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What is Machine Learning

A more mathematical definition by Tom Mitchell

* Machine learning is the study of algorithms that
* improve their performance P
e atsometask T
* based on experience E
* with non-explicit programming

* A well-defined learning task is given by <P, T, E>



Supervised Learning

* Given the training dataset of (data, label) pairs,
D = {(x4,yi) }i=1,2.... N
let the machine learn a function from data to label
yi =~ fo(x:)
* Learning is referred to as updating the parameter 6

* Learning objective: make the prediction close to
the ground truth

.
min > Ly, fo(x:)
i1



Unsupervised Learning

* Given the training dataset
D ={x;}i=12,.. N
let the machine learn the data underlying patterns

e Sometimes build latent variables
Z —

 Estimate the probabilistic density function (p.d.f.)

p(z;0) = > p(x|z;0)p(z; 0)

* Maximize the log-likelihood of training data

N
1
max — Zl log p(x; 0)



Two Kinds of Machine Learning

* Prediction

* Predict the desired output given the data (supervised
learning)

* Generate data instances (unsupervised learning)
* We mainly covered this category in previous lectures

* Decision Making

* Take actions based on a particular state in a dynamic
environment (reinforcement learning)
* to transit to new states
* to receive immediate reward
* to maximize the accumulative reward over time

* Learning from interaction



Machine Learning Categories

e Supervised Learning

* To perform the desired output given the p(y ‘ ZE)
data and labels

* Unsupervised Learning

* To analyze and make use of the underlying p(ﬁlj)
data patterns/structures

* Reinforcement Learning

e To learn a policy of taking actions in a 7-‘-(& ‘ ZE')
dynamic environment and acquire rewards



RL Use Case 1: Interactive Recommendation
e Douban.fm music recommend and feedback

1T

* The machine needs to make decisions, not just prediction
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Xiaoxue Zhao, Weinan Zhang et al. Interactive Collaborative Filtering. CIKM 2013.



RL Use Case 2: Robotics Control

 Stanford Autonomous Helicopter
 http://heli.stanford.edu/
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RL Use Case 3: Robotics Control

* Ping pong robot
* https://www.youtube.com/watch?v=tIlJME8-au8
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RL Use Case 4: Self-Driving Cars

e Google Self-Driving Cars
* https://www.google.com/selfdrivingcar/




RL Use Case 5: Game Playing

* Take actions given screen pixels
* https://gym.openai.com/envsttatari

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.



Reinforcement Learning Materials

Our lecture on RL is mainly based on the materials from these masters.

Prof. Richard Sutton

* University of Alberta, Canada

http://incompleteideas.net/sutton/index.html

Reinforcement Learning: An Introduction (2" edition)

http://www.incompleteideas.net/book/the-book-2nd.html
Prof. David Silver

Google DeepMind and UCL, UK

http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Home.html

UCL Reinforcement Learning Course

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng

* Stanford University, US

* http://www.andrewng.org/

* Machine Learning (CS229) Lecture Notes 12: RL
* http://cs229.stanford.edu/materials.html




Content

* Introduction to Reinforcement Learning

* Model-based Reinforcement Learning
* Markov Decision Process
* Planning by Dynamic Programming

* Model-free Reinforcement Learning
* On-policy SARSA
e Off-policy Q-learning
* Model-free Prediction and Control



Content

* Introduction to Reinforcement Learning



Reinforcement Learning

* Learning from interaction

e Given the current situation, what to do next in order to
maximize utility?

Agent

Observation MR LEATA Action
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Reinforcement Learning Definition

* A computational approach by learning from

interaction to achieve a goal pgent
Observation ;/ C Action
f:?/ =
Reward‘
* Three aspects
e Sensation: sense the state of the environment to some
extent

e Action: able to take actions that affect the state and
achieve the goal

* Goal: maximize the cumulative reward over time



Reinforcement Learning

Agent
SRXCTTI * At each step t, the agent

\ [ gow < J— * Receives observation O,
LS * Receives scalar reward R,
* Executes action A,

observation d/‘ ®

* The environment
* Receives action A,
* Emits observation O,,,
* Emits scalar reward R,,,

* tincrements at
environment step

Environment



Elements of RL Systems

History is the sequence of observations, action, rewards
Ht — 017 Rl) A17 027 R27 A27 s ooy Ot—].) Rt—].) At—17 0t7 Rt

* j.e. all observable variables up to time t
* E.g., the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
* The agent selects actions
* The environment selects observations/rewards

State is the information used to determine what happens
next (actions, observations, rewards)

Formally, state is a function of the history

Si = f(Hy)



Elements of RL Systems

* Policy is the learning agent’s way of behaving at a
given time
* It is a map from state to action
e Deterministic policy
a=m(s)

 Stochastic policy
m(als) = P(A; = alS; = s)



Elements of RL Systems

* Reward
* A scalar defining the goal in an RL problem
* For immediate sense of what is good

* VValue function

 State value is a scalar specifying what is good in the long
run

* Value function is a prediction of the cumulative future
reward
* Used to evaluate the goodness/badness of states (given the
current policy)

Vr(8) = Ex[Rir1 + YRiyo + 72Rt+3 +...|S; = s



Elements of RL Systems

A Model of the environment . fg%:-”;;rf*k ‘ -
that mimics the behavior of — A BT y
. t ' N e o B "
the environment NSy ¢
* Predict the next state =
/
gsl = P[St—l—l = S |St = SaAt —= a] reward Yﬁ’t

