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Learning in repeated game

• Players in classical game theory (previous lectures) have 
– a perfect knowledge of the environment and 
– the payoff tables, and 
– try to maximize their individual payoff. 

• Thus, the goal is to figure out, a priori, how to optimize its
actions, e.g., calculate Nash equilibria

• However, when information is incomplete or in a repeated
game, it becomes impossible to judge what choices are the 
most rational

• The question then facing a player becomes how to learn to 
optimize its behaviour and maximize its return, based on 
local knowledge and through a process of trial and error.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.



learning in single agent

• A typical AI concerns the learning performed 
by an individual agent

• In that setting, the goal is to design an agent 
that learns to function successfully in an 
environment that is unknown and potentially 
also changes as the agent is learning
– Learning to recommend in collaborative filtering

– Learning to predict click-through rate by logistic
regression



learning over multiple agents
• In a multi-agent (player) setting, the environment contains other 

agents (players) – (we are going to use term “player” and “agent” interchangeably)
• Additional complication:

– the learning of other agents will change the environment, thus making
an impact on the learning of our player, and

– The learning of our agent will also influence the learning of other
agents

• The simultaneous learning of them means that 
– every learning rule leads to a dynamical system, and
– sometimes even very simple learning rules can lead to complex global 

behaviours of the system 
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Bowling, Michael, and Manuela 
Veloso. "Multiagent learning using 
a variable learning rate." Artificial 
Intelligence 136.2 (2002): 215-250.



Interaction between learning and teaching

• Also multi-agent systems cannot
separate the phenomenon of 
learning from that of teaching

• When choosing a course of action, 
a player must take into account 

– not only what he has learned from 
other player’ past behaviour, 

– but also how he wishes to influence 
their future behaviour

Image source:
https://rryshke.files.wordpress.com/20
12/11/art-of-teaching.jpg



An infinitely repeated game

• A repeated game: a given game 
(e.g., in normal form) is played 
multiple times by the same set 
of players. 
– The game being repeated is called 

the stage game. 

• Infinitely Repeated Game: the
stage game is infinitely played

• In IRG, average reward is
– the payoff to a given player is the 

limit average of his payoffs in the 
individual stage games
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The simultaneous learning of the agents means that every learning rule leads to

a dynamical system, and sometimes even very simple learning rules can lead to

complex global behaviors of the system. Beyond this mathematical fact, however,

lies a conceptual one. In the context of multiagent systems one cannot separate the

phenomenon of learning from that of teaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agents’

past behavior, but also how he wishes to influence their future behavior.

The following example illustrates this point. Consider the infinitely repeated

game with average reward (i.e., where the payoff to a given agent is the limit aver-

age of his payoffs in the individual stage games, as in Definition 6.1.1), in which

the stage game is the normal-form game shown in Figure 7.1.Stackelberg

game

L R

T 1,0 3,2

B 2,1 4,0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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An infinitely repeated game

• (B,L) is the unique Nash 
equilibrium of the game

– Agent 1 (the row player) has a 
dominant strategy, B

• Observations:

– If agent 1 were to play B 
repeatedly, it is reasonable to 
expect that agent 2 would 
always respond with L. 
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First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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An infinitely repeated game

• (B,L) is the unique Nash 
equilibrium of the game

– Agent 1 (the row player) has a 
dominant strategy, B

• Observations:

– if agent 1 were to choose T 
instead, then agent 2’s best 
response would be R, yielding a 
payoff large than that in Nash 
equilibrium 
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The simultaneous learning of the agents means that every learning rule leads to

a dynamical system, and sometimes even very simple learning rules can lead to

complex global behaviors of the system. Beyond this mathematical fact, however,

lies a conceptual one. In the context of multiagent systems one cannot separate the

phenomenon of learning from that of teaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agents’

past behavior, but also how he wishes to influence their future behavior.

The following example illustrates this point. Consider the infinitely repeated

game with average reward (i.e., where the payoff to a given agent is the limit aver-

age of his payoffs in the individual stage games, as in Definition 6.1.1), in which

the stage game is the normal-form game shown in Figure 7.1.Stackelberg

game

L R

T 1,0 3,2

B 2,1 4,0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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Given an infinite sequence of

payoffs r(1), r(2),… for player i, 

the average reward of i is



Teaching

• In a single-stage game it would 
be hard for agent 1 to convince 
agent 2 that he will play T , 
since B is a strictly dominated 
strategy

• However, in a repeated-game 
setting, agent 1 has an 
opportunity being a teacher 
– agent 1 could repeatedly play T; 

presumably, after a while agent 2, 
if he has any sense at all, would 
get the message and start 
responding with R

200 7 Learning and Teaching

The simultaneous learning of the agents means that every learning rule leads to

a dynamical system, and sometimes even very simple learning rules can lead to

complex global behaviors of the system. Beyond this mathematical fact, however,

lies a conceptual one. In the context of multiagent systems one cannot separate the

phenomenon of learning from that of teaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agents’

past behavior, but also how he wishes to influence their future behavior.

The following example illustrates this point. Consider the infinitely repeated

game with average reward (i.e., where the payoff to a given agent is the limit aver-

age of his payoffs in the individual stage games, as in Definition 6.1.1), in which

the stage game is the normal-form game shown in Figure 7.1.Stackelberg

game

L R

T 1,0 3,2

B 2,1 4,0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2’s best response would be R , yielding player 1 a payoff of 3 which is

greater than player 1’s Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convince player 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

has any sense at all, would get the message and start responding with R .

In the preceding example it is pretty clear who the natural candidate for adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure 7.2. In this case, either player could play the teacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions (Left,Right) or (Right,Left) then the players will receive a payoff

of zero forever.2 Is there a learning rule that will enable them to coordinate without

an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking

toward you while he is doing the same thing, the result being that you keep blocking each other.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in the case of the Centipede game, this argument is vulnerable

to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they be defined as the sum of the payoffs in the stage games (which in general

will be infinite). There are two common ways of defining a player’s payoff in an

infinitely repeated game to get around this problem. The first is the average payoff

of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs r(1)i ,r
(2)
i ,...

for player i, the average reward of iisaverage reward

lim
k→∞

k

j= 1 r
(j)
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive definition, since the future

rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs r
(1)
i ,r

(2)
i ,...

for player i, and a discount factor β with 0≤β ≤1, the future discounted rewardfuture

discounted

reward
of iis

∞

j= 1 β
jr
(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the game will be stopped any given round; 1 − β represents that probability. The

analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,

consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One

can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather than

lim .
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What constitutes learning?
• A repeated game is regarded as a nature setting for

“learning”
– temporal nature and 
– the regularity across time (at each time the same players 

are involved, and they play the same game as before)

• This allows us to consider strategies:
future action is selected based on the experience gained 
so far

– The Tit-for-Tat (TfT) and trigger strategies (studied in 
repeated Prisoner’s Dilemma) can be viewed as a
rudimentary form of learning strategies 

396 C hapter 14. R epeated gam es: T he P risoner’s D ilem m a

C:C D :D-
(·,D )

?

☛ ✟
(·,C )

Figure 396.1 The strategy tit-for-tatin an infinitely repeated Prisoner’sD ilem m a.

diagram like Figure 395.1.

a. C hoose C in period 1,and after any history in w hich the other player chose
C in every period except,possibly,the previous period;choose D after any
otherhistory.(Thatis,punishm entis grim ,butits initiation is delayed by one

period.)

b. C hoose C in period 1 and afterany history in w hich the otherplayerchose D
in atm ostone period;choose D afterany other history.(Thatis,punishm ent
is grim ,buta single lapse is forgiven.)

c. (Pavlov,or w in-stay,lost-shift) C hoose C in period 1 and after any history in
w hich the outcom e in the lastperiod is either(C ,C )or (D ,D );choose D after
any other history. (Thatis,choose the sam e action again ifthe outcom e w as

relatively good foryou,and sw itch actions ifitw as not.)

