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Learningin repeatedgame

ÅPlayers in classical gametheory (previouslectures)have 
ïa perfect knowledge of the environment and 
ïthe payoff tables, and 
ïtry to maximize their individual payoff. 

ÅThus,the goalis to figure out, a priori, how to optimize its
actions, e.g.,calculateNashequilibria

ÅHowever, wheninformationis incompleteor in a repeated
game, it becomes impossible to judge what choices are the 
most rational

Å Thequestion then facing a player becomes how to learnto 
optimize its behaviour and maximize its return, based on 
local knowledge and through a process of trial and error.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.



learningin single agent

ÅAtypicalAIconcerns the learning performed 
by an individualagent

ÅIn that setting, the goal is to design an agent 
that learns to function successfully in an 
environment that is unknown and potentially 
also changes as the agent is learning
ïLearningto recommendin collaborativefiltering

ïLearningto predictclick-throughrate by logistic
regression



learningover multiple agents
ÅIn a multi-agent(player)setting, the environment contains other 

agents(players)ς(we aregoingto usetermάǇƭŀȅŜǊέandάŀƎŜƴǘέinterchangeably)
ÅAdditionalcomplication:
ïthe learningof other agentswill change the environment, thusmaking

animpacton the learningof our player,and
ïThelearningof our agentwill alsoinfluencethe learningof other

agents

ÅThe simultaneous learning of them means that 
ïevery learning rule leads to a dynamical system, and
ï sometimes even very simple learning rules can lead to complex global 

behaviours of the system 
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Bowling, Michael, and Manuela 
Veloso. "Multiagentlearning using 
a variable learning rate." Artificial 
Intelligence 136.2 (2002): 215-250.



Interaction between learningandteaching

ÅAlsomulti-agentsystemscannot
separate the phenomenon of 
learningfrom that of teaching

ÅWhen choosing a course of action, 
a playermust take into account 

ïnot only what he has learned from 
other playerΩ past behaviour, 

ïbut also how he wishes to influence 
their future behaviour

Imagesource:
https:// rryshke.files.wordpress.com/20
12/11/art-of-teaching.jpg



An infinitely repeated game

ÅArepeated game: a given game 
(e.g.,in normal form) is played 
multiple times by the same set 
of players. 
ïThe game being repeated is called 

the stage game. 

ÅInfinitely RepeatedGame: the
stagegameis infinitely played
ÅIn IRG,averagerewardis
ïthe payoff to a given playeris the 

limit average of his payoffs in the 
individual stage games

200 7 Learning and Teaching

The simultaneous learning of the agents means that every learning rule leads to

a dynamical system, and sometimes even very simple learning rules can lead to

complex global behaviors of the system. Beyond this mathematical fact, however,

liesaconceptual one. In thecontext of multiagent systemsonecannot separatethe

phenomenonof learning from that of teaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agentsô

past behavior, but also how hewishes to inþuencetheir future behavior.

The following example illustrates this point. Consider the inýnitely repeated

gamewith averagereward (i.e., where the payoff to a given agent is the limit aver-

age of his payoffs in the individual stage games, as in Deýnition 6.1.1), in which

thestagegame is thenormal-form gameshown in Figure 7.1.Stackelberg

game

L R

T 1, 0 3, 2

B 2, 1 4, 0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2ôs best response would be R, yielding player 1 a payoff of 3 which is

greater than player 1ôs Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convinceplayer 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-gamesetting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

hasany senseat all, would get the messageand start responding with R.

In theprecedingexampleit ispretty clear who thenatural candidatefor adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure7.2. In thiscase, either player could play theteacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions(Left, Right) or (Right, Left) then the players will receive a payoff

of zero forever.2 Is therea learning rule that will enablethem to coordinatewithout

an external designation of a teacher?

1. Seerelated discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of theñsidewalk shufþe,òthat awkward process of trying to get by theperson walking

toward you while he is doing the samething, the result being that you keepblocking eachother.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in thecaseof theCentipedegame, thisargument isvulnerable

to both empirical and theoretical criticisms.

6.1.2 Inýnitely repeated games

When the inýnitely repeated game is transformed into extensive form, the result

is an inýnite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they bedeýned as thesum of thepayoffs in the stagegames(which in general

will be inýnite). There are two common ways of deýning a playerôs payoff in an

inýnitely repeated gameto get around thisproblem. Theýrst is theaveragepayoff

of thestagegame in thelimit.2

Deýnition 6.1.1 (Averagereward) Givenaninýnitesequenceof payoffsr (1 )
i ,r (2 )

i ,...
for player i , theaveragereward of i isaverage reward

lim
kŕŜ

k

j = 1 r
( j )
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive deýnition, since the future

rewardsagain giveahigher weight to early payoffs than to later ones.

Deýnition 6.1.2 (Discounted reward) Givenan inýnitesequenceof payoffsr
(1 )
i ,r

(2 )
i ,...

for player i , and a discount factorɓwith 0ŮɓŮ1, the futurediscounted rewardfuture

discounted

reward
of i is

Ŝ

j = 1ɓ
j r

( j )
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the gamewill be stopped any given round; 1īɓrepresents that probability. The

analysisof thegameisnot affected by which perspective is adopted.

Now let usconsider strategy spaces in an inýnitely repeated game. In particular,

consider the inýnitely repeated Prisonerôs Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. Theobservant reader will notice apotential difýculty in thisdeýnition, since thelimit may not exist. One

canextend the deýnition to cover these casesby using the lim sup operator in Deýnition 6.1.1 rather than

lim .
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An infinitely repeated game

Å(B,L) is the unique Nash 
equilibrium of the game

ïAgent1 (the row player) has a 
dominant strategy,B

ÅObservations:

ïIf agent1 were to play B 
repeatedly, it is reasonable to 
expect that agent2 would 
always respond with L. 
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k
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in thecaseof theCentipedegame, thisargument isvulnerable

to both empirical and theoretical criticisms.

6.1.2 Inýnitely repeated games

When the inýnitely repeated game is transformed into extensive form, the result

is an inýnite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they bedeýned as thesum of thepayoffs in the stagegames(which in general

will be inýnite). There are two common ways of deýning a playerôs payoff in an

inýnitely repeated gameto get around thisproblem. Theýrst is theaveragepayoff

of thestagegame in thelimit.2

Deýnition 6.1.1 (Averagereward) Givenaninýnitesequenceof payoffsr (1 )
i ,r (2 )

i ,...
for player i , theaveragereward of i isaverage reward

lim
kŕŜ

k

j = 1 r
( j )
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive deýnition, since the future

rewardsagain giveahigher weight to early payoffs than to later ones.

Deýnition 6.1.2 (Discounted reward) Givenan inýnitesequenceof payoffsr
(1 )
i ,r

(2 )
i ,...

for player i , and a discount factorɓwith 0ŮɓŮ1, the futurediscounted rewardfuture

discounted

reward
of i is

Ŝ

j = 1ɓ
j r

( j )
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the gamewill be stopped any given round; 1īɓrepresents that probability. The

analysisof thegameisnot affected by which perspective is adopted.

Now let usconsider strategy spaces in an inýnitely repeated game. In particular,

consider the inýnitely repeated Prisonerôs Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. Theobservant reader will notice apotential difýculty in thisdeýnition, since thelimit may not exist. One

canextend the deýnition to cover these casesby using the lim sup operator in Deýnition 6.1.1 rather than

lim .
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age of his payoffs in the individual stage games, as in Deýnition 6.1.1), in which

thestagegame is thenormal-form gameshown in Figure 7.1.Stackelberg

game

L R

T 1, 0 3, 2

B 2, 1 4, 0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2ôs best response would be R, yielding player 1 a payoff of 3 which is

greater than player 1ôs Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convinceplayer 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-gamesetting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

hasany senseat all, would get the messageand start responding with R.

In theprecedingexampleit ispretty clear who thenatural candidatefor adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure7.2. In thiscase, either player could play theteacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions(Left, Right) or (Right, Left) then the players will receive a payoff

of zero forever.2 Is therea learning rule that will enablethem to coordinatewithout

an external designation of a teacher?

1. Seerelated discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of theñsidewalk shufþe,òthat awkward process of trying to get by theperson walking

toward you while he is doing the samething, the result being that you keepblocking eachother.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in thecaseof theCentipedegame, thisargument isvulnerable

to both empirical and theoretical criticisms.

6.1.2 Inýnitely repeated games

When the inýnitely repeated game is transformed into extensive form, the result

is an inýnite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they bedeýned as thesum of thepayoffs in the stagegames(which in general

will be inýnite). There are two common ways of deýning a playerôs payoff in an

inýnitely repeated gameto get around thisproblem. Theýrst is theaveragepayoff

of thestagegame in thelimit.2

Deýnition 6.1.1 (Averagereward) Givenaninýnitesequenceof payoffsr (1 )
i ,r (2 )

i ,...
for player i , theaveragereward of i isaverage reward

lim
kŕŜ

k

j = 1 r
( j )
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive deýnition, since the future

rewardsagain giveahigher weight to early payoffs than to later ones.

Deýnition 6.1.2 (Discounted reward) Givenan inýnitesequenceof payoffsr
(1 )
i ,r

(2 )
i ,...

for player i , and a discount factorɓwith 0ŮɓŮ1, the futurediscounted rewardfuture

discounted

reward
of i is

Ŝ

j = 1ɓ
j r

( j )
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the gamewill be stopped any given round; 1īɓrepresents that probability. The

analysisof thegameisnot affected by which perspective is adopted.

