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A Learning in Games



Learningin repeatedgame

A Players in classicghmetheory (previouslectures)have
I a perfect knowledge of the environment and
I the payoff tables, and
I try to maxmize their individual payoff.

A Thusthe goalisto figure out, a priori, how tooptimizeits
actions e.g.,calculateNashequilibria

A Howeverwheninformationisincompleteor in arepeated
game it becomes impossible to judge what choices are the
most rational

A Thequestionthen facing a player becomes how learnto
optimize its behaviour anamaximee its return, based on
local knowledga@andthrough a process of trial and error

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning." Artificial Intelligencel71.7
(2007): 406-416.



learningin single agent

A Atypical Al concerns the learning performed
by anindividualagent

A In that setting the goal is to design an agent
that learns to function successfully in an
environment that is unknown and potentially
also changes as the agent Is learning

I Learningo recommendin collaborativefiltering

I Learningo predictclickthroughrate by logistic
regression



learningover multiple agents

A In a multiagent(player)setting, the environment contains othe
agents(players)c (we aregoingto useterm & LJ |+ aadiNES Snyeictiangeably
A Additionalcomplication:

I the learningof other agentswill change the environmenthus making
animpacton the learningof our player,and

I Thelearningof our agentwill alsoinfluencethe learningof other
agents

A Thesimultaneous learningf them means that
I every learning rule leads to a dynamical system, and

I sometimes even very simple learning rules can lead to complex g
behaviours of the system

/ Bowling, Michael, and Manuela
Veloso "Multiagentlearning using
a variable learning rate." Artificial

Intelligence 136.2 (2002): 24%50.

il



Interaction betweenlearningandteaching

A Alsomulti-agentsystemscannot
separate the phenomenon of
learningfrom that ofteaching

A When choosing a course of action ERN
a playermust take into account == - "
\\\

I not only what he has learned from —

other playerthast behavioyr g e s wodss oo
I but also how he wishes to influence

their future behaviour



An infinitely repeated game

A Arepeated gamea given game - R
(e.g.,in normal form) Is played
multiple times by the same set LO | 32
of players.
I The game being repeated Is called® | 2?1 4.0

the stage game stackelb
.. ackelberggameas
A Infinitely RepeatedGame the ihestagegame
Stagegamels Inflnltely played Given an infinite sequence of

A InIRGaveragerewardis payoffs 1, 1@, éfor player i

.. : : the average reward of i is
I the payoff to a giveplayeris the
limit averageof his payoffs in the S

iIndividual stage games k'!‘g Jkl L




An infinitely repeated game

_ _ L R
A (B,L) is the unique Nash
equilibrium of the game T | 10 | 32
I Agentl (the row player) has a é e ——
. 21 | 40 |)
dominant strategyB 7
A Observations: Stackelberggameas
" ' the stagegame
[ If agentl were 10 play B Given an infinite sequence of

repeatedly, it is reasonable to payoffs 1, 1%, éfor player,
€ average reward ot 1 IS
expect thatagent2 would

i K (j)
always respond with L. o P
ki S k '




An infinitely repeated game
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A Observanons: Stackelberggameas
) thestagegame
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An infinitely repeated game

. L R
A (B,L) is the unique Nash _
equilibrium of the game { 10 | 32 |)
~— |
I Agentl (the row player) has a
. 21 | 4,0
dominant strategyB
A Observations: Stackelberggameas
thestagegame

[ f agentl were to choose T Given an infinite sequence of
iInstead, thenagentH Qa 0 &raffgr™. r, eforplayeri,
: . the average reward of i is
response would be R, yielding a |
- Zk r(J)
payofflargethanthat in Nash - =1

equilibrium ki S k




An infinitely repeated game

A (B,L) is the unique Nash AN

equilibrium of the game { 1,0 @)

I Agentl (the row player) has a
. 21 | 4
dominant strategyB
A Observations: Stackelbe\@a/meas

thestagegame

I f agentl were to choose T Given an infinite sequence of
iInstead, thenagentH Qa 0 &raffgr™. r, eforplayeri,
: . the average reward of i is
response would be R, yielding a 0
payofflargethan that in Nash o el

equilibrium ki S k




Teaching

A In a singlestage game it would - R
be hard foragentl to convince
agent2 that he will play T, T Lo |32
sinceBis astrictly dominated
strategy B 12l 140
A However, in a repeatedame Stackelbergameas
setting, agent 1 has an the stagegame

Opportunity beinga teaCher Given an infinite sequence of

i agentl could repeatedly play T; payoffs r¥), r?), &for player i,
presumably, after a whilagent2, the average reward ofiis
If he has any sense at all, would Sk )
get the message and start n j=1 1
responding with R kf S K




What constitutes learning

A Arepeated games regarded aa nature settingfor
dearning

I temporal nature and

I the regularity across timgat each time the same players
are involved, and they play the same game as before

A This allows us to consider strategies

future action is selected based on the experience gained
so far

I The Titfor-Tat (TfT) and trigger strategies (studied in
NBLISIF G§SR t NA a2y SNXa a5 At SYY
rudimentary form of learning strate%es

X

o |(¥C)

P,:C’ -
(¥ D)

)