* Predicts the next
(immediate) reward

Ry = E[Rt4+1|S: = s, Ay = a] -




Maze Example

 State: agent’s location
* Action: N,E,S,W




Maze Example

 State: agent’s location
* Action: N,E,S,W

e State transition: move

to the next grid
according to the action

* No move if the action is
to the wall



Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move
to the next grid
according to the action

Start

Reward: -1 per time
step




Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move
to the next grid
according to the action

Start

Reward: -1 per time
step

* Given a policy as shown above
e Arrows represent policy ri(s) for each state s



Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move

. to the next grid

according to the action

o ol et e

step

Start 16 15

B pH

nanina

* Numbers represent value v,(s) of each state s



Categorizing RL Agents

* Model based RL
* Policy and/or value function
 Model of the environment
* E.g., the maze game above, game of Go

* Model-free RL
* Policy and/or value function
 No model of the environment
e E.g., general playing Atari games



Atari Example
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* Rules of the game
are unknown

* Learn from
interactive game-play

e Pick actions on
joystick, see pixels
and scores




Categorizing RL Agents

e Value based
* No policy (implicit)
e Value function

* Policy based
* Policy
 No value function

* Actor Critic
* Policy
e Value function



Content

* Model-based Reinforcement Learning
* Markov Decision Process
* Planning by Dynamic Programming



Markov Decision Process

e Markov decision processes (MDPs) provide a
mathematical framework
* for modeling decision making in situations

* where outcomes are partly random and partly under the
control of a decision maker.




Markov Decision Process

* Markov decision processes (MDPs) provide a
mathematical framework
* for modeling decision making in situations

* where outcomes are partly random and partly under the
control of a decision maker.

* MDPs formally describe an environment for RL
* where the environment is FULLY observable

* i.e. the current state completely characterizes the
process (Markov property)



Markov Property

“The future is independent of the past given the present”

* Definition
* Astate S, is Markov if and only if

PSt+1]5t] = P[Se41|S1, - - -, St

* Properties

* The state captures all relevant information from the
history

* Once the state is known, the history may be thrown away
* i.e. the state is sufficient statistic of the future



Markov Decision Process

* A Markov decision process is a tuple (S, A, {P.,}, V, R)

* Sis the set of states
* E.g., location in a maze, or current screen in an Atari game

e Ais the set of actions

« E.g, move N, E, S, W, or the direction of the joystick and the
buttons

* P_, are the state transition probabilities

* For each state s € S and action a € A, P, is a distribution over the
next state in S

 y €[0,1] is the discount factor for the future reward

*R:S5 x A~ R isthereward function
 Sometimes the reward is only assigned to state



Markov Decision Process

The dynamics of an MDP proceeds as
* Start in a state s,
* The agent chooses some actiona, € A
* The agent gets the reward R(s,,a,)
* MDP randomly transits to some successor state s1 ~ Ps,q,
e This proceeds iteratively
ag a1 as

> S1 > S9 > Sg -
R(s0,a0) R(s1,a1) R(s2,a2)

S0

* Until a terminal state s; or proceeds with no end

* The total payoff of the agent is
R(s0,a0) + YR(s1,a1) + v*R(s2,az) + - --



Reward on State Only

* For a large part of cases, reward is only assigned to
the state
* E.g., in maze game, the reward is on the location

* In game of Go, the reward is only based on the final
territory

* The reward function R(s): S — R

* MDPs proceed

ao ail a2
So — S1 > S9 > 83+ -
R(s0) R(s1) R(s2)

e cumulative reward (total payoff)

R(so) +YR(s1) + v*R(s2) + - - -



MDP Goal and Policy

* The goal is to choose actions over time to maximize the
expected cumulative reward

E[R(so) + vR(s1) + v R(s2) + - -]

e y €[0,1] is the discount factor for the future reward, which
makes the agent prefer immediate reward to future reward

* In finance case, today’s $1 is more valuable than $1 in tomorrow
* Given a particular policy 7(s): S5 +— A
* i.e.take the action a = 7(s) at state s
* Define the value function for 7
V7(s) = E[R(s0) + vR(s1) +v°R(s2) + - -~ |s0 = s, ]

* j.e. expected cumulative reward given the start state and taking
actions according to



Bellman Equation for Value Function

 Define the value function for 7

V™ (s) = E[R(s0) + yR(s1) + v*R(s2) + - - - so = s, 7]

-~

YV7(s1)
= R(s) +7v E PSW(S)(S/)VW(S/) Bellman Equation
s’eS
Immediate State Value of
Reward transition the next

state
Time
decay



Optimal Value Function

* The optimal value function for each state s is best possible
sum of discounted rewards that can be attained by any policy

V*(s) = max V" (s)
T
* The Bellman’s equation for optimal value function

V*(s) = R(s )+maXWZP3a W*(s')

s'eS
* The optimal policy

* L INY 7% )
T (S) — arg%leaj( Z Psa(s )V (3 )
s'eS
* For every state s and every policy

Vi(s) =V™ (s) > V7(s)



Value Iteration & Policy Iteration

* Note that the value function and policy are correlated

* It is feasible to perform iterative update towards the optimal
value function and optimal policy
* Value iteration
* Policy iteration



