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* Learning in Games



Learning in repeated game

Players in classical game theory (previous lectures) have
— a perfect knowledge of the environment and

— the payoff tables, and

— try to maximize their individual payoff.

* Thus, the goal is to figure out, a priori, how to optimize its
actions, e.g., calculate Nash equilibria

 However, when information is incomplete or in a repeated

game, it becomes impossible to judge what choices are the
most rational

 The question then facing a player becomes how to learn to
optimize its behaviour and maximize its return, based on
local knowledge and through a process of trial and error.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligencel71.7
(2007): 406-416.



learning in single agent

* A typical Al concerns the learning performed
by an individual agent

* |n that setting, the goal is to design an agent
that learns to function successfully in an
environment that is unknown and potentially
also changes as the agent is learning

— Learning to recommend in collaborative filtering

— Learning to predict click-through rate by logistic
regression



learning over multiple agents

In a multi-agent (player) setting, the environment contains other
agents (pIaye FS) — (we are going to use term “player” and “agent” interchangeably)

Additional complication:

— the learning of other agents will change the environment, thus making
an impact on the learning of our player, and

— The learning of our agent will also influence the learning of other
agents
The simultaneous learning of them means that
— every learning rule leads to a dynamical system, and

— sometimes even very simple learning rules can lead to complex global
behaviours of the system

/ Bowling, Michael, and Manuela
Veloso. "Multiagent learning using

a variable learning rate." Artificial
Intelligence 136.2 (2002): 215-250.
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Interaction between learning and teaching

e Also multi-agent systems cannot
separate the phenomenon of
learning from that of teaching

* When choosing a course of action,

a player must take into account

— not only what he has learned from
other player’ past behaviour,

— but also how he wishes to influence
their future behaviour

LEEFF
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An infinitely repeated game

* Arepeated game: a given game L X
(e.g., in normal form) is played
multiple times by the same set b bog 52
of players.
— The game being repeated is called %1 40

the stage game.

* Infinitely Repeated Game: the
stage game is infinitely played

Stackelberg game as
the stage game

Given an infinite sequence of

* InIRG, average reward is e averege revard of| &
— the payoff to a given player is the |
limit average of his payoffs in the . Z?: | rf”
individual stage games lim

k — oo k



An infinitely repeated game

L R
e (B,L) is the unigue Nash
equilibrium of the game T | 1,0 | 32
— Agent 1 (the row player) has a Q P ——
. 21 | 40 |)
dominant strategy, B .
e Observations: Stackelberg game as

the stage game

—If agent 1 were to play B Given an infinite sequence of
repeatedly, it is reasonable to  payoffs r¥), r?,... for player i,

the average reward of i is

expect that agent 2 would
r

. K
always respond with L. - Do Ty
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An infinitely repeated game

 (B,L) is the unique Nash A
equilibrium of the game T ﬁo ﬂ 3,2
— Agent 1 (the row player) has a le [T)
dominant strategy, B ’ .
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An infinitely repeated game

L R
* (B,L) is the unique Nash _
equilibrium of the game ( 1,0 | 3,2 >
— |
— Agent 1 (the row player) has a - o
dominant strategy, B ’ ’
e Observations: Stackelberg game as
. the stage game
— if agent 1 were to choose T Given an infinite sequence of
instead, then agent 2’s best payoffs r, r?), ... for player i,
. ] the average reward of i is
response would be R, yielding a o
payoff large than that in Nash o 2 ry

equilibrium kweo Kk



An infinitely repeated game

L

2

e (B,L) is the unigue Nash

equilibrium of the game ( 1,0 W
___ L
— Agent 1 (the row player) has a - o
dominant strategy, B ’ ’
N—
e Observations: Stackelberg game as
the stage game
— if agent 1 were to choose T Given an infinite sequence of
instead, then agent 2’s best payoffs r, r?), ... for player i,

response would be R, yielding a

payoff large than that in Nash - >

the average reward of i is

()
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equilibrium k= e
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Teaching

* |n a single-stage game it would
be hard for agent 1 to convince
agent 2 that he will play T,
since B is a strictly dominated

T 1,0 3,2

B 2,1 4,0

strategy

° HOWGVGI‘, In a repeated-game Stackelberg game as
setting, agent 1 has an the stage game
opportunlty bemg a teacher Given an infinite sequence of

— agent 1 could repeatedly play T;  payoffs r¥), r),... for player i,
presumably, after a while agent 2, the average reward ofiis
if he has any sense at all, would Zk -0
get the message and start Ty =L 1

responding with R k— oo k




What constitutes learning?

* A repeated game is regarded as a nature setting for
“learning”

— temporal nature and

— the regularity across time (at each time the same players
are involved, and they play the same game as before)

* This allows us to consider strategies:

future action is selected based on the experience gained
so far

— The Tit-for-Tat (TfT) and trigger strategies (studied in
repeated Prisoner’s Dilemma) can be viewed as a
rudimentary folr-r_n of learning strategie%

b |(,'C)
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What constitutes learning?