P
D



What constitutes learning

AM2NE O2YLJ SE adNX GS3A
choice depends on the history of play in more
sophisticated ways, e.g.,

It
It
t

ne agent could guess that
ne frequency of actions played by his opponent in

ne past might be his current mixed strategy, and

I play a best response to that mixed strategy
A This basic learning rule is call&dtitious play



What games require learning

A Repeated game
A Population game (will be explained shortly)
A Stochastic game (will be introduced later)



What are settings for learning

A Whether the game i&nownby the players
iLT GKS 3JIYS Aad (y26ys lyeé af .
about the strategies employed by the others

i If the game Is unknown, the agent can In addition learn about
the structure of the game itself

A For instance, the agent may start out not knowihg
payoff functionsat a given stage game or additionéatliye
transition probabilitieqin a stochastic game setting), but
learn those over time In the course of playing the game.

I With certain learning strategies, agents can sometimes converg
to an equilibrium even without knowing the game being played!

A Whether the game isbservabldoy the players
i R2 0KS LI IFI&@SNA aSS SI OK 20KS
payoffs?
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Fictitious Play

A Fictitious playis a simple sequential procedure
that learnthe valueof agame

A lt is an instance ahodelbased learning

I the learner explicitly maintains beliefs about the
2 LILIZ2 Y Sy U Qraeleardingdtrictid: é

Initialize beliefs about the opponent( strategy
repeat
Play a best response to the assessed strategy of the opponent
Observe the opponentd actual play and update beliefs accordingly
Note that inthis setting,
A the agentloesnotknowthe payof§ andpayoff functionsby other agentsand

A he,howeverknows his own payoff matrix in the stage gafine., the payoff he
would get in each action profile, whether or not encountered in the past).

Brown, George W. "lterative solution of games by fictitious play." Activity analysis of production and allocation 13.1 (1951): 374-376.



Fictitious Play

A In fictitious play, an agent believes that
I his opponent is playing the mixed strateipat IS
consistentwith the empirical distribution of the
21LIJLIZ2Y SYyuQa LINBOJAZ2dza | O
A Formally,
il Ada UKS asu 2F¥ GKS 2L
I for every a® A let w(a) be the number of times
that the opponent has played action a

i Then,the agentassessed KS 2 LILJI2 Y SV (i
strategy as

p(a) = — @

D aip A W(@)




Fictitious Play

A FctitiousLJt @ A4 &aSyaAaAuArgs (2
or prior

I whichcan be interpreted as action counts that were
observed before the start of the game

I Note that one must pick some nonempty prior belief for
each agent; the prior beliefs cannot be (0, . . ., 0) since thi
does not define a meaningful mixed strategy

A Theprior beliefscan have a radical impact on the
learning process

A Drawbackin fictitious play each agent assumes a
stationary policy of the opponent,

| yet no agent plays a stationary policy except when the
process happens to converge to dne



Fictitious Playan example
AInl NBLISI SR t NAazySNX
I If the opponent has played c 2?2 og
I C,C,D,C,ibthe first fiyve games, p 30 1.1
AgS Oy NBLINBaSyud | LI
either a probability measure or with the

set of counts (w(g), . . ., Wd,))

| before the sixth game he is assumed to be
playing the mixed strategyv(C)%.6,
w(D)=0.4)

I Inthe sixthgame,what would be the best
responseo (w(C)9.6,w(D)5.4)?



Fictitious Playan example
AInl NBLISI SR t NAazySNX
I If the opponent has played c 2?2 og
I C,C,D,C,ibthe first fiyve games, p 30 1.1
AgS Oy NBLINBaSyud | LI
either a probability measure or with the

set of counts (w(g), . . ., Wd,))

| before the sixth game he is assumed to be
playing the mixed strategyv(C)%.6,
w(D)=0.4)

I Inthe sixthgame,what would be the best
responseo (w(C)9.6,w(D)5.4)?

C:2x0.6+0x0.4=1.2
D:3x0.6+1x0.4=2.2



Fictitious Playan example

A Two players are playing a
repeated game of Matching
Pennies.

A Each player is using fictitious
play learning to update his Heads | 1,71 |1 1,1
beliefs and select actions.
I Player 1 begins the game with thefals | 11,1 | 1,11
prior belief that player 2 has
playedheads 1.9imes andtails 2
times

I Player 2 begins with the prior
belief that player 1 has played
heads Zimes andtails 1.5times

A How will the players pl&y

Heads Tails

Matching Pennies game



Fictitious Playan example

A Eachplayer ends up s Tails
alternating back and forth
between playing heads Heads | 1,11 |1 1,1
and tails. s -
A As the number of rounds fals T L) LTt
tends to infinity, the | |
empirical distribution of Matching Pennies game
the play of each player will
Converge to (051 05) Round 1&action 2&action 1&beliefs 2&Dbeliefs
A If we take this distribution o us2 e
to be the mixed strategy 2 T H (253  (235)
of each player, the play 3 ! " P
converges to the unique : ; : §2'§:§§ Ei—,‘:i'g
Nash equilibrium of the . ) . o o

(6.5,4) (6,4.5)

normal form stage game

each player plays the
mixed strategy (0.5, 0.5)



Fictitious Playan example

A Eachplayer ends up s Tails
alternating back and forth
between playing heads Heads | 1,11 |1 1,1
and tails.