14.5 Som e N ash equilibria of the infinitely repeated P risoner’s D ilem m a

If one player chooses D after every history in an infinitely repeated Prisoner’s
D ilem m a then itis clearly optim alfor the otherplayerto do the sam e (since (D ,D )
is a N ash equilibrium ofthe Prisoner’s D ilem m a). The argum entatthe startofthe
chapter suggests thatan infinitely repeated Prisoner’s D ilem m a has other,less dis-
m al, equilibria, so long as the players are sufficiently patient—for exam ple, the

strategy pair in w hich each player uses the grim trigger strategy defined in Fig-

ure 395.1.Inow m ake this argum entprecise.ThroughoutIconsider the infinitely

repeated Prisoner’s D ilem m a in w hich each player’s discount factor is δ and the
one-shotpayoffs are given in Figure 389.1.

14.5.1 G rim trigger strategies

Suppose thatplayer1 adopts the grim triggerstrategy.Ifplayer2 does so then the

outcom e is (C ,C ) in every period and she obtains the stream ofpayoffs (2,2,...),
w hose discounted average is 2. Ifshe adopts a strategy thatgenerates a different

sequence ofoutcom esthen there is one period (atleast)in w hich she chooses D .In
allsubsequentperiods player1 chooses D (player2’s choice ofD triggers the grim
punishm ent), so the best deviation for player 2 chooses D in every subsequent
period (since D is her unique bestresponse to D ). Further,ifshe can increase her
payoff by deviating then she can do so by deviating to D in the first period. If
she does so she obtains the stream of payoffs (3,1,1,...) (she gains one unit of

P0:C P1:
D



What constitutes learning?

• More complex strategies: an agent’s next 
choice depends on the history of play in more 
sophisticated ways, e.g.,  

– the agent could guess that 

– the frequency of actions played by his opponent in 
the past might be his current mixed strategy, and

– play a best response to that mixed strategy

• This basic learning rule is called fictitious play



What games require learning

• Repeated game

• Population game (will be explained shortly)

• Stochastic game (will be introduced later)



What are settings for learning

• Whether the game is known by the players 
– If the game is known, any “learning” that takes place is only 

about the strategies employed by the others
– If the game is unknown, the agent can in addition learn about 

the structure of the game itself

• For instance, the agent may start out not knowing the 
payoff functions at a given stage game or additionally the 
transition probabilities (in a stochastic game setting), but 
learn those over time in the course of playing the game. 
– With certain learning strategies, agents can sometimes converge 

to an equilibrium even without knowing the game being played! 

• Whether the game is observable by the players 
– do the players see each others’ actions, and/or each others’ 

payoffs? 



Content

• Learning in Games

• Fictitious Play

• Smoothed Fictitious Play

• Rational Learning

• Evolutionary Game Theory

• Replicator Dynamics



Fictitious Play
• Fictitious play is a simple sequential procedure 

that learn the value of a game

• It is an instance of model-based learning,

– the learner explicitly maintains beliefs about the 
opponent’s strategy. The learning structure:

206 7 Learning and Teaching

In the next sections, as we discuss several learning rules, we will encounter

various versions of these requirements and their combinations. For the most part

we will concentrate on repeated, two-player games, though in some cases we will

broaden the discussion and discuss stochastic games and games with more than

two players.

7.2 Fictitious play

Fictitious play is one of the earliest learning rules. It was actually not proposedfictitious play

initially as a learning model at all, but rather as an iterative method for computing

Nash equilibria in zero-sum games. It happens to not be a particularly effective

way of performing this computation, but since it employs an intuitive update rule,

it is usually viewed as a model of learning, albeit a simplistic one, and subjected to

convergence analyses of the sort discussed above.

Fictitious play is an instance of model-based learning, in which the learner ex-

plicitly maintains beliefs about the opponent’s strategy. The structure of such tech-

niques is straightforward.

Initialize beliefs about the opponent’s strategy

repeat
Play a best response to the assessed strategy of the opponent

Observe the opponent’s actual play and update beliefs accordingly

Note that in this scheme the agent is oblivious to the payoffs obtained or ob-

tainable by other agents. We do however assume that the agent knows his own

payoff matrix in the stage game (i.e., the payoff he would get in each action profile,

whether or not encountered in the past).

In fictitious play, an agent believes that his opponent is playing the mixed strat-

egy given by the empirical distribution of the opponent’s previous actions. That is,

if A is the set of the opponent’s actions, and for every a ∈A we let w (a) be the

number of times that the opponent has played action a, then the agent assesses the

probability of a in the opponent’s mixed strategy as

P (a) =
w (a)

a′∈A w (a
′)
.

For example, in a repeated Prisoner’s Dilemma game, if the opponent has played

C ,C ,D ,C ,D in the first five games, before the sixth game he is assumed to be

playing the mixed strategy (0.6,0.4). Note that we can represent a player’s beliefs

with either a probability measure or with the set of counts (w (a1),...,w (ak)).
We have not fully specified fictitious play. There exist different versions of fic-

titious play which differ on the tie-breaking method used to select an action when

there is more than one best response to the particular mixed strategy induced by
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Note that in this setting,

• the agent does not know the payoffs and payoff functions by other agents, and

• he, however, knows his own payoff matrix in the stage game (i.e., the payoff he 

would get in each action profile, whether or not encountered in the past). 

Brown, George W. "Iterative solution of games by fictitious play." Activity analysis of production and allocation 13.1 (1951): 374-376.



Fictitious Play
• In fictitious play, an agent believes that 

– his opponent is playing the mixed strategy that is
consistent with the empirical distribution of the 
opponent’s previous actions

• Formally,
– A is the set of the opponent’s actions, and 

– for every a ∈ A, let w(a) be the number of times 
that the opponent has played action a.

– Then, the agent assesses the opponent’s mixed 
strategy as 

206 7 Learning and Teaching

In the next sections, as we discuss several learning rules, we will encounter

various versions of these requirements and their combinations. For the most part

we will concentrate on repeated, two-player games, though in some cases we will

broaden the discussion and discuss stochastic games and games with more than

two players.

7.2 Fictitious play

Fictitious play is one of the earliest learning rules. It was actually not proposedfictitious play

initially as a learning model at all, but rather as an iterative method for computing

Nash equilibria in zero-sum games. It happens to not be a particularly effective

way of performing this computation, but since it employs an intuitive update rule,

it is usually viewed as a model of learning, albeit a simplistic one, and subjected to

convergence analyses of the sort discussed above.

Fictitious play is an instance of model-based learning, in which the learner ex-

plicitly maintains beliefs about the opponent’s strategy. The structure of such tech-

niques is straightforward.

Initialize beliefs about the opponent’s strategy

repeat
Play a best response to the assessed strategy of the opponent

Observe the opponent’s actual play and update beliefs accordingly

Note that in this scheme the agent is oblivious to the payoffs obtained or ob-

tainable by other agents. We do however assume that the agent knows his own

payoff matrix in the stage game (i.e., the payoff he would get in each action profile,

whether or not encountered in the past).

In fictitious play, an agent believes that his opponent is playing the mixed strat-

egy given by the empirical distribution of the opponent’s previous actions. That is,

if A is the set of the opponent’s actions, and for every a ∈A we let w (a) be the

number of times that the opponent has played action a, then the agent assesses the

probability of a in the opponent’s mixed strategy as

P (a) =
w (a)

a′∈A w (a
′)
.

For example, in a repeated Prisoner’s Dilemma game, if the opponent has played

C ,C ,D ,C ,D in the first five games, before the sixth game he is assumed to be

playing the mixed strategy (0.6,0.4). Note that we can represent a player’s beliefs

with either a probability measure or with the set of counts (w (a1),...,w (ak)).
We have not fully specified fictitious play. There exist different versions of fic-

titious play which differ on the tie-breaking method used to select an action when

there is more than one best response to the particular mixed strategy induced by
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Fictitious Play
• Fictitious play is sensitive to the players’ initial beliefs

or prior
– which can be interpreted as action counts that were 

observed before the start of the game
– Note that one must pick some nonempty prior belief for 

each agent; the prior beliefs cannot be (0, . . . , 0) since this 
does not define a meaningful mixed strategy

• The prior beliefs can have a radical impact on the 
learning process 

• Drawback: in fictitious play each agent assumes a 
stationary policy of the opponent, 
– yet no agent plays a stationary policy except when the 

process happens to converge to one!