Value lteration

* For an MDP with finite state and action spaces
S| < o0, |A] < o0

e Value iteration is performed as

1. For each state s, initialize V(s) =
2. Repeat until convergence {

For each state, update

V(s) = R(s) + maxy Z Psq(s
s’'eS

}

* Note that there is no explicit policy in above calculation



Synchronous vs. Asynchronous VI

* Synchronous value iteration stores two copies of value
functions

1. Forallsin$S

new PSCL O
Vi (S)Hfgleaj(< +’YZ 1d( )

s'eS
2. Update V14(s") «— View(s)

* In-place asynchronous value iteration stores one copy of
value function

1. Forallsin$S

V(s) max (R(S) + Z Psa(s')V(s’)>

s'eS



Value Iteration Example: Shortest Path

g 0 0 0 0 0 1 1 1 0 1 2
0 0 0 0 -1 1 1 1 1 2 2
0 0 0 0 1 -1 1 1 2 2 2
0 0 0 0 1 1 1 1 2 2 2
Problem V1 V2 V3
0 1 2 3 0 1 2 | -3 0 1 2 3 0 1 2
1 2 3 3 1 2 3| -4 1 2 3 4 1 2 3
2 3 3 3 2 3 4 | -4 2 3 4 5 2 3 4
3 3 3 3 3 4 4 | -4 3 4 5 5 3 4 5
V 4 V5 V6 V7



Policy Iteration

* For an MDP with finite state and action spaces
S| < o0, |A] < o0

 Policy iteration is performed as

1. |Initialize T randomly

2. Repeat until convergence {
a) Let V.=V~
b) For each state, update
m(s) = argmax Y Py, (s)V(s)

cA
¢ s’'eS

)

* The step of value function update could be time-consuming



Policy Iteration

starting
V r

* Policy evaluation
* Estimate V™
* lterative policy evaluation

* Policy improvement
 Generate 1/ > 7
* Greedy policy improvement

evaluation

m

n—>greedy(V)

v

improvement




Evaluating a Random Policy in a Small Gridworld

1 2 3
4 5 6 7 r= _1
[ s lo ho lit on all transitions
actions 2 hs lia

* Undiscounted episodic MDP (y=1)

 Nonterminal states 1,...,14

* Two terminal states (shaded squares)

* Actions leading out of the grid leave state unchanged
* Reward is -1 until the terminal state is reached

* Agent follows a uniform random policy

w(nl) = m(el) = m(s]) = m(wl) = 0.25



Evaluating a Random Policy in a Small Gridworld

V, for the Greedy policy
random policy w.r.t. V,

0.0/ 0.0[0.0] 0.0 L
00/ 00]00]00 bl _
=0 N Random policy
0.0/ 0.000.0]0.0 e L

0.0]0.0)0.0]100

0.0[-1.0[-1.0[-1.0 —
10[-1.0|-1.0]-1.0 f
1.0|-1.0[-1.0[-1.0 il
10|-1.0[-10| 0.0 o] -

0.0|-1.7]-2.0{-2.0

20[-20[-17| 00 | =




Evaluating a Random Policy in a Small Gridworld

V, for the Greedy policy
random policy w.rt. V,
2429|130 — = Tq
-3 2.4[-29|-30]-2.9 Pl s |
- 291-3.0(-29|-24 t T_) l_)
2.9]3.0|-29|2. |
3.0[-2.9|-2.4| 00 Ll - -
- T
0.0|-6.1]-8.4] 9.0 - [« T4 V=V
. y t (_T
6.1 7.7| 84| 84 . .
(=10 - f L,(_l =k Optimal policy
8.4|-8.4|-7.7[-6.1 =
9.0/|-8.4|-6.1] 0.0 L] -] -
0.0|-14.[-20 [-22. — = lq
=00 ~14.]-18.{-20.|-20. N P
20.[-20.|-18.|-14. Y] o],
22]20|-14] 00 L S -




Value Iteration vs. Policy Iteration

Value iteration Policy iteration
1. For each state s, initialize V(s) = 0. 1. Initialize m randomly
2. Repeat until convergence { 2. Repeat until convergence {
For each state, update a) LletVv.=V"
N b) For each state, update
V(s) = R(s) + max y Z Pso(s)V (s')
’ s'es m(s) = arg max P (8HV($)
} a€ s'eS
}
Remarks:

Value iteration is a greedy update strategy

In policy iteration, the value function update by bellman equation is costly
For small-space MDPs, policy iteration is often very fast and converges quickly
For large-space MDPs, value iteration is more practical (efficient)

If there is no state-transition loop, it is better to use value iteration

s wnh e

My point of view: value iteration is like SGD and policy iteration is like BGD



Learning an MDP Model

* So far we have been focused on
e Calculating the optimal value function
e Learning the optimal policy
given a known MDP model
* i.e. the state transition P_,(s’) and reward function R(s) are explicitly
given

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (

EpiSOde 1: S(()l) ao—) Sgl) al—) Sgl) a2—> Sgl) L. Sg})
R(So)(l) R(Sl)(l) R(82)(1)

- @ ) @ o @ & @ @

Episode 2: s;’ ——— s, ——— 85 ———— S5 -+ S,

R(s0)2) R(s1)®) R(s2)®2)



Learning an MDP Model

(1) (1) (1)
Episode 1: 581) _H sgl) M, Sgl) N sél) :
R(sg)(M) R(s1)M) R(s2)M
(2) (2) (2)
Episode 2: 582) —>a0 s§2) —>a1 552) —>a2 s§2)-
R(s0)2) R(s1)®2) R(s2)®)

e Learn an MDP model from “experience”
* Learning state transition probabilities P_(s’)

D

s

_ #times we took action a in state s and got to state s’