Tails |T1,1 | 1,11

A As the number of rounds
tends to infinity, the

empirical distribution of Matching Pennies game
the play of each player will
converge to (0.5, 0.5). Round 1action 2@maction 1Gbeiefs 26 beliefs
A If we take this distribution 0 Caszo a1y
to be the mixed strategy > 1 N o3 (s
of each player, the play 3T S v S
converges to the unique 5 H H (553 (445
Nash equilibrium of the ° | iy S

(6.5,4) (6,4.5)

normal form stage game

each player plays the
mixed strategy (0.5, 0.5)



Fictitious Playan example
A Eachplayer ends up il
alternating back and forth

between playing heads Heads | 1,1 1\ 1,1
and tails. s -
A As the number of rounds__- Tals | T L1 1\' '
tends to infinity, the Tails:(-1)x1.5+1x27~
empirical distribution of hing Penrlles game
the play of each player will
Converge to (051 05) Round 1ésaction Zfs%ﬁon\lc“sbeliefs 265 beliefs
A If we take this distribution o Cusp e
to be the mixed strategy 2 T H (253  (235)
of each player, the play y ! H (539 (249
converges to the unique g E E %igigi %Z%E?
Nash equilibrium of the 5 § iy S

(6.5,4) (6,4.5)

normal form stage game

each player plays the
mixed strategy (0.5, 0.5)



Fictitious Playan example
A Eachplayer ends up eads s

alternating back and forth
between playing heads Heads | 171 |1 1,1
and tails.

A As the number of rounds Tals | 111 | 171

tends to infinity, the Ta"Si(-l)Xl-5+:/|><t .
empirical distribution of atghing Pennies game
the play of each player will _Tails>Heads

converge to (0.5, 0.5). Round 1@ &ction 2Gaction 1dbeliefs 26 beliefs

A If we take this distribution 0 Casao @19

: 1 @ T
to be the mixed strategy 2 T H (253  (235)
of each player, the play 3 ! A o R e
converges to the unique 5 H Ho (559 (445)
Nash equilibrium of the ° | iy S

(6.5,4) (6,4.5)

normal form stage game

each player plays the
mixed strategy (0.5, 0.5)



Someproperties

A Steady statean action profile a is a steady state
of fictitious play

I 1fitis the case that whenever a is played at round t it

IS also played at round t + 1 (and hence in all future
rounds as well)

A Atight connection betweersteady statesand
pure-strategy Nash equilibria

I Theoreml If a purestrategy profile is a strict Nash
equilibrium of a stage game, then it is a steady state
of fictitious play in the repeated game

I Note that the purestrategy profile must be atrict
Nash equilibriumi.e.,

A no agent can deviate to another action without strictly
decreasing its payoff



Someproperties

A Steady statean action profile a is a steady state
of fictitious play

I 1fitis the case that whenever a is played at round t it

IS also played at round t + 1 (and hence in all future
rounds as well)

A Atight connection betweersteady statesand
pure-strategy Nash equilibria

I Theorem 2f a purestrategy profile is a steady state
of fictitious play In the repeated game, then it is a
(possibly weak) Nash equilibrium in the stage game.

I Note that fictitious playnaynot always converges to
a Nash equilibrium,

A as agents can only play pure strategies and a gatrategy
Nash equilibrium may not exist in a given game




Someproperties

A However, while the stage game strategies may
not converge, the empirical distribution of the
stage game strategianay

A This was the case in the Matching Pennies
example,

i KSNBE (G0KS SYLIANAROFEt RAACD
strategy converged to their mixed strategy in the
(unigue) Nash equilibrium of the game.

A The following theorem shows that this was no
accident.

I Theorem3 If the empirical distribution of each _ )
L) I e SNX2a auNF U0S3IASa 02y U
converges to a Nash equilibrium.



Fictitious Playan example

A However, although the theorem
givessufficient conditiondor

the empirical distribution to A B
converge to a mixed

equilibrium, no claims made Al oo | 11
about the distribution of the

particular actions played B | 11 | 0o

A To see this, considerrepeated
Anti-Coordination gamdere

I :\rf]\/_o pure N?th)qumgr(ig C')Af\) The AntiCoordination gamasthe
IS game, (A, B) an , A),
and one mixed Nash stagegame
equilibrium: each agent mixes
A and B with probability 0.5

i Either of the two purestrategy  Howthe fictitious playis conductedif we
equilibria earns each player a assume that the weight function for each

payoff of 1, and the mixed player is initialized to (1, 0.3)
strategy equilibrium earns

each player a payoff of 0.5



Fictitious Playan example

In fictitious play, we assume that A B
the weight function for each player

IS Initialized to (1, 0.5) Al oo | 11
The play of each player converges | |
to the mixed strategy Nash sl 11 | oo
equilibrium (0.5, 0.5) ’ ’

However, the payoff received by

expected payoff of the Nash
equilibrium,
I because their actions are
miscorrelated!

(3,2.5) (3,2.5)

each player is O, The AntiCoordination gamasthe
i since the players never hit the stagegame
outcomes with positive payoff.