* More complex strategies: an agent’s next
choice depends on the history of play in more
sophisticated ways, e.g.,

— the agent could guess that

— the frequency of actions played by his opponent in
the past might be his current mixed strategy, and

— play a best response to that mixed strategy

* This basic learning rule is called fictitious play



What games require learning

* Repeated game
* Population game (will be explained shortly)
e Stochastic game (will be introduced later)



What are settings for learning

* Whether the game is known by the players

— If the game is known, any “learning” that takes place is only
about the strategies employed by the others

— If the game is unknown, the agent can in addition learn about
the structure of the game itself
* Forinstance, the agent may start out not knowing the
payoff functions at a given stage game or additionally the
transition probabilities (in a stochastic game setting), but
learn those over time in the course of playing the game.

— With certain learning strategies, agents can sometimes converge
to an equilibrium even without knowing the game being played!

* Whether the game is observable by the players

— do the players see each others’ actions, and/or each others’
payoffs?
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Fictitious Play

* Fictitious play is a simple sequential procedure
that learn the value of a game

* |tis an instance of model-based learning,

— the learner explicitly maintains beliefs about the
opponent’s strategy. The learning structure:

Initialize beliefs about the opponent’s strategy

repeat
Play a best response to the assessed strategy of the opponent

Observe the opponent’s actual play and update beliefs accordingly

Note that in this setting,

* the agent does not know the payoffs and payoff functions by other agents, and

* he, however, knows his own payoff matrix in the stage game (i.e., the payoff he
would get in each action profile, whether or not encountered in the past).

Brown, George W. "lterative solution of games by fictitious play." Activity analysis of production and allocation 13.1 (1951): 374-376.



Fictitious Play

* |n fictitious play, an agent believes that

— his opponent is playing the mixed strategy that is
consistent with the empirical distribution of the
opponent’s previous actions

* Formally,
— A is the set of the opponent’s actions, and

— for every a € A, let w(a) be the number of times
that the opponent has played action a.

— Then, the agent assesses the opponent’s mixed
strategy as
gY w (@)

S )




Fictitious Play

* Fictitious play is sensitive to the players’ initial beliefs
or prior

— which can be interpreted as action counts that were
observed before the start of the game

— Note that one must pick some nonempty prior belief for
each agent; the prior beliefs cannot be (0O, . . ., 0) since this
does not define a meaningful mixed strategy

* The prior beliefs can have a radical impact on the
learning process

* Drawback: in fictitious play each agent assumes a
stationary policy of the opponent,

— yet no agent plays a stationary policy except when the
process happens to converge to one!



Fictitious Play: an example

* |[n a repeated Prisoner’s Dilemma game,
c D

— if the opponent has played c 29003

—C, C, D, C, Din the first five games, D 3,0 1,1
* we can represent a player’s beliefs with

either a probability measure or with the

set of counts (w(a, ), ..., w(a,))

— before the sixth game he is assumed to be
playing the mixed strategy (w(C)=0.6,
w(D)=0.4)

— In the sixth game, what would be the best
response to (w(C)=0.6, w(D)=0.4)?



Fictitious Play: an example

* |[n a repeated Prisoner’s Dilemma game,
c D

— if the opponent has played - 99003
—C, C, D, C, Din the first five games, D 3,0 1,1

* we can represent a player’s beliefs with
either a probability measure or with the
set of counts (w(a, ), ..., w(a,))

— before the sixth game he is assumed to be
playing the mixed strategy (w(C)=0.6,
w(D)=0.4)

— In the sixth game, what would be the best
response to (w(C)=0.6, w(D)=0.4)?

C: 2x0.6+0x0.4=1.2
D: 3x0.6+1x0.4=2.2



Fictitious Play: an example

* Two players are playing a
repeated game of Matching

Pennies. .
_ _ L Heads Tails
* Each player is using fictitious
play learning to update his Heads | 1,-1 | -1,1

beliefs and select actions.

— Player 1 begins the game with the Tails | =1,1 | 1,=1
prior belief that player 2 has

Elr?]yéesd heads 1.5 times and tails 2 Matching Pennies game

— Player 2 begins with the prior
belief that player 1 has played
heads 2 times and tails 1.5 times

 How will the players play?




Fictitious Play: an example

* Each player ends up Heads Tails
alternating back and forth
between playing heads Heads | 1,-1 | -1,1
and tails.

I -1,1 1,—-1
e Asthe number of rounds Talls | =11 L,

tends to infinity, the

(6.5,4) (6,4.5)

empirical distribution of Matching Pennies game

the play of each player will

converge to (0.5, 0.5). Round Usaction Zsaction 1's beliefs 2's beliefs
* |f we take this distribution 0 ] ] 15y 19

to be the mixed strategy 2 T H (253  (235)

of each player, the play : ! A S AP

converges to the unique 5 H H (553)  (445)

Nash equilibrium of the ° | iy S

normal form stage game :

each player plays the
mixed strategy (0.5, 0.5)



Fictitious Play: an example
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Fictitious Play: an example
* Each player ends up ds Tails

alternating back and forth S
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Fictitious Play: an example
* Each player ends up eads e

alternating back and forth
between playing heads Heads
and tails.