Now let usconsider strategy spaces in an inýnitely repeated game. In particular,

consider the inýnitely repeated Prisonerôs Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. Theobservant reader will notice apotential difýculty in thisdeýnition, since thelimit may not exist. One

canextend the deýnition to cover these casesby using the lim sup operator in Deýnition 6.1.1 rather than

lim .
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payoffs r(1), r(2),éfor player i, 

the average reward of i is



Teaching

ÅIn a single-stage game it would 
be hard for agent1 to convince 
agent2 that he will play T , 
since Bis a strictly dominated 
strategy
ÅHowever, in a repeated-game 

setting, agent 1 has an 
opportunity beinga teacher 
ïagent1 could repeatedly play T; 

presumably, after a while agent2, 
if he has any sense at all, would 
get the message and start 
responding with R
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The simultaneous learning of the agents means that every learning rule leads to

a dynamical system, and sometimes even very simple learning rules can lead to

complex global behaviors of the system. Beyond this mathematical fact, however,

liesaconceptual one. In thecontext of multiagent systemsonecannot separatethe

phenomenonof learning from that of teaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agentsô

past behavior, but also how hewishes to inþuencetheir future behavior.

The following example illustrates this point. Consider the inýnitely repeated

gamewith averagereward (i.e., where the payoff to a given agent is the limit aver-

age of his payoffs in the individual stage games, as in Deýnition 6.1.1), in which

thestagegame is thenormal-form gameshown in Figure 7.1.Stackelberg

game
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T 1, 0 3, 2

B 2, 1 4, 0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namely B .

Also note that (B ,L ) is the unique Nash equilibrium of the game. Indeed, if

player 1 were to play B repeatedly, it is reasonable to expect that player 2 would

always respond with L . Of course, if player 1 were to choose T instead, then

player 2ôs best response would be R, yielding player 1 a payoff of 3 which is

greater than player 1ôs Nash equilibrium payoff. In a single-stage game it would

be hard for player 1 to convinceplayer 2 that he (player 1) will play T , since it is

a strictly dominated strategy.1 However, in a repeated-gamesetting agent 1 has an

opportunity to put his payoff where his mouth is, and adopt the role of a teacher.

That is, player 1 could repeatedly play T ; presumably, after a while player 2, if he

hasany senseat all, would get the messageand start responding with R.

In theprecedingexampleit ispretty clear who thenatural candidatefor adopting

the teacher role is. But consider now the repetition of the Coordination game, re-

produced in Figure7.2. In thiscase, either player could play theteacher with equal

success. However, if both decide to play teacher and happen to select uncoordi-

nated actions(Left, Right) or (Right, Left) then the players will receive a payoff

of zero forever.2 Is therea learning rule that will enablethem to coordinatewithout

an external designation of a teacher?

1. Seerelated discussion on signaling and cheap talk in Chapter 8.

2. This is reminiscent of theñsidewalk shufþe,òthat awkward process of trying to get by theperson walking

toward you while he is doing the samething, the result being that you keepblocking eachother.
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-

egy to defect, no matter what happened so far. This is common knowledge, and

no choice of action in the preceding rounds will impact the play in the last round.

Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,

by induction, it can be argued that the only equilibrium in this case is to always

defect. However, as in thecaseof theCentipedegame, thisargument isvulnerable

to both empirical and theoretical criticisms.

6.1.2 Inýnitely repeated games

When the inýnitely repeated game is transformed into extensive form, the result

is an inýnite tree. So the payoffs cannot be attached to any terminal nodes, nor

can they bedeýned as thesum of thepayoffs in the stagegames(which in general

will be inýnite). There are two common ways of deýning a playerôs payoff in an

inýnitely repeated gameto get around thisproblem. Theýrst is theaveragepayoff

of thestagegame in thelimit.2

Deýnition 6.1.1 (Averagereward) Givenaninýnitesequenceof payoffsr (1 )
i ,r (2 )

i ,...
for player i , theaveragereward of i isaverage reward

lim
kŕŜ

k

j = 1 r
( j )
i

k
.

The future discounted reward to a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards

discounted by a constant factor. This is a recursive deýnition, since the future

rewardsagain giveahigher weight to early payoffs than to later ones.

Deýnition 6.1.2 (Discounted reward) Givenan inýnitesequenceof payoffsr
(1 )
i ,r

(2 )
i ,...

for player i , and a discount factorɓwith 0ŮɓŮ1, the futurediscounted rewardfuture

discounted

reward
of i is

Ŝ

j = 1ɓ
j r

( j )
i .

The discount factor can be interpreted in two ways. First, it can be taken to

represent the fact that the agent cares more about his well-being in the near term

than in the long term. Alternatively, it can be assumed that the agent cares about

the future just as much as he cares about the present, but with some probability

the gamewill be stopped any given round; 1īɓrepresents that probability. The

analysisof thegameisnot affected by which perspective is adopted.

Now let usconsider strategy spaces in an inýnitely repeated game. In particular,

consider the inýnitely repeated Prisonerôs Dilemma game. As we discussed, there

are many strategies other than stationary ones. One of the most famous is Tit-for-

Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. Theobservant reader will notice apotential difýculty in thisdeýnition, since thelimit may not exist. One

canextend the deýnition to cover these casesby using the lim sup operator in Deýnition 6.1.1 rather than

lim .
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What constitutes learning?
ÅA repeated gameis regarded as a naturesettingfor
άlearningέ
ïtemporal nature and 
ïthe regularity across time (at each time the same players 

are involved, and they play the same game as before)

ÅThis allows us to consider strategies:
future action is selected based on the experience gained 
so far
ïThe Tit-for-Tat (TfT) and trigger strategies (studied in 
ǊŜǇŜŀǘŜŘ tǊƛǎƻƴŜǊΩǎ 5ƛƭŜƳƳŀύ Ŏŀƴ ōŜ ǾƛŜǿŜŘ ŀǎ a
rudimentary form of learning strategies 

396 C hapte r 14. R epeated gam es: T he Pri sonerĽs Dilem m a

C: C D: D-
(¥, D)

?

ᵪ ṕ
(¥, C)

Figure 396.1 Thestr ategy ti t-f or-ta t in an in ýnit ely repeated PrisonerĽs Dilemma.

diagram like Figure 395.1.

a. C hoose C in period 1, and after any history in w hich the other pla yer chose

C in every perio d except, possibly , th e previo us perio d; choose D aft er any

other history . (That is, punishm entis grim , but its initia tion is dela yed by one

perio d.)

b. C hoose C in period 1 and afte r any histor y in w hich the other player chose D
in at m ostoneperiod ; chooseD after any other history. (That is, punishment

is grim , but a single la pse is forgiven.)

c. ( Pavlov,o r w in-stay, lost-s hift ) C hoose C in period 1 and afte r any histor y in

w hich theoutcom ein thela st period is either (C, C) or (D, D);c hoose D aft er

any other history. (That is, choose the same action again if the outcome was

relatively good for you, and switch actions if it was not.)

14.5 Some Nash equilibria of t he inýnit ely repeated PrisonerĽs Dilemma

If one pla yer chooses D after every history in an inýnitely repeated Pris onerĽs
D ilem m athen it is clea rly optim al for the other pla yer to do the sam e(since (D, D)

is a Nash equilibrium of the PrisonerĽs Dilem ma). The argument at the start of the

chapter suggests that an inýnitely repeated PrisonerĽs Dilem ma has other, less dis-

m al, equilibria , so long as the pla yers are sufýciently patientĺfor exam ple, the

stra tegy pair in w hich each pla yer uses the grim trigger stra tegy deýned in Fig-

ure 395.1. I now make th is argument precise. Throughout I consider th e inýnite ly

repeated PrisonerĽs Dilem ma in w hich each pla yerĽs discount factor is ŭand the

one-shot payoffs are given in Figure 389.1.

14.5.1 Grim trigger strategies

Suppose that player 1 adopts the grim trigger strategy. If player 2 does so then the

outcom eis (C, C) in every perio d and she obtain s th e str eam of payoffs (2,2, . . .),

w hosediscounted average is 2. If she adopts a stra tegy tha t generates a different

sequence of outcomes then there is one period (at least) in which she chooses D.I n

all subsequent perio dsplayer 1 chooses D (p layer 2Ľs choice of D triggers the grim

punishm ent), so the best devia tion for pla yer 2 chooses D in every subsequent

perio d (sin ce D is her unique best response to D). Further, if she can increase her

payoff by devia ting then she can do so by devia ting to D in the ýrst period . If

she does so she obta ins the str eam of payoff s (3,1,1, . . .) (she gains one unit of

P0:C P1:
D



What constitutes learning?

ÅMƻǊŜ ŎƻƳǇƭŜȄ ǎǘǊŀǘŜƎƛŜǎΥ ŀƴ ŀƎŜƴǘΩǎ ƴŜȄǘ 
choice depends on the history of play in more 
sophisticated ways, e.g.,  

ïthe agent could guess that 

ïthe frequency of actions played by his opponent in 
the past might be his current mixed strategy, and

ïplay a best response to that mixed strategy

ÅThis basic learning rule is called fictitious play



What games require learning

ÅRepeated game

ÅPopulation game (will be explained shortly)

ÅStochastic game (will be introduced later)



What are settings for learning

ÅWhether the game is knownby the players 
ïLŦ ǘƘŜ ƎŀƳŜ ƛǎ ƪƴƻǿƴΣ ŀƴȅ άƭŜŀǊƴƛƴƎέ ǘƘŀǘ ǘŀƪŜǎ ǇƭŀŎŜ ƛǎ ƻƴƭȅ 

about the strategies employed by the others
ïIf the game is unknown, the agent can in addition learn about 

the structure of the game itself

ÅFor instance, the agent may start out not knowing the 
payoff functions at a given stage game or additionally the 
transition probabilities (in a stochastic game setting), but 
learn those over time in the course of playing the game. 
ïWith certain learning strategies, agents can sometimes converge 

to an equilibrium even without knowing the game being played! 

ÅWhether the game is observableby the players 
ïŘƻ ǘƘŜ ǇƭŀȅŜǊǎ ǎŜŜ ŜŀŎƘ ƻǘƘŜǊǎΩ ŀŎǘƛƻƴǎΣ ŀƴŘκƻǊ ŜŀŎƘ ƻǘƘŜǊǎΩ 

payoffs? 