It shows that although the Round 1@action 2@&action 1beliefs 26 beliefs
empirical distribution of the 5 105  (L05)
strategies converges to the mixed B B (1.1.5) (1.1.5)
strategy Nash equilibrium, 2 A A (2,1.5) (2,1.5)
the players may not receive the j E\ i (2,2.5) (2,2.5)

Fictitious play of a repeated Ar@loordination game.



Fictitious Playan example

A The empirical distributions
2F LI I @SNAQ
converge at all

I Consider the game, due to
Shapley, a modification of
the rock-paperscissors
game; this game is not zero
sum.

I The unique Nash
equilibrium of this game is
for each player to play the
mixed strategy (1/3, 1/3,
1/3)

Rock

Paper

Scissors

FOGA2Y &

Rock

YSSR y?2

Paper  Scissors

0,0

0,1 1,0

1,0

0,0 0,1

0,1

1,0 0,0

{ KI LJX S @& RackPhpersdssois game

ALY FAOGAGARdza *UHOP9™S™ it + 2 &N

weight function is initialized

Uz onxz nz ndpo

weight function is initialized
to (0,0.5,0).

F Y R

LJ | @ SNJ H



Fictitious Playan example

The empirical distributions of R
L I eSNBRQ | O0A2ya YSSR -y
0,

Kk i L A )
. (
20 02V 3S NH

at all. Rock 0 0,1 1,0
I Consider the game, due to o

Shapley, a modification of the i I e B

rock-paperscissorgame; this sisors | 01 | 1,0 0,0

game IS not zero sum.

I The unique Nash equilibrium of [ KI L¥ $ @& RéckPaperg@ssofs game
this game is for each player to play

the mixed strategy (1/3, 1/3, 1/3) ~ as the stage game

L y T A élj A l:l A 2 dza LJt Ri)uné 21csa(:t|re>1==’f ﬂfsa@o& N«Sa’belMsuzésbelie@ é )
function is initialized to (0O, O, 0.5)

YR LI F&SNJ HQ& §)\3[§ocp dzy QddA 2 Yocoh &
Initialized to (0,0.5,0). Rock Paper (01,15  (2050)

- : 3 Rock Pap (0,215  (3,05,0)
The play of this game is shownon ; Papg 0319 (3050
the right. 5 Scissors ~ Paper  (0,150)  (1,0,0.5)

Although it is not obvious from
these first few rounds, it can be
shown that the empirical play of

this game never converges to any Fictitious play of a repeated game of the
fixed distribution. AlmostRockPaperScissors game.




Fictitious Playconclusions

A It is interesting not because it is realistic or has
strong guarantees, but because
I It is very simple to state and
I gives rise to nontrivial properties

A But it is very limited;

I 1ts model of beliefs and belief update Is
mathematically constraining, and

I Is clearly implausible as a model of human learning

A There exist various variants of fictitious play that
score somewhat better on both fronts, such as
smoothed fictitious play



Oneof the many applications

Iterative Computation of Cournot Equilibrium*

LARS THORLUND-PETERSEN

Norwegian School of Economics and Business Administration,
N-5035 Bergen-Sandviken, Norway

Received October 18, 1988

In a homogeneous Cournot model with quasi-concave profit functions the prob-
lem of determining an equilibrium can be posed as one of solving an equation in
one real variable: total sales. If the response functions are monotone or firms are
identical, then a certain iterative process based on averaging converges to an
equilibrium. Such iterations have the interpretation that every firm responds to
the average of sales by other firms in previous periods. Journal of Economic
Literature Classification Number: 026. © 199 Academic Press, Inc.

1. INTRODUCTION
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Smoothed Fictitious Play

A MathematicallyFictitious Playpdopts at timet+1 a
pure strategys that

| Adbarszt Go

wherePA a4 GKS SYLIANMROIf RAAGH

until time t. u is the expected utility

A Smoothed Fictitious Plainstead of playing the best
response to the empirical frequency, introdsce
perturbation that gradually diminishes over time

I agenti adopts a mixed strategy that maximizes

AQCT A3 dp & A 2 gl
A

Wherel is any constant, anqp Lcan be the entropy
function o 0 By ,\a,\l G-

Fudenberg, Drew, and David K. Levine. "Consistency and cautious fictitious play." Journal of Economic Dynamics and Control 19.5-7 (1995): 1065-1089.




Smoothed Fictitious Play

A The first order condition for the maximum gives
dp & A 1 s < n
where<is the Lagrange multiplier corresponding to the constraint
that the probabilities ,() a must sum to one

A Solving it gives:
5 AD® a5 tH
RS BoAD® QI i
A It allows a more satisfactory explanation for convergence tc

mixedstrategy equilibria in fictitious playke models.

I For example, in matching pennies the fpariod play can
actually converge to the mixed strategy equilibrium.

