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Challenges in Reinforcement Learning

Sample efficiency
« ACKTR (actor) — Wu et al., 2017 (NIPS)

Exploration Problem
« ACTRCE (actress) — Wu et al., 2018
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Sparse Rewards — “mostly nothing”

« Sparse Reward: reward of 1 given
if the task is completed
successful, otherwise 0

 Slow/difficult to learn from
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Potential solutions?

Design a dense reward function.
e.g., Euclidean distance to the goal

However! We do not like this! Because...
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What's the problem with dense reward
function”

1. It will lead to biased learning
(stuck in a local optimum).
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What's the problem with dense reward

function?
which is even dangerous!
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What's the matter with dense reward function?

2. It is rather complicated and requires a significant
engineering effort.

For example, a seemingly simple task of stacking Lego blocks, Popov
et al. needed 5 complicated reward terms with different importance

weights.
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Sparse Reward function

» Advantages:

* Don’t need to hand engineer the
reward shaping / domain knowledge

 Avoid biased learning
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Hindsight Experience

Replay (H

3)

Relabel the goal to utilize failure experience!
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Goal-oriented MDP

A goal is chosen at every episode and stay fixed.

The policy, and the reward function depends on the current goal.
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Hiﬂlerdsight Experience Replay (HER)

Reach object at (3,1) Reward O

— — Reached (2,4) -~
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Hiﬂlerdsight Experience Replay (HER)

Reach object at (2,4) Reward O

— — Reached (2,4) -~

cOS0KR=A



DT .s-
tN=

Hidesight —xperience Replay (HER)

Reach object at (2,4) Reward 1

— — Reached (2,4) -~
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A Crucial Assumption Behind HER

For every state, there exists a goal that is achieved in this state.
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A Crucial Assumption Behind HER

A trivial example: goal space = state space
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A Crucial Assumption Behind HER

Such goal representation will create a lot of redundancy in general.

For example, all the following can be thought of representing the
same goal:

Driving straight; Avoiding colliding
Goal 1 Goal 3




Question: How do we represent the goal in general?

Question: What’s a good representation?
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Question: What’s a good representation?

1. Universal
2. Compact & abstract.
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Using language as goal representation!

Two important attributes of language:
1. Universal
2. Compact & abstract.

Mmee J |
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ACTRCE!

« Combining HER framework with language
representation.

« Demonstrating two great attributes of language.
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ACTRCE!

Reach the armor! Reward 0

— — Reached the blue torch == | H ‘ﬂ ,;

cOS0KRRA




ACTRCE!

Reward 0
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ACTRCE!

Reward 1

e
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KrazyGrid World 2D env
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KrazyGrid World 2D env

Functionality: Goal, Lava, Normal, and Agent.
Colour attribute: Red, Blue, Green.

Desired goal: Reach _ treasure.

Other goals: Reach _ lava. Avoid any goal. Avoid any lava.
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When a desired goal is achieved,
I’ll describe what has been
achieved as advice to the agent.
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I’ll always describe what has been
achieved as advice to the agent.
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I’ll describe an unachieved desired

goal as advice to the agent.
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Comparison to baseline

ACTRCE- : Optimistic teachers + Discouraging teachers
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KrazyGrid World Results

KrazyGrid World 3 goals 3 lavas
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Doom 3D language environment (Chaplot et al.,
2017)
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Go to the green torch . l ﬁ l ' ﬂ ﬁ “
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) Train . Test State: 3 x 300 x 168 RGB Image
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Training Instructions: 55 instructions
Testing Instructions: 15 instructions



Doom Results
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Doom visualization

Instruction: Go to the tall blue object
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Language is abstract:
——allowing generalization

Observation: More language helps!
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Increasing the language set

Option 1: use Knowledgeable Teachers.

ACTRCE : Knowledgeable teachers +
Discouraging teachers
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ACTRCE vs ACTRCE-

KrazyGrid World 3 goals 6 lavas

o
00

3
\

o o
© ©
o o
it 2 0.4
0.4 3
O O
> >
n n

0.2 —— DON 0.2 —— DOQN

—— ACTRCE- —— ACTRCE-
ACTRCE - - ACTRCE |
0.0- | | | 0.01 | | |
OM 8M  16M  24M  32M  OM 8M  16M  24M  32M

Frames Frames



5 EZERLE
tN =8y KM

Increasing the language set

Option 2: Increasing goal space
by considering compositions of tasks.

Desired goal: Reach _ treasure and/or Reach _ treasure

Other goals: Reach _ lava and/or Reach _ lava
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Compositional tasks

KrazyGrid World compositional goals
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Why more language helps?
— Transfer learning!

Pessimistic teacher: Only gives advice when an
undesired goal is achieved.

Validating experiment: Pretrain with pessimistic
teacher. Train with ACTRCE-. Compare.
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Transfer learning works!
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Concluding Remarks

It is very difficult to build a high-fidelity simulated
environment — not in the near future.

However, there is a beautiful world inside language
corpus! — Great resources for world representation.
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