Fundamentals of Data Science

Know Your Data

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/ee448/index.html
References and Acknowledgement

• A large part of slides in this lecture are originally from Prof. Jiawei Han’s book and lectures
 • http://hanj.cs.illinois.edu/bk3/bk3_slidesindex.htm
 • https://wiki.cites.illinois.edu/wiki/display/cs512/Lectures
Content

• Data Instances, Attributes and Types

• Basic Statistical Descriptions of Data

• Data Visualization

• Measuring Data Similarity and Dissimilarity
Data Instances

• Data sets are made up of data objects.
• A data object represents an entity.
• Examples:
 • sales database: customers, store items, sales
 • medical database: patients, treatments
 • university database: students, professors, courses
• Also called samples, examples, instances, data points, objects, tuples.
• Data objects are described by attributes.
• Database
 • rows -> data objects; columns -> attributes.
Data Instances

• A data instance represents an entity
 • Also called data points, data object

- A news article
- An image
- A song
- A Facebook user profile
- A transcript of a student
- A trajectory of a car from SJTU to FDU
Data Attributes

• Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 • E.g., customer_ID, name, address

• Attribute Types
 • Nominal
 • Binary
 • Ordinal
 • Numeric: quantitative
 • Interval-scaled
 • Ratio-scaled
Attribute Types

• Nominal: categories, states, or “names of things”
 • Hair_color = {auburn, black, blond, brown, grey, red, white}
 • marital status, occupation, ID numbers, zip codes

• Binary
 • Nominal attribute with only 2 states (0 and 1)
 • Symmetric binary: both outcomes equally important
 • e.g., gender
 • Asymmetric binary: outcomes not equally important.
 • e.g., medical test (positive vs. negative)
 • Convention: assign 1 to most important outcome (e.g., HIV positive)

• Ordinal
 • Values have a meaningful order (ranking) but magnitude between successive values is not known.
 • Size = {small, medium, large}, grades, army rankings
Attribute Types

• Quantity (integer or real-valued)
• Interval
 • Measured on a scale of equal-sized units
 • Values have order
 • E.g., temperature in C° or F°, calendar dates
 • No true zero-point
• Ratio
 • Inherent zero-point
 • We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 • e.g., temperature in Kelvin, length, counts, monetary quantities
Discrete vs. Continuous Attributes

• Discrete Attribute
 • Has only a finite or countably infinite set of values
 • E.g., zip codes, profession, or the set of words in a collection of documents
 • Sometimes, represented as integer variables
 • Note: Binary attributes are a special case of discrete attributes

• Continuous Attribute
 • Has real numbers as attribute values
 • E.g., temperature, height, or weight
 • Practically, real values can only be measured and represented using a finite number of digits
 • Continuous attributes are typically represented as floating-point variables
Data Attributes

- A data attribute is a particular field of a data instance
 - Also called dimension, feature, variable in difference literatures

The frequency of ‘USA’ in a news article

The upper left pixel RGB value of an image

The pitch of the 320th frame of a song

The friend set of a Facebook user

The Algebra score of a student’s transcript

The time-location of the 3rd point of a trajectory
6 Major Data Types

- Record Data
- Text Data
- Image Data
- Audio Speech Data
- Network Data
- Spatio-Temporal Data
Data Type 1: Record Data

- Very common in relational databases
 - Each row represents a data instance
 - Each column represents a data attribute

<table>
<thead>
<tr>
<th>WEEKDAY</th>
<th>GENDER</th>
<th>AGE</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Male</td>
<td>28</td>
<td>London</td>
</tr>
<tr>
<td>Monday</td>
<td>Female</td>
<td>24</td>
<td>New York</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Female</td>
<td>36</td>
<td>Hong Kong</td>
</tr>
<tr>
<td>Thursday</td>
<td>Male</td>
<td>17</td>
<td>Tokyo</td>
</tr>
</tbody>
</table>

JSON Format:
```
{
    WEEKDAY: Monday;
    GENDER: Female;
    AGE: 24;
    CITY: New York;
}
```

- Term ‘KDD’: Knowledge discovery in databases
Data Type 2: Text Data

- A sequence of words/tokens that represents semantic meanings of human

Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text.

```
Bag-of-Words Format:
{
    text: 4;
    mining: 2;
    also: 1;
    referred: 1;
    to: 2;
    as: 1;
    data: 1;
    roughly: 1;
    equivalent: 1;
    analytics: 1;
    is: 1;
    the: 1;
    process: 1;
    of: 1;
    deriving: 1;
    high-quality: 1;
    information: 1;
    from: 1;
}
```
Data Type 3: Image Data

• A 3-layer matrix (3*height*width) of [0,255] real value

• A simple case: binary image
 • 1-layer matrix (height*width) of {0,1} binary value
Data Type 4: Speech Data

- A sequence of multi-dimensional real vectors
- Directly decoding from the audio/speech data

http://languagelog.ldc.upenn.edu/nll/?p=8116
Data Type 5: Network Data

- A directed/undirected graph
 - Possibly with additional information for nodes and edges

Friendship Format:

- Alice Bob
- Bob Carl
- Carl Victor
- Bob Victor
- Alice Victor
- ...