Content

ÅLearning in Games

ÅFictitious Play

ÅSmoothed Fictitious Play

ÅRational Learning

ÅEvolutionary Game Theory

ÅReplicatorDynamics



Fictitious Play
ÅFictitious playis a simple sequential procedure 

that learnthe valueof a game

ÅIt is an instance of model-based learning,

ïthe learner explicitly maintains beliefs about the 
ƻǇǇƻƴŜƴǘΩǎ ǎǘǊŀǘŜƎȅ. Thelearningstructure:

206 7 Learning and Teaching

In the next sections, as we discuss several learning rules, we will encounter

various versions of these requirements and their combinations. For the most part

we will concentrateon repeated, two-player games, though in some cases we will

broaden the discussion and discuss stochastic games and games with more than

two players.

7.2 Fictitiousplay

Fictitious play is one of the earliest learning rules. It was actually not proposedýctitiousplay

initially as a learning model at all, but rather asan iterative method for computing

Nash equilibria in zero-sum games. It happens to not be a particularly effective

way of performing this computation, but since it employs an intuitive update rule,

it isusually viewed asamodel of learning, albeit asimplistic one, and subjected to

convergenceanalysesof the sort discussed above.

Fictitious play is an instance of model-based learning, in which the learner ex-

plicitly maintainsbeliefs about theopponentôsstrategy. Thestructureof such tech-

niquesis straightforward.

Initializebeliefs about theopponentôsstrategy

repeat
Play a best responseto theassessed strategy of theopponent

Observetheopponentôsactual play and updatebeliefs accordingly

Note that in this scheme the agent is oblivious to the payoffs obtained or ob-

tainable by other agents. We do however assume that the agent knows his own

payoff matrix in thestagegame(i.e., thepayoff hewould get in each action proýle,

whether or not encountered in the past).

Inýctitious play, an agent believes that his opponent is playing the mixed strat-

egy given by theempirical distribution of theopponentôspreviousactions. That is,

if A is the set of the opponentôs actions, and for every a ŗA we let w(a) bethe

number of times that theopponent hasplayed actiona, then theagent assesses the

probability of a in theopponentôsmixed strategy as

P(a) =
w(a)

ałŗA w(ał)
.

For example, in arepeatedPrisonerôsDilemmagame, if theopponenthasplayed

C ,C ,D , C ,D in theýrst ýve games, before the sixth game he is assumed to be

playing themixed strategy (0 .6, 0.4). Notethat wecan represent aplayerôsbeliefs

with either aprobability measureor with theset of counts (w(a1), ... ,w (ak )) .

We have not fully speciýedýctitious play. There exist different versions of ýc-

titious play which differ on the tie-breaking method used to select an action when

there is more than one best response to the particular mixed strategy induced by
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Note that in this setting,

Å the agent doesnotknow the payoffs andpayoff functionsby other agents, and

Å he,however, knows his own payoff matrix in the stage game (i.e., the payoff he 

would get in each action profile, whether or not encountered in the past). 

Brown, George W. "Iterative solution of games by fictitious play." Activity analysis of production and allocation 13.1 (1951): 374-376.



Fictitious Play
ÅIn fictitious play, an agent believes that 
ïhis opponent is playing the mixed strategy that is

consistentwith the empirical distribution of the 
ƻǇǇƻƴŜƴǘΩǎ ǇǊŜǾƛƻǳǎ ŀŎǘƛƻƴǎ

ÅFormally,
ï! ƛǎ ǘƘŜ ǎŜǘ ƻŦ ǘƘŜ ƻǇǇƻƴŜƴǘΩǎ ŀŎǘƛƻƴǎΣ ŀƴŘ 

ïfor every a ʘ A, let w(a) be the number of times 
that the opponent has played action a.

ïThen,the agentassessesǘƘŜ ƻǇǇƻƴŜƴǘΩǎ ƳƛȄŜŘ 
strategy as 
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convergenceanalysesof thesort discussed above.
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Inýctitious play, an agent believes that his opponent is playing the mixed strat-

egy given by theempirical distribution of theopponentôspreviousactions. That is,
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Fictitious Play
ÅFictitiousǇƭŀȅ ƛǎ ǎŜƴǎƛǘƛǾŜ ǘƻ ǘƘŜ ǇƭŀȅŜǊǎΩ ƛƴƛǘƛŀƭ ōŜƭƛŜŦǎ

or prior
ïwhichcan be interpreted as action counts that were 

observed before the start of the game
ïNote that one must pick some nonempty prior belief for 

each agent; the prior beliefs cannot be (0, . . . , 0) since this 
does not define a meaningful mixed strategy

ÅTheprior beliefscan have a radical impact on the 
learning process 
ÅDrawback: in fictitiousplay each agent assumes a 

stationary policy of the opponent, 
ïyet no agent plays a stationary policy except when the 

process happens to converge to one!



Fictitious Play:an example
ÅInŀ ǊŜǇŜŀǘŜŘ tǊƛǎƻƴŜǊΩǎ 5ƛƭŜƳƳŀ ƎŀƳŜΣ 
ïif the opponent has played 

ïC, C, D, C, D in the first five games, 

ÅǿŜ Ŏŀƴ ǊŜǇǊŜǎŜƴǘ ŀ ǇƭŀȅŜǊΩǎ ōŜƭƛŜŦǎ ǿƛǘƘ 
either a probability measure or with the 
set of counts (w(a1 ), . . . , w(ak ))
ïbefore the sixth game he is assumed to be 

playing the mixed strategy (w(C)=0.6, 
w(D)=0.4)

ïIn the sixthgame,what wouldbe the best
responseto (w(C)=0.6, w(D)=0.4)?
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14.1 The main idea

M A NY of the stra tegic intera ctions in w hich we are involved are ongoing: we

repeatedly interact with the same people. In many such interactions we

have the opportunity toľta ke advantageĿof our co-players, but do not. We look

after our neighborsĽhouse while theyĽre away, even if it is time-consuming for us

to do so; we may give money to friend s who are tem porarily in need. The theory

of repeated gam es provides a fram ework that we can use to study such behavior.

Thebasic id eain the theory is tha t a pla yer m ay bedeterr ed from exploiting her

short- term advantage by the ľthr eatĿofľpunishm entĿthat reducesher long- term

payoff. Suppose,for example, that tw o people are involved repeated ly in an inter -

action for which the short-term incentives are captured by the PrisonerĽs Dilem ma
(see Sectio n 2.2), w ith payoffs as in Figure 389.1. Thin k of C asľcooperat ionĿand

D asľdefectionĿ.

C D
C 2,2 0,3

D 3,0 1,1

Figure 389.1 ThePrisonerĽs Dilemma.

A swe know, the PrisonerĽs Dilem ma has a unique N ash equilibrium , in which
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Fictitious Play:an example
ÅTwo players are playing a 

repeated game of Matching 
Pennies. 
ÅEach player is using fictitious 

play learning to update his 
beliefs and select actions. 
ïPlayer 1 begins the game with the 

prior belief that player 2 has 
played heads 1.5 times and tails 2
times
ïPlayer 2 begins with the prior 

belief that player 1 has played 
heads 2times and tails 1.5 times

ÅHow will the players play?
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Heads Tails

Heads 1,ī1 ī1, 1

Tails ī1, 1 1,ī1

Figure 7.4: Matching Penniesgame.

an agentôs beliefs. In general the tie-breaking rule chosen has little effect on the

resultsof ýctitious play.

On the other hand,ýctitious play is very sensitive to the playersôinitial beliefs.

This choice, which can be interpreted as action counts that were observed before

the start of the game, can have a radical impact on the learning process. Note that

one must pick some nonempty prior belief for each agent; the prior beliefs cannot

be(0 , ... , 0) since thisdoesnot deýneameaningful mixed strategy.

Fictitious play is somewhat paradoxical in that each agent assumes a stationary

policy of the opponent, yet no agent playsa stationary policy except when thepro-

cess happens to converge to one. The following example illustrates the operation

of ýctitious play. Recall the Matching Pennies game from Chapter 3, reproduced

here asFigure 7.4. Two players are playing a repeated gameof Matching Pennies.

Each player isusing theýctitiousplay learning rule to updatehisbeliefs and select

actions. Player 1 begins the game with the prior belief that player 2 has played

heads1.5 timesand tails2 times. Player 2 beginswith theprior belief that player 1

hasplayed heads2 timesand tails 1.5 times. How will theplayersplay?

Theýrst seven roundsof play of thegame isshown in Table 7.1.

Round 1ôs action 2ôs action 1ôs beliefs 2ôs beliefs

0 (1.5,2) (2,1.5)

1 T T (1.5,3) (2,2.5)

2 T H (2.5,3) (2,3.5)

3 T H (3.5,3) (2,4.5)

4 H H (4.5,3) (3,4.5)

5 H H (5.5,3) (4,4.5)

6 H H (6.5,3) (5,4.5)

7 H T (6.5,4) (6,4.5)

...
...

...
...

...

Table7.1: Fictitious play of a repeated gameof Matching Pennies.

As you can see, each player endsup alternating back and forth between playing

heads and tails. In fact, as the number of rounds tends to inýnity, the empiri-
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tends to infinity, the 
empirical distribution of 
the play of each player will 
converge to (0.5, 0.5). 