* Asthe number of rounds
tends to infinity, the
empirical distribution of
the play of each player will

-1 |1-1,1

Tails I,1 | 1,-1

Tails: (-1)x1.5+1x2
Matg

Tails>Heads

ing Pennies game

(6.5,4) (6,4.5)

converge to (0-5, 0-5)- Round 1’s Action 2’s action 1’s beliefs  2’s beliefs
* If we take this distribution 2 @ ] Cg,g? 219
to be the mixed strategy 2 T H (253  (235)
of each player, the play P D @sy (49
converges to the unique 5 H H (553)  (445)
Nash equilibrium of the ° | iy S

normal form stage game :

each player plays the
mixed strategy (0.5, 0.5)



Some properties

* Steady state: an action profile a is a steady state
of fictitious play

— if it is the case that whenever a is played at round t it

is also played at round t + 1 (and hence in all future
rounds as well)

* Atight connection between steady states and
pure-strategy Nash equilibria:
— Theorem 1 If a pure-strategy profile is a strict Nash

equilibrium of a stage game, then it is a steady state
of fictitious play in the repeated game

— Note that the pure-strategy profile must be a strict
Nash equilibrium, i.e.,

* no agent can deviate to another action without strictly
decreasing its payoff



Some properties

* Steady state: an action profile a is a steady state
of fictitious play

— if it is the case that whenever a is played at round t it

is also played at round t + 1 (and hence in all future
rounds as well)

* Atight connection between steady states and
pure-strategy Nash equilibria:
— Theorem 2 If a pure-strategy profile is a steady state

of fictitious play in the repeated game, then it is a
(possibly weak) Nash equilibrium in the stage game.

— Note that fictitious play may not always converges to
a Nash equilibrium,

* as agents can only play pure strategies and a pure-strategy
Nash equilibrium may not exist in a given game



Some properties

 However, while the stage game strategies may
not converge, the empirical distribution of the

stage game strategies may

* This was the case in the Matching Pennies

example,

— where the empirical distribution of the each player’s
strategy converged to their mixed strategy in the
(unique) Nash equilibrium of the game.

* The following theorem shows that this was no

accident.

— Theorem 3 If the empirical distribution of each
player’s strategies converges in fictitious play, then it
converges to a Nash equilibrium.



Fictitious Play: an example

However, although the theorem
gives sufficient conditions for
the empirical distribution to
converge to a mixed
equilibrium, no claims made
about the distribution of the
particular actions played

To see this, consider a repeated
Anti-Coordination game here

— two pure Nash equilibria of
this game, (A, B) and (B, A),
and one mixed Nash
equilibrium: each agent mixes
A and B with probability 0.5

— Either of the two pure-strategy
equilibria earns each player a
payoff of 1, and the mixed-
strategy equilibrium earns
each player a payoff of 0.5

The Anti-Coordination game as the
stage game.

How the fictitious play is conducted if we
assume that the weight function for each
player is initialized to (1, 0.5)?



Fictitious Play: an example

In fictitious play, we assume that

the weight function for each player

is initialized to (1, 0.5)

The play of each player converges
to the mixed strategy Nash
equilibrium (0.5, 0.5)

However, the payoff received by
each playeris O,

— since the players never hit the
outcomes with positive payoff.

It shows that although the
empirical distribution of the
strategies converges to the mixed
strategy Nash equilibrium,

the players may not receive the
expected payoff of the Nash
equilibrium,
— because their actions are
miscorrelated!

A B

A 0,0 1,1

B 1,1 0,0

The Anti-Coordination game as the
stage game.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

(3,2.5) (3,2.5)

0 (1,0.5) (1,0.5)
1 B B (1,1.5) (1,1.5)
2 A A (2,1.5) (2,1.5)
3 B B (2,2.5) (2,2.5)
4 A A

Fictitious play of a repeated Anti-Coordination game.



Fictitious Play: an example

* The empirical distributions
of players’ actions need not
converge at all.

— Consider the game, due to
Shapley, a modification of
the rock-paper-scissors
game; this game is not zero
sum. Rock 0,0 0,1 1,0

— The unique Nash paper | 1,0 | 0,0 | 01
equilibrium of this game is
for each player to play the

T/';()ed strategy (1/3, 1/3, Shapley’s Almost-Rock-Paper-Scissors game

as the stage game

Rock Paper  Scissors

Scissors 0,1 1,0 0,0

* |n fictitious play, player 1’s
weight function is initialized
to (0, 0, 0.5) and player 2’s
weight function is initialized
to (0,0.5,0).