Fictitious Play: an example
• In a repeated Prisoner’s Dilemma game, 

– if the opponent has played 

– C, C, D, C, D in the first five games, 

• we can represent a player’s beliefs with 
either a probability measure or with the 
set of counts (w(a1 ), . . . , w(ak ))
– before the sixth game he is assumed to be 

playing the mixed strategy (w(C)=0.6, 
w(D)=0.4)

– In the sixth game, what would be the best
response to (w(C)=0.6, w(D)=0.4)?
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Fictitious Play: an example
• Two players are playing a 

repeated game of Matching 
Pennies. 

• Each player is using fictitious 
play learning to update his 
beliefs and select actions. 
– Player 1 begins the game with the 

prior belief that player 2 has 
played heads 1.5 times and tails 2
times

– Player 2 begins with the prior 
belief that player 1 has played 
heads 2 times and tails 1.5 times

• How will the players play?

7.2 Fictitious play 207

Heads Tails

Heads 1,− 1 − 1,1

Tails − 1,1 1,− 1

Figure 7.4: Matching Pennies game.

an agent’s beliefs. In general the tie-breaking rule chosen has little effect on the

results of fictitious play.

On the other hand, fictitious play is very sensitive to the players’ initial beliefs.

This choice, which can be interpreted as action counts that were observed before

the start of the game, can have a radical impact on the learning process. Note that

one must pick some nonempty prior belief for each agent; the prior beliefs cannot

be (0,...,0) since this does not define a meaningful mixed strategy.

Fictitious play is somewhat paradoxical in that each agent assumes a stationary

policy of the opponent, yet no agent plays a stationary policy except when the pro-

cess happens to converge to one. The following example illustrates the operation

of fictitious play. Recall the Matching Pennies game from Chapter 3, reproduced

here as Figure 7.4. Two players are playing a repeated game of Matching Pennies.

Each player is using the fictitious play learning rule to update his beliefs and select

actions. Player 1 begins the game with the prior belief that player 2 has played

heads 1.5 times and tails 2 times. Player 2 begins with the prior belief that player 1
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Some properties 
• Steady state: an action profile a is a steady state 

of fictitious play 
– if it is the case that whenever a is played at round t it 

is also played at round t + 1 (and hence in all future 
rounds as well)

• A tight connection between steady states and 
pure-strategy Nash equilibria:
– Theorem 1 If a pure-strategy profile is a strict Nash 

equilibrium of a stage game, then it is a steady state 
of fictitious play in the repeated game

– Note that the pure-strategy profile must be a strict 
Nash equilibrium, i.e.,
• no agent can deviate to another action without strictly 

decreasing its payoff 



Some properties 
• Steady state: an action profile a is a steady state 

of fictitious play 
– if it is the case that whenever a is played at round t it 

is also played at round t + 1 (and hence in all future 
rounds as well)

• A tight connection between steady states and 
pure-strategy Nash equilibria:
– Theorem 2 If a pure-strategy profile is a steady state 

of fictitious play in the repeated game, then it is a 
(possibly weak) Nash equilibrium in the stage game. 

– Note that fictitious play may not always converges to 
a Nash equilibrium,
• as agents can only play pure strategies and a pure-strategy 

Nash equilibrium may not exist in a given game 



Some properties 
• However, while the stage game strategies may 

not converge, the empirical distribution of the 
stage game strategies may

• This was the case in the Matching Pennies 
example, 
– where the empirical distribution of the each player’s 

strategy converged to their mixed strategy in the 
(unique) Nash equilibrium of the game. 

• The following theorem shows that this was no 
accident. 
– Theorem 3 If the empirical distribution of each 

player’s strategies converges in fictitious play, then it 
converges to a Nash equilibrium. 



Fictitious Play: an example
• However, although the theorem 

gives sufficient conditions for 
the empirical distribution to 
converge to a mixed 
equilibrium, no claims made 
about the distribution of the 
particular actions played

• To see this, consider a repeated 
Anti-Coordination game here
– two pure Nash equilibria of 

this game, (A, B) and (B, A), 
and one mixed Nash 
equilibrium: each agent mixes 
A and B with probability 0.5

– Either of the two pure-strategy 
equilibria earns each player a 
payoff of 1, and the mixed-
strategy equilibrium earns 
each player a payoff of 0.5

The Anti-Coordination game as the
stage game. 
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A B

A 0,0 1,1

B 1,1 0,0

Figure 7.5: The Anti-Coordination game.

Now let us see what happens when we have agents play the repeated Anti-

Coordination game using fictitious play. Let us assume that the weight function

for each player is initialized to (1,0.5). The play of the first few rounds is shown

in Table 7.2.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (1,0.5) (1,0.5)

1 B B (1,1.5) (1,1.5)

2 A A (2,1.5) (2,1.5)

3 B B (2,2.5) (2,2.5)

4 A A (3,2.5) (3,2.5)
.
..

.

..
.
..

.

..
.
..

Table 7.2: Fictitious play of a repeated Anti-Coordination game.

As you can see, the play of each player converges to the mixed strategy (0.5,0.5),
which is the mixed strategy Nash equilibrium. However, the payoff received by

each player is 0, since the players never hit the outcomes with positive payoff.

Thus, although the empirical distribution of the strategies converges to the mixed

strategy Nash equilibrium, the players may not receive the expected payoff of the

Nash equilibrium, because their actions are miscorrelated.

Finally, the empirical distributions of players’ actions need not converge at all.

Consider the game in Figure 7.6. Note that this example, due to Shapley, is a

modification of the rock-paper-scissors game; this game is not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed

strategy (1/3,1/3,1/3). However, consider the fictitious play of the game when

player 1’s weight function has been initialized to (0,0,0.5) and player 2’s weight

function has been initialized to (0,0.5,0). The play of this game is shown in

Table 7.3. Although it is not obvious from these first few rounds, it can be shown

that the empirical play of this game never converges to any fixed distribution.

For certain restricted classes of games we are guaranteed to reach convergence.
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How the fictitious play is conducted if we 
assume that the weight function for each 
player is initialized to (1, 0.5)?
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• In fictitious play, we assume that 
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is initialized to (1, 0.5)

• The play of each player converges 
to the mixed strategy Nash 
equilibrium (0.5, 0.5)

• However, the payoff received by 
each player is 0, 
– since the players never hit the 

outcomes with positive payoff.

• It shows that although the 
empirical distribution of the 
strategies converges to the mixed 
strategy Nash equilibrium, 

• the players may not receive the 
expected payoff of the Nash 
equilibrium, 
– because their actions are 

miscorrelated!
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strategy Nash equilibrium, the players may not receive the expected payoff of the

Nash equilibrium, because their actions are miscorrelated.

Finally, the empirical distributions of players’ actions need not converge at all.

Consider the game in Figure 7.6. Note that this example, due to Shapley, is a

modification of the rock-paper-scissors game; this game is not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed

strategy (1/3,1/3,1/3). However, consider the fictitious play of the game when

player 1’s weight function has been initialized to (0,0,0.5) and player 2’s weight

function has been initialized to (0,0.5,0). The play of this game is shown in

Table 7.3. Although it is not obvious from these first few rounds, it can be shown

that the empirical play of this game never converges to any fixed distribution.

For certain restricted classes of games we are guaranteed to reach convergence.
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A B

A 0,0 1,1

B 1,1 0,0

Figure 7.5: The Anti-Coordination game.
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each player is 0, since the players never hit the outcomes with positive payoff.

Thus, although the empirical distribution of the strategies converges to the mixed

strategy Nash equilibrium, the players may not receive the expected payoff of the

Nash equilibrium, because their actions are miscorrelated.

Finally, the empirical distributions of players’ actions need not converge at all.

