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A set of autonomous agents that share a common environment



MARL Application: Al Plays Multiplayers Online Games
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> 3 - - 8 (2) Multiagent policy networks with grouping (b) Multiagent Q networks with reward shaping

https://www.youtube.com/watch?v=kW?2g15MNFug
http://v.youku.com/v show/id XMjcyMTEOMDkwNA%3D%3D.

html
Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, Wang J. Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft
Combat Games. NIPS17 Emergent Communication Workshop. (StarCraft Al beating Facebook methods)


https://www.youtube.com/watch?v=kW2q15MNFug
http://v.youku.com/v_show/id_XMjcyMTE0MDkwNA==.html

MARL Application: Bidding Machine in Online Advertising
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The goal is to maximise the user responses on displayed ads

Cai, H., K. Ren, W. Zhag, K. Malialis, and J. Wang. "Real-Time Bidding by Reinforcement Learning in Display Advertising."
In The Tenth ACM International Conference on Web Search and Data Mining (WSDM). ACM, 2017.



MARL Application: Text Generation

| Discriminator D, j| LeakGAN | A woman holding an umbrella while standing against a sidewalk.
f gant : 1ding ag
Current ) | [REESHE softmax | A bathroom with a toilet and sink and mirror.
Sentence Bxtractor  —»{glEgiie 7 Classification l . : . :
. : () ; omoidt. g1 : A train rides along the tracks in a train yard.
¢ F(; 'Leaked sigmo1d(- ; . . .
L __(_ffi o _iinformation_ e A man with a racket stands in front of a shop window.
(e N 0 A red and white photo of a train station.
enerator Gy Manager Feature | .
| (s™)  ° subgoal | The bathroom is clean and ready for us to use .
| Msi il :0,) L | A man is walking with his dog on the boardwalk by the beach.
| Worker Action Linear | A man in a shirt and tie standing next to a woman.
| (LSTM) Sub-goal Projection | A 1 fl t ﬁll d th b h 1 f
Last Word | 00 iw’ Vs | couple of luggage cart filled with bags on a shelf.
M I Action Softmax l
e | Embedding Y Sample | 7 . .
With no BP L o 9, _______________ _)l Next Word 10.5 TeXt. Lengt-hzo T T TeXt Length4q
Xi+1 3 100 | 12
 The generator is responsible to S oosh 1l
generate the next word, and the S oot " :
discriminator adversarially judges 3 &5
U 80+ L
the generated sentence 2 . °
* The discriminator reveals its g | 8 |
internal state to guide the generator 65 . . . . ; . . ; .
. . 0 50 100 150 200 250 0 50 100 150 200
more informatively and frequently. Training epoch Training epoch

Long Text Generation via Adversarial Training with Leaked Information
Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu
arXiv:1709.08624v1, AAAI-2018



Difficulty in Multi-agent Learning(MAL)

* MAL is fundamentally difficult

— since agents not only interact with the
environment but also with each other b

* |If use single-agent Q learning by
considering other agents as a part of the ( (
environment \\ W

— Such a setting breaks the theoretical g \S;/:f/‘/ !

convergence guarantees and makes the
learning unstable,

i.e., the changes in strategy of one agent would
affect the strategies of other agents and vice

Versa




Sequential Decision Making

Includes:

 Markov decision processes
— one decision maker
— multiple states
* Repeated games
— multiple decision makers
— one state (e.g., one normal form game)
e Stochastic games (Markov games)

— multiple decision makers
— multiple states (e.g., multiple normal form games)

MDPs
- Single Agent
- Multiple State

Stochastic Games
- Multiple Agent
- Multiple State

10



Recall: Markov Decision Processes

* MDP is a single-agent, multiple state framework

* A Markov decision process (MDP) is a tuple, (S, A, T, R),
— where S is the set of States,
— A'is the set of actions,

— Tis a transition function S xAxS >[0,1],

* (The transition function defines a probability distribution over next states as a
function of the current state and the agent’s action), and

— Ris a reward function S x A = R.

* (The reward function defines the reward received when selecting an action
from the given state)

e Solving MDPs consists of finding a policy, m: S - A, mapping states
to actions so as to maximize discounted future reward with
discount factor vy




Recall: Matrix Games

 Matrix games are a multi-agent (player), single state framework
* A matrix game or normal-form game is a tuple (n,A; ,R; ),
where
— nis the number of players,
— A is the set of actions available to player i
— (and A'is the joint action space A; x - - - x A ), and
— R is player i’s payoff function A - R.
* The players select actions from their available set and
receive a payoff that depends on all the players’ actions.

* These are often called matrix games, since the R. functions can
be written as n-dimensional matrices

Example matrix games. Games (a) and (b)rare ZEro-sum games, and (c) is a general-sum game

| —

0-1 1 20

Ry = [_i i] p=lb o1 0-1l 1= 1o1]
-1 1 0 o

Ry = -R1 Ry = - R 2= 109

(@) Matching pennies (b) Rock-paper-scissors (c) Coordination game



Recall: Matrix Games

non- conflicting interests

ST T

general-sum games

many Nash equilibrium:
quadrafic programming

Team games

conflicting interests

Zero-sum games

one Nash equilibrium:
linear programming

coordination games

Prisoner’s Dilemma

Bach or Stravinsky

Chicken Rock-paper-scissors

Matching pennies




Exercise : 2x2 zero-sum game general solution

* Consider a general 2 x 2 zero-sum game matrix

q= (2 b
d c
where a, b, ¢, d are the rewards for player 1 (row player). The reward
matrix for col player is —A.

* find the value of the game and at least one optimal
strategy for each player?
— Step 1, test whether there is pure strategy

— Step 2, if not, solve by find equalizing strategy (check
previous slides on learning NE)

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Exercise : 2x2 zero-sum game general solution

 Consider a general 2 x 2 zero-sum game matrix
_(a b
= (0 0)

where a, b, ¢, d are the rewards for player 1 (col player)
e Step 1:in the situation there is no pure strategy:

— Ifa>b, then b <, as otherwise b is a pure strategy.

— Since b < ¢, we must have ¢ > d, as otherwise cis a pure
strategy. Continuing thus, d<a and a>b.

— In other words, if a>b, then a>b<c>d<a. By symmetry, if a<b,
then a<b>c<d>a.

* So the condition for no pure strategy:
— eithera>b,b<c,c>dandd<a, or
— a<b,b>c, c<d and d>a.



Exercise : 2x2 zero-sum game general solution

* Consider a general 2 x 2 zero-sum game matrix

_(a b
= (5 0)
where a, b, ¢, d are the rewards for player 1 (col player)

e Step 2: optimal strategies and value of the game

— Player 1 chooses the first row with probability p (i.e.
uses the mixed strategy (p, 1 — p)), we have

apt dl - p = pt+t cU - p).