P, (s') =

#times we took action a in state s

* Learning reward R(s), i.e. the expected immediate reward

R(s) = average{R(s)(i)}



Learning Model and Optimizing Policy

e Algorithm

1. Initialize T randomly.
2. Repeat until convergence {

a)
b)

C)

d)

Execute it in the MDP for some number of trials

Using the accumulated experience in the MDP, update our
estimates for P, and R

Apply value iteration with the estimated P_, and R to get the
new estimated value function V

Update it to be the greedy policy w.r.t. V



Learning an MDP Model

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (
Episode 1: s(()l) N sgl) 4 sgl) _ %2 sél) o Sﬁfl)
R(sg)() R(s1)(M) R(s2)M)
- @ a5 @ &) @ &’ @) @
Episode 2: sy ——— 8] —— 85 s sy Sy
R(s0)2) R(s1)® R(s2)®@)

* Another branch of solution is to directly learning value &
policy from experience without building an MDP

*i.e. Model-free Reinforcement Learning



Content

* Model-free Reinforcement Learning
 Model-free Prediction
* Monte-Carlo and Temporal Difference

* Model-free Control
* On-policy SARSA and off-policy Q-learning



Content

* Model-free Reinforcement Learning

* Model-free Prediction
* Monte-Carlo and Temporal Difference



Model-free Reinforcement Learning

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (
Episode 1: sél) _ Sgl) e SN Sgl) _ %2 35(51) . Sﬁfl)
R(s0)) R(s1)™) R(s2)(1)
: (2) ag” () ai 2) o (2) (2)
Episode 2: Sy ——— 8] ———— 85 ——— 83 -+ S
R(s0)®) R(s1)®2) R(s2)®

* Model-free RL is to directly learn value & policy from
experience without building an MDP

* Key steps: (1) estimate value function; (2) optimize policy



Value Function Estimation

* In model-based RL (MDP), the value function is

calculated by dynamic programming
V7™(s) = E[R(s0) + vR(s1) + 7*R(s2) + - -|s0 = s,7]

R(S) + Z Psw(s) (S/)VW(S/)

s'eS

* Now in model-free RL
* We cannot directly know P, and R
* But we have a list of experiences to estimate the values

(1) (1) (1)
Episode 1: sél) N sgl) G SN sgl) %, s:(),l) .. sg,})
R(So)(l) R(sl)(l) R(32)(1)
- @ e @ e @ 4 @ @
Episode 2: 55/ ——— 5 ———— 85 ———— S5 -5

R(So)(2) R(Sl)(2) R(Sz)(2)



Monte-Carlo Methods

* Monte-Carlo methods are a broad class of
computational algorithms that rely on repeated
random sampling to obtain numerical results.

* Example, to calculate the circle’s surface

Circle Surface = Square Surface x

#points in circle

#points in total



Monte-Carlo Methods

* Go: to estimate the winning rate given the current state

Evaluation

0240240

-O1T 900 jﬂ

@

0@

\

50
5

-

-

1
@

47347

Win Rate(s)

#win simulation cases started from s

~ #simulation cases started from s in total




Monte-Carlo Value Estimation

e Goal: learn V™ from episodes of experience under policy it
() (3) (3)

N a N a N a . )
N NI NI
Rgz) Rgt) Réz)

e Recall that the return is the total discounted reward
Gy = Ri1+7YRi2+ ... 'Ry

* Recall that the value function is the expected return

V™(s) = E[R(s0) + YR(s1) + 7" R(s2) + - -0 = s, 7]

= E[Gt|st = s, 7]
1 o
~ ~ Z ng)  Sample N episodes from state s using policy rt
i=1 * Calculate the average of cumulative reward

* Monte-Carlo policy evaluation uses empirical mean return instead of expected
return



Monte-Carlo Value Estimation

N

1 i
ldea:  V(S;) ~ ~ Z G§ )
i=1

Implementation:  V(S;) < V(S;) + a(Gy — V(S))

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping (discussed
later)

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs
* All episodes must terminate



Temporal-Difference Learning

Gi = Rit1 +YRiso +V*Rizz 4+ ... = Rip1 + vV (Siq1)

V(S) « V(St) + a(Rir1 + YV (Sey1) — V(Sh))

Observation  Guess of
future

* TD methods learn directly from episodes of experience

* TD is model-free: no knowledge of MDP transitions /
rewards

* TD learns from incomplete episodes, by bootstrapping

* TD updates a guess towards a guess



Monte Carlo vs. Temporal Difference

* The same goal: learn V" from episodes of experience under
policy it

* Incremental every-visit Monte-Carlo
* Update value V(S,) toward actual return G,

V(St> — V(St) —+ Oé(Gt — V(St>)

e Simplest temporal-difference learning algorithm: TD
* Update value V(S,) toward estimated return R; 1 + vV (S¢i1)

V(St) < V(St) + a(Rer1 + YV (Se+1) — V(St))

* TDtarget: Ryr1 + YV (Str1)
* TDerror: §; = Ryiq1 +4V(Sia1) — V(Sy)



Driving Home Example

State Elapsed Time Predicted Predicted

(Minutes) Time to Go Total Time
Leaving office 0 30 30
e | s | s | a
Exit highway 20 15 35
Behind truck 30 10 40
Home street 40 3 43
Arrow home 43 0 43




Driving Home Example: MC vs. TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45 5
___actual outcome_____ actual
outcome
. 40 _ 4
Predicted Predicted
total total
travel 35 travel
time time
30
T T T T T | T T | T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

