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Review: Data Science
• Physics

• Goal: discover the 
underlying principle of the 
world

• Solution: build the model of 
the world from observations

• Data Science
• Goal: discover the 

underlying principle of the 
data

• Solution: build the model of 
the data from observations

F = G
m1m2

r2
F = G

m1m2

r2 p(x) =
ef(x)P
x0 e

f(x0)p(x) =
ef(x)P
x0 e

f(x0)



Data Science

• Mathematically

• Find joint data 
distribution

• Then the conditional 
distribution

p(x)p(x)

p(x2jx1)p(x2jx1)

p(x) =
1p

2¼¾2
e¡

(x¡¹)2

2¾2p(x) =
1p

2¼¾2
e¡

(x¡¹)2

2¾2p(x) =
e¡(x¡¹)>§¡1(x¡¹)pj2¼§jp(x) =
e¡(x¡¹)>§¡1(x¡¹)pj2¼§j

• E.g., Gaussian distribution
• Multivariate • Univariate



A Simple Example in User Behavior Modelling

Interest Gender Age BBC Sports PubMed Bloomberg 
Business

Spotify

Finance Male 29 Yes No Yes No
Sports Male 21 Yes No No Yes

Medicine Female 32 No Yes No No
Music Female 25 No No No Yes

Medicine Male 40 Yes Yes Yes No

• Joint data distribution 
p(Interest=Finance, Gender=Male, Age=29, Browsing=BBC Sports,Bloomberg Business)

• Conditional data distribution
p(Interest=Finance | Browsing=BBC Sports, Bloomberg Business)

p(Gender=Male | Browsing=BBC Sports, Bloomberg Business)



Data Technology



Key Problem of Data Science
• How to build the data model?

• Specifically, how to model the joint data 
distribution          ? 

• For example, the data of temperature and people’s cloth

p(x)p(x)

Temperature Cloth Probability
Hot Shirt 48%
Hot Coat 12%
Cold Shirt 8%
Cold Coat 32%



Data Probabilistic Modeling

• From the table, we can directly build a joint 
distribution model

Temperature Cloth Probability
Hot Shirt 48%
Hot Coat 12%
Cold Shirt 8%
Cold Coat 32%

P(temperature=hot, cloth=shirt) = 48%
P(temperature=hot, cloth=coat) = 12%

P(temperature=cold, cloth=shirt) =   8%
P(temperature=cold, cloth=coat) = 32%

• to estimate and maintain 2×2 = 4 probabilities



Data Probabilistic Modeling
• What if we have a high dimensional data

Temperature Cloth Gender Weekday Probability
Hot Shirt Male Monday 2.4%
Hot Coat Female Friday 1.2%
Cold Shirt Female Sunday 3.8%
Cold Coat Male Thursday 3.1%

…

• Directly build a joint distribution model to estimate and maintain 
2×2×2×7 = 56 probabilities
• Exponential complexity

• We should find a better way to model the data distribution



Domain Knowledge

• Build data dependency with domain knowledge
• People choose clothes according to the temperature
• Thus the cloth variable depends on the temperature variable

Temperature Cloth Probability
Hot Shirt 48%

Hot Coat 12%

Cold Shirt 8%

Cold Coat 32%

t c

temperature cloth

P(cloth=shirt|temperature=hot) = 80%
P(cloth=coat|temperature=hot) = 20%

P(cloth=shirt|temperature=cold) = 20%
P(cloth=coat|temperature=cold) = 80%

P(temperature=hot) = 60%
P(temperature=cold) = 40%

p(t; c) = p(t)p(cjt)p(t; c) = p(t)p(cjt)



Graphical Model
• Graphical model is a methodology to formulate 

such data dependency from any domain knowledge
• Bayesian network (directed graphs)

• Markov network (undirected graphs)

t c

temperature cloth

p(t; c) = p(t)p(cjt)p(t; c) = p(t)p(cjt)

t c

temperature cloth

p(t; c) =
eÁ(t;c)P

t0;c0 e
Á(t0;c0)p(t; c) =

eÁ(t;c)P
t0;c0 e

Á(t0;c0)
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A Simple Bayesian Network

• One of the powerful aspects of graphical models is that a specific graph 
can make probabilistic statements for a broad class of distributions

• We say this graph is fully connected because there is a link between 
every pair of nodes

• Consider an arbitrary joint distribution
• One may apply the product rule of probability

p(a; b; c)p(a; b; c)

p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(bja)p(a)

p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(bja)p(a)

a b

c

Symmetrical
w.r.t. a, b and c

Asymmetrical
w.r.t. a, b and c



A More Complex Bayesian Network

• A 7-dimensional data distribution
p(x1; x2; x3; x4; x5; x6; x7) =

p(x1)p(x2)p(x3)

p(x4jx1; x2; x3)p(x5jx1; x3)

p(x6jx4)p(x7jx4; x5)

p(x1; x2; x3; x4; x5; x6; x7) =

p(x1)p(x2)p(x3)

p(x4jx1; x2; x3)p(x5jx1; x3)

p(x6jx4)p(x7jx4; x5)

• For a graph with K nodes, the joint 
distribution is

p(x) =
KY

k=1

p(xkjpak)p(x) =
KY

k=1

p(xkjpak)

Parent nodes of xk

• An important restriction: 
directed acyclic graphs 
(DAGs)



An ML Example
• For the training data
• We build a linear prediction model with observation 