. . B c— d
— which gives r= —5+—=—5-

— Player 1’s average return (the value of the game) using

this strate _ _ o . _ac— bd
gY v=ap+ dll - p) = R R




Exercise : 2x2 zero-sum game general solution

-4 -3
_ _ 2
Example 1 P v — 7/1
A = ~ 2 3 = sam e
3 -4 a -
- - 119
V= 3o3oa-3 M

2~ 1
Pamele (o —10) Pe oo z-1 M

19 2+ 10
- 12/11.
7 o+1o+2—1@

* But g must be between zero and one. What happened?

— The trouble is we “forgot to test this matrix for a pure strategy, so of course it
has one”.

— The lower left corner is pure strategy. So p =0 and q = 1 are optimal strategies,
and the value isv = 1.




Recall: Repeated Games

 In a (typical) repeated game,
— players play a normal-form game (aka. the stage
game),
— then they see what happened (and get the reward),
— then they play again,
— etc.
« Can be repeated finitely or infinitely many times

* Multiple agents, but still single stage
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The Origin of Stochastic Games

VoL. 39, 1953 MATHEMATICS: L. S. SHAPLEY 1095

STOCHASTIC GAMES*

States - By L. S. SHAPLEY

PRINCETON UNIVERSITY

Communicated by J. von Neumann, July 17, 1953

j'ntroduction .5-In a stochastic game the play proceeds by steps from
| to position, according to transition probabilities controlled ]omtly
by the two players. ass niite num S,

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of
sciences 39.10 (1953): 1095-1100.



Stochastic Games

« A stochastic game has multiple states and multiple agents
— Each state corresponds to a normal-form game
— After a round, the game randomly transitions to another state
— Transition probabilities depend on state and joint actions taken by all

agents
« Typically rewards are discounted over time
1’ 1 1’ O State 2
0,1/0,0
Player 1
1,010, 1
State 3

State 1 State transition .6 O, 1 1, O

- 1-state stochastic game = (infinitely) repeated game
- 1-agent stochastic game = Markov Decision Process (MDP)



Definition of Stochastic Games

* Defined by a tuple (n, S, A
— n is the number of players,
— Sis the set of states,

— A is the set of actions available to player i
* (and Ais the joint action space A; x --- x A ),

— T is the transition function S x Ax S - [0,1], and
— R is the reward function for the ith agent S x A - R.

e Different with MDP:

— there are multiple players selecting actions and

— the next state and rewards depend on the joint
actions

— Each player has its own separate reward function.

1...n” T’ Rl,_,n)) Where



Evolution of Stochastic Games

Agent 1 rl(S].’ a(l)) rl(SZ, a(z)) rl(Skr a(k))
Agent n I’n(51» a(l)) I’n(SZ, Cl(z)) rn(Sk' Cl(k))
p(pan)  Plfrac) p(prian)
S1 > Sl > ... > Sl >
Ay An) = Ak
= (5,095 5---5a, ) = (A, ,0yp -r ;)

Agent 1, Agent 2,..., Agent n Agent 1, Agent 2,..., Agent n



Evolution of Stochastic Games

A natural extension of MDPs to multiple agents:
Each state in a stochastic game can be X, ,a(k))
viewed as a matrix game with the payoff |___
to player i of joint action a, in state s

determined by r,(s,a) \

l N\

aq) Aoy = Aix)
= (5,095 5---5a, ) = (A, ,0yp -r ;)

Agent 1, Agent 2,..., Agent n Agent 1, Agent 2,..., Agent n



Stochastic Games vs. MDP

 |f all but one player in a stochastic game play a
fixed, then the problem for the remaining
agent reverts back to an MDP.

— This is because fixing the other agents’ policies,
even if stochastic, makes the transitions
Markovian, depending only on the remaining
player’s actions.



Evolution of Stochastic Games

An extension of matrix games to multiple states:

Agent1 [ (51' a(l)) ry After playing the matrix game and receiving the
payoffs, the players are transitioned to another

state (or matrix game) determined by their joint

action
Agent n rn(Sl' a(l)) rn SO2Y) Fa(S s («L(k)}
’{ /
p(+x..a0)
> Sl > ...
i
) Aoy = Ak
= (5,095 5---5a, ) = (A, ,0yp -r ;)

Agent 1, Agent 2,..., Agent n Agent 1, Agent 2,..., Agent n



Evolution of Stochastic Games

We can see that stochastic games then contain both
Agent 1 "1(51» a(l)) ry MDPs (n = 1) and matrix games (|S| = 1) as subsets of
the framework.

Agent n rn(Sl’ a(l)) I‘n(SZ, a(z)) rn(Sk’ a(k))
p(o‘xl,a(l)) p(.‘xz,a(z)) p(.‘xk,a(k))
S1 > Sl > ... > Sl >
A Aoy = Ak
= (5,095 5---5a, ) = (A, ,0yp -r ;)

Agent 1, Agent 2,..., Agent n Agent 1, Agent 2,..., Agent n



Evolution of Stochastic Games

Agent1 [, (Sl’ a(l)) Iy (SZI a(Z))
Agent n I‘n(Sl,Cl(l)) I’n(SZ,Cl(Z))
P(-‘xl,a(l)) p(-‘xz,a(z))
Sl > Sl > ...

.

d) Aoy =

= (5,095 5---5a, )

Agent 1, Agent 2,..., Agent n

r 1_(5 ko a(k))

ro(Sp Q)

T

p("xkaa(m)

)Sl

|

Ay
=(a,;,05; 5,0, )

Agent 1, Agent 2,..., Agent n



Evolution of Stochastic Games

The goal is to determine a course of action for a player:

Agent1l [ (51’ ( 1. Specifica.lly, Iea.rn a stationary, though possibly » a(k))
stochastic, policy, m: S x A - [0, 1], that maps |- -

states to a probability distribution over its

actions
agentn [ (S, ¢ 2. The goal is to find such a policy that maximizes | a(k))
the player’s discounted future reward with
discount factory .
p\o|x1,a(1)) p\a|x2,a(2)) p(.‘xk,a(k))
Sl > 1 > ..o > Sl <
ag, An) = Ak
= (5,095 5---5a, ) = (A, ,0yp -r ;)

Agent 1, Agent 2,..., Agent n Agent 1, Agent 2,..., Agent n



Example: Pollution Tax Model

Two firms contribute to the emission of certain
pollutant.

The government can detect only the combined
emissions, and only if it is high.

The Profit Matrix (no tax version):

Profit Dirty

Clean (3.,8)
Dirty (6.7)

What is the Nash Equilibrium?




Example: Pollution Tax Model

e Suppose Gov. added Tax (Two-state Stochastic Game)

(state 1: no tax)

Profit |

What is the Nash Equilibrium?



Example: Pollution Tax Model

e Suppose Gov. added Tax (Two-state Stochastic Game)

(state 1: no tax)

Deterministically

PrOfiT . . stay in state 1
~__— trans. pr.

Deterministically
move to in state 2

What is the Nash Equilibrium?



Example: the game of Dare

* Player 1, the leader, and Player 2, the

challenger, simultaneously “pass” or pass dare
“dare”. 0 - pass 0 1
— If both pass, the payoff is zero (and the dare 3 =67

game is over).