Situation Situation



Advantages and Disadvantages of MC vs. TD

* TD can learn before knowing the final outcome
e TD can learn online after every step

 MC must wait until end of episode before return is
known

* TD can learn without the final outcome
* TD can learn from incomplete sequences
* MC can only learn from complete sequences
e TD works in continuing (non-terminating) environments
* MC only works for episodic (terminating) environments



Bias/Variance Trade-Off

e Return Gy = Ryr1+YRiy2 + ...+~ 1Ry isunbiased
estimate of V(S,)

* True TD target Ri+1 4+ YV ™ (S¢+1) is unbiased estimate of
Vi(S,)

* TD target Ry+1 +v V(St41) is biased estimate of V7(S))

current estimate

e TD target is of much lower variance than the return
* Return depends on many random actions, transitions and rewards
* TD target depends on one random action, transition and reward



Advantages and Disadvantages of MC vs. TD (2)

* MC has high variance, zero bias
* Good convergence properties
e (even with function approximation)
* Not very sensitive to initial value
* Very simple to understand and use

 TD has low variance, some bias
e Usually more efficient than MC
* TD converges to V(S,)

e (but not always with function approximation)
* More sensitive to initial value than MC



Random Walk Example

. 0 O 0 . 0 . 0 . 0 . 1 .
start
0.8 -

100
0.6 - '%

Estimated (1) ——
value 0.4 /
true
values
0.2 -

0 | | | | |




Random Walk Example

0.25 -

0.2 \\:

RMS error, U157
averaged
over states 0.1

0.05

Walks / Episodes
V(St) — V(St) + a(Reg1 + 7V (Se41) — V(S))



Monte-Carlo Backup

V(S:) «— V(S) + a(Gy — V(Sy))




Temporal-Difference Backup

V(5t) = V(5t) + a(Ber1 + 7V (St41) — V(51))

SIS



Dynamic Programming Backup

V(St) + E[Ri11 + 9V (St41)]

A




Content

* Model-free Reinforcement Learning

* Model-free Control
* On-policy SARSA and off-policy Q-learning



Uses of Model-Free Control

* Some example problems that can be modeled as MDPs

e Elevator * Robocup soccer
Atari & StarCraft

Portfolio management

Parallel parking

Ship steering

Bioreactor Protein folding

Helicopter Robot walking

Aeroplane logistics Game of Go

* For most of real-world problems, either:
 MDP model is unknown, but experience can be sampled
« MDP model is known, but is too big to use, except by samples

* Model-free control can solve these problems



On- and Off-Policy Learning

* Two categories of model-free RL

* On-policy learning
e “Learn on the job”
e Learn about policy r from experience sampled from it

e Off-policy learning
e “Look over someone’s shoulder”

* Learn about policy 7 from experience sampled from
another policy u



State Value and Action Value

Gy = Rip1 +yRio+...7 'Ry

e State value

* The state-value function V*(s) of an MDP is the expected
return starting from state s and then following policy

VT (s) = Ex|[Gt|St = 5]

e Action value

* The action-value function Q*(s,a) of an MDP is the
expected return starting from state s, taking action a,
and then following policy rt

Q™ (s,a) = E; |G| St = s, Ay = a



Bellman Expectation Equation

* The state-value function V*(s) can be decomposed
into immediate reward plus discounted value of
successor state

V7 (s) = Ex[Ry1 + V" (St41)|5t = ]

* The action-value function Q7(s,a) can similarly be
decomposed

Q™ (s,a) = Ex[Riy1 +vQ™ (Sit1, As41)|S: = s, Ay = al



State Value and Action Value

VT (s) s
VT(s) = )  (als)Q7(s,a)

acA

Q" (s,a) < s,a

Q" (s,a) — s,a

R(s,a) Q"(s,a) = R(s,a) +7 Z Psa(s)V7(s)

s'eS

Vﬂ'(sl) — 8/



Model-Free Policy Iteration

* Given state-value function V(s) and action-value function
Q(s,a), model-free policy iteration shall use action-value
function

* Greedy policy improvement over V(s) requires model of MDP

7% (s) = arg max {R(s, a)+ 7y Z PSG(S’)V”(SI)}

acEA
s'eS

We don’t know the transition probability

e Greedy policy improvement over Q(s,a) is model-free

new _
TV (s) = arg max Q(s,a)



Generalized POlICy Iteration with Action-Value Function

(x, Tx

* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: Greedy policy improvement?



Example of Greedy Action Selection

. . Left: Right:
* Greedy policy improvement 20% Reward =0 50% Reward = 1
over Q(S,a) is model-free 80% Reward =5 50% Reward =3

new -
% (s) = arg max Q(s,a)

* Given the right example

 What if the first action is to
choose the left door and
observe reward=07? -

* The policy would be
suboptimal if there is no
exploration

“Behind one door is tenure — behind the other
is flipping burgers at McDonald’s.”



e-Greedy Policy Exploration

e Simplest idea for ensuring continual exploration
* All m actions are tried with non-zero probability
* With probability 1-¢, choose the greedy action
e With probability €, choose an action at random

e/m+1—e€ if a* =argmax,cq Q(s,a)
m(als) = .
e/m otherwise

* Theorem

* For any e-greedy policy i, the e-greedy policy i’ w.r.t. Q"
is an improvement, i.e. V7 (s) > V7 (s)



Generalized POlICy Iteration with Action-Value Function

(x, Tx

* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: e-greedy policy improvement