Fictitious Play: an example

* The empirical distributions of Rock  Paper  Scissors
players’ actions need not converge
at all. Rock | 0,0 0,1 1,0
— Consider the game, due to paper | 1,0 0,0 01
Shapley, a modification of the
rock-paper-scissors game; this Scissors | 0,1 1,0 0,0
game is not zero sum.
- Th_e unique Nash equilibrium of Shapley’s Almost-Rock-Paper-Scissors game
this game is for each player to play
the mixed strategy (1/3, 1/3, 1/3) as the stage game
* In fICtItIOUS play; .player 1’s Weight Round 1’s action 2’s action 1’s beliefs 2’s beliefs
function is initialized to (0, 0, 0.5) 0 0005  (0.050)

and player 2’s weight function is
initialized to (0,0.5,0).

* The play of this game is shown on
the right.

e Although it is not obvious from
these first few rounds, it can be

shown that the empirical play of ictiti v of o -
this game never converges to any ICtitious play ot a repeated game ot the

fixed distribution. Almost-Rock-Paper-Scissors game.

Rock Scissors (0,0,1.5) (1,0.5,0)
Rock Paper (0,1,1.5) (2,0.5,0)
Rock Paper (0,2,1.5) (3,0.5,0)
Scissors Paper (0,3,1.5) (3,0.5,1)
Scissors Paper (0,1.5,0) (1,0,0.5)

- Ok WON




Fictitious Play: conclusions

* |tis interesting not because it is realistic or has
strong guarantees, but because
— It is very simple to state and
— gives rise to nontrivial properties
* Butitis very limited;
— its model of beliefs and belief update is
mathematically constraining, and
— is clearly implausible as a model of human learning

* There exist various variants of fictitious play that
score somewhat better on both fronts, such as
smoothed fictitious play



One of the many applications

Iterative Computation of Cournot Equilibrium*

LARS THORLUND-PETERSEN

Norwegian School of Economics and Business Administration,
N-5035 Bergen-Sandviken, Norway

Received October 18, 1988

In a homogeneous Cournot model with quasi-concave profit functions the prob-
lem of determining an equilibrium can be posed as one of solving an equation in
one real variable: total sales. If the response functions are monotone or firms are
identical, then a certain iterative process based on averaging converges to an
equilibrium. Such iterations have the interpretation that every firm responds to
the average of sales by other firms in previous periods. Journal of Economic
Literature Classification Number: 026. © 199 Academic Press, Inc.

1. INTRODUCTION
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Smoothed Fictitious Play

 Mathematically, Fictitious Play adopts at time t+1 a
pure strategy s, that

max u,(si,Pt)
S

where Ptis the empfrical distribution of opponent’s play
until time t. u.is the expected utility

* Smoothed Fictitious Play, instead of playing the best
response to the empirical frequency, introduces a
perturbation that gradually diminishes over time

— agent i adopts a mixed strategy o, that maximizes

argcrjnaxz 0,(s;) u,(si,Pt) — Bv,(o;)
| S

Where B is any constiant, and v,(o;,) can be the entropy
function v(o)) = Xs 0;(s)log o;(s;)

Fudenberg, Drew, and David K. Levine. "Consistency and cautious fictitious play." Journal of Economic Dynamics and Control 19.5-7 (1995): 1065-1089.



Smoothed Fictitious Play

The first order condition for the maximum gives
u.(si,Pt) — Plogo.(s;)) + A=0

where A is the Lagrange multiplier corresponding to the constraint
that the probabilities o, () a must sum to one

Solving it gives:
o (s)2 PG PY/B)
T Ts s exp(ui(s/ PY/B)

It allows a more satisfactory explanation for convergence to
mixed-strategy equilibria in fictitious play-like models.

— For example, in matching pennies the per-period play can
actually converge to the mixed strategy equilibrium.

— In addition, SFP avoids the discontinuity inherent in standard
fictitious play, where a small change in the data can lead to an
abrupt change in behaviour.

— With SFP, if beliefs converge, play does too.




Content

e Rational Learning



Rational learning

* Rational learning,aka Bayesian learning, adopts the same
general model-based scheme as fictitious play

* Unlike fictitious play, howeuver, it allows players to have a
much richer set of beliefs about opponents’ strategies:
— In fictitious play, strategies are limited to ones derived from the

stage game (only conditional on the empirical distribution of
opponent's actions)

— But in rational learning, the set of strategies comes from the
entire repeated-game, conditional on the history plays, e.g., TfT
in repeated Prisoner’s Dilemma

* Thus, the beliefs of each player about his opponent’s
strategies may be expressed by any probability distribution
over the set of all possible strategies

Kalai, Ehud, and Ehud Lehrer. "Rational learning leads to Nash
equilibrium." Econometrica: Journal of the Econometric Society (1993): 1019-1045.



Rational learning

* Similar to fictitious play, each player begins the game with
some prior beliefs.