Stanford network dataset collection: https://snap.stanford.edu/data/
Data Type 6: Spatio-Temporal Data

• A sequence of (time, location, info) tuples

\[p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_n \]

\[p_i = (t, x, y, a) \]

• A spatio-temporal trajectory

• Time series data is a special case of ST data
 • without location information \(p_i = (t, a) \)

Slide credit: Yu Zheng
Content

• Data Instances, Attributes and Types

• Basic Statistical Descriptions of Data

• Data Visualization

• Measuring Data Similarity and Dissimilarity
Basic Statistical Descriptions of Data

• Motivation
 • To better understand the data: central tendency, variation and spread

• Data dispersion characteristics
 • Median, max, min, quantiles, outliers, variance, etc.

• Numerical dimensions correspond to sorted intervals
 • Data dispersion: analyzed with multiple granularities of precision
 • Boxplot or quantile analysis on sorted intervals

• Dispersion analysis on computed measures
 • Folding measures into numerical dimensions
 • Boxplot or quantile analysis on the transformed cube
Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population)

\[\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \]

• Weighted arithmetic mean:

\[\mu = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} \]

• Trimmed mean: chopping extreme values

• Median
 • Middle value if odd number of values, or average of the middle two values otherwise

• Example
 • Five data points \{1.2, 1.4, 1.5, 1.8, 10.2\}
 • Mean: **3.22** Median: **1.5**
Measuring the Central Tendency

• Mode
 • Value that occurs most frequently in the data
 • Unimodal, bimodal, trimodal
 • Empirical formula:
 \[\text{mean} - \text{mode} \approx 3 \times (\text{mean} - \text{median}) \]

• Example
 • Five data points \{1, 1, 1, 1, 1, 2, 2, 2, 3, 3\}
 • Mean: \textbf{1.7} Median: \textbf{1.5} Mode: \textbf{1}
Symmetric vs. Skewed Data

• Median, mean and mode of symmetric, positively and negatively skewed data

- Positively skewed data: mode < median
- Symmetric data: mode = median
- Negatively skewed data: mode > median
Measuring the Dispersion of Data

• Variance and standard deviation
 • Variance
 \[
 \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \mathbb{E}[x] \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \mathbb{E}[x^2] - \mathbb{E}[x]^2
 \]
 • Standard deviation \(\sigma \) is the square root of variance \(\sigma^2 \)

• The normal (distribution) curve
 • From \(\mu - \sigma \) to \(\mu + \sigma \): contains about 68\% of the measurements
 • From \(\mu - 2\sigma \) to \(\mu + 2\sigma \): contains about 95\% of it
 • From \(\mu - 3\sigma \) to \(\mu + 3\sigma \): contains about 99.7\% of it
Measuring the Dispersion of Data

• Quartiles, outliers and boxplots
 • **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
 • **Inter-quartile range**: $IQR = Q_3 - Q_1$
 • **Five number summary**: min, Q_1, median, Q_3, max
 • **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 • **Outlier**: usually, a value higher/lower than $1.5 \times IQR$
Boxplot Analysis

• Five-number summary of a distribution
 • Minimum, Q1, Median, Q3, Maximum

• Boxplot
 • Data is represented with a box
 • The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 • The median is marked by a line within the box
 • Whiskers: two lines outside the box extended to Minimum and Maximum
 • Outliers: points beyond a specified outlier threshold, plotted individually
Content

• Data Instances, Attributes and Types

• Basic Statistical Descriptions of Data

• Data Visualization

• Measuring Data Similarity and Dissimilarity
Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis represents frequencies
- Quantile plot: each value x_i is paired with f_i, indicating that approximately $100f_i\%$ of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent
Histograms Often Tell More than Boxplots

• The two histograms shown on the right may have the same boxplot representation
• The same values for: min, Q_1, median, Q_3, max
• But they have rather different data distributions
Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
- Each value x_i is paired with f_i, indicating that approximately $100 \times f_i\%$ of data $\leq x_i$
Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.
Scatter Plot

• Provides a first look at bivariate data to see clusters of points, outliers, etc.