I In addition, SFP avoids the discontinuity inherent in standard
fictitious play, where a small change in the data can lead to an

abrupt change in behaviour.
I With SFP, if beliefs converge, play does too.
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Rational learning

A Rational learningakaBayesian learningadopts the same
general modebased scheme as fictitious play

A Unlike fictitious play, however, it allows players to have a
YdzOK NAROKSNJ 4aSG 2F o0StASTa
I Infictitious play strategiesare limited to onesderlvedfrom the

stagegame(only conditionalon the empiricaldistribution of
opponent'sactions)

I Butinrationallearning,the set of strategiesomesfrom the
entire repeatedgame conditionalon the historyplays,e.g., TfT
mrepeatedt NA a 2 ys NQa 5AtSYY!

AThusi KS 60SfASTa 2F SI OK LJX I &
strategies may be expressed by any probability distribution
over the set of all possible strategies

Kalai, Ehud, and Ehud Lehrer. "Rational learning leads to Nash
equilibrium." Econometrica: Journal of the Econometric Society (1993): 1019-1045.



Rational learning

A Similarto fictitious play, each player begins the game with
some prior beliefs.

A After each round, the player us&siyesian inferencto
update their beliefs

ACKS . lé&8SaAly dzLJRFGS F2NJ 2LJ
strategy: Likelihoodfrom the history

@ W Priordistribution
P (5l = OIS IB(E)

>os rsi, Pihlsy)Pi(sy i)

where
ii RSy20S8a G(GKS asia 2F GKS 2L
possible by playetand i N i
I "Odenotes the set of possible histories of the gamed
i ENO



Rational learning

A Recallgrim trigger strategyin theinfinitely R R
NBLISIFEGISR t NAaz2y:SNRa 5Af S&YI [BI Y&

I chooseCso long as the other player chooses cC | 2,2 0,3

I if in any period the other player choosBsthen
chooseD in every subsequent period D 3,0 1,1

A Ageneralcaselimited punishmentg™
I chooseCso long as the other player choosgs

i if in any period the other player choosBsthen Prisoner @as D
chooseDin in the following Ttimesand goesback thestagegame
to C

A Arationallearningsetting:

I the strategyspaceconsists of the strategies g1, g2,
g ¥%;3 Kk A Higger Kidtegy

I each player happens to select a best response
from among §,d¢.,...,d .

A After playing each round of the repeated game,
each player performs Bayesian updating
_ If playerl has observed that playjer
0 if T U t;
P.(gr |hy) = Py (ar) £ T -t has always cooperatedterhistory
SHANSICR I T ENTO




Evolutionary learning in populations of agents

00000

A Learning in a population of
agents:
I we mean the change in the

constitution and behaviour of tha &
population over time

A These models were originally
developed bypopulation
biologiststo model the process R
of biological evolution, and

A later adopted and adapted by
other fields

Yang, Yaodong, et al. "An Empirical Study of Al Population Dynamics with Million-agent Reinforcement Learning." arXiv preprint
arxiv:1709.04511 (2017).
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Backgroundevolutionary biology

DAPTATION |
. . RICHARD
A Genecentric view of evolutio AND NATURAL S SYNYVIAINR

i AY 2 NBA lgghksaryely s SETLI};IIEH
determine its observable GENE
characteristicsf{tnesg in a give .
environment Bepezr oo B,

A More fit organisms will produce 1966 1976
more offspring Genecentric view of evolution

I This causegenesthat provide
greater fithess to increase their
representation in the population
vianatural selection

Natural selection



Evolutionary game theory

A In 1973 biologist John Maynard N MAYSARD SMITH
Smith and mathematician George R. Evolution
Price showd how game theory
applies to the behaviour of animals and the

A The idea of applying game theory to Theory of
animalsseemed strange at the time, Games

I because game theory had always
beenaboutrationality

I Animals hardly fit the bill

A Maynard Smith made three critical
shifts from traditional game theory

I strategy,
I equilibrium, and

I the nature of agent interactions Maynard Smit #982
bookhas become a

classic.




BackgroundEvolutionaryGame theory

A Regular game theory
i Individual players make decisions

I Payoffs depend on decisions
made by all

I The reasoning about what othe
players might do happen
simultaneously

A Evolutionarygame theory

I Game theory continues to apply
even If no individual is reasonin
or making explicit decisions

i Decisions may thus not be
conscious

I What behavior will persist in a
population?

Game Rules

Replicator Rules

Imgsource:https:// en.wikipedia.orgwiki/ Evolutionary _game_theo



Evolutionary game theory
A Key insight

I Many behaviors involve theteractionof multiple
organisms in a population

I The success of an organism depends on how its behavi
Interacts with that of others

Al I yWi YSIadzaNE FAGySaa 2F |y
I So fithess must be evaluated in the context of the full
population in which it lives
A Analogous to game theory!
ihNEIFIyAayYawa 3ISYySUiUAOFffteée R
behavior= Strategy
I Fitness= Payoff

| Payoff depends on strategies of organisms with which it
Interacts= Game matrix



Motivating example

Al SGwa 221 bBedtlel &LISOAS
i 9FOK o60SSufsSwa FTAaAadySaa R
and processing food effectively \

I Mutation introduced
A Beetles with mutation have larger body size
A Large beetles need more food

A What would we expect to happen?