Consider the game in Figure 7.6. Note that this example, due to Shapley, is a

modification of the rock-paper-scissors game; this game is not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed

strategy (1/3,1/3,1/3). However, consider the fictitious play of the game when

player 1’s weight function has been initialized to (0,0,0.5) and player 2’s weight

function has been initialized to (0,0.5,0). The play of this game is shown in

Table 7.3. Although it is not obvious from these first few rounds, it can be shown

that the empirical play of this game never converges to any fixed distribution.

For certain restricted classes of games we are guaranteed to reach convergence.
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Fictitious Play: an example
• The empirical distributions 

of players’ actions need not 
converge at all. 
– Consider the game, due to 

Shapley, a modification of 
the rock-paper-scissors
game; this game is not zero 
sum. 

– The unique Nash 
equilibrium of this game is 
for each player to play the 
mixed strategy (1/3, 1/3, 
1/3)

• In fictitious play, player 1’s 
weight function is initialized 
to (0, 0, 0.5) and player 2’s 
weight function is initialized 
to (0,0.5,0). 

Shapley’s Almost-Rock-Paper-Scissors game 
as the stage game 
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Rock Paper Scissors

Rock 0,0 0,1 1,0

Paper 1,0 0,0 0,1

Scissors 0,1 1,0 0,0

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (0,0,0.5) (0,0.5,0)

1 Rock Scissors (0,0,1.5) (1,0.5,0)

2 Rock Paper (0,1,1.5) (2,0.5,0)

3 Rock Paper (0,2,1.5) (3,0.5,0)

4 Scissors Paper (0,3,1.5) (3,0.5,1)

5 Scissors Paper (0,1.5,0) (1,0,0.5)

...
...

...
...

...

Table 7.3: Fictitious play of a repeated game of the Almost-Rock-Paper-Scissors

game.

Theorem 7.2.5 Each of the following is a sufficient condition for the empirical

frequencies of play to converge in fictitious play:

• The game is zero sum;

• The game is solvable by iterated elimination of strictly dominated strategies;

• The game is a potential game;5

• The game is 2×n and has generic payoffs.6

Overall, fictitious play is an interesting model of learning in multiagent systems

not because it is realistic or because it provides strong guarantees, but because it

5. Actually an even more more general condition applies here, that the players have “identical interests," but

we will not discuss this further here.

6. Full discussion of genericity in games lies outside the scope of this book, but here is the essential idea, at

least for games in normal form. Roughly speaking, a game in normal form is generic if it does not have any

interesting property that does not also hold with probability 1 when the payoffs are selected independently

from a sufficiently rich distribution (e.g., the uniform distribution over a fixed interval). Of course, to make

this precise we would need to define “interesting” and “sufficiently.” Intuitively, though, this means that the

payoffs do not have accidental properties. A game whose payoffs are all distinct is necessarily generic.
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frequencies of play to converge in fictitious play:
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• The game is a potential game;5

• The game is 2×n and has generic payoffs.6
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not because it is realistic or because it provides strong guarantees, but because it
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we will not discuss this further here.
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Fictitious Play: conclusions
• It is interesting not because it is realistic or has 

strong guarantees, but because 

– It is very simple to state and 

– gives rise to nontrivial properties

• But it is very limited; 

– its model of beliefs and belief update is 
mathematically constraining, and

– is clearly implausible as a model of human learning

• There exist various variants of fictitious play that 
score somewhat better on both fronts, such as 
smoothed fictitious play 



One of the many applications
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Smoothed Fictitious Play
• Mathematically, Fictitious Play adopts at time t+1 a 

pure strategy si that 

max
𝑠
𝑖

ui(si,Pt)

where Pt is the empirical distribution of opponent’s play 
until time t. ui is the expected utility 
• Smoothed Fictitious Play, instead of playing the best 

response to the empirical frequency, introduces a 
perturbation that gradually diminishes over time
– agent i adopts a mixed strategy σi that maximizes 

argmax
σi

෍

si

σi(si)ui(si,Pt) − βvi(σi)

Where β is any constant, and vi(σi) can be the entropy 
function vi(σi) = σsi

σi(si)log σi(si)

Fudenberg, Drew, and David K. Levine. "Consistency and cautious fictitious play." Journal of Economic Dynamics and Control 19.5-7 (1995): 1065-1089.



Smoothed Fictitious Play
• The first order condition for the maximum gives

ui(si,Pt) − 𝛽logσi(si) + λ=0
where λ is the Lagrange multiplier corresponding to the constraint 
that the probabilities σi () a must sum to one

• Solving it gives:

σi(si)=
exp(𝑢𝑖(si,Pt)/𝛽)

σsi
′ exp(𝑢𝑖(si

′,Pt)/𝛽)

• It allows a more satisfactory explanation for convergence to 
mixed-strategy equilibria in fictitious play-like models.
– For example, in matching pennies the per-period play can 

actually converge to the mixed strategy equilibrium. 
– In addition, SFP avoids the discontinuity inherent in standard 

fictitious play, where a small change in the data can lead to an 
abrupt change in behaviour. 

– With SFP, if beliefs converge, play does too.
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Rational learning 

• Rational learning,aka Bayesian learning, adopts the same 
general model-based scheme as fictitious play

• Unlike fictitious play, however, it allows players to have a 
much richer set of beliefs about opponents’ strategies:
– In fictitious play, strategies are limited to ones derived from the

stage game (only conditional on the empirical distribution of
opponent's actions)

– But in rational learning, the set of strategies comes from the
entire repeated-game, conditional on the history plays, e.g., TfT
in repeated Prisoner’s Dilemma

• Thus, the beliefs of each player about his opponent’s 
strategies may be expressed by any probability distribution 
over the set of all possible strategies 

Kalai, Ehud, and Ehud Lehrer. "Rational learning leads to Nash 
equilibrium." Econometrica: Journal of the Econometric Society (1993): 1019-1045.



Rational learning 
• Similar to fictitious play, each player begins the game with 

some prior beliefs. 
• After each round, the player uses Bayesian inference to 

update their beliefs 
• The Bayesian update for opponent’s playing a particular 

strategy:

where
– 𝑠−𝑖

𝑖 denotes the set of the opponent’s strategies considered 
possible by player i, and 𝑠−𝑖 ∈ 𝑠−𝑖

𝑖 , 
– 𝐻 denotes the set of possible histories of the game, and 

– h ∈ 𝐻
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is very simple to state and gives rise to nontrivial properties. But it is very limited;

its model of beliefs and belief update is mathematically constraining, and is clearly

implausible as a model of human learning. There exist various variants of fictitious

play that score somewhat better on both fronts. We will mention one of them—

called smooth fictitious play—when we discuss no-regret learning methods.

7.3 Rational learning

Rational learning (also sometimes called Bayesian learning) adopts the same gen-rational learning

Bayesian

learning

eral model-based scheme as fictitious play. Unlike fictitious play, however, it al-

lows players to have a much richer set of beliefs about opponents’ strategies. First,

the set of strategies of the opponent can include repeated-game strategies such as

TfT in the Prisoner’s Dilemma game, not only repeated stage-game strategies. Sec-

ond, the beliefs of each player about his opponent’s strategies may be expressed by

any probability distribution over the set of all possible strategies.

As in fictitious play, each player begins the game with some prior beliefs. After

each round, the player uses Bayesian updating to update these beliefs. Let S i− i beBayesian

updating the set of the opponent’s strategies considered possible by player i, and H be the

set of possible histories of the game. Then we can use Bayes’ rule to express the

probability assigned by player i to the event in which the opponent is playing a

particular strategy s− i∈S
i
− i given the observation of history h ∈H , as

P i(s− i|h) =
P i(h|s− i)P i(s− i)

s′− i∈S
i
− i
P i(h|s′− i)P i(s

′
− i)
.

For example, consider two players playing the infinitely repeated Prisoner’s

Dilemma game, reproduced in Figure 7.7.