• Each pair of values is treated as a pair of coordinates and plotted as points in the plane
Positively and Negatively Correlated Data

• One can also quickly check the correlation of the two variables by scatter data.
Data Visualization

• Why data visualization?

• Gain insight into an information space by mapping data onto graphical primitives
• Provide qualitative overview of large data sets
• Search for patterns, trends, structure, irregularities, relationships among data
• Help find interesting regions and suitable parameters for further quantitative analysis
• Provide a visual proof of computer representations derived
Data Visualization

• Different of visualization methods include

 • Pixel-oriented visualization techniques
 • Geometric projection visualization techniques
 • Icon-based visualization techniques
 • Hierarchical visualization techniques
 • Visualizing complex data and relations
 • Visualizing decision-making data
 • ...
Pixel-Oriented Visualization Techniques

- For a data set of m dimensions, create m windows on the screen, one for each dimension.
- The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows.
- The colors of the pixels reflect the corresponding values.

Note: here the m windows are arranged by income. We can check the correlations of other dimension data w.r.t. income.
Geometric Projection Visualization Techniques

- Visualization of geometric transformations and projections of the data
- Methods
 - Direct visualization
 - Scatterplot and scatterplot matrices
 - Landscapes
 - Projection pursuit technique: Help users find meaningful projections of multidimensional data
 - Prosection views
 - Hyperslice
 - Parallel coordinates
Direct Data Visualization

• Ribbons with Twists Based on Vorticity
Scatter Plots

- Scatter plot with category of data points in colors

Scatter Plots

MNIST data of handwritten numbers
- 60,000 training images
- 28×28 pixels for each image

(A) The two-dimensional codes for 500 digits of each class produced by taking the first two principal components

(B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder (a deep learning model).

Scatter Plots

The Reuter Corpus Volume 2
• 804,414 newswire stories
• 2000 commonest word stems

(A) The codes produced by two-dimensional latent semantic analysis (LSA).

(B) The codes produced by a 2000-500-250-125-2 autoencoder. (a deep learning model).

Scatterplot Matrices

Matrix of scatterplots (x-y-diagrams) of the k-dimensional data

Used by permission of M. Ward, Worcester Polytechnic Institute
Landscapes

- Visualization of the data as perspective landscape
- The data needs to be transformed into a (possibly artificial) 2D spatial representation which preserves the characteristics of the data
Icon based Visualization

https://blogs.sas.com/content/sgf/2018/02/06/jazz-geo-map-colorful-icon-based-display-rules/
Hierarchical Visualization Techniques

• Visualization of the data using a hierarchical partitioning into subspaces

• Methods
 • Dimensional Stacking
 • Worlds-within-Worlds
 • Tree-Map
 • Cone Trees
 • InfoCube
• Partitioning of the n-dimensional attribute space in 2-D subspaces, which are ‘stacked’ into each other

• Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.

• Adequate for data with ordinal attributes of low cardinality

• But, difficult to display more than nine dimensions

• Important to map dimensions appropriately
Dimensional Stacking

- Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes
Worlds-within-Worlds Visualization

- Assign the function and two most important parameters to innermost world
- Fix all other parameters at constant values - draw other (1 or 2 or 3 dimensional worlds choosing these as the axes)
- Software that uses this paradigm
 - N–vision: Dynamic interaction through data glove and stereo displays, including rotation, scaling (inner) and translation (inner/outer)
 - Auto Visual: Static interaction by means of queries
Tree-Map

http://www.cs.umd.edu/hcil/treemap-history/

• Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values

• The x- and y-dimension of the screen are partitioned alternately according to the attribute values (classes)
Visualizing Complex Data and Relations

- Visualizing non-numerical data: text and social networks
- Tag cloud: visualizing user-generated tags

The importance of tag is represented by font size/color

Besides text data, there are also methods to visualize relationships, such as visualizing social networks

Google News output

http://www.industrial-electronics.com/images/dmct_3e_2-20.jpg
ggplot2 Data Visualization Code

```r
ggplot(data, aes(x=X1, y=value, color=variable)) +
  geom_line(aes(linetype=variable), size=1) +
  geom_point(aes(shape=variable, size=4))
```

When a data scientist draws a plot, she just needs to differ the lines (color, line type) and points (color, shape) by a certain categorical variable instead of specifying particular style to each line and point.