I Large beetles need more food

T This makes them less fit for the
environment

I The mutation will thus die out over time
A But there is more to the story...

a
S LIS




Motivating example

A Beetles compete with each other for food

I Large beetles more effective at claimialgove
averageshare of the food

A Assume food competition is among pairs
I Smallvs.Small: get equal shares of food

I Largevs.small:Lage beetle gets the majority of food
from Small beetle

I Largevs.Largeget equal shares of fogthut Large
beetles always experience less fithess benefit from
given quantity of food

A Need to maintain their expensive metaboligthe chemical
processesn their body)




Motivating example
A The bodysize game between two beetles

L sna e

o1 3

A Something funny about this

i No beetle is asking itseliDo | want to be small or
large?

A Need to think about strategy changes that
operate over longer time scales

I Taking place as shifts in population under
evolutionary forcek



Evolutionarily stable strategies

A Suppose each beatle is repeatedly paired off
with other beetles at random

I Population large enough so that there are no
repeated interactions between two beetles

Al 0SSOt Swa FTAOySaa T
Interactions = reproductive success

I More food thus means more offspring to carry
genes (strategy) to the next generation



Evolutionary stable strategies

ACKS O2yOSLIi 2F | Dbl aKk
In this setting
I Nobody is changing their personal strategy

A Instead, we want arvolutionary stable strategy

I A genetically determined strategy that tends to persist
once it is prevalent in a population
I Def

A A strategy issvolutionarily stableif everyone uses it, and
any small group of invaders with a different strategy will
die off over multiple generations

A Need to make this precise...



Motivating example

A IsSmallan evolutionarily

stable strategy? -
‘
8,1 33 U

Al SGWwa dzaS UK
I Suppose for some small

number-, al- - fraction of

population useSmalland - What is the expected payoff to a

Smallbeetle in a random

uselLarge interaction?
. With prob.1- -, meet
| 1N Other WOFdSJ-arge another Smallbeetle for a
heetlesinvadesa payoff of5
) With prob.-, meetLarge
population ofSmallbeetles beetle for a payoff of.

Expected payoff5(1- -) + 1-
=54-



Motivating example

A IsSmallan evolutionarily

stable strategy? -
‘
8,1 33 U

Al SGWwa dzaS UK
I Suppose for some small

number-, al- - fraction of

population useSmalland - What is the expected payoff to a

Largebeetle in a random

uselLarge interaction?
. With prob.1- -, meet a
[ In other WOFdSJ-arge Smallbeetle for payoff of3
neetlesinvadesa With prob.-, meet another
i Largebeetle for a payoff o8
population ofSmallbeetles Expected payofB(1- -) + 3-

=85-



Motivating example
A Expected fitness dfarge beetless 8-5 -

A Expected fitness dmall beetless 5-4 -

I For small enough (and even big), the fithess of
Large beetleexceeds the fitness f&@mall

I ThusSmallis NOTevolutionarily stable

A What about the Large strategy?
I Assume fraction areSmall| restLarge
I Expected payoff tharge 3(1--) + 8- = 3+5-
I Expected payoff t&mall 1(1--) + 5- = 1+4-
I Largeis evolutionarily stable



Motivating example

A Summary

I A few large beetles introduced into a population
consisting obmallbeetles
I Large beetles will do really well:
AThey rarely meet each other
AThey get most of the food in most competitions
I Population of small beetles cannot drive out the
large ones
ASoSmallis not evolutionarily stable




Motivating example

A Summary
I Conversely, a few small beetles will do very badly
AThey will lose almost every competition for food

I A population of large beetlegsiststhe invasion
of small beetles

| Largels thus evolutionarily stable
At KS a0NHz2OGdzNBE A a A7 €
I Competition for food = arms race
i.SSafsa OFywi OKIFy3IS o
forces over multiple generations are achieving
analogous effect



Evolutionary arms races

A Lots of examples
i1 SAIKU 2F UNBSa FT2ftf26;
AOnly applies to a particular height range
AMore sunlight offset by fitness downside of height

I Roots of soybean plants to claim resources
AConserve vs. Explore

A Hard to truly determine payoffs in realorld
settings



Evolutionary arms races
A One recent example with known payoffs
I Virus population§ can play an evolgtionary version
of LINAaZ2ySNWa RAt SYY!
I Virus A
Alnfects bacteria
AManifactures products required for replication

T Virus B
AMutated version of A

ACan replicate inside bacteria, but less efficiently
ABenefits from presence of A

I Is B evolutionarily stable?



Virus game
A Look at interactions between two viruses

100,100 0.651.99

B 199065 0.830.83

I Viruses in a pure A population do better than viruses i
pure B population

I But regardless of what other viruses do, higher payoff
be B

A Thus B is evolutionarily stable
I Even though A would have been better
I Similar to the exanpresentation game




What happens in general?

A Under what conditions is a strategy
evolutionarily stable?

I Need to figure out the right form of the payoftf
matrix

Organism 2
s T
aa b
ob  dd

I How do we write the condition of evolutionary
stability in terms of these 4 variables, a,b,c,d?

Organism 1



What happens in general?

A Look at the definition again

I Suppose again that for some small number
AA 1- - fraction of the population uses S
AAnN- fraction of the population uses T

A What is the payoff for playing S in a random
Interaction in the population?