ÅIf we take this distribution 
to be the mixed strategy 
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converges to the unique 
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normal form stage game :
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Someproperties 
ÅSteady state: an action profile a is a steady state 

of fictitious play 
ïif it is the case that whenever a is played at round t it 

is also played at round t + 1 (and hence in all future 
rounds as well)

ÅAtight connection between steady states and 
pure-strategy Nash equilibria:
ïTheorem 1 If a pure-strategy profile is a strict Nash 

equilibrium of a stage game, then it is a steady state 
of fictitious play in the repeated game
ïNote that the pure-strategy profile must be a strict 

Nash equilibrium, i.e.,
Åno agent can deviate to another action without strictly 

decreasing its payoff 



Someproperties 
ÅSteady state: an action profile a is a steady state 

of fictitious play 
ïif it is the case that whenever a is played at round t it 

is also played at round t + 1 (and hence in all future 
rounds as well)

ÅAtight connection between steady states and 
pure-strategy Nash equilibria:
ïTheorem 2 If a pure-strategy profile is a steady state 

of fictitious play in the repeated game, then it is a 
(possibly weak) Nash equilibrium in the stage game. 
ïNote that fictitious playmaynot always converges to 

a Nash equilibrium,
Åas agents can only play pure strategies and a pure-strategy 

Nash equilibrium may not exist in a given game 



Someproperties 
ÅHowever, while the stage game strategies may 

not converge, the empirical distribution of the 
stage game strategies may

ÅThis was the case in the Matching Pennies 
example, 
ïǿƘŜǊŜ ǘƘŜ ŜƳǇƛǊƛŎŀƭ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ ŜŀŎƘ ǇƭŀȅŜǊΩǎ 

strategy converged to their mixed strategy in the 
(unique) Nash equilibrium of the game. 

ÅThe following theorem shows that this was no 
accident. 
ïTheorem 3 If the empirical distribution of each 
ǇƭŀȅŜǊΩǎ ǎǘǊŀǘŜƎƛŜǎ ŎƻƴǾŜǊƎŜǎ ƛƴ ŦƛŎǘƛǘƛƻǳǎ ǇƭŀȅΣ ǘƘŜƴ ƛǘ 
converges to a Nash equilibrium. 



Fictitious Play:an example
Å However, although the theorem 

gives sufficient conditions for 
the empirical distribution to 
converge to a mixed 
equilibrium, no claims made 
about the distribution of the 
particular actions played

Å To see this, consider a repeated 
Anti-Coordination game here
ï two pure Nash equilibria of 

this game, (A, B) and (B, A), 
and one mixed Nash 
equilibrium: each agent mixes 
A and B with probability 0.5

ïEither of the two pure-strategy 
equilibria earns each player a 
payoff of 1, and the mixed-
strategy equilibrium earns 
each player a payoff of 0.5

The Anti-Coordination gameasthe
stagegame. 
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A B

A 0, 0 1, 1

B 1, 1 0, 0

Figure 7.5: TheAnti-Coordination game.

Now let us see what happens when we have agents play the repeated Anti-

Coordination game usingýctitious play. Let us assume that the weight function

for each player is initialized to (1 , 0.5). The play of theýrst few rounds is shown

in Table 7.2.

Round 1ôs action 2ôsaction 1ôsbeliefs 2ôs beliefs

0 (1,0.5) (1,0.5)

1 B B (1,1.5) (1,1.5)

2 A A (2,1.5) (2,1.5)

3 B B (2,2.5) (2,2.5)

4 A A (3,2.5) (3,2.5)
.
..

.

..
.
..

.

..
.
..

Table7.2: Fictitious play of a repeated Anti-Coordination game.

Asyoucansee, theplay of eachplayer convergesto themixedstrategy (0 .5, 0.5),
which is the mixed strategy Nash equilibrium. However, the payoff received by

each player is 0, since the players never hit the outcomes with positive payoff.

Thus, although the empirical distribution of the strategies converges to the mixed

strategy Nash equilibrium, the players may not receive the expected payoff of the

Nash equilibrium, becausetheir actionsaremiscorrelated.

Finally, the empirical distributions of playersôactions need not converge at all.

Consider the game in Figure 7.6. Note that this example, due to Shapley, is a

modiýcation of the rock-paper-scissorsgame; this gameis not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed

strategy (1 / 3, 1/ 3, 1/ 3). However, consider theýctitious play of the game when

player 1ôs weight function has been initialized to (0 , 0, 0.5) and player 2ôs weight

function has been initialized to (0 , 0.5, 0). The play of this game is shown in

Table 7.3. Although it is not obvious from theseýrst few rounds, it can be shown

that the empirical play of this gamenever convergesto anyýxed distribution.

For certain restricted classesof gamesweareguaranteed to reach convergence.
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player is initialized to (1, 0.5)?



Fictitious Play:an example
Å In fictitious play, we assume that 

the weight function for each player 
is initialized to (1, 0.5)

Å The play of each player converges 
to the mixed strategy Nash 
equilibrium (0.5, 0.5)

Å However, the payoff received by 
each player is 0, 
ï since the players never hit the 

outcomes with positive payoff.

Å It shows that although the 
empirical distribution of the 
strategies converges to the mixed 
strategy Nash equilibrium, 

Å the players may not receive the 
expected payoff of the Nash 
equilibrium, 
ï because their actions are 

miscorrelated!
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each player is 0, since the players never hit the outcomes with positive payoff.

Thus, although the empirical distribution of the strategies converges to the mixed

strategy Nash equilibrium, the players may not receive the expected payoff of the

Nash equilibrium, becausetheir actionsaremiscorrelated.

Finally, the empirical distributions of playersôactions need not converge at all.

Consider the game in Figure 7.6. Note that this example, due to Shapley, is a
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Fictitious play of a repeated Anti-Coordination game. 



Fictitious Play:an example
ÅThe empirical distributions 
ƻŦ ǇƭŀȅŜǊǎΩ ŀŎǘƛƻƴǎ ƴŜŜŘ ƴƻǘ 
converge at all. 
ïConsider the game, due to 

Shapley, a modification of 
the rock-paper-scissors
game; this game is not zero 
sum. 

ïThe unique Nash 
equilibrium of this game is 
for each player to play the 
mixed strategy (1/3, 1/3, 
1/3)

ÅLƴ ŦƛŎǘƛǘƛƻǳǎ ǇƭŀȅΣ ǇƭŀȅŜǊ мΩǎ 
weight function is initialized 
ǘƻ όлΣ лΣ лΦрύ ŀƴŘ ǇƭŀȅŜǊ нΩǎ 
weight function is initialized 
to (0,0.5,0). 

{ƘŀǇƭŜȅΩǎ !ƭƳƻǎǘ-Rock-Paper-Scissors game 
as the stage game 

210 7 Learning and Teaching

Rock Paper Scissors

Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1

Scissors 0, 1 1, 0 0, 0

Figure 7.6: ShapleyôsAlmost-Rock-Paper-Scissorsgame.

Round 1ôs action 2ôs action 1ôs beliefs 2ôs beliefs

0 (0,0,0.5) (0,0.5,0)

1 Rock Scissors (0,0,1.5) (1,0.5,0)

2 Rock Paper (0,1,1.5) (2,0.5,0)

3 Rock Paper (0,2,1.5) (3,0.5,0)

4 Scissors Paper (0,3,1.5) (3,0.5,1)

5 Scissors Paper (0,1.5,0) (1,0,0.5)

...
...

...
...

...

Table 7.3: Fictitious play of a repeated game of the Almost-Rock-Paper-Scissors

game.

Theorem 7.2.5 Each of the following is a sufýcient condition for the empir ical

frequenciesof play to convergeinýctitiousplay:

Å The gameis zero sum;

Å The gameis solvableby iterated elimination of strictly dominated strategies;

Å The gameis a potential game;5

Å The gameis2¦n andhasgeneric payoffs.6

Overall,ýctitious play is an interesting model of learning in multiagent systems

not because it is realistic or because it provides strong guarantees, but because it

5. Actually an even moremoregeneral condition applies here, that theplayers haveñidentical interests," but

wewill not discuss this further here.

6. Full discussion of genericity in games lies outside thescopeof this book,but here is theessential idea, at

least for gamesin normal form. Roughly speaking, a game in normal form is generic if it doesnot have any

interesting property that doesnot also hold with probability 1 when the payoffs are selectedindependently

from a sufýciently rich distribution (e.g., the uniform distribution over aýxed interval). Of course, to make

this precise we would needto deýneñinterestingòandñsufýciently.òIntuitively, though, this means that the

payoffs do not have accidental properties. A gamewhose payoffs are all distinct is necessarily generic.

Uncorrected manuscript of Multiagent Systems, published by Cambridge University Press

Revision 1.1ÉShoham & Leyton-Brown, 2009, 2010.



Fictitious Play:an example
Å The empirical distributions of 
ǇƭŀȅŜǊǎΩ ŀŎǘƛƻƴǎ ƴŜŜŘ ƴƻǘ ŎƻƴǾŜǊƎŜ 
at all. 
ï Consider the game, due to 

Shapley, a modification of the 
rock-paper-scissorsgame; this 
game is not zero sum. 

ï The unique Nash equilibrium of 
this game is for each player to play 
the mixed strategy (1/3, 1/3, 1/3)

Å Lƴ ŦƛŎǘƛǘƛƻǳǎ ǇƭŀȅΣ ǇƭŀȅŜǊ мΩǎ ǿŜƛƎƘǘ 
function is initialized to (0, 0, 0.5) 
ŀƴŘ ǇƭŀȅŜǊ нΩǎ ǿŜƛƎƘǘ ŦǳƴŎǘƛƻƴ ƛǎ 
initialized to (0,0.5,0). 

Å The play of this game is shown on 
the right. 

Å Although it is not obvious from 
these first few rounds, it can be 
shown that the empirical play of 
this game never converges to any 
fixed distribution. 

{ƘŀǇƭŜȅΩǎ !ƭƳƻǎǘ-Rock-Paper-Scissors game 
as the stage game 

Fictitious play of a repeated game of the 
Almost-Rock-Paper-Scissors game. 
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game.

Theorem 7.2.5 Each of the following is a sufýcient condition for the empir ical

frequenciesof play to convergeinýctitiousplay:

Å The gameis zero sum;

Å The gameis solvableby iterated elimination of strictly dominated strategies;

Å The gameis a potential game;5

Å The gameis2¦n andhasgeneric payoffs.6

Overall,ýctitious play is an interesting model of learning in multiagent systems

not because it is realistic or because it provides strong guarantees, but because it

5. Actually an even moremoregeneral condition applies here, that theplayers haveñidentical interests," but

wewill not discuss this further here.