C D

C 3,3 0,4

D 4,0 1,1

Figure 7.7: Prisoner’s Dilemma game

Suppose that the support of the prior belief of each player (i.e., the strategies of

the opponent to which the player ascribes nonzero probability; see Definition 3.2.6)

consists of the strategies g1,g2,...g∞ , defined as follows. g∞ is the trigger strat-

egy that was presented in Section 6.1.2. A player using the trigger strategy beginstrigger strategy

the repeated game by cooperating, and if his opponent defects in any round, he

defects in every subsequent round. For T < ∞, gT coincides with g∞ at all his-

Free for on-screen use; please do not distribute. You can get another free copy

of this PDF or order the book at http://www.masfoundations.org .
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Rational learning 
• Recall grim trigger strategy in the infinitely 

repeated Prisoner’s  Dilemma game :
– choose C so long as the other player chooses C; 
– if in any period the other player chooses D, then 

choose D in every subsequent period

• A general case: limited punishment gT:
– choose C so long as the other player chooses C; 
– if in any period the other player chooses D, then 

choose D in in the following T times and goes back
to C.

• A rational learning setting:
– the strategy space consists of the strategies g1, g2, 

. . . gT ,…,g ∞ ; g∞ is the trigger strategy
– each player happens to select a best response 

from among g0,g1,...,g∞.

• After playing each round of the repeated game, 
each player performs Bayesian updating 

Prisoner’s Dilemma as

the stage game 
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tories shorter than T but prescribes unprovoked defection starting from time T on.

Following this convention, strategy g0 is the strategy of constant defection.

Suppose furthermore that each player happens indeed to select a best response

from among g0,g1,...,g∞ . (There are of course infinitely many additional best

responses outside this set.) Thus each round of the game will be played according

to some strategy profile (gT 1 ,gT 2 ).
After playing each round of the repeated game, each player performs Bayesian

updating. For example, if player ihas observed that player j has always cooperated,

the Bayesian updating after history ht∈H of length t reduces to

P i(gT |ht) =
0 if T ≤t;

P i(gT )
∞
k = t+ 1 P i(gk )

if T > t.

Rational learning is a very intuitive model of learning, but its analysis is quite

involved. The formal analysis focuses on self-play, that is, on properties of the

repeated game in which all agents employ rational learning (though they may start

with different priors). Broadly, the highlights of this model are as follows.

• Under some conditions, in self-play rational learning results in agents having

close to correct beliefs about the observable portion of their opponent’s strategy.

• Under some conditions, in self-play rational learning causes the agents to con-

verge toward a Nash equilibrium with high probability.

• Chief among these “conditions” is absolute continuity, a strong assumption.

In the remainder of this section we discuss these points in more detail, starting

with the notion of absolute continuity.

Definition 7.3.1 (Absolute continuity) Let X be a set and let µ,µ′∈Π(X ) be
probability distributions over X . Then the distribution µ is said to be absolutely

continuous with respect to the distribution µ′iff for x ⊂ X that is measurable7 itabsolute

continuity is the case that if µ(x) > 0 then µ′(x) > 0.

Note that the players’ beliefs and the actual strategies each induce probability

distributions over the set of histories H . Let s = (s1,...,sn )be a strategy profile.

If we assume that these strategies are used by the players, we can calculate the prob-

ability of each history of the game occurring, thus inducing a distribution over H .

We can also induce such a distribution with a player’s beliefs about players’ strate-

gies. Let S ij be a set of strategies that ibelieves possible for j, and P ij ∈Π(S ij)

be the distribution over S ij believed by player i. Let P i = (P
i
1,...,P

i
n ) be the

tuple of beliefs about the possible strategies of every player. Now, if player i as-

sumes that all players (including himself) will play according to his beliefs, he can

7. Recall that a probability distribution over a domain X does not necessarily give a value for all subsets of

X , but only over some σ-algebra of X , the collection of measurable sets.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press

Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

D raftchapterfrom A n introduction to gam etheory by M artin J.O sborne
Osborne@chass.utoronto. ca;www.economics.utoronto.ca /osborne

Version:00/11/6.

C opyright c 1995–2000 by M artin J.O sborne. A llrights reserved. N o part of this book m ay be re-

produced by any electronic or m echanicalm eans (including photocopying,recording,or inform ation

storage and retrieval) w ithout perm ission in w riting from O xford U niversity Press, except that one
copy ofup to six chapters m ay be m ade by any individualforprivate study.

14 R epeated gam es: T he P risoner’s D ilem m a

M ain idea 389

Preferences 391

Infinitely repeated gam es 393

Strategies 394

N ash equilibria ofthe infinitely repeated Prisoner’s D ilem m a 396

N ash equilibrium payoffs ofthe infinitely repeated Prisoner’s D ilem m a 398

Subgam e perfectequilibria and the one-deviation property 402

Subgam e perfectequilibria ofrepeated Prisoner’s D ilem m a 404

Prerequisite:C hapters 5 and 7.

14.1 T he m ain idea

M A N Y ofthe strategic interactions in w hich w e are involved are ongoing:w e

repeatedly interact w ith the sam e people. In m any such interactions w e

have the opportunity to “take advantage”ofour co-players,butdo not. W e look

after our neighbors’house w hile they’re aw ay,even ifitis tim e-consum ing for us

to do so;w e m ay give m oney to friends w ho are tem porarily in need.The theory

ofrepeated gam es provides a fram ew ork thatw e can use to study such behavior.

The basic idea in the theory isthata playerm ay be deterred from exploiting her

short-term advantage by the“threat”of“punishm ent”thatreduces herlong-term

payoff.Suppose,forexam ple,thattw o people are involved repeatedly in an inter-

action for w hich the short-term incentives are captured by the Prisoner’s D ilem m a
(see Section 2.2),w ith payoffs as in Figure 389.1.Think ofC as“cooperation”and
D as“defection”.

C D
C 2,2 0,3

D 3,0 1,1

Figure 389.1 The Prisoner’sD ilem m a.

A s w e know ,the Prisoner’s D ilem m a has a unique N ash equilibrium ,in w hich
each playerchooses D .N ow suppose thata playeradoptsthe follow ing long-term
strategy:choose C so long as the other playerchooses C ;ifin any period the other
player chooses D ,then choose D in every subsequentperiod.W hatshould the other

389
if player i has observed that player j 
has always cooperated after history

h𝑡 ∈ 𝐻



Evolutionary learning in populations of agents

• Learning in a population of 
agents: 
– we mean the change in the 

constitution and behaviour of that 
population over time

• These models were originally 
developed by population 
biologists to model the process 
of biological evolution, and

• later adopted and adapted by 
other fields 

Yang, Yaodong, et al. "An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning." arXiv preprint 

arXiv:1709.04511 (2017).
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Background: evolutionary biology

• Gene-centric view of evolution

– An organism‘s genes largely 
determine its observable 
characteristics (fitness) in a given 
environment

• More fit organisms will produce 
more offspring

– This causes genes that provide 
greater fitness to increase their 
representation in the population
via natural selection

Gene-centric view of evolution

Natural selection

1966 1976



Evolutionary game theory

• In 1973 biologist John Maynard 
Smith and mathematician George R. 
Price showed how game theory 
applies to the behaviour of animals

• The idea of applying game theory to 
animals seemed strange at the time, 
– because game theory had always 

been about rationality 
– Animals hardly fit the bill

• Maynard Smith made three critical 
shifts from traditional game theory 
– strategy,
– equilibrium, and 
– the nature of agent interactions Maynard Smith’s 1982

book has become a 
classic.



Background: Evolutionary Game theory

• Regular game theory
– Individual players make decisions
– Payoffs depend on decisions 

made by all
– The reasoning about what other 

players might do happen 
simultaneously

• Evolutionary game theory
– Game theory continues to apply 

even if no individual is reasoning 
or making explicit decisions

– Decisions may thus not be 
conscious

– What behavior will persist in a 
population?

Img source: https://en.wikipedia.org/wiki/Evolutionary_game_theory



Evolutionary game theory
• Key insight

– Many behaviors involve the interaction of multiple 
organisms in a population

– The success of an organism depends on how its behavior 
interacts with that of others
• Can‘t measure fitness of an individual organism along

– So fitness must be evaluated in the context of the full 
population in which it lives

• Analogous to game theory!
– Organisms‘s genetically determined characteristics and 

behavior = Strategy
– Fitness = Payoff
– Payoff depends on strategies of organisms with which it 

interacts = Game matrix



Motivating example
• Let‘s look at a species of a beetle

– Each beetle‘s fitness depends on finding 
and processing food effectively

– Mutation introduced
• Beetles with mutation have larger body size

• Large beetles need more food

• What would we expect to happen?
– Large beetles need more food

– This makes them less fit for the 
environment

– The mutation will thus die out over time

• But there is more to the story...