I Meet another S with prob.-1. Payoff -a
I Meet T with prob-. Payoff b
I Expected payoff a(1- - )+o -
A Analogous for playing T
I Expected payoff g(1- - )+d -



What happens in general?

A Therefore, S is evolutionarily stable if for all
small values of:
i a(l--)tb- > ¢1--)Hd-
I When- Isreallysmall (goes to 0), this Is
Aa>c
I Whena=q the left hand side is larger when
Ab > d
A In other words

I In a twoplayer, twaestrategy symmetric game, S is
evolutionarily stable when either
Aa>c, or
Aa=c,and b>d



What happens in general?

A Intuition

I In order for S to be evolutionarily stable, then:

AUsing S against S mustédeastas good as using T
against S

AOtherwise, an invader using T would have higher fitnes:
than the rest of the population

I If Sand T are equally good responses to S

AS can only be evolutionarily stable if those who play S
do better against T than what those who play T do with
each another

AOtherwise, T players would do as well against the S par
of the population as the S players



Relationship with Nash equilibria
Al SGwa f 2 2 | - A K

b ad

I When is (S,S) a Nash equilibrium?
I SIs a best response to &xc

A Compare with evolutionarily stable
strategies:

I (Da>cor(iija=candb>d
A Very similar!



Interpretation of mixed strategies

A Can interpret this in two ways
| eachagentsplaysthe same mixed strategy, or

I Afraction of the population playing each of the
underlying pure strategies in proportion to its
contribution to the mixed strategy

A Asthe stagegame is a onshot, it is rarely

plausible to hold that an individual will play a

strictly mixed strategy

A Thus, in general, the heterogeneous population
Interpretation Is superior



ESSdefinition of the stagegame

A Consider a tweplayer normal formsymmetric
game

I both players have the set of pure strategi&s
l hB h ¢

I O a;ha8 the payoffsof an agent playing when
pfaymngth anotheragentusing 5

I Symmetrigpayoff: o, ahé, = O, ahg. Kk O

I Symmetricin strategy:agents cannot condition their
play on whether they are playdror player 2

i 5 (0 p)dthe matrix of the symmetric game



ESShow the stagegameis played?

A StagegameGisa symmetric game with matrix U

A Large population of agentssto playthe game

i In each periodlit m X ,rageits are randomly paired
and they play the stage game G once

i Each agenhascertaintype EN ph8 FE ,i.e.,the
agentusesstrategys in the stage game.

A Thestate of the game (also called th&trategyof

the population):, nMwmMBMm ,where
N isthe proportion of agentsof selectlng strategy

s (typei) ataparticulartime;  1tand
Bn »p



Evolutionarily stable strategies

A Fitnessof anagenttypeiin a population = expected payoff from
Interaction with another member of population

0 0 n

A Mutant strategyt 1 B MM ) invadesthe populationwith
strategy, atlevel - (for small- ) if:
A - fraction of population use$
A 1- - fractionof population uses
A The new state of the populationis (p -), - t

A Thepayoffof arandomlychosennonmutantis:
0 (p -)o -0
A Thepayoffof arandomlychosenmutantis:
o (p -0 -0
where 0 Bﬁ r]or],o 0 Bﬁ nor],
6 Bp nof



Evolutionarily stable strategies

A Strategy, isevolutionarily stableif there is

some numbely such that:

AWhen any other strategy invades, at any level <y,
the fithess ofanagentplaying, is strictly greater than
the fitness of aragentplayingt: 0 0

Thatis (p -)o6 -0 >(p -)o -6
A Given small, this is equivalent to requiring that
eithero o  orelse both o ando



Evolutionarily stable strategies

A Strategy, isevolutionarily stableif there is

some numbely such that:

AWhen any other strategy invades, at any level <y,
the fitness ofanagentplaying, is strictly greater than
the fitness of aragentplayingt: 0 0

Thatis (p -)o6 -0 >(p -)o -6
A Given small, this is equivalent to requiring that
eithero o  orelse both o ando

5 ant cannot do better againan existi
agentthan an existingagentcan do against
anotherexistingagent



Evolutionarily stable strategies

A Strategy, isevolutionarily stableif there is

some numbely such that:

AWhen any other strategy invades, at any level <y,
the fitness ofanagentplaying, is strictly greater than
the fitness of aragentplayingt: 0 0

Thatis (p -)o6 -0 >(p -)o -6
A Given small, this is equivalent to requiring that
eithero o  orelse both o ando

Butif a mutant does as well as &xisting
agentagainst anotheexistingone, then an
existingagentmust do better against a

mutant than amutant does against another
mutant.



Hawk-Dove game

Twoanimals are fighting over a prize such as a piece
of food.

Each animal can choose between two behaviours:
I an aggressive hawkish behaviour H, or
I angentle/peacedovish behaviour D.

The prize is worth 6 to each of them.
Fighting costs each player 5. H

When a hawk meets a dove he gets the prize without
a fight, and hence the payoffs are 6 and 0O, D
respectively.

When two doves meet they split the prize without a
fight, hence a payoff of 3 to each one.