— |If player 1 passes and player 2 dares,
player 1 wins 1

— If player 1 dares and player 2 passes, where -G'represents the
player 1 wins 3 game with the roles of

— If both dare, the basic game is played the players reversed. (Its
over with the roles of the players matrix is the negative of
reversed the transpose of the

* (the leader becomes the challenger and matrix G.) The v-alue of
vice versa). -G'is the negative of the

— If the players keep daring forever, let the value of G.

payoff be zero.

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Example: the game of Dare

* |f vrepresents the value of G, thenv
> 0 because of the top row.

- pass 0 1
— Therefore the matrix for G with -G’ dare \ 3 -¢G7
replaced by —v does not have a pure where ~GTrepresents the
strategy, and we have game with the roles of

the players reversed. (Its
0 1
y= Val
3 —v

matrix is the negative of
— which gives v? + 4v - 3 =0.

the transpose of the
matrix G.) The value of
— The only nonnegative solution is
v=A/7-2.

pass dare

—-G'"is the negative of the
value of G.

— The optimal strategy for player 1 Goneral (a b)

is((5- V7)/3,(7 -2)/3) and the 22 zero- d c

sum game

optimal strategy for player 2is(3- | _ . ;q- ,- 9~

\/7’\/7_2). a— b+ c—d



Genera [ _ a b
Exercise: Stochastic e A= (d c)

Movement Among Games v=apt ==

* Suppose we allow the choice of the next game played
to depend not only upon the pure strategy choices of
the players, but also upon chance

* Let G, and G, be related as follows:

1 1 2 1
leo+ L) 1 26,+ L(=2) 0

— 2 2 — 3 3
G ( 9 o) G2 ( 0 -1

 The game must eventually end (with probability 1).
— the players could not play forever even if they wanted to

— when they choose the first row and first column forever,
eventually the game would end with a payoff of 0 or -2

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



General b
. . solution of 14 = ( a )
Exercise: Stochastic oo d ¢

ac— bd
Movement Among Games v=apt dl=p = —————
¢ = (%0225(0) (1)) ¢, - <§01+0§<—2) _01>

* Tosolve, letv,=Val(G, ) fori=1, 2.

* ThenO<v,<1and-1<v, <0, soneither game has a pure
strategy. Hence,

1 4
- a2 1) _
%] Val( 9 O) 5= 1, and
2y - 2 20 - 1)
_ =5 0\ _ _2U-w)
1) Val( 0 _1) 5= o
T hus
4 26-2n)
= = )
! 6+ 20l 16— 7y

 This leads to the quadratic equation, 7v2;—20v, +10 =0,
with solution, v, = (10-v30)/7.

* Alsov, =-(2v/30 — 10)/5
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Classification of Stochastic Games

e Zero-sum stochastic game: all of the states
must define a zero-sum matrix game and

* Team stochastic game: all of the states must
define team matrix games - their reward is the
same for every joint action

* The one that do not fall in any of these
categories are generally called general-sum
stochastic games



State Value in Stochastic Games

e Similar to MDP, the state value of a SG is
Vin(S)
= E{ZkSov r(t + k+ 1) |s; = s}
= E {r(t + D+y TS v r(t + k +2) |s, = s}
= ) m(als) ) p(s'ls, (s, @) + VEZEZ VFr(t + k +2) [sesr = 5}

a

B z m(als) Z p(s’ls, )[r(s’, a) + V" (s)]

a

ni(s|a) is the probability of choosing joint action a in state s

* However, SG state values must defined for each agent and the
expected value depends on the joint policy and not on the
individual policies of the agents

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1). Cambridge: MIT press.



State Value in Stochastic Games

e Similar to MDP, the state value of a SG is
V7 (s) = EAZiSover(t + k + 1) |s; = s}

* The total expected payoff to either player is bounded
by

M
Vi(s) < =y M = rl_nsaédri (s, a)l.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1). Cambridge: MIT press.



Game at each state

We use game G) at each state s

G = (ri (s,a;,a_;) + yz p(s'|s,a;,a_;) G(S’)>
S/

In contrast to normal-form game, a payoff does not
end the game.

After a payoff is made, it is then decided at
random whether the game ends with probability
(1-y) and,

if not, which state should be played next.

1 1 2 1
Example: _ (202t 70 1 _(561+ 562 0
P o ( 2 0 & 0 -1



Value Iterations in SG

* Theorem (SG). (Shapley (1952)) Each game G has

a value, V(s). These values are the unique solution
of the set of equations,

V(s) =Val (ri(s, a;,a_;) + yz p(s'ls,a;,a_;) V(s)> fors €5

» Each player has a stationary optima
strategy in state s with matrix

mixed

GO W) = ("‘i(S; a;,a_;)+ )’z p(s'ls,a;,a_;) V(S)P
where V represents the values at different s ates, V =

(V(s),...)

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of
sciences 39.10 (1953): 1095-1100.



Value Iterations in SG

* Shapley’s value iterations  shapley, Lioyd S. “Stochastic

games." Proceedings of the national academy

1. Initialize ¥ arbitrarily. of sciences 39.10 (1953): 1095-1100.

2. Repeat,

(a) For each state, s € &, compute the matrix,

GOW) = (s a,a) + )/z p(s'ls,a,a) V(s)
S’

(b) For each state, s € S, update V/,
V(s) « Val(G® (V)

* Val operator solves the matrix game and find the value
of the game (in Nash Equilibrium), using e.g. linear
programing

Compared to VI in MDP, the “Max ” operator replaced by the “Val” operator

Bowling, Michael, and Manuela Veloso. An analysis of stochastic game theory for multiagent reinforcement learning. No. CMU-CS-00-165.
Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science, 2000.



Player 1 receives
payoff 1 and with
3/5 chance to play
the game again

A Simple Example

* Consider the following 2x2 zero-sum
stochastic game with just one state, call it G

o= (112 2260)

* From Player 2’s viewpoint, column 1 is better
than column 2 in terms of immediate payoff,

* but column 2 is more likely to end the game
sooner than column 1, so that it should entail
smaller future payoffs.

* Which column should he choose?

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



General a b
solution of A =
2x2 zero- d C

sum game

A Simple Example| .- ... s-p- 2 x

a—- b+ c— d]

 Assume that all strategies are active (no pure strategy) - must check
when we are finished to see if the assumption was correct. Then

Val 1+ @B)v 3+ AH)v
TR ws)r 2+ @5y

0+ @5nB+ B - 1+ BBne+ 25y _
1+ @H)v+ 3+ AB)v-1-QBH)v-2- 2/5H)v

1+ v= (@2,25)

* Thisleadsto ©,25)/* = 1which gives two possible solutions v =+ /25/2.

* Since the value is obviously positive, we must use the plus sign. Thisis v
= (5/2)/2 = 3.535. Thus the matrix above becomes

va va
1+ G2y 2 3+ (1L2) 2
1+2 2 2+ 2

— The optimal strategy for Player 1isp = (v2 - 1,2 -+/2)=(.414, .586), and
— the optimal strategy for Player 2 is q = (1 - V2 /2,2 /2) = (.293, .707).

* Since these are probability vectors, our assumption is correct and
e Vv =(5/2)+/2is the value of the stochastic game.