http://ggplot2.tidyverse.org/
Content

• Data Instances, Attributes and Types

• Basic Statistical Descriptions of Data

• Data Visualization

• Measuring Data Similarity and Dissimilarity
Similarity and Dissimilarity

• Similarity
 • Numerical measure of how alike two data objects are
 • Value is higher when objects are more alike
 • Often falls in the range [0,1]

• Dissimilarity (e.g., distance)
 • Numerical measure of how different two data objects are
 • Lower when objects are more alike
 • Minimum dissimilarity is often 0
 • Upper limit varies

• Proximity refers to a similarity or dissimilarity
Data Matrix and Dissimilarity Matrix

• Data matrix
 • \(n \) data points with \(p \) dimensions
 • Two modes
 • Row: objects
 • Column: attributes

• Dissimilarity matrix
 • \(n \) data points, but registers only the distance
 • A triangular matrix
 • Single mode

• Similarity
 \[\text{sim}(i, j) = 1 - d(i, j) \]
Proximity Measure for Nominal Attributes

• Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)

• Method 1: Simple matching
 • \(m \): # of matches, \(p \): total # of variables

 \[
 d(i, j) = \frac{p - m}{p}
 \]

 \(x_1 = [\text{Weekday=Friday}, \text{Gender=Male}, \text{City=Shanghai}] \)
 \(x_2 = [\text{Weekday=Friday}, \text{Gender=Female}, \text{City=Shanghai}] \)

 \[
 d(1, 2) = \frac{3 - 2}{3} = \frac{1}{3}
 \]
One-Hot Encoding for Nominal Attributes

- One-hot encoding: creating a new binary attribute for each of the p nominal states

$$x_i = \{\text{Weekday=Friday, Gender=Male, City=Shanghai}\}$$

$$x_i = [0,0,0,0,1,0,0,0,1,0,0,1,0,0,...0]$$

- Whether Weekday=Friday
- Whether City=Shanghai

- As such, we transform the nominal data instances into binary vectors, which can be fed into various functions
 - High dimensional sparse binary feature vector
 - Usually higher than 1M dimensions, even 1B dimensions
 - Extremely sparse
Proximity Measure for Binary Attributes

• A contingency table for binary data:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>q</td>
<td>r</td>
<td>q + r</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>t</td>
<td>s + t</td>
</tr>
<tr>
<td>sum</td>
<td>q + s</td>
<td>r + t</td>
<td>p</td>
</tr>
</tbody>
</table>

• Distance measure for symmetric binary variables:

\[d(i, j) = \frac{r + s}{q + r + s + t} \]

• Distance measure for asymmetric binary variables:

\[d(i, j) = \frac{r + s}{q + r + s} \]

• Jaccard coefficient (similarity measure for asymmetric binary variables):

\[\text{sim}_{\text{Jaccard}}(i, j) = \frac{q}{q + r + s} \]

• Note: Jaccard coefficient is the same as “coherence”:

\[\text{coherence}(i, j) = \frac{\sup(i, j)}{\sup(i) + \sup(j) - \sup(i, j)} = \frac{q}{(q + r) + (q + s) - q} \]
Dissimilarity between Binary Variables

• Example data

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>M</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

• Gender is a symmetric attribute
• The remaining attributes are asymmetric binary
• Let the values Y and P be 1, and the value N 0

\[
d(i, j) = \frac{r + s}{q + r + s}
\]

\[
d(\text{Jack, Mary}) = \frac{0 + 1}{2 + 0 + 1} = 0.33
\]

\[
d(\text{Jack, Jim}) = \frac{1 + 1}{1 + 1 + 1} = 0.67
\]

\[
d(\text{Jim, Mary}) = \frac{1 + 2}{1 + 1 + 2} = 0.75
\]
Standardizing Numeric Data

• Numeric data examples
 \[x_1 = [1.2, 3.5, 1.1, 2.7, 123.9] \]
 \[x_2 = [2.0, 1.5, 1.3, 3.1, 145.1] \]

 This dimension may dominate the proximity calculation

• Z-score: perform normalization for each dimension
 \[z = \frac{x - \mu}{\sigma} \]

 • \(x \): raw score to be standardized, \(\mu \): mean of the population, \(\sigma \): standard deviation
 • The distance between the raw score and the population mean in units of the standard deviation
 • Negative when the raw score is below the mean, positive when above
Example:

Data Matrix and Dissimilarity Matrix

<table>
<thead>
<tr>
<th>point</th>
<th>attribute 1</th>
<th>attribute 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x_2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x_4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Dissimilarity Matrix
(with Euclidean Distance)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>3.61</td>
<td>2.24</td>
<td>4.24</td>
</tr>
<tr>
<td>x_2</td>
<td>3.61</td>
<td>0</td>
<td>5.39</td>
<td>5.39</td>
</tr>
<tr>
<td>x_3</td>
<td>2.24</td>
<td>5.39</td>
<td>0</td>
<td>5.39</td>
</tr>
<tr>
<td>x_4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance on Numeric Data: Minkowski Distance