6. Full discussion of genericity in games lies outside thescopeof this book,but here is theessential idea, at

least for gamesin normal form. Roughly speaking, a game in normal form is generic if it doesnot have any

interesting property that doesnot also hold with probability 1 when the payoffs are selectedindependently

from a sufýciently rich distribution (e.g., the uniform distribution over aýxed interval). Of course, to make
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Fictitious Play:conclusions
ÅIt is interesting not because it is realistic or has 

strong guarantees, but because 

ïIt is very simple to state and 

ïgives rise to nontrivial properties

ÅBut it is very limited; 

ïits model of beliefs and belief update is 
mathematically constraining, and

ïis clearly implausible as a model of human learning

ÅThere exist various variants of fictitious play that 
score somewhat better on both fronts, such as 
smoothed fictitious play 



Oneof the manyapplications
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Smoothed Fictitious Play
ÅMathematically, Fictitious Play adopts at time t+1 a 

pure strategy si that 

ÍÁØǳƛόǎƛΣtǘύ

where Ptƛǎ ǘƘŜ ŜƳǇƛǊƛŎŀƭ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ƻǇǇƻƴŜƴǘΩǎ Ǉƭŀȅ 
until time t. ui is the expected utility 
ÅSmoothed Fictitious Play, instead of playing the best 

response to the empirical frequency, introducesa 
perturbation that gradually diminishes over time
ïagent i adopts a mixed strategy ̀i that maximizes 

ÁÒÇÍÁØ
ƛ̀ ǎƛ

ƛ̀ǎƛǳƛόǎƛΣtǘύǾ̡ƛό̀ƛύ

Where i̡s any constant, and Ǿƛό̀ƛύcan be the entropy 
functionǾƛό̀ƛύ Вǎƛ̀ ƛǎƛÌÏÇ̀ƛǎƛ

Fudenberg, Drew, and David K. Levine. "Consistency and cautious fictitious play." Journal of Economic Dynamics and Control 19.5-7 (1995): 1065-1089.



Smoothed Fictitious Play
ÅThe first order condition for the maximum gives

ǳƛόǎƛΣtǘύÌÏÇ̀ƛǎƛ Ґ˂л
where ˂ is the Lagrange multiplier corresponding to the constraint 
that the probabilities ̀ƛ() a must sum to one

ÅSolving it gives:

ƛ̀ǎƛ
ÅØÐό ǎƛΣtǘȾ

ВÓƛ
ÅØÐό ÓƛΣtǘȾ

ÅIt allows a more satisfactory explanation for convergence to 
mixed-strategy equilibria in fictitious play-like models.
ïFor example, in matching pennies the per-period play can 

actually converge to the mixed strategy equilibrium. 
ïIn addition, SFP avoids the discontinuity inherent in standard 

fictitious play, where a small change in the data can lead to an 
abrupt change in behaviour. 

ïWith SFP, if beliefs converge, play does too.
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Rational learning 

ÅRational learning,akaBayesian learning, adopts the same 
general model-based scheme as fictitious play

ÅUnlike fictitious play, however, it allows players to have a 
ƳǳŎƘ ǊƛŎƘŜǊ ǎŜǘ ƻŦ ōŜƭƛŜŦǎ ŀōƻǳǘ ƻǇǇƻƴŜƴǘǎΩ ǎǘǊŀǘŜƎƛŜǎ:
ïIn fictitious play, strategiesarelimited to onesderivedfrom the

stagegame(onlyconditionalon the empiricaldistributionof
opponent'sactions)

ïBut in rational learning,the set of strategies comesfrom the
entire repeated-game, conditionalon the historyplays,e.g.,TfT
in repeatedtǊƛǎƻƴŜǊΩǎ 5ƛƭŜƳƳŀ

ÅThus,ǘƘŜ ōŜƭƛŜŦǎ ƻŦ ŜŀŎƘ ǇƭŀȅŜǊ ŀōƻǳǘ Ƙƛǎ ƻǇǇƻƴŜƴǘΩǎ 
strategies may be expressed by any probability distribution 
over the set of all possible strategies 

Kalai, Ehud, and Ehud Lehrer. "Rational learning leads to Nash 
equilibrium." Econometrica: Journal of the Econometric Society (1993): 1019-1045.



Rational learning 
ÅSimilarto fictitious play, each player begins the game with 

some prior beliefs. 
ÅAfter each round, the player uses Bayesian inference to 

update their beliefs 
Å¢ƘŜ .ŀȅŜǎƛŀƴ ǳǇŘŀǘŜ ŦƻǊ ƻǇǇƻƴŜƴǘΩǎ ǇƭŀȅƛƴƎ ŀ ǇŀǊǘƛŎǳƭŀǊ 

strategy:

where
ïί ŘŜƴƻǘŜǎ ǘƘŜ ǎŜǘ ƻŦ ǘƘŜ ƻǇǇƻƴŜƴǘΩǎ ǎǘǊŀǘŜƎƛŜǎ ŎƻƴǎƛŘŜǊŜŘ 

possible by player i, and ί ᶰί , 
ïὌdenotes the set of possible histories of the game, and 

ïÈɴ Ὄ
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is very simple to stateand givesrise to nontrivial properties. But it isvery limited;

itsmodel of beliefs and belief updateismathematically constraining, and isclearly

implausibleasamodel of human learning. Thereexist variousvariantsofýctitious

play that score somewhat better on both fronts. We will mention one of themð

calledsmoothýctitiousplayðwhen wediscussno-regret learning methods.

7.3 Rational learning

Rational learning (also sometimescalled Bayesian learning) adopts thesamegen-rational learning

Bayesian

learning

eral model-based scheme asýctitious play. Unlikeýctitious play, however, it al-

lowsplayers to haveamuch richer set of beliefs about opponentsôstrategies. First,

the set of strategies of the opponent can include repeated-game strategies such as

TfT in thePrisonerôsDilemmagame, not only repeated stage-gamestrategies. Sec-

ond, thebeliefs of each player about hisopponentôsstrategiesmay beexpressedby

any probability distribution over theset of all possiblestrategies.

As inýctitiousplay, each player begins thegamewith someprior beliefs. After

each round, the player usesBayesian updating to update thesebeliefs. Let Si
īi beBayesian

updating the set of the opponentôsstrategies considered possible by player i , and H bethe

set of possible histories of the game. Then we can use Bayesôrule to express the

probability assigned by player i to the event in which the opponent is playing a

particular strategy sīi ŗSi
īi given theobservation of history hŗH , as

Pi (sīi |h) =
Pi (h|sīi )Pi (sīi )

słī i ŗS i
ī i

Pi (h|słīi )Pi (słīi )
.

For example, consider two players playing the inýnitely repeated Prisonerôs

Dilemmagame, reproduced in Figure7.7.

C D

C 3, 3 0, 4

D 4, 0 1, 1

Figure7.7: PrisonerôsDilemmagame

Supposethat the support of theprior belief of each player (i.e., the strategiesof

theopponent to which theplayer ascribesnonzeroprobability; seeDeýnition3.2.6)

consistsof thestrategiesg1,g 2,... gŜ , deýned as follows. gŜ is the trigger strat-

egy that was presented in Section 6.1.2. A player using the trigger strategy beginstrigger strategy

the repeated game by cooperating, and if his opponent defects in any round, he

defects in every subsequent round. For T < Ŝ, gT coincides with gŜ at all his-

Free for on-screen use; please do not distribute. You can get another freecopy

of this PDF or order thebookat http://www.masfoundations.org .
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Rational learning 
Å Recallgrim trigger strategyin the infinitely 
ǊŜǇŜŀǘŜŘ tǊƛǎƻƴŜǊΩǎ  5ƛƭŜƳƳŀ ƎŀƳŜ :
ï choose C so long as the other player chooses C; 
ï if in any period the other player chooses D, then 

choose D in every subsequent period

Å A generalcase:limited punishmentgT:
ï choose C so long as the other player chooses C; 
ï if in any period the other player chooses D, then 

choose D in in the followingTtimesandgoesback
to C.

Å A rational learningsetting:
ï the strategyspaceconsists of the strategies g1, g2, 

. . . gTΣΧΣg қ ;Ǝқ ƛǎ ǘƘŜ trigger strategy
ï each player happens to select a best response 

from among g0,g1,...,gқ.

Å After playing each round of the repeated game, 
each player performs Bayesian updating 

Prisonerôs Dilemma as

thestagegame 

212 7 Learning and Teaching

tories shorter than T but prescribesunprovoked defection starting from timeT on.

Following this convention, strategy g0 is thestrategy of constant defection.

Suppose furthermore that each player happens indeed to select a best response

from among g0,g 1,... ,gŜ . (There are of course inýnitely many additional best

responsesoutside this set.) Thuseach round of the gamewill beplayed according

to somestrategy proýle (gT1
,g T2

).
After playing each round of the repeated game, each player performs Bayesian

updating.Forexample, if player i hasobservedthat player j hasalwayscooperated,

theBayesian updating after history ht ŗH of length t reducesto

Pi (gT |ht ) =
0 if T Ůt ;

P i (gT )
Ŝ
k = t + 1 P i (gk )

if T > t .

Rational learning is a very intuitive model of learning, but its analysis is quite

involved. The formal analysis focuses on self-play, that is, on properties of the

repeated gamein which all agentsemploy rational learning (though they may start

with different priors). Broadly, thehighlightsof thismodel areas follows.

Å Under some conditions, in self-play rational learning results in agents having

closeto correct beliefs about theobservableportion of their opponentôsstrategy.

Å Under some conditions, in self-play rational learning causes the agents to con-

verge toward aNash equilibrium with high probability.

Å Chief among theseñconditionsòis absolutecontinuity, astrong assumption.

In the remainder of this section we discuss these points in more detail, starting

with the notion of absolutecontinuity.