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Value Iteration

* Shapley proves that v (s) converges to the true
value, v(s), of the stochastic game starting at s

— First, the convergence is at an exponential rate:
the maximum error goes down at least as fast as
yn

— Second, the maximum error at stagen + 1 is at
most the maximum change from stagenton +1
multiplied by y/(1 - y)

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of
sciences 39.10 (1953): 1095-1100.



Exercise: Value Iteration

e Let us take an example of a 2x2 zero-sum stochastic
game with two states. The corresponding games G*/
and G2 are related as follows.

(1)
¢ (1 L AGD)

taom) o= (T L)
+ .

4 1+ .5G2)

e.g., in state 1, if choosing (row2,col1), then player 1 receives reward 1 and with 0.4 chance

moves to state 2.

 What are the values of the game in states 1 and 2,
respectively?

 What are the optimal strategies for players in states 1

and 2, respectively?

General a
solution of A =

2x2 zero- d
sum game

v=apt+ dl - p) =

)

ac— bd

a— b+t c—d

VI update rule:

V(s) =Val (Ti(S; a;,a_;) + Vz p(s'|s,a;, a_;) V(S)j
S/ /

\




Exercise: Value Iteration

Using vg = (0,0) as the initial guess, we find v; = (2, —2), since

1}1(1):\@1(‘1L g>:2 v1(2):Val<_O4 15)22.

The next iteration gives

4.6 —.8 1 =5
v2(1) = Val( 5 4 )—2.0174 v2(2)—Val(4 0 ) = —2.

Continuing, we find

v3(1) = 2.0210 v3(2) = —1.9983
va(l) =2.0220  wa(2) = —1.9977
vs(1) = 2.0224  v5(2) = —1.9974
ve(1) = 2.0225  v5(2) = —1.9974

The smallest stopping probability is .5, so the rate of convergence is at least (.5)" and the
maximum error of vg is at most .0002.

General a
solution of A =

2x2 zero- d
sum game

v=ap+ dl-p =

)

ac— bd

a—- b+ c— d]

VI update rule:

V(s) =Val (Ti(S aj,a_;) + )’ZP(S'|S a;,a_;) V(S))
/\

Game Theory, Second Edition, 2014 Thomas S\ Ferguson Mathematlcs Department, UCLA



Exercise: Value Iteration

* The optimal strategies using v, (time step 6)
are easily found.
— For game G, the optimal strategies are

« p\1) =(.4134, .5866) for Player 1 and
e q¥ =(.5219, .4718) for Player 2

— For game G, the optimal strategies are
« p2) =(.3996,.6004) for Player 1 and
« q? =(.4995,.5005) for Player 2.

Game Theory, Second Edition, 2014 Thomas S. Ferguson Mathematics Department, UCLA



Policy Iterations (Pollatschek & Avi-ltzhak )

e Just as Shapley’s algorithm is an extension of value
iteration to SG, Pollatschek & Avi-ltzhak introduced an
extension of policy iteration

1. Imtialize 1" arbitrarly.
2. Repeat,
pi  —  Solve; [G4(V)]
Vis) « KE {nytrt|30 = S,[Ji} :

* Each player selects the equilibrium policy according to
the current value function

* The value function 1s then updated based on the actual
rewards of following these policies

Pollatschek, M. A., and B. Avi-ltzhak. "Algorithms for stochastic games with geometrical interpretation." Management Science 15.7 (1969): 399-415.



Fined-grained Definition of Strategies

* For agent i, a deterministic strategy specifies a choice
of action for i at every stage of every possible history

* A mixed strategy is a probability distribution over
deterministic strategies

* Several restricted classes of strategies:

— As in dynamical games, a behavioural strategy is a mixed
strategy in which the mixing take place at each history
independently

— A Markov strategy is a behavioural strategy such that for
each time t, the distribution over actions depends only on
the current state

e But the distribution may be different at time tthan attime t'# t

— A stationary strategy is a Markov strategy in which the
distribution over actions depends only on the current state
(not on the time t)



Best-response Learners

* A best-response policy for player i is optimal
with respect to some joint policy of the other
players:

m; € BR,(m_;)
where 1t_; is the joint policy of other agents

* ; € BRi(mr_;)if and only if:

[t —1

Vs € S, Vfﬁn S Vi<ni ™



Nash Equilibrium Learners

* A Nash equilibrium in SG is a collection of
policies, one for each player,

— so that all of this policies are best-response
policies and

* no player can do better by changing its policy

Vi=1.nT; € BR;(12;)
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Equilibrium Learners

* Equilibrium Learners aim to find policies which
are Nash equilibria for the stochastic game

— as it is hard to find such equilibria, they focus on a
smaller class of problems, for example zero-sum
games or two—person general-sum.

* The advantage of finding the Nash equilibrium is
that the agent learns a lower bound for
performance and,

— in this situation, it becomes fairly independent of the
policies being played by the other agents

— it will get at least the amount of return which
corresponds to the equilibrium



Q-value in Stochastic Games

* Similar to MDP, the Q value of a SG is

Qi (s,a)
=E{XtSvFr(t+k+1)|s; =s,a; = a}
= En{r,(t + D+y XiS vir(t + k + 2) |St = 5,0 = a}

- Z p(s'ls, A)[r(s', @) + YEAZEZ vFr(t + k +2) |seqq = 5,0, = af]
— z p(s'|s, )[r(s’, a) + yVT(s")]

* 1i(s|a) is the probability of choosing joint action a in
state s

* The individual Q-values also depend on the actions
of all the players.



Equilibrium Learners

* Generally, a solution for an equilibrium learner
would be a fixed pointin * = (7], m~;) of the
following system of equations:

Vieci.n Qi(s,a) =r(s,a) +y X p(s'|s,a)V](s)

— where V" (s") represents the equilibrium value for
agent i when the joint- policy being played is the Nash
equilibrium mt* and

— is computed with respect to the Q-values.

— This is similar to a Bellman optimality equation except
for the way the state value function is computed.



Nash-Q: general equilibrium learner

* Nash-Q addresses two-player general-sum
games

— quadratic programming is used for computing
general-sum equilibrium

— theoretical limitation on single equilibrium only

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic
games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Nash Q: general equilibrium learner

* The Q-function could be estimated through a stochastic
approximation procedure very similar to standard Q-learning:

Initialize (s, a) arbitrarily

Initialize s

loop
a; < probabilistic outcome of Nash policy derived from Q(s,a), for
player ¢ {Mixed with exploration policy}

Take action a;, observe reward r, next state s’ and the joint action of
other players a_;

for:=1...ndo

Qi(s; <a'w i) < Qi(s, {ai,a- ))—I—a(m—l—’yV( ") — Qi(s, {ai, —Z>))

end for

Instead of taking “max” . V(s) = Nash ([Q(s, a)])

as in Q learning

s+ &
end loop

Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research 4.Nov (2003): 1039-1069.



Minimax Q

 Minimax-Q is designed to work with zero-sum stochastic games
— in zero-sum games there is only one equilibrium
— it can be found using linear programming.