Motivating example

• Beetles compete with each other for food
– Large beetles more effective at claiming above-

average share of the food

• Assume food competition is among pairs
– Small vs. Small : get equal shares of food
– Large vs. small: Large beetle gets the majority of food 

from Small beetle
– Large vs. Large: get equal shares of food, but Large 

beetles always experience less fitness benefit from 
given quantity of food
• Need to maintain their expensive metabolism (the chemical 

processes in their body)



Motivating example
• The body-size game between two beetles

• Something funny about this
– No beetle is asking itself: “Do I want to be small or 

large?“

• Need to think about strategy changes that 
operate over longer time scales
– Taking place as shifts in population under 

evolutionary forces!

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3



Evolutionarily stable strategies

• Suppose each beatle is repeatedly paired off 
with other beetles at random

– Population large enough so that there are no 
repeated interactions between two beetles

• A beetle‘s fitness = average fitness from food 
interactions = reproductive success

– More food thus means more offspring to carry 
genes (strategy) to the next generation



Evolutionary stable strategies

• The concept of a Nash equilibrium doesn‘t work 
in this setting
– Nobody is changing their personal strategy

• Instead, we want an evolutionary stable strategy
– A genetically determined strategy that tends to persist 

once it is prevalent in a population
– Def:

• A strategy is evolutionarily stable if everyone uses it, and 
any small group of invaders with a different strategy will 
die off over multiple generations

• Need to make this precise...



• Is Small an evolutionarily 
stable strategy?

• Let‘s use the definition

– Suppose for some small 
number 𝜀, a 1- 𝜀 fraction of 
population use Small and 𝜀
use Large

– In other words, Large
beetles invades a
population of Small beetles

Motivating example

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3

What is the expected payoff to a 
Small beetle in a random 
interaction?

With prob. 1- 𝜀, meet 
another Small beetle for a 
payoff of 5
With prob. 𝜀, meet Large
beetle for a payoff of 1
Expected payoff: 5(1- 𝜀) + 1 𝜀
= 5-4 𝜀



• Is Small an evolutionarily 
stable strategy?

• Let‘s use the definition

– Suppose for some small 
number 𝜀, a 1- 𝜀 fraction of 
population use Small and 𝜀
use Large

– In other words, Large
beetles invades a
population of Small beetles

Motivating example

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3

What is the expected payoff to a 
Large beetle in a random 
interaction?

With prob. 1- 𝜀, meet a 
Small beetle for payoff of 8
With prob. 𝜀, meet another 
Large beetle for a payoff of 3
Expected payoff: 8(1- 𝜀) + 3 𝜀
= 8-5 𝜀



Motivating example
• Expected fitness of Large beetles is 8-5 𝜀

• Expected fitness of Small beetles is 5-4 𝜀

– For small enough 𝜀 (and even big 𝜀), the fitness of 
Large beetles exceeds the fitness for Small

– Thus Small is NOT evolutionarily stable

• What about the Large strategy?

– Assume 𝜀 fraction are Small, rest Large.

– Expected payoff to Large: 3(1- 𝜀) + 8 𝜀 = 3+5 𝜀

– Expected payoff to Small: 1(1- 𝜀) + 5 𝜀 = 1+4 𝜀

– Large is evolutionarily stable



Motivating example

• Summary

– A few large beetles introduced into a population 
consisting of small beetles

– Large beetles will do really well:

• They rarely meet each other

• They get most of the food in most competitions

– Population of small beetles cannot drive out the 
large ones

• So Small is not evolutionarily stable



Motivating example

• Summary
– Conversely, a few small beetles will do very badly

• They will lose almost every competition for food

– A population of large beetles resists the invasion 
of small beetles

– Large is thus evolutionarily stable

• The structure is like prisoner‘s dilemma
– Competition for food = arms race

– Beetles can‘t change body sizes, but evolutionarily 
forces over multiple generations are achieving 
analogous effect



Evolutionary arms races

• Lots of examples

– Height of trees follows prisoner‘s dilemma

• Only applies to a particular height range

• More sunlight offset by fitness downside of height

– Roots of soybean plants to claim resources

• Conserve vs. Explore

• Hard to truly determine payoffs in real-world 
settings



Evolutionary arms races
• One recent example with known payoffs 

– Virus populations can play an evolutionary version 
of prisoner‘s dilemma

– Virus A

• Infects bacteria

• Manifactures products required for replication

– Virus B

• Mutated version of A

• Can replicate inside bacteria, but less efficiently

• Benefits from presence of A

– Is B evolutionarily stable?



Virus game
• Look at interactions between two viruses

– Viruses in a pure A population do better than viruses in 
pure B population

– But regardless of what other viruses do, higher payoff to 
be B 

• Thus B is evolutionarily stable
– Even though A would have been better

– Similar to the exam-presentation game

A B

A 1.00, 1.00 0.65, 1.99

B 1.99, 0.65 0.83, 0.83



What happens in general?
• Under what conditions is a strategy 

evolutionarily stable?

– Need to figure out the right form of the payoff 
matrix

– How do we write the condition of evolutionary 
stability in terms of these 4 variables, a,b,c,d?

S T

S a, a b, c

T c, b d, d

Organism 2

Organism 1



What happens in general?

• Look at the definition again
– Suppose again that for some small number 𝜀:

• A 1- 𝜀 fraction of the population uses S

• An 𝜀 fraction of the population uses T

• What is the payoff for playing S in a random 
interaction in the population?
– Meet another S with prob. 1- 𝜀. Payoff = a

– Meet T with prob. 𝜀. Payoff = b

– Expected payoff = a(1- 𝜀)+b 𝜀

• Analogous for playing T
– Expected payoff = c(1- 𝜀)+d 𝜀



What happens in general?
• Therefore, S is evolutionarily stable if for all 

small values of x:
– a(1- 𝜀)+b 𝜀 >  c(1- 𝜀)+d 𝜀

– When 𝜀 is really small (goes to 0), this is
• a > c

– When a=c, the left hand side is larger when
• b > d

• In other words
– In a two-player, two-strategy symmetric game, S is 

evolutionarily stable when either
• a > c, or

• a = c, and b > d



What happens in general?

• Intuition
– In order for S to be evolutionarily stable, then:

• Using S against S must be at least as good as using T 
against S

• Otherwise, an invader using T would have higher fitness 
than the rest of the population

– If S and T are equally good responses to S
• S can only be evolutionarily stable if those who play S 

do better against T than what those who play T do with 
each another

• Otherwise, T players would do as well against the S part 
of the population as the S players



Relationship with Nash equilibria
• Let‘s look at Nash in the symmetric game

– When is (S,S) a Nash equilibrium?

– S is a best response to S:  a ≥ c

• Compare with evolutionarily stable 
strategies:

– (i) a > c or (ii) a = c and b > d

• Very similar!

S T

S a, a b, c

T c, b d, d



Interpretation of mixed strategies

• Can interpret this in two ways
– each agents plays the same mixed strategy, or 

– A fraction of the population playing each of the 
underlying pure strategies in proportion to its 
contribution to the mixed strategy

• As the stage game is a one-shot, it is rarely 
plausible to hold that an individual will play a 
strictly mixed strategy 

• Thus, in general, the heterogeneous population 
interpretation is superior 



ESS: definition of the stage game

• Consider a two-player normal form symmetric
game:
– both players have the set of pure strategies 𝑆 =
{𝑠1, … , 𝑠𝑛}

– 𝑢1(si, sj) : the payoffs of an agent playing si when
playing with another agent using sj.

– Symmetric payoff: 𝑢1(si, sj)= 𝑢2(si, sj) ≡ 𝑢𝑖,𝑗
– Symmetric in strategy: agents cannot condition their 

play on whether they are player 1 or player 2

– U = 𝑢𝑖,𝑗 : the matrix of the symmetric game 



ESS: how the stage game is played?

