal st rategies. (something the minimax theorem says holds for all ýnite games).

E xample 2.

A =
ī2 3

3 ī4

p =
ī4ī3

ī2ī3ī4ī3
= 7/ 12

q = same

v =
8ī9

ī2ī3ī4ī3
= 1/ 12

E xample 3.

A =
0 ī10
1 2

p =
2ī1

0 + 10 + 2ī1
= 1/ 11

q =
2 + 10

0 + 10 + 2ī1
= 12/ 11.

B ut q m ust be between zero and one. What happened? The trouble is weľforgot to test
th is matr ix for a saddle point, so of course it has oneĿ. (J . D. Williams T he C ompleat
Strategyst R evised Edit ion, 1966,M cG raw-Hill, page56.) The lo wer left corner is a saddle
point . So p = 0 and q = 1 are opt imal st rategies, and the value is v = 1.

2.3 R em oving D om inated S trat egies. Som etim es, large matri x games m ay be
reduced in size (hopefully to the 2¦2 case) by delet ing rowsand columnsthat areobviously
bad for the pla yer who uses them.

D eýn it ion . W esay the i th row of a matr ix A = (aij ) domin ates th e kth row if
aij ůak j fo r all j . W e say the i th row of A str ictly domin ates th e kth row if aij > ak j

fo r all j . S imilarly, the j th column of A dom inates (st ric t ly dom inates) the kth column if
aij Ůaik (r esp. aij < aik ) f or all i .

II 1͠1
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Recall:Repeated Games

ÅIn a (typical) repeated game, 
ïplayers play a normal-form game (aka. the stage 

game), 

ïthen they see what happened (and get the reward),

ïthen they play again,

ïetc.

ÅCan be repeated finitely or infinitely many times

ÅMultiple agents, but still single stage
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TheOriginof StochasticGames

ÅShapley 1953:
άLƴ ŀ ǎǘƻŎƘŀǎǘƛŎ ƎŀƳŜ ǘƘŜ Ǉƭŀȅ ǇǊƻŎŜŜŘǎ ōȅ 
steps from position(state) to position(state), 
according to transition probabilities controlled 
Ƨƻƛƴǘƭȅ ōȅ ǘƘŜ ǘǿƻ ǇƭŀȅŜǊǎέ 

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of 

sciences 39.10 (1953): 1095-1100.

States



Stochastic Games
ÅA stochastic game has multiple states and multiple agents
ïEach state corresponds to a normal-form game

ïAfter a round, the game randomly transitions to another state

ïTransition probabilities depend on state and joint actions taken by all
agents

ÅTypically rewards are discounted over time

2, 2 0, 3

3, 0 1, 1

1, 1 1, 0

0, 1 0, 0

1, 0 0, 1

0, 1 1, 0.6

.4

.3

.5

.2

Å1-state stochastic game = (infinitely) repeated game

Å1-agent stochastic game = Markov Decision Process (MDP)

State1

State2

State3

Statetransition

Player1

Player2



Definition of StochasticGames
ÅDefinedby a tuple (n,S,A1...n, T,R1...n), where 
ïn is the number of players, 

ïS is the set of states, 

ïAi is the set of actions available to player i
Å(and A is the joint action space A1 × ··· × An), 

ïT is the transition function S × A ×{ Ҧ ώлΣмϐΣ ŀƴŘ 

ïRi is the reward function for the ith agent S ×! Ҧ wΦ 

ÅDifferentwith MDP:
ïthere are multiple players selecting actions and 

ïthe next state and rewards depend on the joint 
actions

ïEachplayer has its own separate reward function. 



Evolutionof StochasticGames

ὴ ὴ ὴ
ίρ ίρ ίρ

Agent1

Agentn

Agent1, AgentнΣΧΣ !ƎŜƴǘn Agent1, AgentнΣΧΣ !ƎŜƴǘn

r1 ίρȟὥ

rn ίρȟὥ rn ίςȟὥ

r1 ίςȟὥ r1 ίὯȟὥ

rn ίὯȟὥ