Initialize Q(s, (a,0)) and 7(s) arbitrarily

Initialize s

a: own

actions, loop

o: opponent a < probabilistic outcome of 7w (s) {Mixed with exploration policy}
actions . |
PD(A): Prob. Take action a, observe reward r, next state s’ and opponent action o
Distribution /

of Action Q(s, (a,0)) — Q(s,(a,0)) + 0‘("“ +V(s') — Q(s, (a, 0>))

with V(S) = ﬂ’ergab}%A) glelg a/ze:Aﬂ-(S’ CL/) Q(37 <CI,/, 0/>)

: / / !/
m(s) — arg x| iy EAW(S, a') Q(s, (d',0))

s «— g

end loop

Littman, Michael L. "Markov games as a framework for multi-agent reinforcement learning." Machine Learning Proceedings 1994. 1994. 157-163.



Friend-or-Foe-Q

* Extended Minimax-Q to solve a more
general class of stochastic games.

— |In each state, the method is told
whether the agent is playing with a
Friend, and the Nash would be a
coordination equilibria and a global
optimum,

— or against a Foe, with the game having
an adversarial equilibrium in a saddle
point.

Littman, Michael L. "Friend-or-foe Q-learning in general-sum games." ICML. Vol. 1. 2001.



Friend-or-Foe-Q

Initialize Q(s, (a,0)) and 7(s) arbitrarily

Initialize s
loop
a « probabilistic outcome 7(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s’ and opponent action o

Q(s, (a,0)) — Q(s,(a,0)) + a(r +7V(s') — Q(s, (a,0)))

where

if Playing against foe then

V(s) = max min m(s,a’) Q(s, (a, o
(s) W,GPD(A)O,GOCEA (s,a’) Q(s, (a’, 0")) foe
7(s) — arg w/el(%&BiA) glelg agAw(s, a') Q(s,{(da',0))

else
V == 7 U4
(s) B, Q(s, {a",0")
(o,0) = { o = argmad ma Q(s, (0.0} friend
0 otherwise
end if
S <— 3/
end loop

Littman, Michael L. "Friend-or-foe Q-learning in general-sum games." ICML. Vol. 1. 2001.
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Desired Properties of Multi-agent Learners

e Rationality: If the other players’ policies converge to
stationary policies, then the learning algorithm will
converge to a policy that is a best-response to the
other players’ policies

* Convergence: The learner will necessarily converge to
a stationary policy.

— Definition A learning algorithm for player i converges to a
stationary policy rtif and only if for any € > 0 there exists a
time T > 0 such that,

V> T, a; €44 sES, P 51> 0= |P @

Sv Z)_ 77(5;31)| (8,

— where P(s,t) is the probability that the game is in state s at
time t, and P(a,|s,t) is the probability that the algorithm
selects action a,, given the game is in state s at time t

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Desired properties of multi-agent learners

st Rationality -> whether it is a best response to

Co| others stationary policies
otherprayers—porcres

* Convergence: The learner will necessarily converge to
a stationary policy.

— Definition A learning algorithm for player i converges to a
stationary policy rtif and only if for any € > 0 there exists a
time T > 0 such that,

V> T, a; €44 sES, P 51> 0= |P @

S; Zj_ 77(9,31)| (8,

— where P(s,t) is the probability that the game is in state s at
time t, and P(a,|s,t) is the probability that the algorithm
selects action a,, given the game is in state s at time t

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Desired properties of multi-agent learners

e Rationality: If the other players’ policies converge to
stationary policies, then the learning algorithm will
converge to a policy that is a best-response to the
other players’ policies

* Convergence: The learner will necessarily converge to
a stationary policy.
g tat o AL T .

Convergence is usually conditioned on other players’

learning algorithms, e.g., convergence with respect to
V rational players or self-play (all players using the same |
algos)

time t, and P(a,|s,t) is the probability that the algorithm
selects action a,, given the game is in state s at time t

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.




Desired properties of multi-agent learners

e Rationality: If the other players’ policies converge to
stationary policies, then the learning algorithm will
converge to a policy that is a best-response to the
other players’ policies

¢ | Relationship to equilibria: If all the players use rational learning algorithms and
their policies converge, they must have converged to an equilibrium. Why?

TTITNIvIT ATTarinrmig artguriuanrrT1urn piaycCir 1 euriverygyco tu a

stationary policy rtif and only if for any € > 0 there exists a
time T > 0 such that,

V> T, a; €44 sES, P 51> 0= |P @

Sv Zj_ 77(9,31)| (8,

— where P(s,t) is the probability that the game is in state s at
time t, and P(a,|s,t) is the probability that the algorithm
selects action a,, given the game is in state s at time t

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Learning against stationary policies

* When the policies of all but one of the agents

are stationary, the stochastic game reduces to
a MDP

e Why?



Learning against stationary policies

When the policies of all but one of the agents are
stationary, the stochastic game reduces to a MDP

Why?

— all the other agents’ stationary policies are used to
redefine the transition probabilities and reward structure

for the equivalent MDP
Suppose
— agent i has learning policy i, and
— the joint policy of the other agents rt_; is fixed,
— the parameters of the equivalent MDP are:
* Transition prob:p(s’|s,ai ) = X,_ n (a_;|s)p(s’ls, ai,a_;)
* Reward function:ri(s, a;) = Xq_ m(a_;|s)r(s,a;, a_;)



Independent learners vs. Joint Action Learners

* Independent learners (ILs) apply Q-learning in the
classic sense, ignoring the existence of other agents:
— Q learning: each agent uses Q(S,a;) independently

— Q-learning does not play stochastic policies. This prevents
Q-learners from being convergent in self-play

— One may use a soft Q-learning (stochastic policies)

* Joint Action learners (JALs), instead, learn the value of
their own actions in conjunction with those of other
agents via integration of RL with equilibrium (or
coordination) learning methods: Q(S,a;, a_)

Claus, Caroline, and Craig Boutilier. "The dynamics of reinforcement learning in
cooperative multiagent systems." AAAI/IAAI 1998 (1998): 746-752.



Difficulty in Independent learners (ILs)

e assuming other agents are
not learning is not very
realistic

e if player 1is playing the
equilibrium strategy, the
other may play a
deterministic strategy and
get the same reward

 However, once player 2
leaves the equilibrium, a
learning player 1 can
exploit that fact and play
some policy which will
lower the reward for
player 2

Player 1 exploits deterministic
policy of player 2
(note that R2 = -R1)
'Y

Player 2 leaves the equilibrium
to deterministic policy,
maintaining reward

Neto G. From single-agent to multi-agent reinforcement learning: Foundational concepts and methods[J]. Learning theory course, 2005.



Joint Action learners (JALs)

* Q-values are based on the joint-actions rather than just
their own actions
— relies on full observability of the state and of the other
agents’ actions

* However, as agents are not coordinated, there is no
guarantee that the other players are at the same
learning stage, or even if they are learning at all

 The Q-value can be updated on the basis of the

Obse FVEd actions This is a stateless case,
but multiple states

E Q i, A H 773 ' cgsgs can be done

similarl
a_;€EA_; Ve y

Claus, Caroline, and Craig Boutilier. "The dynamics of reinforcement learning in
cooperative multiagent systems." AAAI/IAAI 1998 (1998): 746-752.