» After each round, the player uses Bayesian inference to
update their beliefs

* The Bayesian update for opponent’s playing a particular

strategy: Likelihood from the history o Prior distribution
Pi(s-ih) = Pi(h‘s_.m
1 \wO=1 zslies_iipid’l S/_1>Pi<s/_i>.
where

— s'. denotes the set of the opponent’s strategies considered
possible by playeri, and s7! € s!,,
— H denotes the set of possible histories of the game, and

—heH



Rational learning

Recall grim trigger strategy in the infinitely
repeated Prisoner’s Dilemma game :

— choose Cso long as the other player chooses C;

— if in any period the other player chooses D, then
choose D in every subsequent period

A general case: limited punishment g
— choose Cso long as the other player chooses C;

— if in any period the other player chooses D, then
choose D in in the following T times and goes back
to C.
A rational learning setting:

— the strategy space consists of the strategies g1, g2,
...8",..,8°; goois the trigger strategy

— each player happens to select a best response
from among g°gl,...,.g=.

After playing each round of the repeated game,
each player performs Bayesian updating

C D
c | 2,2 0,3
D 3,0 1,1

Prisoner’s Dilemma as
the stage game

0 if player | has observed that player |
P.(g |h) = { P () TSt has always cooperated after history

ifT <t

leo:ﬁlpi(gk) htEH



Evolutionary learning in populations of agents

40000

e Learning in a population of
agents:
— we mean the change in the |
constitution and behaviour of that |\
population over time L
 These models were originally
developed by population
biologists to model the process
of biological evolution, and

* |ater adopted and adapted by
other fields

Fre p- A pds b

Yang, Yaodong, et al. "An Empirical Study of Al Population Dynamics with Million-agent Reinforcement Learning." arXiv preprint
arxiv:1709.04511 (2017).
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Background: evolutionary biology

o . DAPTATION | RICHARD
e Gene-centric view of evolution ELEREWLILE

el PAWKINGS
— An organism’s genes largely THE
. SELFISH
determine its observable GENE
characteristics (fitness) in a given ‘
environment Bepezr oo B,
* More fit organisms will produce 1966 1976
more offspring Gene-centric view of evolution

— This causes genes that provide
greater fitness to increase their
representation in the population
via natural selection

Natural selection



Evolutionary game theory

* |n 1973 biologist John Maynard JOHN MAYNARD SMITH
Smith and mathematician George R. Evolution
Price showed how game theory
applies to the behaviour of animals and the

* The idea of applying game theory to Theory of

animals seemed strange at the time, Games

— because game theory had always
been about rationality

— Animals hardly fit the bill

 Maynard Smith made three critical
shifts from traditional game theory

— strategy,
— equilibrium, and

— the nature of agent interactions Maynard Smith’s 1982
book has become a

classic.




Background: Evolutionary Game theory

* Regular game theory

— Individual players make decisions

— Payoffs depend on decisions '
made by all

— The reasoning about what other
players might do happen
simultaneously

* Evolutionary game theory

— Game theory continues to apply
even if no individual is reasoning
or making explicit decisions

— Decisions may thus not be
conscious

— What behavior will persist in a
population?

n (n)

Game Rules
Replicator Rules

3
Q
O
a

Img source: https://en.wikipedia.org/wiki/Evolutionary_game_theory



Evolutionary game theory

e Key insight
— Many behaviors involve the interaction of multiple
organisms in a population

— The success of an organism depends on how its behavior
interacts with that of others

e Can‘t measure fitness of an individual organism along

— So fitness must be evaluated in the context of the full
population in which it lives

* Analogous to game theory!

— Organisms'’s genetically determined characteristics and
behavior = Strategy

— Fitness = Payoff

— Payoff depends on strategies of organisms with which it
interacts = Game matrix



Motivating example

* Let‘s look at a species of a beetle

— Each beetle’s fitness depends on finding
and processing food effectively

— Mutation introduced
* Beetles with mutation have larger body size
* Large beetles need more food

 What would we expect to happen?
— Large beetles need more food

— This makes them less fit for the
environment

— The mutation will thus die out over time
* But there is more to the story...




Motivating example

* Beetles compete with each other for food

— Large beetles more effective at claiming above-
average share of the food

* Assume food competition is among pairs
— Small vs. Small : get equal shares of food

— Large vs. small: Large beetle gets the majority of food
from Small beetle

— Large vs. Large: get equal shares of food, but Large
beetles always experience less fitness benefit from
given quantity of food

* Need to maintain their expensive metabolism (the chemical
processes in their body)



Motivating example
* The body-size game between two beetles

T sl e

* Something funny about this

— No beetle is asking itself: “Do | want to be small or
large?"

* Need to think about strategy changes that
operate over longer time scales

— Taking place as shifts in population under
evolutionary forces!