Deýnition 7.3.1 (Absolute continuity) Let X bea set and letг,гłŗɄ(X ) be

probability distributions over X . Then the distributionгis said to be absolutely

continuouswith respect to the distributionгłiff for x ṒX that is measurable7 itabsolute

continuity is thecase that ifг(x) > 0 thenгł(x) > 0.

Note that the playersôbeliefs and the actual strategies each induce probability

distributionsover theset of historiesH . Let s = (s1,... ,s n ) beastrategy proýle.

If weassumethat thesestrategiesareusedby theplayers, wecancalculatetheprob-

ability of each history of the game occurring, thus inducing a distribution over H .

Wecan also inducesuch adistribution with aplayerôsbeliefs about playersôstrate-

gies. Let Si
j be a set of strategies that i believes possible for j , and P i

j ŗɄ(Si
j )

be the distribution over Si
j believed by player i . Let Pi = (P i

1 ,... ,P i
n ) be the

tuple of beliefs about the possible strategies of every player. Now, if player i as-

sumesthat all players(including himself) will play according to hisbeliefs, hecan

7. Recall that aprobability distribution over adomain X does notnecessarily give avaluefor all subsets of

X , but only over someů-algebra of X , thecollection of measurable sets.
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14.1 The main idea

M A NY of the stra tegic intera ctions in w hich we are involved are ongoing: we

repeatedly interact with the same people. In many such interactions we

have the opportunity toľta ke advantageĿof our co-players, but do not. We look

after our neighborsĽhouse while theyĽre away, even if it is time-consuming for us

to do so; we may give money to friend s who are tem porarily in need. The theory

of repeated gam es provides a fram ework that we can use to study such behavior.

Thebasic id eain the theory is tha t a pla yer m ay bedeterr ed from exploiting her

short- term advantage by the ľthr eatĿofľpunishm entĿthat reducesher long- term

payoff. Suppose,for example, that tw o people are involved repeated ly in an inter -

action for which the short-term incentives are captured by the PrisonerĽs Dilem ma
(see Sectio n 2.2), w ith payoffs as in Figure 389.1. Thin k of C asľcooperat ionĿand

D asľdefectionĿ.

C D
C 2,2 0,3

D 3,0 1,1

Figure 389.1 ThePrisonerĽs Dilemma.

A swe know, the PrisonerĽs Dilem ma has a unique N ash equilibrium , in which

each player chooses D.N ow suppose that a player adopts the following long-term

stra tegy: chooseC so long as the other player chooses C;i f in any period the other

player chooses D,t hen choose D in every subsequentperio d.W hat should the other

389
if player i has observed that player j 
has always cooperatedafterhistory
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Evolutionary learning in populations of agents

ÅLearning in a population of 
agents: 
ïwe mean the change in the 

constitution and behaviour of that 
population over time

ÅThese models were originally 
developed by population 
biologists to model the process 
of biological evolution, and
Ålater adopted and adapted by 

other fields 

Yang, Yaodong, et al. "An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning." arXiv preprint 

arXiv:1709.04511 (2017).
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Background: evolutionary biology

ÅGene-centric view of evolution

ïAƴ ƻǊƎŀƴƛǎƳΨǎ geneslargely 
determine its observable 
characteristics (fitness) in a given 
environment

ÅMore fit organisms will produce 
more offspring

ïThis causes genesthat provide 
greater fitness to increase their 
representation in the population
vianatural selection

Gene-centric view of evolution

Natural selection

1966 1976



Evolutionary game theory

ÅIn 1973 biologist John Maynard 
Smith and mathematician George R. 
Price showedhow game theory 
applies to the behaviour of animals

ÅThe idea of applying game theory to 
animalsseemed strange at the time, 
ïbecause game theory had always 

been aboutrationality 
ïAnimals hardly fit the bill

ÅMaynard Smith made three critical 
shifts from traditional game theory 
ïstrategy,
ïequilibrium, and 
ïthe nature of agent interactions Maynard SmithΩǎ1982

bookhas become a 
classic.



Background:Evolutionary Game theory

ÅRegular game theory
ïIndividual players make decisions
ïPayoffs depend on decisions 

made by all
ïThe reasoning about what other 

players might do happen 
simultaneously

ÅEvolutionarygame theory
ïGame theory continues to apply 

even if no individual is reasoning 
or making explicit decisions

ïDecisions may thus not be 
conscious

ïWhat behavior will persist in a 
population?

Imgsource:https://en.wikipedia.org/wiki/ Evolutionary_game_theory



Evolutionary game theory
ÅKey insight
ïMany behaviors involve the interactionof multiple 

organisms in a population
ïThe success of an organism depends on how its behavior 

interacts with that of others
Å/ŀƴΨǘ ƳŜŀǎǳǊŜ ŦƛǘƴŜǎǎ ƻŦ ŀƴ ƛƴŘƛǾƛŘǳŀƭ ƻǊƎŀƴƛǎƳ ŀƭƻƴƎ

ïSo fitness must be evaluated in the context of the full 
population in which it lives

ÅAnalogous to game theory!
ïhǊƎŀƴƛǎƳǎΨǎ ƎŜƴŜǘƛŎŀƭƭȅ ŘŜǘŜǊƳƛƴŜŘ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ŀƴŘ 

behavior = Strategy
ïFitness = Payoff
ïPayoff depends on strategies of organisms with which it 

interacts = Game matrix



Motivating example
Å[ŜǘΨǎ ƭƻƻƪ ŀǘ ŀ ǎǇŜŎƛŜǎ ƻŦ ŀ beetle
ï9ŀŎƘ ōŜŜǘƭŜΨǎ ŦƛǘƴŜǎǎ ŘŜǇŜƴŘǎ ƻƴ ŦƛƴŘƛƴƎ 

and processing food effectively

ïMutation introduced
ÅBeetles with mutation have larger body size

ÅLarge beetles need more food

ÅWhat would we expect to happen?
ïLarge beetles need more food

ïThis makes them less fit for the 
environment

ïThe mutation will thus die out over time

ÅBut there is more to the story...



Motivating example

ÅBeetles compete with each other for food
ïLarge beetles more effective at claiming above-

averageshare of the food

ÅAssume food competition is among pairs
ïSmallvs.Small: get equal shares of food
ïLargevs.small:Large beetle gets the majority of food 

from Small beetle
ïLargevs.Large:get equal shares of food, but Large 

beetles always experience less fitness benefit from 
given quantity of food
ÅNeed to maintain their expensive metabolism(the chemical 

processesin their body)



Motivating example
ÅThe body-size game between two beetles

ÅSomething funny about this
ïNo beetle is asking itself: άDo I want to be small or 

large?ά

ÅNeed to think about strategy changes that 
operate over longer time scales
ïTaking place as shifts in population under 

evolutionary forces!

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3



Evolutionarily stable strategies

ÅSuppose each beatle is repeatedly paired off 
with other beetles at random

ïPopulation large enough so that there are no 
repeated interactions between two beetles

Å! ōŜŜǘƭŜΨǎ ŦƛǘƴŜǎǎ Ґ ŀǾŜǊŀƎŜ ŦƛǘƴŜǎǎ ŦǊƻƳ ŦƻƻŘ 
interactions = reproductive success

ïMore food thus means more offspring to carry 
genes (strategy) to the next generation



Evolutionary stable strategies

Å¢ƘŜ ŎƻƴŎŜǇǘ ƻŦ ŀ bŀǎƘ ŜǉǳƛƭƛōǊƛǳƳ ŘƻŜǎƴΨǘ ǿƻǊƪ 
in this setting
ïNobody is changing their personal strategy

ÅInstead, we want an evolutionary stable strategy
ïA genetically determined strategy that tends to persist 

once it is prevalent in a population
ïDef:
ÅA strategy is evolutionarily stableif everyone uses it, and 

any small group of invaders with a different strategy will 
die off over multiple generations

ÅNeed to make this precise...



ÅIs Smallan evolutionarily 
stable strategy?

Å[ŜǘΨǎ ǳǎŜ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ

ïSuppose for some small 
number ‐, a 1-‐fraction of 
population use Smalland ‐
use Large

ïIn other words, Large
beetlesinvadesa
population of Smallbeetles

Motivating example

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3

What is the expected payoff to a 
Smallbeetle in a random 
interaction?

With prob. 1-‐, meet 
another Smallbeetle for a 
payoff of 5
With prob. ‐, meet Large
beetle for a payoff of 1
Expected payoff: 5(1-‐) + 1‐
= 5-4‐



ÅIs Smallan evolutionarily 
stable strategy?

Å[ŜǘΨǎ ǳǎŜ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ

ïSuppose for some small 
number ‐, a 1-‐fraction of 
population use Smalland ‐
use Large

ïIn other words, Large
beetlesinvadesa
population of Smallbeetles

Motivating example

Small Large

Small 5, 5 1, 8

Large 8, 1 3, 3

What is the expected payoff to a 
Largebeetle in a random 
interaction?

With prob. 1-‐, meet a 
Smallbeetle for payoff of 8
With prob. ‐, meet another 
Largebeetle for a payoff of 3
Expected payoff: 8(1-‐) + 3‐
= 8-5‐



Motivating example
ÅExpected fitness of Large beetles is 8-5‐

ÅExpected fitness of Small beetles is 5-4‐

ïFor small enough ‐(and even big ‐), the fitness of 
Large beetles exceeds the fitness for Small

ïThus Smallis NOTevolutionarily stable

ÅWhat about the Large strategy?

ïAssume ‐fraction are Small, rest Large.