Opponent Modeling/Fictitious Play

* Learn explicit models of the other players, assuming that they are playing according to a
stationary policy

» Like JALs, statistics of the number of visits to a state and the number of times an opponent
chooses an action are maintained to obtain policy estimators for the other players.

Algorithm: Opponent Modeling Q-Learning for player 7

(1) Initialize @ arbitrarily, and Vs €S,a- ;€4 - ;C (5 a- ;)< 0and n(s) < 0.
(2) Repeat,
(a) From state sselect action a; that maximizes,

C G a- ;) To be more precise,

Z () 0 (SJ (a_lll a- 1)) .

o G opponent modeling
(b) Observing other agents’ actions a- ;, reward r, and next state s, rega rds the other agents
as one massive opponent
ith the ability to play
joint actions and
maintains statistics over

06a)— A-a)f Ga) alr+ vV 6))
CGa-;) < CGa )+ 1
n@Es) < nE)+ 1

where, them
a= (aja-;)
Vis)= maaxz ¢ (;’Z; j)Q (s(a; a- 7).

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Opponent Modeling/Fictitious Play

* Learn explicit models of the other players, assuming that they are playing according to a
stationary policy

» Like JALs, statistics of the number of visits to a state and the number of times an opponent
chooses an action are maintained to obtain policy estimators for the other players.

Algorithm: Opponent Modeling Q-Learning for player 7

(1) Initialize @ arbitrarily, and Vs €S,a- ;€4 - ;C (5 a- ;)< 0and n(s) < 0.
(2) Repeat,
(a) From state sselect action a;that maximizes,

Essentially, JALs/Opponent Modeling/Fictitious Play are the same. However, we have

three subtle variations:

1) The current opponent strategies are given (Centralized solution)

2) We don’t know the current opponent strategies but maintain an estimation from
observed actions for each opponent (Distributed solution)

3) We keep one estimation for all other agents (Distributed solution)

n() < n)+ 1

where,
a= (aja-;)
V(s) = maaxz ¢ (;’Z; j)Q (s(a; a- 7).

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Discussions on JALs

Like single-agent learners, opponent modelling is
rational.

— This is because eventually the player’s estimates of its
opponent’s policy will converge to the true policy.

— Since it finds best-response policies given its estimates,
eventually it will converge to a best-response policy to the
opponent’s true policy.

Also, like single-agent learning it is not convergent.

— The reason is identical: it only plays pure policies, and so
cannot converge in games with only mixed equilibria.

Even if the learners capable of playing stochastic
policies, JALs still may not converge in self-play



Gradient ascent

 Asimple two-player, two-action, general-sum
repeated matrix games

— the row player selects action i and
— the column player selects action j

— the row player receives a payoff r; and the column
player receives the payoff c;

e a&|0,1]is astrategy for the row player,
where a corresponds to the probability of
selecting the first action and 1 - a is the
probability the player selects the second action

 Similarly, B is a strategy for the column player

* The joint strategy (a, B ) is a point constrained
to the unit square

Vr(a,B) and Vr@B)= afnit+ ad- Bt d-aBm+ d-a)l- B)m
Vc(a,P) are = uaB+ a2 — )+ B (21— )t m,
expected V.@,B)= afent ad - Blast d-afBen+ d-a)d- Bl

payoffs = uaB+ aa- o)+ B - o)+ oo,

row player payoffs

R, =

where,

u= ni-

/

n1 1o ]
1 m2 |
layer payoffs
a1 A2
21 Q@2
2= m+t 122,

u=oc1- c2- 1t o2.

Singh, Satinder, Michael Kearns, and Yishay Mansour. "Nash convergence of gradient dynamics in general-sum games." Proceedings of the Sixteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000.



Gradient ascent

* By gradient ascent, a pIayer can adjust row player payoffs
its strategy after each iteration so as to po— |1 12
increase its expected payoffs ’ m 12|

— the player can move their strategy in the col player payoffs
direction of the current gradient with po= |1 a2
some step size, n ‘ Q1 2

aVZ” (a/() /()
Qi1 = At N 3 & ’ M: But n2- m2),
Ak here oa
3V, @y, Br) R e
Bir1 = Bixt N ra,B;: : T = qu + (01— o).

* This can be consider a simple JAL when
the opponent strategy is given: eve) = Y @(aa) [l

a_;€A_; J#i

Singh, Satinder, Michael Kearns, and Yishay Mansour. "Nash convergence of gradient dynamics in general-sum games." Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000.



Gradient ascent

* By gradient ascent, a pIayer can adjust row player payoffs
its strategy after each iteration so as to po— |1 12
increase its expected payoffs ’ m 12|

— the player can move their strategy in the col player payoffs _

What will happen if both players are using gradient ascent to update their strategies?

1) this algorithm is rational because fixing the other player’s strategy will eventually
force the player to converge to the optimal pure strategy response

2) the algorithm is, however, not convergent

T I K ] 5 —— — puT Uiz~ 122/,
Y a(ak'B ) where, aVa(g 8)
a/(} k c ™M '
— + r . —_— = QqQu + (62 - 022)

* This can be consider a simple JAL when
the opponent strategy is given: eve) = Y @(aa) [l

a_;€A_; Jj#i

Singh, Satinder, Michael Kearns, and Yishay Mansour. "Nash convergence of gradient dynamics in general-sum games." Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000.




Infinitesimal Gradient Ascent

* Consider gradient ascent for the limiting case of infinitesimal step

lim (IGA)
n—0

— an algorithm with an appropriately decreasing step size will have the
same properties as IGA

Theorem (IGA). If both players follow Infinitesimal Gradient Ascent (IGA),
where n = 0, then their strategies will converge to a Nash equilibrium
OR the average payoffs over time will converge in the limit to the

expected payoffs of a Nash equilibrium the dynamics of the strategy pair
| gy |
- ’ N \'\ ‘t‘\\\ \‘.\\.\\\ £ /7 ’ e ' T T — A
I N I e [ g fJ a (12~ 122)
e \\\_ \ " \\\\ Q\ \,\\ "~ L / /’?" D / ,,///7/’ ‘\\\\ S, A + L
P RN SN R / / ;TN NN 3,3 B 1~ )
: . N T OSSN
o ﬁ\‘\\\ N \" N A ; f / ?j / / /‘\I ;"‘ \\\ 3 \\‘ \\ 4 a t
i e ~ N D | /’f RN RREE
— N 7 L B N U
T T e \\\ I’y Vs F . ft\\\\\\\\\\ \\\ \\ \\\ \\\\\\\__ /i,’f . // /j /
T T e N TR Ac\”u/ e @B )= 22 _ 2/ ) (22 = 12\
e T BT Y < - Y u u
@ ® ©

converge to a point on the boundary NE  converge to a NE point  center is inside the unit square. Not converge to a NE point
the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has imaginary eigenvalues.