Monte-Carlo Control

Starting Q
(s, T

Every episode:
* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: e-greedy policy improvement



MC Control vs. TD Control

* Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)
* Lower variance
* Online
* Incomplete sequences

* Natural idea: use TD instead of MC in our control loop
* Apply TD to update action value Q(s,a)
* Use e-greedy policy improvement
* Update the action value function every time-step



SARSA

* For each state-action-reward-state-action by the current
policy

@ Atstate s, take action a

Observe reward r

<> Transit to the next state s’

@ Atstate s, take action o’

e Updating action-value functions with Sarsa

Q(s,a) — Q(s,a) + ar + yQ(s', a’) — Q(s,a))



On-Policy Control with SARSA

Starting Q
(s, T

Every time-step:
* Policy evaluation: Sarsa Q(s,a) — Q(s,a) + a(r +yQ(s',a") — Q(s,a))

* Policy improvement: e-greedy policy improvement



SARSA Algorithm

Sarsa: An on-policy TD control algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q) (e.g., e-greedy)
Q(S,4) < Q(S, A) + a[R+1Q(S", A') — Q(S, A)]
S« S A+ Al

until S is terminal

 NOTE: on-policy TD control sample actions by the current policy, i.e., the
two ‘A’s in SARSA are both chosen by the current policy



SARSA Example: Windy Gridworld

s G TL

standard
moves

O 0 01 1 1 2 2 10

 Reward = -1 per time-step until reaching goal
e Undiscounted



SARSA Example: Windy Gridworld

optimal a trajectory

170 - P
150 4
S G
X I
100 4 Actions
Episodes 0 0 0 I
50 -
0_

| | | 1 | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps
Note: as the training proceeds, the Sarsa policy achieves the goal more and
more quickly



Off-Policy Learning

* Evaluate target policy r(a|s) to compute V*(s) or Q(s,a)

* While following behavior policy u(als)

{sl,al,rg, S92,Q9, .. .,ST} ~ U

* Why off-policy learning is important?
Learn from observing humans or other agents

Re-use experience generated from old policies
Learn about optimal policy while following exploratory policy
Learn about multiple policies while following one policy

An example of my research in MSR Cambridge
* Collective Noise Contrastive Estimation for Policy Transfer Learning. AAAI 2016.



Q-Learning

* For off-policy learning of action-value Q(s,a)

* No importance sampling is required (why?)

* The next action is chosen using behavior policy az11 ~ u(-|st)
* But we consider alternative successor action a ~ 7(-|s¢)

* And update Q(s,,a,) towards value of alternative action

Q(st,a¢) «— Q(st,at) + a(rer1 + YQ(se41, a’) — Q(s¢,a4))

action
from t
not u



Off-Policy Control with Q-Learning

* Allow both behavior and target policies to improve
* The target policy it is greedy w.r.t. Q(s,a)
m(S¢11) = arg HZE}X Q(St+1, a’)

* The behavior policy u is e.g. e-greedy policy w.r.t. Q(s,a)
* The Q-learning target then simplifies

rert +9Q(se41,07) = o1 + YQ(s141, arg max Q(se41, a'))
= Tt+1 + ymax Q(s¢41,a")

* Q-learning update
Q(s1,a1) — Qs @) + alrpsr +ymax Q(se1,a') — Qse, ar))



Q-Learning Control Algorithm

I At state s, take action a

Observe reward r

Transit to the next state s’

® O O Atstates), take action argmax Q(s',a’)

Q(s1,a1) — Qs @) + i + ymax Q(se1,a') — Qse, ar))

* Theorem: Q-learning control converges to the optimal
action-value function

Q(s,a) = Q (s, a)



Q-Learning Control Algorithm

At state s, take action a
Observe reward r

Transit to the next state s’

® O O Atstates, take action argmax Q(s’,a’)
Q(st, at) < Q(st,at) + are41 + HZE}X Q(st41,0a") — Q(s¢, ar))

* Why Q-learning is an off-policy control method?
* Learning from SARS generated by another policy u
* The first action a and the corresponding reward r are from u
* The next action @’ is picked by the target policy

m(st41) = arg max Q(st+1,a")



SARSA vs. Q-Learning Experiments

_ . SARSA
e Cliff-walking Rea [T T T T T T T T T 1] satepath
* Undiscounted B Al |
— rCaiinTg | .
* Episodic task S The Cliff G

e Reward =-1 on all w e S
transitions R=-100

e Stepping into cliff

Sarsa
area incurs -100
reward and sent the
agent back to the Sum of .
start rz\gﬁ,%s ‘ Q-learning
* Why the results are episode . o
' ' - th £=0.
like this? g-greedy policy wi
~100 : , , . .
0 100 200 300 400 500

Episodes
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Review of What We have Learned

* Model-based dynamic programming
* Value iteration v(s) = R(s) + maxy )" Pu(s)V(s)
reS

* Policy iteration «(s) = arg ?ea}%Psa(s’)V(S’)

* Model-free reinforcement learning
* On-policy MC  V(sy) « V(s¢) + Gy — V(sp))
* On-policy TD V(st) « V(st) + alrer + YV (ser1) — V(st))
* On-policy TD SARSA
Q(st,at) «— Q(st,ar) + alreyr + vQ(Se41, apy1) — Q(s¢,a))
e Off-policy TD Q-learning
Q(st, ar) = Qlst, ar) + arer +ymax Q(ser1, ag1) — Q(se, ar))