ïExpected payoff to Large: 3(1-‐) + 8‐= 3+5‐

ïExpected payoff to Small: 1(1-‐) + 5‐= 1+4‐

ïLarge is evolutionarily stable



Motivating example

ÅSummary

ïA few large beetles introduced into a population 
consisting ofsmallbeetles

ïLarge beetles will do really well:

ÅThey rarely meet each other

ÅThey get most of the food in most competitions

ïPopulation of small beetles cannot drive out the 
large ones

ÅSo Smallis not evolutionarily stable



Motivating example

ÅSummary
ïConversely, a few small beetles will do very badly
ÅThey will lose almost every competition for food

ïA population of large beetles resiststhe invasion 
of small beetles

ïLargeis thus evolutionarily stable

Å¢ƘŜ ǎǘǊǳŎǘǳǊŜ ƛǎ ƭƛƪŜ ǇǊƛǎƻƴŜǊΨǎ ŘƛƭŜƳƳŀ
ïCompetition for food = arms race

ï.ŜŜǘƭŜǎ ŎŀƴΨǘ ŎƘŀƴƎŜ ōƻŘȅ ǎƛȊŜǎΣ ōǳǘ ŜǾƻƭǳǘƛƻƴŀǊƛƭȅ 
forces over multiple generations are achieving 
analogous effect



Evolutionary arms races

ÅLots of examples

ïIŜƛƎƘǘ ƻŦ ǘǊŜŜǎ Ŧƻƭƭƻǿǎ ǇǊƛǎƻƴŜǊΨǎ ŘƛƭŜƳƳŀ

ÅOnly applies to a particular height range

ÅMore sunlight offset by fitness downside of height

ïRoots of soybean plants to claim resources

ÅConserve vs. Explore

ÅHard to truly determine payoffs in real-world 
settings



Evolutionary arms races
ÅOne recent example with known payoffs 

ïVirus populations can play an evolutionary version 
of ǇǊƛǎƻƴŜǊΨǎ ŘƛƭŜƳƳŀ

ïVirus A

ÅInfects bacteria

ÅManifactures products required for replication

ïVirus B

ÅMutated version of A

ÅCan replicate inside bacteria, but less efficiently

ÅBenefits from presence of A

ïIs B evolutionarily stable?



Virus game
ÅLook at interactions between two viruses

ïViruses in a pure A population do better than viruses in 
pure B population

ïBut regardless of what other viruses do, higher payoff to 
be B 

ÅThus B is evolutionarily stable
ïEven though A would have been better

ïSimilar to the exam-presentation game

A B

A 1.00, 1.00 0.65, 1.99

B 1.99, 0.65 0.83, 0.83



What happens in general?
ÅUnder what conditions is a strategy 

evolutionarily stable?

ïNeed to figure out the right form of the payoff 
matrix

ïHow do we write the condition of evolutionary 
stability in terms of these 4 variables, a,b,c,d?

S T

S a, a b, c

T c, b d, d

Organism 2

Organism 1



What happens in general?

ÅLook at the definition again
ïSuppose again that for some small number ‐:
ÅA 1-‐fraction of the population uses S

ÅAn ‐fraction of the population uses T

ÅWhat is the payoff for playing S in a random 
interaction in the population?
ïMeet another S with prob. 1-‐. Payoff = a

ïMeet T with prob. ‐. Payoff = b

ïExpected payoff = a(1-‐)+b‐

ÅAnalogous for playing T
ïExpected payoff = c(1-‐)+d‐



What happens in general?
ÅTherefore, S is evolutionarily stable if for all 

small values of x:
ïa(1-‐)+b‐>  c(1-‐)+d‐

ïWhen ‐is really small (goes to 0), this is
Åa > c

ïWhen a=c, the left hand side is larger when
Åb > d

ÅIn other words
ïIn a two-player, two-strategy symmetric game, S is 

evolutionarily stable when either
Åa > c, or

Åa = c, and b > d



What happens in general?

ÅIntuition
ïIn order for S to be evolutionarily stable, then:
ÅUsing S against S must be at least as good as using T 

against S

ÅOtherwise, an invader using T would have higher fitness 
than the rest of the population

ïIf S and T are equally good responses to S
ÅS can only be evolutionarily stable if those who play S 

do better against T than what those who play T do with 
each another

ÅOtherwise, T players would do as well against the S part 
of the population as the S players



Relationship with Nash equilibria
Å[ŜǘΨǎ ƭƻƻƪ ŀǘ bŀǎƘ ƛƴ ǘƘŜ ǎȅƳƳŜǘǊƛŎ ƎŀƳŜ

ïWhen is (S,S) a Nash equilibrium?

ïS is a best response to S:  aҗ c

ÅCompare with evolutionarily stable 
strategies:

ï(i) a > c or (ii) a = cand b > d

ÅVery similar!

S T

S a, a b, c

T c, b d, d



Interpretation of mixedstrategies

ÅCan interpret this in two ways
ïeach agentsplays the same mixed strategy, or 

ïAfraction of the population playing each of the 
underlying pure strategies in proportion to its 
contribution to the mixed strategy

ÅAsthe stagegame is a one-shot, it is rarely 
plausible to hold that an individual will play a 
strictly mixed strategy 

ÅThus, in general, the heterogeneous population 
interpretation is superior 



ESS:definition of the stagegame

ÅConsider a two-player normal form symmetric
game:
ïboth players have the set of pure strategies Ὓ
ίρȟȣȟίὲ

ïόρǎƛȟǎƧ : the payoffs of an agent playingsi when
playingwith anotheragentusing sj.

ïSymmetricpayoff:όρǎƛȟǎƧ= όςǎƛȟǎƧḳόȟ
ïSymmetricin strategy:agents cannot condition their 

play on whether they are player1 or player 2

ï5 όȟȡthe matrix of the symmetric game 



ESS:how the stagegameis played?

ÅStagegameGisa symmetric game with matrix U

ÅLarge population of agentsis to playthe game
ïIn each period tҐмΣнΣΧ, agents are randomly paired 

and they play the stage game G once

ïEach agent hascertaintypeÉɴ ρȟȣȟὲ, i.e., the
agentusesstrategysi in the stage game.

ÅThestateof the game (also called thestrategyof
the population):„ ὴȟȣȟὴȟȣȟὴ , where
ὴis the proportion of agentsof selecting strategy 
si (type i) ata particulartime;ὴ πand
Вὴ ρ



Evolutionarily stable strategies
Å Fitnessof anagenttype i in a population = expected payoff from 

interaction with another member of population:

ό όὴ

ÅMutant strategy† ήȟȣȟήȟȣȟή invadesthe populationwith
strategy „at level ‐(for small‐) if: 

Å‐fraction of population uses†
Å1-‐fractionof population uses „
ÅThe new state of the population is ‘ ρ ‐„ ‐†

Å Thepayoffof a randomlychosennonmutantis:
ό ρ ‐ό ‐ό

Å Thepayoffof a randomlychosenmutant is:

ό ρ ‐ό ‐ό

where ό Вȟ ὴόὴ,ό ό Вȟ ήόὴ,

ό Вȟ ήόή



Evolutionarily stable strategies

ÅStrategy „is evolutionarily stableif there is 
some number y such that:
ÅWhen any other strategy †invades „at any level ‐< y, 

the fitness of anagentplaying „is strictly greater than 
the fitness of anagentplaying †:ό ό

That is 

ÅGiven small ‐, this is equivalent to requiring that 
either              or else both             and ό >ό

ρ ‐ό ‐ό > ρ ‐ό ‐ό

ό ό ό ό



Evolutionarily stable strategies

ÅStrategy „is evolutionarily stableif there is 
some number y such that:
ÅWhen any other strategy †invades „at any level ‐< y, 

the fitness of anagentplaying „is strictly greater than 
the fitness of anagentplaying †:ό ό

That is 

ÅGiven small ‐, this is equivalent to requiring that 
either              or else both             and ό >ό

ρ ‐ό ‐ό > ρ ‐ό ‐ό

ό ό ό ό

a mutant cannot do better against anexisting
agentthan anexistingagentcan do against 
another existingagent



Evolutionarily stable strategies

ÅStrategy „is evolutionarily stableif there is 
some number y such that:
ÅWhen any other strategy †invades „at any level ‐< y, 

the fitness of anagentplaying „is strictly greater than 
the fitness of anagentplaying †:ό ό

That is 

ÅGiven small ‐, this is equivalent to requiring that 
either              or else both             and ό >ό

ρ ‐ό ‐ό > ρ ‐ό ‐ό

ό ό ό ό

But if a mutant does as well as anexisting
agentagainst another existingone, then an 
existingagentmust do better against a 
mutant than amutant does against another 
mutant. 



Hawk–Dove game

Å Twoanimals are fighting over a prize such as a piece 
of food. 

Å Each animal can choose between two behaviours:
ï an aggressive hawkish behaviour H, or 
ï an gentle/peacedovish behaviour D. 

Å The prize is worth 6 to each of them. 
Å Fighting costs each player 5. 
Å When a hawk meets a dove he gets the prize without 

a fight, and hence the payoffs are 6 and 0, 
respectively. 

Å When two doves meet they split the prize without a 
fight, hence a payoff of 3 to each one. 

Å When two hawks meet a fight breaks out, costing 
ŜŀŎƘ ǇƭŀȅŜǊ р όƻǊΣ ŜǉǳƛǾŀƭŜƴǘƭȅΣ ȅƛŜƭŘƛƴƎ ҍрύΦ Lƴ 
addition, each player has a 50% chance of ending up 
with the prize, 
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Deýnition 7.7.9 (Evolutionar ily stable str ategy (ESS)) Given a symmetric two-

player normal-formgameG = ({ 1, 2} ,A ,u ) anda mixed strategys, we say that

s is an evolutionarily stable strategy if and only if for someⱦ> 0 andfor all other

strategiessłit is thecase that

u(s, (1 īⱦ)s + ⱦsł) > u(sł, (1īⱦ)s + ⱦsł).

We can usepropertiesof expectation to state thiscondition equivalently as

(1 īⱦ)u(s,s )+ ⱦu(s, sł) > (1īⱦ)u(sł,s ) + ⱦu(sł,s ł).

Note that, since this only needs to hold for small ⱦ, this is equivalent to requiring

that either u(s,s ) > u(sł,s ) holds, or elseboth u(s,s ) = u(sł,s ) and u(s,s ł) >
u(sł,s ł) hold. Note that this is a strict deýnition. We can also state a weaker

deýnitionof ESS.