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

Singh, Satinder, Michael Kearns, and Yishay Mansour. "Nash convergence of gradient dynamics in general-sum games." Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000.



Infinitesimal Gradient Ascent

* Consider gradient ascent for the limiting case of infinitesimal step
lir% (IGA)
T’—)

— an algorithm with an appropriately decreasing step size will have the
same properties as IGA

Theorem (IGA). If both players follow Infinitesimal Gradient Ascent (IGA),
where n = 0, then their strategies will converge to a Nash equilibrium

OR the average payoffs over time will converge in the limit to the

expected payoffs of a Nash equilibrium the dynamics of the strategy pair

e T I R m . [ (2 - 122)}
~ The average payoff of each ellipse is Df;\é\ B 8 o1 = Co2)
| exactly the expected payoff of t e at
1 center. U
= . T \\‘ ; // e et \\ AN [N s \_,// // / /
e S TN N A\ . Cxn— 1) (- n2)
o I ﬂ( NN AC NI B a*,B*)= ( 22 ,021 , 22~ 27
T T T - - ,44_/4 C \\ - pa— Y U u
@ ®) ©

converge to a point on the boundary NE  converge to a NE point  center is inside the unit square. Not converge to a NE point
the IGA dynamics. (a) U is not invertible. (b) U has real eigenvalues. (c) U has imaginary eigenvalues.

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.

Singh, Satinder, Michael Kearns, and Yishay Mansour. "Nash convergence of gradient dynamics in general-sum games." Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000.



Infinitesimal Gradient ascent

Consider gradient ascent for the limiting case of infinitesimal step
lirrcl) (IGA)
T’—)

— an algorithm with an appropriately decreasing step size will have the
same properties as IGA

Theorem (IGA). If both players follow Infinitesimal Gradient Ascent (IGA),
where n = 0, then their strategies will converge to a Nash equilibrium

OR the average payoffs over time will converge in the limit to the
expected payoffs of a Nash equilibrium the dynamics of the strategy pair

/ L Tl Ny SN | A ‘ /7’ — l 3_tJ q . o — 1)
~ The average payoff of each ellipse is O\ B 8 o1 = co2) |
_ exactly the expected payoff of the ot
1 center. U
I s B NN o o= 1) (2= 119)
N e SINENN G, B*)= Q2 s U2 M2/
e — T NN y u u

. However, at any moment in time the expected payoff of a player could
the be arbitrarily poor. 1) difficult to evaluate a learner, 2) difficult in

s temporal difference learning for multiple state stochastic games. 36.2 (2002): 215-250.
Sir 2edings of the Sixteenth
col ) ~ B



Why not converge?

* |[n any region, if one player approaches to the
center, the other moves away

The center is inside the unit square. not converge to a NE point



How we know someone moves away?

* Lemma. The player is “winning” if and only if that
player’s strategy is moving away from the center.

The player is “winning”
when its current expected
payoff is larger than the
expected payoffs if it were to
play its selected equilibrium.

V@ B)- VA{a,B) > 0.

ae is the equilibrium strategy
for the row player, and Beis

the equilibrium strategy for
yythe column player.

The center is inside the unit square. not converge to a NE point

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



How we know someone moves away?

* Lemma. The player is “winning” if and only if that
player’s strategy is moving away from the center.

The winning condition

V-@,B)- V{a%B) > 0.

3Vr@r,,8)>0‘

a-a*) .
the above is true when the
two left hand factors have

D

l The player is “winning”

when its current expected
payoff is larger than the
expected payoffs if it were to
play its selected equilibrium.

the same sign.

Therefore 1) strategy ais
greater than the strategy at
the center ax and it is
increasing 2) it’s smaller

than the center and C
decreasing-> moves away

V@ B)- VA{a,B) > 0.

ae is the equilibrium strategy
for the row player, and Beis

the equilibrium strategy for
.,the column player.

The center is inside the unit square. not converge to a NE point

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



WOoLF (Win or Learn Fast)

* So we can have a variable learning rate:

OV, @k Bi) where the

oV, @k Bi) learning rates
Bi1 = Bit Nty ra,B . aregiven,

* How to update the learning rate?

— the WoLF (“Win or Learn Fast”) principle (learn quickly when losing, and cautiously
when winning

ae is the equilibrium strategy for the row
player, and Beis the equilibrium strategy for
po - {{’min if Ve @r Br)> Ve @i BS)WINNING, the column player.

k fmax Otherwise LOSING.

pr— {f’min if V@ Bi)> V@ Bir) WINNING,
k {max Otherwise LOSING,

* The intuition:
— alearner should adapt quickly when it is doing more poorly than expected.

— when it is doing better than expected, it should be cautious since the other players
are likely to change their policy

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



WoLF-IGA
 With IGA, we have the following dynamics
| aal
Ey a {7 t) (2 — 12/
| g_f;J ) [B]+ [fﬁ(t)(zl— Zz)]‘
at U(t)
e Theorem (WoLF-IGA) If in a two-person, two-action,
iterated general-sum game, both players follow the
WoLF-IGA algorithm (with € ), then their

max mln

strategies will converge to a Nash equilibrium.

A i L M w5 NN A ,/""://7/?'{:,’

Convergenceis the same  ~ 7 ™ N N0 s I
as before for T “a\\ A

(a) U(t) is invertible P
(b) (b) U(t) has has purely """ " 0 S/ L RN

real eigenvalues T T e N A TN

T & TN

e — e S s C S

@ ®

converge to a point on the boundary NE  converge to a NE point
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WOoLF-IGA

 With IGA, we have the following dynamics

| aal

| ¢ _ [a]+ [ff(t)éaz— zzz)]
9P Bl LecWen— an)l
ot

U(t)

e Theorem (WoLF-IGA) If in a two-person, two-action,
iterated general-sum game, both players follow the
WOoLF-IGA algorithm (with £ __, > .. ), then their
strategies will converge to a Nash equilibrium.

L. = g7 w oA
D /A OO LY
But for U(t) has purely / /// / f\;\\\\\ \ o
imaginary eigenvalues /( // \\“) \ | \\ | : :. |
.. . I ; ' I . i
and center is inside the | | \\ / /4/ J \ e
: . NN /
unit square, it \\\\\\\5/ 9, /// o\ s
becomes converged! JC AN Bj R v
\u/ y
WOoLF-IGA
IGA
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WOoLF-IGA

 Lemma (WoLF-IGA) For any initial strategy pair, (a*, B* + N
Bo) or (ax + a,, B¥), that is “sufficiently close” to the -
center, the strategy pair will converge to the center. Cop
“Sufficiently close” here means that the elliptical trajectory \'
from this point defined when both players use 1 as their A=

learning rate lies entirely within the unit square.

a (row player) D

is winning so
reduce the ﬁ{
learning rate | '
| B (col player)
is winning so
reduce the

l C B I C learning rate

WoLF-1GA trajectory

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



WOLF-IGA

 With IGA, we have the following dynamics
| aal
| ¢ _ [a]+ [ff(z)éaz— zzz)]
B B £ (M- )]
 Theorem (WoLF-IGA) If in a two-person, two-action,
iterated general-sum game, both players follow the
WOLF-IGA algorithm (with £, >{ . ), then their
strategies will converge to a Nash equilibrium.
L /i///:\:\ ™ F T D / o ‘\\\ R A\r)
D/ A OO0 A vy
/ // // /// . \\\ \\ \\ \l \
'//7/1 \\I\\i\\ f £ -
L n ) L
\\\ \ \\\ )] ]
convergence NN\ o\ e
N N
IGA WoLF-IGA
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Practical algorithm of WoLF: PHC Basis

Policy hill-climbing
(PHC):

Simple Q-Learner that
plays mixed strategies

1. Let o and d be learning rates. Initialize,
1

Q(s,a) « 0, 7(s,a) A

2. Repeat,

(a) From state s select action a with probability 7 (s, a)
with some exploration.
(b) Observing reward r and next state s’,

Qs0) « (1-)Q(s,) + (7 + 7 max Q') ).