• Stage game G is a symmetric game with matrix U

• Large population of agents is to play the game
– In each period t=1,2,…, agents are randomly paired 

and they play the stage game G once

– Each agent has certain type i ∈ {1, … , 𝑛}, i.e., the
agent uses strategy si in the stage game.

• The state of the game (also called the strategy of
the population): 𝜎 = {𝑝1, … , 𝑝𝑖 , … , 𝑝𝑛}, where
𝑝𝑖is the proportion of agents of selecting strategy 
si (type i) at a particular time; 𝑝𝑖 ≥ 0 and
σ𝑖 𝑝𝑖 = 1



Evolutionarily stable strategies
• Fitness of an agent type i in a population = expected payoff from 

interaction with another member of population:

𝑢𝑖𝜎 =෍

𝑗=1

𝑛

𝑢𝑖𝑗𝑝𝑗

• Mutant strategy 𝜏 = {𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛} invades the population with
strategy 𝜎 at level 𝜀 (for small 𝜀 ) if: 

• 𝜀 fraction of population uses 𝜏
• 1- 𝜀 fractionof population uses 𝜎
• The new state of the population is 𝜇 = 1 − 𝜀 𝜎 + 𝜀𝜏

• The payoff of a randomly chosen nonmutant is:
𝑢𝜎𝜇 = 1 − 𝜀 𝑢𝜎𝜎 + 𝜀𝑢𝜎𝜏

• The payoff of a randomly chosen mutant is:

𝑢𝜏𝜇 = 1 − 𝜀 𝑢𝜏𝜎 + 𝜀𝑢𝜏𝜏
where 𝑢𝜎𝜎 = σ𝑖,𝑗=1

𝑛 𝑝𝑖𝑢𝑖𝑗𝑝𝑗, 𝑢𝜏𝜎 = 𝑢𝜎𝜏 = σ𝑖,𝑗=1
𝑛 𝑞𝑖𝑢𝑖𝑗𝑝𝑗,

𝑢𝜏𝜏 = σ𝑖,𝑗=1
𝑛 𝑞𝑖𝑢𝑖𝑗𝑞𝑗



Evolutionarily stable strategies

• Strategy 𝜎 is evolutionarily stable if there is 
some number y such that:

• When any other strategy 𝜏 invades 𝜎 at any level 𝜀 < y, 
the fitness of an agent playing 𝜎 is strictly greater than 
the fitness of an agent playing 𝜏: 𝑢𝜎𝜇 > 𝑢𝜏𝜇

That is 

• Given small 𝜀, this is equivalent to requiring that 
either              or else both             and 𝑢𝜎𝜏>𝑢𝜏𝜏

1 − 𝜀 𝑢𝜎𝜎 + 𝜀𝑢𝜎𝜏> 1 − 𝜀 𝑢𝜏𝜎 + 𝜀𝑢𝜏𝜏

𝑢𝜎𝜎 > 𝑢𝜏𝜎 𝑢𝜎𝜎 = 𝑢𝜏𝜎



Evolutionarily stable strategies

• Strategy 𝜎 is evolutionarily stable if there is 
some number y such that:

• When any other strategy 𝜏 invades 𝜎 at any level 𝜀 < y, 
the fitness of an agent playing 𝜎 is strictly greater than 
the fitness of an agent playing 𝜏: 𝑢𝜎𝜇 > 𝑢𝜏𝜇

That is 

• Given small 𝜀, this is equivalent to requiring that 
either              or else both             and 𝑢𝜎𝜏>𝑢𝜏𝜏

1 − 𝜀 𝑢𝜎𝜎 + 𝜀𝑢𝜎𝜏> 1 − 𝜀 𝑢𝜏𝜎 + 𝜀𝑢𝜏𝜏

𝑢𝜎𝜎 > 𝑢𝜏𝜎 𝑢𝜎𝜎 = 𝑢𝜏𝜎

a mutant cannot do better against an existing
agent than an existing agent can do against 
another existing agent



Evolutionarily stable strategies

• Strategy 𝜎 is evolutionarily stable if there is 
some number y such that:

• When any other strategy 𝜏 invades 𝜎 at any level 𝜀 < y, 
the fitness of an agent playing 𝜎 is strictly greater than 
the fitness of an agent playing 𝜏: 𝑢𝜎𝜇 > 𝑢𝜏𝜇

That is 

• Given small 𝜀, this is equivalent to requiring that 
either              or else both             and 𝑢𝜎𝜏>𝑢𝜏𝜏

1 − 𝜀 𝑢𝜎𝜎 + 𝜀𝑢𝜎𝜏> 1 − 𝜀 𝑢𝜏𝜎 + 𝜀𝑢𝜏𝜏

𝑢𝜎𝜎 > 𝑢𝜏𝜎 𝑢𝜎𝜎 = 𝑢𝜏𝜎

But if a mutant does as well as an existing
agent against another existing one, then an 
existing agent must do better against a 
mutant than a mutant does against another 
mutant. 



Hawk–Dove game

• Two animals are fighting over a prize such as a piece 
of food. 

• Each animal can choose between two behaviours:
– an aggressive hawkish behaviour H, or 
– an gentle/peace dovish behaviour D. 

• The prize is worth 6 to each of them. 
• Fighting costs each player 5. 
• When a hawk meets a dove he gets the prize without 

a fight, and hence the payoffs are 6 and 0, 
respectively. 

• When two doves meet they split the prize without a 
fight, hence a payoff of 3 to each one. 

• When two hawks meet a fight breaks out, costing 
each player 5 (or, equivalently, yielding −5). In 
addition, each player has a 50% chance of ending up 
with the prize, 

7.7 Evolutionary learning and other large-population models 229

Definition 7.7.9 (Evolutionarily stable strategy (ESS)) Given a symmetric two-

player normal-form game G = ({1,2},A ,u) and a mixed strategy s, we say that
s is an evolutionarily stable strategy if and only if for some ϵ > 0 and for all other
strategies s′it is the case that

u(s,(1 − ϵ)s + ϵs′) > u(s′,(1 − ϵ)s + ϵs′).

We can use properties of expectation to state this condition equivalently as

(1 − ϵ)u(s,s)+ ϵu(s,s′) > (1 − ϵ)u(s′,s)+ ϵu(s′,s′).

Note that, since this only needs to hold for small ϵ, this is equivalent to requiring

that either u(s,s) > u(s′,s)holds, or else both u(s,s) = u(s′,s)and u(s,s′) >
u(s′,s′) hold. Note that this is a strict definition. We can also state a weaker

definition of ESS.

Definition 7.7.10 (Weak ESS) s is a weak evolutionarily stable strategy if andweak

evolutionarily

stable strategy
only if for some ϵ > 0 and for all s′it is the case that either u(s,s) > u(s′,s)
holds, or else both u(s,s) = u(s′,s)and u(s,s′)≥u(s′,s′)hold.

This weaker definition includes strategies in which the invader does just as well

against the original population as it does against itself. In these cases the population

using the invading strategy will not grow, but it will also not shrink.

We illustrate the concept of ESS with the instance of the Hawk–Dove game

shown in Figure 7.10. The story behind this game might be as follows. Two

H D

H − 2,− 2 6,0

D 0,6 3,3

Figure 7.10: Hawk–Dove game.

animals are fighting over a prize such as a piece of food. Each animal can choose

between two behaviors: an aggressive hawkish behavior H , or an accommodating

dovish behavior D . The prize is worth 6 to each of them. Fighting costs each

player 5. When a hawk meets a dove he gets the prize without a fight, and hence

the payoffs are 6 and 0, respectively. When two doves meet they split the prize

without a fight, hence a payoff of 3 to each one. When two hawks meet a fight

breaks out, costing each player 5 (or, equivalently, yielding − 5). In addition, each

player has a 50% chance of ending up with the prize, adding an expected benefit

of 3, for an overall payoff of − 2.
It is not hard to verify that the game has a unique symmetric Nash equilibrium

(s,s), where s = (3
5
,2
5
), and that s is also the unique ESS of the game. To

Free for on-screen use; please do not distribute. You can get another free copy

of this PDF or order the book at http://www.masfoundations.org .