Key Problem to Solve in This Lecture

* In all previous models, we have created a lookup
table to maintain a variable V(s) for each state or
Q(s,a) for each state-action

 What if we have a large MDP, i.e.
* the state or state-action space is too large
e or the state or action space is continuous
to maintain V(s) for each state or Q(s,a) for each
state-action?
* For example
* Game of Go (1079 states)
* Helicopter, autonomous car (continuous state space)



Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation

* Policy gradient

* Deep reinforcement learning and multi-agent RL
* Leave as future lectures



Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation



Discretization Continuous MDP

* For a continuous-state MDP, we can discretize the
state space

* For example, if we have

2D states (s,, s,), we can

use a grid to discretize

the state space S,

Val

 The discrete state s

* The discretized MDP:

(Sv A7 {PEa}7 Vs R)

* Then solve this MDP with
any previous solutions



Bucketize Large Discrete MDP

* For a large discrete-state
MDP, we can bucketize
the states to down
sample the states

 To use domain
knowledge to merge
similar discrete states

* For example, clustering
using state features
extracted from domain
knowledge



Discretization/Bucketization

* Pros

e Straightforward and off-the-shelf
 Efficient
e Can work well for many problems

* Cons

A fairly naive representation for V

Assumes a constant value over
each discretized cell

Curse of dimensionality

S=R"=S={1,...,k}"

Va]




Parametric Value Function Approximation

* Create parametric (thus learnable) functions to
approximate the value function

Vo(s) = V" (s)
Qo(s,a) ~ Q" (s,a)

e Jis the parameters of the approximation function,
which can be updated by reinforcement learning

 Generalize from seen states to unseen states



Main Types of Value Function Approx.

Vo (s)

i
/)

V)

Qo(s,a)

i
A~ )

1

Many function approximations
* (Generalized) linear model
* Neural network

* Decision tree

* Nearest neighbor

* Fourier / wavelet bases

Differentiable functions
* (Generalized) linear model
e Neural network

We assume the model is
suitable to be trained for non-
stationary, non-iid data



Value Function Approx. by SGD

e Goal: find parameter vector & minimizing mean-squared
error between approximate value function Vy(s) and true
value V7(s)

7(6) = Ex [ 5 (V™(s) ~ Vi(s))?]

e Gradient to minimize the error

0J(0) _ - OVp(s)
* Stochastic gradient descent on one sample
0J(0)
0— 60—« 5
OV (s)

=0+ a(V7(s) = Vils) o



Featurize the State

* Represent state by a feature vector

x1(s)

(s) =

* For example of a helicopter
* 3D location
* 3D speed (differentiation of location)
* 3D acceleration (differentiation of speed)




Linear Value Function Approximation

* Represent value function by a linear combination of
features

V(s) = 6" x(s)
e Objective function is quadratic in parameters U

1
J(0) = Ex |5 (V7 (s) = 07 a(s))*
* Thus stochastic gradient descent converges on global
optimum
0J(0)

06
=04+ a(V™(s) — Vy(s))z(s)

0 «— 60— «

Step Prediction  Feature
size error value



Monte-Carlo with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* Now we specify the target value function V7(s)

* We can apply supervised learning to “training data”

<81, G1>, <82, G2>, c e e <ST, GT>

For each data instance <s,, G,>
0 — 0+ a(Gr — Va(s))z(st)

MC evaluation at least converges to a local optimum
* In linear case it converges to a global optimum



TD Learning with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* TD target 7.1 + vVo(s¢+1) is a biased sample of true target
value V™ (s;)

e Supervised learning from “training data”
<817 To + 7‘/9(82)% <827 T3 + 7%(83)% LI <ST7 TT>
* For each data instance (s¢, rer1 + YVa(Str1))

0 — 0+ afrips +7Vo(si1) — Va(s))z(sy)

 Linear TD converges (close) to global optimum



Action-Value Function Approximation

* Approximate the action-value function

Qo(s,a) ~ Q" (s,a)

* Minimize mean squared error
1
J(0) = Ex | 5(Q7(s,0) = Qo(s,a))?

* Stochastic gradient descent on one sample

9.7 (6)
90

=0 +a(Q"(s,a) = Qo(s,a))

0 «— 60—«

0Qy(s,a)
00




Linear Action-Value Function Approx.

* Represent state-action pair by a feature vector

z1(s,a)

z(s,a) =

zr(s,a)

e Parametric Q function, e.g., the linear case
Qo(s,a) = QT:L'(S, a)
* Stochastic gradient descent update

0J(0)
06
=0+ a(Q™(s,a) — 0" x(s,a))z(s,a)

0 «— 60— «




TD Learning with Value Function Approx.

0Qy(s,a)

00— 0+ a(Q"(s,a) —Qy(s,a)) 90

* For MC, the target is the return G,

0Qy(s,a)

0 — 0 + a(Gt — Q9(87 a’)) By

* For TD, the targetis ri11 + YQo(St+1, at41)

0Qy(s,a)
00

0 — 0+ a(rip1 +7Qo(St+1, arv1) — Qa(s, a))



Control with Value Function Approx.