When two hawks meet a fight breaks out, costing

SIFOK LI Fe@SNIp 62NE SljdaAagltSyiaftes

addition, each player has a 50% chance of ending up
with the prize,

H D
12,12 6,0
0,6 3,3




Hawk-Dove game

A The game has a unigue symmetric Nash
equilibrium (, , ,, ), where,, = (35, 2/5),

and
A , is also the unique ESS of the game. y 5
A To confirm this, we need_that(, h, )
6 th, ando(, hT) o tht H 1272 60
Forall T ,,
I The equality condition is true of any mixed b 06 33

strategy equilibrium with full support.
Why?7??

I The inequalityalsoholds Toseethis,
consider

f(t)=u(,T0 H, 1)dzo
Expanding f{) we see that it is a quadratic

equation with the (unique) maximurh
proving our result




ESS Summary

A Nash equilibrium
I Rational players choosing mutual best responses
Uz Sl OK ZUKSNMWa auNJuS
I Great demands on the abillity to choose optimally

and coordinate on strategies that are best
responses to each other

A Evolutionarily stable strategies
I No intelligence or coordination
| Strategies hardavired into players (genes)
I Successful strategies produce more offspring

A Yet somehow they are almost the same!




Content

A ReplicatorDynamics



Replicator Dynamis

A Replicatordynamis model a population undergoing .
frequent interactions. | tr e s bininsinr e b by
Focus on the symmetric, twolayer case W 1777 '

i A population of agents repeatedly play a tptayer SVEX TS E s dcdi Ak
symmetric normaform stage game against each other. w| § LoGC L AL N AR

A It describes a population of agents playing sucha * /777 7 7 7 00
gamefollowing | LLLALLLL 2722007 T ] ]
i At each point in time, each agent only plays a pure | 1 122777 7272727272 )1 ]
strategy. o4 555 ey g K L
i Informally speaking, the model then pairs all agents and LTSS LA g
has them play each other, each obtaining some payoff. /.~

CKAa LI e2FF Aftnenxl f ft SR 0KS

02 04 0.6 0.8 1

] 9|()K |3§)/L,J y'26 dN\ELJN\EﬁdZéSaU ny I 11y y Oy cJl
this fitness, and
i the process repeats. Direction field plot of the
A The question is Prisoner o6s di

i whether the process converges to a fixed proportion of
the various pure strategies within the population, and

I if so to which fixed proportions.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning.” Artificial Intelligencel71.7
(2007): 406-416.

Schuster, Peter, and Karl Sigmund. "Replicator dynamics." Journal of theoretical biology 100.3 (1983): 533-538.



Recall thestagegame

A Consider a tweplayer normal formsymmetric
game

I both players have the set of pure strategi&s
l hB h ¢

I O a;ha8 the payoffsof an agent playing when
pfaymngth anotheragentusing 5

I Symmetrigpayoff: o, ahé, = O, ahg. Kk O

I Symmetricin strategy:agents cannot condition their
play on whether they are playdror player 2

i 5 (0 p)dthe matrix of the symmetric game



Replicator Dynamis

A Consider an evolutionary game where each
player follows one of pure strategies &
phB Fe
A The play is repeated in periodsm = H T X

ALetny be the fraction of players playirgyin
period t , and suppose the payoff $is

0 0 n

A For mathematical convenience, at a given time
t, we index the strategies so that:
0 E o



Replicator Dynamis

A Suppose in every time periatt, each agent with probabilityR &
nlearns the payoff to another randomly chosen agent and

AOKIFIy3aSa 02 GKS 2UKSNXRa adNy usS3
payoff Is higher.

A However, information concerning the difference in the expected
payoffs of the two strategies is imperfect, so the larger the
difference in the payoffs, the more likely the agent is to perceive it,
and change.

A Specifically, we assuntieat the probabilityr) ;, that an agent using
s will shift tos is given by

‘ I ((’) 0 ) "Qg 10 0

g Q16 o

wherel is sufficiently small thay ;  p holdsfor alli andj.



Replicator Dynamis

A The expectedraction of populationusings in period t+dt is then
given by
{ N e@B  AT(G 6 )
B8 AT 6))
- I QpB nr(0 o)
=n | Qpf (6  og)
where g isthe average return for the whole population.
A Subtracting) from both sides, dividing byt , and taking the limit
asdt->0, we have
n 1Tn( 6g)
which is called theeplicator dynamic

Asthe constant T merely changes the rate of adjustment to
stationarity but leaves the stabilifgroperties and trajectories of the
dynamical system unchanged, we oftemply assumg | =1

Gintis Herbert.Game theory evolving: A problerenteredintroduction tomodeling
strategicbehavior Princeton university press, 2000.



Replicator Dynamis

A The system we have defined has a very intuitive quality.

i If an action does better than the population average then the
proportion of the population playing thisctionincreases, and vice
versa.

I Note that even an action that is not a best response to the current

population state can grow as a proportion of the population when its
expected payoff is better than the population average.

A A straightforward interpretation is that it describes agents
repeatedly interacting and replicating within a large population

1

Direction field plot of the battle of the sexes game. Replicator dynamics direction field for CH with 10 agents.

Tuyls, Karl, and Simon Parsons. "What evolutionary game theory tells us about multiagent learning.” Artificial Intelligencel71.7
(2007): 406-416.
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