Evolutionarily stable strategies

e Suppose each beatle is repeatedly paired off
with other beetles at random

— Population large enough so that there are no
repeated interactions between two beetles

* A beetle’s fithess = average fitness from food
interactions = reproductive success

— More food thus means more offspring to carry
genes (strategy) to the next generation



Evolutionary stable strategies

 The concept of a Nash equilibrium doesn‘t work
in this setting

— Nobody is changing their personal strategy

* |nstead, we want an evolutionary stable strategy

— A genetically determined strategy that tends to persist
once it is prevalent in a population

— Def

* A strategy is evolutionarily stable if everyone uses it, and

any small group of invaders with a different strategy will
die off over multiple generations

* Need to make this precise...



Motivating example

* |s Small an evolutionarily

stable strategy? | smal [ e
‘ « ey m 5,5 1,8

e Let’s use the definition -
Large 8,1

3,3
— Suppose for some small
number &€, a 1- € fraction of

population use Small and ¢ What is the expected payoff to a

Small beetle in a random

use Large interaction?
With prob. 1- £, meet
—In Other WOFdS, Large another Small beetle for a
beetles invades a payoff of 5
. With prob. €, meet Large
population of Small beetles beetle for a payoff of 1

Expected payoff: 5(1-€) +1 ¢
=5-4¢



Motivating example

* |s Small an evolutionarily

stable strategy? [ sman [ terme
1,8

5,5
e Let's use the definition m

— Suppose for some small
number &, a 1- € fraction of
population use Small and ¢ What is the expected payoff to a

Large beetle in a random

use Large interaction?
With prob. 1- £, meet a
— In other wo rds, La rge Small beetle for payoff of 8
bGEt'ES invades 3 With prob. &, meet another
] Large beetle for a payoff of 3
population of Small beetles Expected payoff: 8(1- &) + 3 ¢

=85¢



Motivating example
* Expected fitness of Large beetles is 8-5 ¢

* Expected fitness of Small beetles is 5-4 ¢

— For small enough € (and even big ¢), the fitness of
Large beetles exceeds the fitness for Small

— Thus Small is NOT evolutionarily stable

 What about the Large strategy?
— Assume ¢ fraction are Small, rest Large.
— Expected payoff to Large: 3(1-¢) + 8 e =345 ¢
— Expected payoff to Small: 1(1- &) +5e=1+4 ¢
— Large is evolutionarily stable



Motivating example

e Summary

— A few large beetles introduced into a population
consisting of small beetles
— Large beetles will do really well:
* They rarely meet each other
* They get most of the food in most competitions
— Population of small beetles cannot drive out the
large ones
* So Small is not evolutionarily stable



Motivating example

e Summary

— Conversely, a few small beetles will do very badly
* They will lose almost every competition for food

— A population of large beetles resists the invasion
of small beetles

— Large is thus evolutionarily stable

* The structure is like prisoner’s dilemma
— Competition for food = arms race

— Beetles can‘t change body sizes, but evolutionarily
forces over multiple generations are achieving
analogous effect



Evolutionary arms races

* Lots of examples

— Height of trees follows prisoner’s dilemma
* Only applies to a particular height range
* More sunlight offset by fitness downside of height

— Roots of soybean plants to claim resources

e Conserve vs. Explore

* Hard to truly determine payoffs in real-world
settings



Evolutionary darms races
* One recent example with known payoffs

— Virus populations can play an evolutionary version
of prisoner’s dilemma

— Virus A

* Infects bacteria
 Manifactures products required for replication

— Virus B

 Mutated version of A
e Can replicate inside bacteria, but less efficiently
* Benefits from presence of A

— Is B evolutionarily stable?



Virus game
e Look at interactions between two viruses

100 1.00 0.65, 1.99

B:] 199,065 0.83,0.83

— Viruses in a pure A population do better than viruses in
pure B population

— But regardless of what other viruses do, higher payoff to
be B

* Thus B is evolutionarily stable
— Even though A would have been better
— Similar to the exam-presentation game




What happens in general?

 Under what conditions is a strategy
evolutionarily stable?

— Need to figure out the right form of the payoff
matrix

Organism 2
s T

— How do we write the condition of evolutionary
stability in terms of these 4 variables, a,b,c,d?

Organism 1



What happens in general?

* Look at the definition again

— Suppose again that for some small number ¢:
* A 1- ¢ fraction of the population uses S
* An € fraction of the population uses T

 What is the payoff for playing S in a random
interaction in the population?

— Meet another S with prob. 1- €. Payoff = a
— Meet T with prob. €. Payoff = b
— Expected payoff = a(1- €)+b ¢
* Analogous for playing T
— Expected payoff = ¢c(1- €)+d ¢



What happens in general?

* Therefore, S is evolutionarily stable if for all
small values of x:
—a(l-e)+be > c(1-e)+d ¢
— When ¢ is really small (goes to 0), this is
°*a>cC

— When a=c, the left hand side is larger when
*b>d

* |In other words

— In a two-player, two-strategy symmetric game, S is
evolutionarily stable when either
*a>c,or
ea=c,andb>d



What happens in general?