Deýnition 7.7.10 (Weak ESS) s is a weak evolutionarily stable strategy if andweak

evolutionarily

stablestrategy
only if for someⱦ> 0 and for all słit is the case that either u(s,s ) > u(sł,s )
holds, or elseboth u(s,s ) = u(sł,s ) andu(s,s ł) ůu(sł,s ł) hold.

This weaker deýnition includesstrategies in which the invader does just aswell

against theoriginal populationasit doesagainst itself. In thesecasesthepopulation

using the invading strategy will not grow, but it will also not shrink.

We illustrate the concept of ESS with the instance of the HawkïDove game

shown in Figure 7.10. The story behind this game might be as follows. Two

H D

H ī2,ī2 6, 0

D 0, 6 3, 3

Figure7.10: HawkïDovegame.

animals areýghting over a prize such as a piece of food. Each animal can choose

between two behaviors: an aggressivehawkish behavior H , or an accommodating

dovish behavior D . The prize is worth 6 to each of them. Fighting costs each

player 5. When a hawk meets a dove he gets the prize without aýght, and hence

the payoffs are 6 and 0, respectively. When two doves meet they split the prize

without aýght, hence a payoff of 3 to each one. When two hawks meet aýght

breaksout, costing each player 5 (or, equivalently, yieldingī5). In addition, each

player has a 50% chance of ending up with the prize, adding an expected beneýt

of 3, for an overall payoff ofī2.

It is not hard to verify that the game has a unique symmetric Nash equilibrium

(s,s ), where s = ( 3
5
, 2

5
), and that s is also the unique ESS of the game. To

Free for on-screen use; please do not distribute. You can get another free copy

of this PDF or order thebookat http://www.masfoundations.org .



Hawk–Dove game
ÅThe game has a unique symmetric Nash 

equilibrium („,„), where „= (3/5, 2/5), 
and 

Å „is also the unique ESS of the game. 
ÅTo confirm this, we need that ό„ȟ„
ό†ȟ„ and ό„ȟ† ό†ȟ†
Forall † „,
ïThe equality condition is true of any mixed 

strategy equilibrium with full support. 
Why???

ïThe inequality alsoholds. Toseethis,
consider

f(†) = u(„,†ύ ҍ ǳό†,†)  
Expanding f(†) we see that it is a quadratic 
equation with the (unique) maximum † „, 
proving our result
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Deýnition 7.7.9 (Evolutionar ily stable str ategy (ESS)) Given a symmetric two-

player normal-formgameG = ({ 1, 2} ,A ,u ) anda mixed strategys, we say that

s is an evolutionarily stable strategy if and only if for someⱦ> 0 andfor all other

strategiessłit is thecase that

u(s, (1 īⱦ)s + ⱦsł) > u(sł, (1īⱦ)s + ⱦsł).

We can usepropertiesof expectation to state thiscondition equivalently as

(1 īⱦ)u(s,s )+ ⱦu(s, sł) > (1īⱦ)u(sł,s ) + ⱦu(sł,s ł).

Note that, since this only needs to hold for small ⱦ, this is equivalent to requiring

that either u(s,s ) > u(sł,s ) holds, or elseboth u(s,s ) = u(sł,s ) and u(s,s ł) >
u(sł,s ł) hold. Note that this is a strict deýnition. We can also state a weaker

deýnitionof ESS.

Deýnition 7.7.10 (Weak ESS) s is a weak evolutionarily stable strategy if andweak

evolutionarily

stablestrategy
only if for someⱦ> 0 and for all słit is the case that either u(s,s ) > u(sł,s )
holds, or elseboth u(s,s ) = u(sł,s ) andu(s,s ł) ůu(sł,s ł) hold.

This weaker deýnition includesstrategies in which the invader does just aswell

against theoriginal populationasit doesagainst itself. In thesecasesthepopulation

using the invading strategy will not grow, but it will also not shrink.

We illustrate the concept of ESS with the instance of the HawkïDove game

shown in Figure 7.10. The story behind this game might be as follows. Two

H D

H ī2,ī2 6, 0

D 0, 6 3, 3

Figure7.10: HawkïDovegame.

animals areýghting over a prize such as a piece of food. Each animal can choose

between two behaviors: an aggressivehawkish behavior H , or an accommodating

dovish behavior D . The prize is worth 6 to each of them. Fighting costs each

player 5. When a hawk meets a dove he gets the prize without aýght, and hence

the payoffs are 6 and 0, respectively. When two doves meet they split the prize

without aýght, hence a payoff of 3 to each one. When two hawks meet aýght

breaksout, costing each player 5 (or, equivalently, yieldingī5). In addition, each

player has a 50% chance of ending up with the prize, adding an expected beneýt

of 3, for an overall payoff ofī2.

It is not hard to verify that the game has a unique symmetric Nash equilibrium

(s,s ), where s = ( 3
5
, 2

5
), and that s is also the unique ESS of the game. To
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ESS Summary
ÅNash equilibrium
ïRational players choosing mutual best responses 
ǘƻ ŜŀŎƘ ƻǘƘŜǊΨǎ ǎǘǊŀǘŜƎȅ

ïGreat demands on the ability to choose optimally 
and coordinate on strategies that are best 
responses to each other

ÅEvolutionarily stable strategies
ïNo intelligence or coordination

ïStrategies hard-wired into players (genes)

ïSuccessful strategies produce more offspring

ÅYet somehow they are almost the same!
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Replicator Dynamics
Å Replicatordynamicsmodel a population undergoing 

frequent interactions. 
Å Focus on the symmetric, two-player case

ï A population of agents repeatedly play a two-player 
symmetric normal-form stage game against each other. 

Å It describes a population of agents playing such a 
game following:
ï At each point in time, each agent only plays a pure 

strategy. 
ï Informally speaking, the model then pairs all agents and 

has them play each other, each obtaining some payoff. 
¢Ƙƛǎ ǇŀȅƻŦŦ ƛǎ ŎŀƭƭŜŘ ǘƘŜ ŀƎŜƴǘΩǎ fitness. 

ï 9ŀŎƘ ŀƎŜƴǘ ƴƻǿ άǊŜǇǊƻŘǳŎŜǎϦ ƛƴ ŀ ƳŀƴƴŜǊ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻ 
this fitness, and 

ï the process repeats. 

Å The question is 
ï whether the process converges to a fixed proportion of 

the various pure strategies within the population, and 
ï if so to which fixed proportions. 

Schuster, Peter, and Karl Sigmund. "Replicator dynamics." Journal of theoretical biology 100.3 (1983): 533-538.

Direction field plot of the 

Prisonerôs dilemma game.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.



Recall the stagegame

ÅConsider a two-player normal form symmetric
game:
ïboth players have the set of pure strategies Ὓ
ίρȟȣȟίὲ

ïόρǎƛȟǎƧ : the payoffs of an agent playingsi when
playingwith anotheragentusing sj.

ïSymmetricpayoff:όρǎƛȟǎƧ= όςǎƛȟǎƧḳόȟ
ïSymmetricin strategy:agents cannot condition their 

play on whether they are player1 or player 2

ï5 όȟȡthe matrix of the symmetric game 



Replicator Dynamics
ÅConsider an evolutionary game where each 

player follows one of n pure strategies sÉɴ
ρȟȣȟὲ

ÅThe play is repeated in periods tҐмΣнΣΧ

ÅLet ὴ be the fraction of players playing si in 
period t , and suppose the payoff to si is 

ό όὴ

ÅFor mathematical convenience, at a given time 
t , we index the strategies so that:ό
ό Ễ ό



Replicator Dynamics
Å Suppose in every time period dt, each agent with probability ɻŘǘҔ
лlearns the payoff to another randomly chosen agent and 

ÅŎƘŀƴƎŜǎ ǘƻ ǘƘŜ ƻǘƘŜǊΩǎ ǎǘǊŀǘŜƎȅ ƛŦ ƘŜ ǇŜǊŎŜƛǾŜǎ ǘƘŀǘ ǘƘŜ ƻǘƘŜǊΩǎ 
payoff is higher. 

Å However, information concerning the difference in the expected 
payoffs of the two strategies is imperfect, so the larger the 
difference in the payoffs, the more likely the agent is to perceive it, 
and change. 

Å Specifically, we assume that the probability ὴȟthat an agent using 
si will shift to sj is given by

ὴȟ
ό ό Ὢέὶό ό

π Ὢέὶό ό

where is sufficiently small that ὴȟ ρholdsfor all i andj.



Replicator Dynamics
Å The expectedfraction of populationusingsi in period t + dt is then 

given by

ὴ ὴ Ὠὸ(ὴВ ὴό ό

+В ὴὴό ό )

=ὴ ὨὸὴВ ὴό ό

=ὴ Ὠὸὴό όȢ
whereόȢ is the average return for the whole population.
Å Subtractingὴ from both sides, dividing by dt , and taking the limit 

as dt->0, wehave

ὴ ὴ ό όȢ
which is called the replicator dynamic. 
Asthe constantmerely changes the rate of adjustment to 
stationarity but leaves the stabilityproperties and trajectories of the 
dynamical system unchanged, we oftensimply assume=1

Gintis, Herbert.Game theory evolving: A problem-centeredintroduction to modeling
strategic behavior. Princeton university press, 2000.



Replicator Dynamics
Å The system we have defined has a very intuitive quality. 
ï If an action does better than the population average then the 

proportion of the population playing this actionincreases, and vice 
versa. 

ïNote that even an action that is not a best response to the current 
population state can grow as a proportion of the population when its 
expected payoff is better than the population average. 

Å A straightforward interpretation is that it describes agents 
repeatedly interacting and replicating within a large population

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligence171.7 

(2007): 406-416.

Direction field plot of the battle of the sexes game. Replicator dynamics direction field for CH with 10 agents. 
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