Hawk–Dove game
• The game has a unique symmetric Nash 

equilibrium (𝜎, 𝜎), where 𝜎 = (3/5, 2/5), 
and 

• 𝜎 is also the unique ESS of the game. 
• To confirm this, we need that 𝑢 𝜎, 𝜎 =
𝑢(𝜏, 𝜎) and 𝑢 𝜎, 𝜏 > 𝑢(𝜏, 𝜏)
For all 𝜏 ≠ 𝜎,
– The equality condition is true of any mixed 

strategy equilibrium with full support. 
Why???

– The inequality also holds. To see this,
consider

f(𝜏) = u(𝜎, 𝜏) − u(𝜏, 𝜏)  
Expanding f(𝜏) we see that it is a quadratic 
equation with the (unique) maximum 𝜏 = 𝜎, 
proving our result
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This weaker definition includes strategies in which the invader does just as well

against the original population as it does against itself. In these cases the population

using the invading strategy will not grow, but it will also not shrink.

We illustrate the concept of ESS with the instance of the Hawk–Dove game

shown in Figure 7.10. The story behind this game might be as follows. Two
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animals are fighting over a prize such as a piece of food. Each animal can choose

between two behaviors: an aggressive hawkish behavior H , or an accommodating

dovish behavior D . The prize is worth 6 to each of them. Fighting costs each

player 5. When a hawk meets a dove he gets the prize without a fight, and hence

the payoffs are 6 and 0, respectively. When two doves meet they split the prize

without a fight, hence a payoff of 3 to each one. When two hawks meet a fight

breaks out, costing each player 5 (or, equivalently, yielding − 5). In addition, each

player has a 50% chance of ending up with the prize, adding an expected benefit

of 3, for an overall payoff of − 2.
It is not hard to verify that the game has a unique symmetric Nash equilibrium

(s,s), where s = (3
5
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5
), and that s is also the unique ESS of the game. To
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ESS Summary
• Nash equilibrium

– Rational players choosing mutual best responses 
to each other‘s strategy

– Great demands on the ability to choose optimally 
and coordinate on strategies that are best 
responses to each other

• Evolutionarily stable strategies
– No intelligence or coordination

– Strategies hard-wired into players (genes)

– Successful strategies produce more offspring

• Yet somehow they are almost the same!
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Replicator Dynamics
• Replicator dynamics model a population undergoing 

frequent interactions. 
• Focus on the symmetric, two-player case

– A population of agents repeatedly play a two-player 
symmetric normal-form stage game against each other. 

• It describes a population of agents playing such a 
game following:
– At each point in time, each agent only plays a pure 

strategy. 
– Informally speaking, the model then pairs all agents and 

has them play each other, each obtaining some payoff. 
This payoff is called the agent’s fitness. 

– Each agent now “reproduces" in a manner proportional to 
this fitness, and 

– the process repeats. 

• The question is 
– whether the process converges to a fixed proportion of 

the various pure strategies within the population, and 
– if so to which fixed proportions. 

Schuster, Peter, and Karl Sigmund. "Replicator dynamics." Journal of theoretical biology 100.3 (1983): 533-538.

Direction field plot of the 

Prisoner’s dilemma game.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.



Recall the stage game

• Consider a two-player normal form symmetric
game:
– both players have the set of pure strategies 𝑆 =
{𝑠1, … , 𝑠𝑛}

– 𝑢1(si, sj) : the payoffs of an agent playing si when
playing with another agent using sj.

– Symmetric payoff: 𝑢1(si, sj)= 𝑢2(si, sj) ≡ 𝑢𝑖,𝑗
– Symmetric in strategy: agents cannot condition their 

play on whether they are player 1 or player 2

– U = 𝑢𝑖,𝑗 : the matrix of the symmetric game 



Replicator Dynamics
• Consider an evolutionary game where each 

player follows one of n pure strategies si ∈
{1, … , 𝑛}

• The play is repeated in periods t=1,2,…

• Let 𝑝𝑖
𝑡 be the fraction of players playing si in 

period t , and suppose the payoff to si is 

𝑢𝑖𝜎
𝑡 =෍

𝑗=1

𝑛

𝑢𝑖𝑗𝑝𝑖
𝑡

• For mathematical convenience, at a given time 
t , we index the strategies so that: 𝑢1𝜎

𝑡 ≤
𝑢2𝜎
𝑡 ≤ ⋯ ≤ 𝑢𝑛𝜎

𝑡



Replicator Dynamics
• Suppose in every time period dt, each agent with probability αdt >

0 learns the payoff to another randomly chosen agent and 
• changes to the other’s strategy if he perceives that the other’s 

payoff is higher. 
• However, information concerning the difference in the expected 

payoffs of the two strategies is imperfect, so the larger the 
difference in the payoffs, the more likely the agent is to perceive it, 
and change. 

• Specifically, we assume that the probability 𝑝𝑖,𝑗
𝑡 that an agent using 

si will shift to sj is given by

𝑝𝑖,𝑗
𝑡 = ቐ

𝛽 𝑢𝑖𝜎
𝑡 − 𝑢𝑗𝜎

𝑡 𝑓𝑜𝑟 𝑢𝑖𝜎
𝑡 ≥ 𝑢𝑗𝜎

𝑡

0 𝑓𝑜𝑟 𝑢𝑗𝜎
𝑡 ≥ 𝑢𝑖𝜎

𝑡

where 𝛽 is sufficiently small that 𝑝𝑖,𝑗
𝑡 ≤ 1 holds for all i and j.



Replicator Dynamics
• The expected fraction of population using si in period t + dt is then 

given by

𝑝𝑖
𝑡+𝑑𝑡 = 𝑝𝑖

𝑡 − 𝛼𝑑𝑡 (𝑝𝑖
𝑡 σ𝑗=𝑖+1

𝑛 𝑝𝑗
𝑡 𝛽 𝑢𝑗𝜎

𝑡 − 𝑢𝑖𝜎
𝑡

+σ𝑗=1
𝑖 𝑝𝑗

𝑡𝑝𝑖
𝑡 𝛽 𝑢𝑖𝜎

𝑡 − 𝑢𝑗𝜎
𝑡 )

=𝑝𝑖
𝑡 + 𝛼𝑑𝑡 𝑝𝑖

𝑡 σ𝑗=1
𝑛 𝑝𝑗

𝑡 𝛽 𝑢𝑖𝜎
𝑡 − 𝑢𝑗𝜎

𝑡

=𝑝𝑖
𝑡 + 𝛼𝑑𝑡 𝑝𝑖

𝑡𝛽 𝑢𝑖𝜎
𝑡 − ത𝑢.𝜎

𝑡

where ത𝑢.𝜎
𝑡 is the average return for the whole population.

• Subtracting 𝑝𝑖
𝑡 from both sides, dividing by dt , and taking the limit 

as dt->0, we have

ሶ𝑝𝑖
𝑡 = 𝛼 𝛽 𝑝𝑖

𝑡 𝑢𝑖𝜎
𝑡 − ത𝑢.𝜎

𝑡

which is called the replicator dynamic. 
As the constant 𝛼 𝛽 merely changes the rate of adjustment to 
stationarity but leaves the stability properties and trajectories of the 
dynamical system unchanged, we often simply assume 𝛼 𝛽=1

Gintis, Herbert. Game theory evolving: A problem-centered introduction to modeling
strategic behavior. Princeton university press, 2000.



Replicator Dynamics
• The system we have defined has a very intuitive quality. 

– If an action does better than the population average then the 
proportion of the population playing this action increases, and vice 
versa. 

– Note that even an action that is not a best response to the current 
population state can grow as a proportion of the population when its 
expected payoff is better than the population average. 

• A straightforward interpretation is that it describes agents 
repeatedly interacting and replicating within a large population

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.

Direction field plot of the battle of the sexes game. Replicator dynamics direction field for CH with 10 agents. 
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