* |ntuition

— In order for S to be evolutionarily stable, then:

* Using S against S must be at least as good as using T
against S

* Otherwise, an invader using T would have higher fitness
than the rest of the population

— If Sand T are equally good responses to S

* S can only be evolutionarily stable if those who play S
do better against T than what those who play T do with
each another

* Otherwise, T players would do as well against the S part
of the population as the S players



Relationship with Nash equilibria

e Let’s look at Nash in the symmetric game
s T
B o0 b

— When is (S,S) a Nash equilibrium?
—SisabestresponsetoS: a=>c

 Compare with evolutionarily stable
strategies:

—()a>cor(iila=candb>d

* Very similar!



Interpretation of mixed strategies

* Can interpret this in two ways

— each agents plays the same mixed strategy, or

— A fraction of the population playing each of the
underlying pure strategies in proportion to its

contribution to the mixed strategy
* As the stage game is a one-shot, it is rarely
plausible to hold that an individual will play a
strictly mixed strategy

* Thus, in general, the heterogeneous population
Interpretation is superior



ESS: definition of the stage game

* Consider a two-player normal form symmetric
game:

— both players have the set of pure strategies S =
{4 ..., 511}

— uq(s; s;) : the payoffs of an agent playing s; when
playing with another agent using s,

— Symmetric payoff: u,(s,, sj)= U, (s, sj) = u;

— Symmetric in strategy: agents cannot condition their
play on whether they are player 1 or player 2

— U = (ui,]-): the matrix of the symmetric game



ESS: how the stage game is played?

e Stage game G is a symmetric game with matrix U

* Large population of agents is to play the game

— In each period t=1,2,..., agents are randomly paired
and they play the stage game G once

— Each agent has certain type i € {1, ..., n}, i.e,, the
agent uses strategy S; in the stage game.

* The state of the game (also called the strategy of
the population): ¢ = {p4, ..., D, ..., P}, Where
p;is the proportion of agents of selecting strategy
s. (type i) at a particular time; p; = 0 and
2ipi=1



Evolutionarily stable strategies

* Fitness of an agent type i in a population = expected payoff from

interaction with another member of population:
n

Ujg = Z Uijp;j
=1
* Mutant strategy T = {q4, ..., q;, ..., qn } invades the population with
strategy o at level ¢ (for small ¢ ) if:
e ¢ fraction of population uses T

* 1- ¢ fractionof population uses o
* The new state of the populationisu = (1 — &)o + €t

* The payoff of a randomly chosen nonmutant is:
Ugu = (1 = &Uge + EUgy
* The payoff of a randomly chosen mutant is:
Ury = (1= &urs + Uy
where uaa Zl] 1PiUijPj, Ugg = Ugy = Zl] 19iUijDj,
ZL] 1 qlulj CI]



Evolutionarily stable strategies

e Strategy o is evolutionarily stable if there is
some number y such that:

* When any other strategy 7 invades o at any level e <y,
the fitness of an agent playing o is strictly greater than
the fitness of an agent playing 7: us, > uqy,

That |S (1 - g)uo'o' + guo"r>(1 - g)uTO' + Su'TT
* Given small g, this is equivalent to requiring that
either u, >u., or else both v, =u, and U, ;>U,;



Evolutionarily stable strategies

e Strategy o is evolutionarily stable if there is
some number y such that:

* When any other strategy 7 invades o at any level e <y,
the fitness of an agent playing o is strictly greater than
the fitness of an agent playing 7: us, > uqy,

That |S (1 - g)uo'o' + guo"r>(1 - g)uTO' + Su'TT
* Given small g, this is equivalent to requiring that
either ., >u., or else both v, =u, and U, ,>U;

a-mutant cannot do better against an existi
agent than an existing agent can do against
another existing agent



Evolutionarily stable strategies

e Strategy o is evolutionarily stable if there is
some number y such that:

* When any other strategy 7 invades o at any level e <y,
the fitness of an agent playing o is strictly greater than
the fitness of an agent playing 7: us, > uqy,

That |S (1 - g)uo'o' + guo"r>(1 - g)uTO' + Su'TT
* Given small g, this is equivalent to requiring that
either u, >u., or else both v, =u., and U, ;>U;

But if a mutant does as well as an existing
agent against another existing one, then an
existing agent must do better against a
mutant than a mutant does against another
mutant.




Hawk-Dove game

Two animals are fighting over a prize such as a piece
of food.
Each animal can choose between two behaviours:
— an aggressive hawkish behaviour H, or
— an gentle/peace dovish behaviour D.
The prize is worth 6 to each of them.
Fighting costs each player 5.

When a hawk meets a dove he gets the prize without
a fight, and hence the payoffs are 6 and 0O,
respectively.

When two doves meet they split the prize without a
fight, hence a payoff of 3 to each one.

When two hawks meet a fight breaks out, costing
each player 5 (or, equivalently, yielding -5). In
addition, each player has a 50% chance of ending up
with the prize,

H D
-2,=2 6, 0
0, 6 3,3




Hawk-Dove game

 The game has a unigue symmetric Nash
equilibrium (o, o), where o = (3/5, 2/5),
and

o isalsothe unique ESS of the game.