• **Minkowski distance**: A popular distance measure

\[x_i = (x_{i1}, x_{i2}, \ldots, x_{ip}) \]

\[x_j = (x_{j1}, x_{j2}, \ldots, x_{jp}) \]

\[d(i, j) = \left(|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \cdots + |x_{ip} - x_{jp}|^h \right)^{1/h} \]

• *h* is the order (the distance so defined is also called L-*h* norm)

• **Properties**

 • **Positive definiteness**: \(d(i, j) > 0 \) if \(i \neq j \), and \(d(i, i) = 0 \)

 • **Symmetry**: \(d(i, j) = d(j, i) \)

 • **Triangle Inequality**: \(d(i, j) \leq d(i, k) + d(k, j) \)

• A distance that satisfies these properties is a **metric**
Special Cases of Minkowski Distance

• \(h = 1 \): Manhattan (city block, \(L_1 \) norm) distance
 • E.g., the Hamming distance: the number of bits that are different between two binary vectors

 \[
 d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \cdots + |x_{ip} - x_{jp}|
 \]
Special Cases of Minkowski Distance

• $h = 2$: Euclidean (L_2 norm) distance

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \cdots + |x_{ip} - x_{jp}|^2}$$

• $h \to \infty$: Supremum (L_{\max} norm) distance
 • This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$
Example:

Minkowski Distances

<table>
<thead>
<tr>
<th>point</th>
<th>attribute 1</th>
<th>attribute 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x_2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x_4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Dissimilarity Matrices

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Mahalanobis (L1)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>3.61</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>2.24</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>

Euclidean (L2)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Supremum (L_max)
Cosine Similarity

• A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

<table>
<thead>
<tr>
<th>Document</th>
<th>Team</th>
<th>Coach</th>
<th>Hockey</th>
<th>Baseball</th>
<th>Soccer</th>
<th>Penalty</th>
<th>Score</th>
<th>Win</th>
<th>Loss</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

• Other vector objects: gene features in micro-arrays, ...

• Applications: information retrieval, biologic taxonomy, gene feature mapping, ...

• Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$\cos(d_1, d_2) = (d_1 \cdot d_2) / (\|d_1\| \cdot \|d_2\|)$$

where \cdot indicates vector dot product, $\|d\|$ is the length of vector d
Example: Cosine Similarity

$$\cos(d_1, d_2) = \frac{(d_1 \cdot d_2)}{\|d_1\| \cdot \|d_2\|}$$

- Ex: Find the similarity between documents 1 and 2.

 $$d_1 = (5, 0, 3, 0, 2, 0, 2, 0, 0, 0)$$
 $$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_1 \cdot d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

$$\|d_1\| = (5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0)^{0.5} = 42^{0.5} = 6.48$$

$$\|d_2\| = (3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1)^{0.5} = 17^{0.5} = 4.12$$

$$\cos(d_1, d_2) = 0.94$$
Ordinal Variables

• An ordinal variable can be discrete or continuous
• Order is important, e.g., rank
• Can be treated like interval-scaled
 • replace x_{if} by their rank $r_{if} \in \{1, \ldots, M_f\}$
 • map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by
 $$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$
 • compute the dissimilarity using methods for interval-scaled variables
• Note: this is just a trivial solution
Attributes of Mixed Type

• A database may contain all attribute types
 • Nominal, symmetric binary, asymmetric binary, numeric, ordinal
 • Different fields may bring different level of importance

• One may use a weighted formula to combine their effects

\[d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}} \]

• \(f \) is binary or nominal
 • \(d_{ij}^{(f)} = 0 \) if \(x_{ij} = x_{jf} \), or \(d_{ij}^{(f)} = 1 \) otherwise

• \(f \) is numeric: use the normalized distance

• \(f \) is ordinal
 • Compute ranks \(r_{if} \) and
 • Treat \(z_{if} \) as interval-scaled

\[z_{if} = \frac{r_{if} - 1}{M_f - 1} \]
Summary

• Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

• Many types of data sets, e.g., numerical, text, graph, Web, image.

• Gain insight into the data by:
 • Basic statistical data description: central tendency, dispersion, graphical displays
 • Data visualization: map data onto graphical primitives
 • Measure data similarity

• Above steps are the beginning of data preprocessing.

• Many methods have been developed but still an active area of research.