Qo ~ Q"

Starting 6

7 = e-greedy(Qp)

* Policy evaluation: approximately policy evaluation Qg ~ Q"

* Policy improvement: e-greedy policy improvement



NOTE of TD Update

* The TD target is

e State value

) 0+ a(V7(s,)  Vi(s)) ot
= -+ alris +2Vilsr1) — Vo(s) L 0o
* Action value
0 — 0+ a(Q(s,a) — Qols. a))aQ%(g’ 2
9Qo(s,a)

=0+ a(ri +7Qo(si11, ar41) — Qo(s,a)) o0

e Although ¥ is in the TD target, we don’t calculate gradient
from the target. Think about why.



ase Study: Mountain Car
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Case Study: Mountain Car

Mountain Car
Steps per episode
log scale
averaged over 100 runs

Mountain Car

1000

400

200

100

300

280

Steps per episode 260

averaged over
first 50 episodes
and 100 runs

240

220

1
500

Episode

n=4

0.5 1 1.5
¢ x number of tilings (8)



Deep Q-Network (DQN

Star Gunner
Robotank |
Atlantis ]
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault ]
Road Runner :
Kangaroo |
James Bond
Tennis |
Pong |
Space Invaders |
Beam Rider |
Tutankham |
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Freeway |
Time Pl\ot:
Enduro
Fishing Derby |
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Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Deep Q-Network (DQN

* Implement Q function with deep neural network

Convolution Convolution Fully connected Fully connected
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Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Deep Q-Network (DQN)

* The loss function of Q-learning update at iteration i

Lz(ez) — IE(s,a,r,s’)NU(D) [(T + ’YIIiLa/JXQ(SI, CL/; (91_) o Q(S7 a; 92))2]

r |
target Q value estimated Q value

* J;are the network parameters to be updated at iteration j
e Updated with standard back-propagation algorithms

* J; are the target network parameters
* Only updated with &, for every C steps

* (s,a,r,s)~U(D): the samples are uniformly drawn from the
experience pool D

* Thus to avoid the overfitting to the recent experiences

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Content

* Policy gradient



Parametric Policy

* We can parametrize the policy

mo(als)
which could be deterministic
a = mp(s)
or stochastic
mo(als) = P(als; 0)

e ¥is the parameters of the policy
* Generalize from seen states to unseen states
* We focus on model-free reinforcement learning



Policy-based RL

* Advantages
* Better convergence properties

 Effective in high-dimensional or continuous action
spaces

* No.1 reason: for value function, you have to take a max
operation

e Can learn stochastic polices

* Disadvantages
* Typically converge to a local rather than global optimum

e Evaluating a policy is typically inefficient and of high
variance



Policy Gradient

* For stochastic policy mg(a|s) = P(als;6)

* Intuition
 lower the probability of the action that leads to low value/reward
* higher the probability of the action that leads to high value/reward

* A 5-action example

1. Initialize 0 3. Update @ by policy gradient 5. Update U by policy gradient
Action Probability Action Probability Action Probability
0.25 0.4 0.4
0.2 0.3 0.3
0.15
0.1 0.2 0.2
IIIIIIIIIIII 11
0 0 0 .
Al A2 A3 Ad A5 Al A2 A3 Ad A5 Al A2 A3 A4 A5
2. Take action A2 4. Take action A3

Observe positive reward Observe negative reward



Policy Gradient in One-Step MDPs

* Consider a simple class of one-step MDPs
e Starting in state s ~ d(s)
* Terminating after one time-step with reward r_,

* Policy expected value

J(0) =Erylr] =) d(s) > mo(als)rsa

sesS aEA

0J(0) _ Zd(s) Z 87?9(a|3)rsa

0
sesS acA J




Likelihood Ratio

* Likelihood ratios exploit the following identity
Omg(als) 1 Omg(als)
o0 mo(als) mo(als) 06

0lo
— el 20Tk

* Thus the policy’s expected value

J(O) =E,,[r] = Zd ZT(@CL| frsa

sES acA
Omg(als)
=D ds) ) sa
seS acA oo : ______
1 i
=) d(s) Y malals) a Ogm)(a|8) I'sal
seS acA .__________________'

0log mg(als) This can be approximated by sampling
00 5@¢| state s from d(s) and action a from

B



Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs

* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to

* start state objective J,, average reward objective J
value objective J,,,

g and average

e Theorem

* For any differentiable policy mg(al|s), for any of policy objective
functionJ=J,,J the policy gradient is

1’ “avR’ avV ’

8.J(6)
"o =l

0log m(als)
00

Q™ (s,a)

Please refer to appendix of the slides for detailed proofs



Monte-Carlo Policy Gradient (REINFORCE)

* Update parameters by stochastic gradient ascent

* Using policy gradient theorem
* Using return G, as an unbiased sample of Q™ (s,a)

&810gﬁe(at|5t)

o0 G

Aet —

* REINFORCE Algorithm
Initialize & arbitrarily
for each episode {s1,a1,72,..., -1, ar_1,77} ~ ™ do
fort=1to 7T-1 do
0« 0+ oz% log mg(a|sy) Gy
end for
end for
return 0



Puck World Example
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Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds
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Policy is trained using variant of MC policy gradient
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Actor-Critic Policy Gradient

* Actor-critic settings
* Actor: a stochastic policy mg(als)
* Critic: a value estimator Q(s,a)

: :

* Train the policy to maximize e Train action value function
the estimated value from to minimize the estimation
the critic square error

1
meax K, [779(@|8)Q¢(37 a)} m(;n Enr, [i(r + 7Q¢(S/7 a’/) — Qo (s, a))z



summary

* Reinforcement learning
* Decision making machine learning
e Learning from trial-and-error interactions

* Model-based and model-free RL
* On-policy and off-policy model-free RL

* Value-based, policy-based and actor-critic RL