* To confirm this, we need that u(o,o0) =
u(t,o) and u(o, ) > u(r, 1) Ho|-2,-2

6,0

For all T # o,

— The equality condition is true of any mixed 0,0

3,3

strategy equilibrium with full support.
Why???
— The inequality also holds. To see this,
consider
f(t) = u(o, 7) - u(T, 7)

Expanding f(7) we see that it is a quadratic
equation with the (uniqgue) maximum t = g,
proving our result




ESS Summary
* Nash equilibrium

— Rational players choosing mutual best responses
to each other’s strategy

— Great demands on the ability to choose optimally
and coordinate on strategies that are best
responses to each other

* Evolutionarily stable strategies
— No intelligence or coordination
— Strategies hard-wired into players (genes)
— Successful strategies produce more offspring

* Yet somehow they are almost the same!




Content

* Replicator Dynamics



Replicator Dynamics

* Replicator dynamics model a population undergoing Mo
frequent interactions. B3 it 9
* Focus on the symmetric, two-player case w ] 7 FLANN
— A population of agents repeatedly play a two-player
symmetric normal-form stage game against each other. 08 , Y
* It describes a population of agents playing such a L |V ELLL L 8 A AR L]
game fOIIOWing: 0.4, ..... i Ot o, B e i B b

— At each point in time, each agent only plays a pure
strategy.

— Informally speaking, the model then pairs all agents and W S tiaianaliah 71
has them play each other, each obtaining some payoff. | i T e e g
This payoff is called the agent’s fitness. .

— Each agent now “reproduces" in a manner proportional to
this fitness, and

— the process repeats. Direction field plot of the

* The question is Prisoner’s dilemma game.
— whether the process converges to a fixed proportion of
the various pure strategies within the population, and

— if so to which fixed proportions.

02 g

02 04 0.6 0.8 1

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning.” Artificial Intelligencel71.7
(2007): 406-416.

Schuster, Peter, and Karl Sigmund. "Replicator dynamics." Journal of theoretical biology 100.3 (1983): 533-538.



Recall the stage game

* Consider a two-player normal form symmetric
game:

— both players have the set of pure strategies S =
{4 ..., 511}

— uq(s; s;) : the payoffs of an agent playing s; when
playing with another agent using s,

— Symmetric payoff: u,(s,, sj)= U, (s, sj) = u;

— Symmetric in strategy: agents cannot condition their
play on whether they are player 1 or player 2

— U = (ui,]-): the matrix of the symmetric game



Replicator Dynamics

Consider an evolutionary game where each
player follows one of n pure strategies s, €

{1, ...,n}

The play is repeated in periods t=1,2,...

Let pf be the fraction of players playing s. in
period t, and suppose the payoff to s, is
Uy = Zuijpit
j=1
For mathematical convenience, at a given time
t, we index the strategies so that: uj, <
uby < v < uby



Replicator Dynamics

 Suppose in every time period dt, each agent with probability adt >
O learns the payoff to another randomly chosen agent and

* changes to the other’s strategy if he perceives that the other’s
payoff is higher.

 However, information concerning the difference in the expected
payoffs of the two strategies is imperfect, so the larger the

difference in the payoffs, the more likely the agent is to perceive it,
and change.

* Specifically, we assume that the probability pit’j that an agent using
s; will shift to s; is given by

t t t t
t _ lg(uia o ja) fOT' Ui = Ui
Yo for ui, =uj,

where [ is sufficiently small that pit,j < 1 holds for all i and j.



Replicator Dynamics

* The expected fraction of population using s, in period t + dt is then
given by

pf+dt _pl adt (pl ] l+1p] ( ltO')

Z] 1p]pl IB(uw o ]0)
=pf + adt p; Zn 1Dj ﬁ(uia — ja)
—pl + adt p; ﬁ(uw i)
where %%, is the average return for the whole population.

e Subtracting pf from both sides, dividing by dt , and taking the limit
as dt->0, we have

pl = ﬁ pl (ulO' _.O')
which is called the replicator dynamic.

As the constant a f merely changes the rate of adjustment to
stationarity but leaves the stability properties and trajectories of the
dynamical system unchanged, we often simply assume a =1

Gintis, Herbert. Game theory evolving: A problem-centered introduction to modeling
strategic behavior. Princeton university press, 2000.



Replicator Dynamics

 The system we have defined has a very intuitive quality.
— If an action does better than the population average then the
proportion of the population playing this action increases, and vice
versa.

— Note that even an action that is not a best response to the current
population state can grow as a proportion of the population when its
expected payoff is better than the population average.

e Astraightforward interpretation is that it describes agents
repeatedly interacting and replicating within a large population

LA N T s Tus I o

Direction field plot of the battle of the sexes game. Replicator dynamics direction field for CH with 10 agents.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning.” Artificial Intelligencel71.7
(2007): 406-416.
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