Updating a mixed strategy
by giving more weight to the
action that Q-learning
believes is the best

(c) Update (s, a) and constrain it to a legal probability
distribution,

6 ifa = argmax_ Q(s,a’)

Problems:

e guarantees rationality against stationary opponents
° does nOt conve rge in Self_play Bowling, Michael, and Manuela Veloso. "Multiagent learning using a

variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.



Practical algorithm of WoLF: WoLF-HPC

Agents only need to see its
own payoff

Converges for two player two
action SG’s in self-play

(1) Let o £ (0,1], & > dw € (0, 1] be learning rates. Initialize,

Qs,a) — 0,  7w(s,a) — —,C(s) — 0.

(2) Repeat,

(a) From state s select action a according to policy 7(s) with snitable explo-

ration.

(b) Observing reward R(s,a) and next state s’

Qls,a) = (1= a)Q(s,a) + a(R(s,a) + 7 max Q(s', ).

Maintaining average policy

Probability of playing action

(c) Update estimate of average policy, 7.
Cls) — Cls)+1

Ya' € 4 w(s,a") — 7(s,a)+

T,
a5 @) = 7(s,0)

(d) Step 7 closer to the optimal policy w.r.t. @),

m(s,a) — w(s,a) + Ay,

Determination of “W” and “L":

by comparing the expected value of
the current policy to that of the
average policy

while constrained to a legal probability distribution,

A —0gq U a# argmax, (s, a’)
| 2arse s otherwise

'§SG = min (W(S!ajrw%) ]

52{5‘1” if 3 ow(s,a)Q(s,a') =3, 7(s,a)Q(s.a')

& otherwise




Practical algorithm of WoLF: WoLF-HPC

Agent only need to see its own
payoff

Converges for two player two
action SG’s in self-play

Maintaining average FOr many games, averaging over greedy
policies does in fact approximate the 1
equilibrium, which is the driving mechanism |+

Probability of playin

in fictitious play

(1) Let o £ (0,1], & > dw € (0, 1] be learning rates. Initialize,

1
|4

Q(s,a) — 0, m(s,a) —

,Os) — .

(2) Repeat,

(a) From state s
ration.

s select action a according to policy m(s) with suitable explo-

(h) Observing reward H(s,a) and next state s,

Ois,a) — (1 —a)Q(s,a) + a(R(s,a) +

vmax Q(s',a")).
a.l'

T SLEp 7T TIOSED LU LIE UPLIIAal FOIITy Wb, (%}.|

:"I—I'\S.- G‘] — ?T(S, ﬂ'] + f‘l"sa.-

Determination of “W” and “L":

by comparing the expected value of
the current policy to that of the
average policy

while constrained to a legal probability distribution,

A — dgq U a# argmax, (s, a’)
T Yosn G oOtherwise

if 3 ow(s,a)Q(s,a') =3, 7(s,a)Q(s.a')
Dtherml'ae

. A
§sa—ln111( |h1|_1)
O
0




0.8 |

Pr(Heads)

Column

Matching Pennies = |« -
o WoLF-PHC: Pr(Heads)
PHC: Pr(Heads) -

0 200000 400000 600000 800000 1e+06

lterations
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Scissors
@ beals paper @
i
%% £
A\ @ Xy
g‘} @

0.8

0.6

Pr(Paper)

04

0.2

Column

Paper Scissors Rock
Paper [0,0) =1,1) (1.-1)
4 E
Rock-paper-scissors: PHC :
° Scissors (1,-1) (0,00 =11
Rock -1,1) (1,-1) (0, 0)
I I I I
Player 1 ——
Player 2 e
= _,."'. by A
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.___."' - \‘;\ —
- ’__."'
| f:
a0 5,
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._"-: T, ":1
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(a) Policy Hill-Climbing

0.8

Bowling, Michael, and Manuela Veloso. "Multiagent learning using a variable learning rate." Artificial Intelligence 136.2 (2002): 215-250.




Column

Faper

(0,0

Scissors

=11

Rock

(1,-1]

beals paper
Paper

Row

(1.-1)

(0,0)

=1, 1)

@ & Rock-paper-scissors: WoLF PHC -

Qv ¥ Rock

1.1

(1,-1)

(0,0}

Player 1
Player 2

Pr(Paper)

04 r

0 0.2 0.4 0.6 0.8

Pr(Rock)
(b) WoLF Policy Hill-Climbing
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Probability

Limitation of WolLF PHC :Pseudo Convergence

WoLF-+PHC and Shapley's game

H(U)=1 6(0)=DU1 6Iu:;sne=1C}I'raﬂ.-if'm

Uo-=100000 8 ==10000 £=.1

P R 8§
P (0,0) (1,0) (0,1)
R (0,1) (0,0) (1,0)

S (1,0) (0,1) (0,0)

Shapley’s counter game

ey for fictitious play

paper
~===rock
------- scissors

o
)
o
o 1
- Ty -
e )
a'.l

025 _ [ ma(paper) , ma(rock) , ma(scissors) |
/ / / /
[ Rl(paper) , Rl(rock) , Rl(scissors) ]

- ' ' ' ' l l l
0 20 40 60 80 100 [ Qi(paper) , Qi(rock) , Qi(scissors) |

Iterations (Millions)

The circular shift from one agent’s policy to
the other’s average reward and Q-values

Cook, Philip R. "Limitations and extensions of the wolf-phc algorithm." (2007).



References

Slides are based on

Game Theory, Second Edition, 2014 Thomas S. Ferguson
Mathematics Department, UCLA

Bowling, Michael, and Manuela Veloso. "Multiagent
learning using a variable learning rate." Artificial
Intelligence 136.2 (2002): 215-250.

Neto G. From single-agent to multi-agent reinforcement
learning: Foundational concepts and methods. Learning
theory course, 2005.

Multiagent Reinforcement Learning (MARL) September 27, 2013
- ECML'13

Mul2-agent Reinforcement Learning, Subramanian
Ramamoorthy, 2017

Game Theory and Multi-Agent Learning Mini-Tutorial, Enrique
Munoz de Cote Politecnico di Milano