Gaussian noise

D = f(xi; ti)gD = f(xi; ti)g

p(t;w) = p(w)
NY

i=1

p(tijw)p(t;w) = p(w)
NY

i=1

p(tijw)

Prior distribution
• More explicitly

An alternative, more compact, 
representation of the graph

p(tijxi;w; ¾2) = N (tijw>xi; ¾
2)p(tijxi;w; ¾2) = N (tijw>xi; ¾
2)

p(wj®) = N (wj0; ®)p(wj®) = N (wj0; ®)

p(t;wjx; ®; ¾2) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)p(t;wjx; ®; ¾2) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)



An ML Example
• For the training data
• We build a linear prediction model with observation 

Gaussian noise

D = f(xi; ti)gD = f(xi; ti)g

p(tijxi;w; ¾2) = N (tijw>xi; ¾
2)p(tijxi;w; ¾2) = N (tijw>xi; ¾
2)

p(t;w) = p(w)
NY

i=1

p(tijw)p(t;w) = p(w)
NY

i=1

p(tijw)

Prior distribution
• More explicitly

p(wj®) = N (wj0; ®)p(wj®) = N (wj0; ®)

p(t;wjx; ®; ¾2) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)p(t;wjx; ®; ¾2) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)

An alternative, more compact, 
representation of the graph



Posterior Distribution
• With {tn} observed, we can evaluate the posterior 

distribution of coefficients w

p(wjt) =
p(w)p(tjw)

p(t)

/ p(w)
NY

i=1

p(tijw)

p(wjt) =
p(w)p(tjw)

p(t)

/ p(w)
NY

i=1

p(tijw)

Prior
distribution

Data
likelihood

Posterior
distribution



Maximum A Posteriori Estimation
• Maximum A Posteriori (MAP) estimation of the 

model coefficients ww
max

w
p(wjt) = max

w
p(w; t) = max

w
p(w)p(tjw)max

w
p(wjt) = max

w
p(w; t) = max

w
p(w)p(tjw)

p(w)p(tjw) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)

= N (wj0; ®)
NY

i=1

N (tijw>x; ¾2)

=
1p
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exp

³
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³
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´

p(w)p(tjw) = p(wj®)
NY

i=1

p(tijxi;w; ¾2)

= N (wj0; ®)
NY

i=1

N (tijw>x; ¾2)

=
1p

(2¼®)d
exp

³
¡ w>w

2®d
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1p
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exp
³
¡ (ti ¡w>x)2
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´

log p(w)p(tjw) = ¡w>w

2®d
¡

NX
i=1

(ti ¡w>x)2

2¾2
+ constlog p(w)p(tjw) = ¡w>w

2®d
¡

NX
i=1

(ti ¡w>x)2

2¾2
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min
w

¾2

®d
kwk2 +

NX
i=1

(ti ¡w>x)2min
w

¾2

®d
kwk2 +

NX
i=1

(ti ¡w>x)2Equivalent to i.e., ridge regression with square loss



Prediction on New Instance
• Given a new input value    , predict the corresponding 

probability distribution for its label
• Joint distribution of random variables

x̂̂x
t̂̂t

p(t̂; t;wjx̂;x; ®; ¾2) =

"
NY

i=1

p(tijxi;w; ¾2)

#
p(wj®)p(t̂jx̂;w; ¾2)p(t̂; t;wjx̂;x; ®; ¾2) =

"
NY

i=1

p(tijxi;w; ¾2)

#
p(wj®)p(t̂jx̂;w; ¾2)

• Marginalize out the coefficients w

p(t̂jx̂;x; t; ®; ¾2) =
p(t̂; tjx̂;x; ®; ¾2)

p(t)

/ p(t̂; tjx̂;x; ®; ¾2)

=

Z
p(t̂; t;wjx̂;x; ®; ¾2)dw

p(t̂jx̂;x; t; ®; ¾2) =
p(t̂; tjx̂;x; ®; ¾2)

p(t)

/ p(t̂; tjx̂;x; ®; ¾2)

=

Z
p(t̂; t;wjx̂;x; ®; ¾2)dw



Conditional Independence
• Consider three variables a, b, and c
• Suppose that the conditional distribution of a, given b and c, 

is such that it does not depend on the value of b

• We say that a is conditionally independent of b given c
• A slightly different presentation

p(ajb; c) = p(ajc)p(ajb; c) = p(ajc)

p(a; bjc) = p(ajb; c)p(bjc)
= p(ajc)p(bjc)

p(a; bjc) = p(ajb; c)p(bjc)
= p(ajc)p(bjc)

• A notation for conditional independence
a b j ca b j c



Conditional Independence in Graph

• Conditional independence properties of the joint 
distribution can be read directly from the graph

• Example 1: tail-to-tail

p(a; b; c) = p(ajc)p(bjc)p(c)p(a; b; c) = p(ajc)p(bjc)p(c)

p(a; bjc) = p(ajc)p(bjc)p(a; bjc) = p(ajc)p(bjc)

Not conditional independence

Conditional independence a b j ca b j c

a b j ;a b j ;

• With c unobserved

• With c observed



Conditional Independence in Graph

• Example 2: head-to-tail

p(a; b; c) = p(a)p(cja)p(bjc)p(a; b; c) = p(a)p(cja)p(bjc)

p(a; bjc) =
p(a; b; c)

p(c)

=
p(a)p(cja)p(bjc)

p(c)

= p(ajc)p(bjc)

p(a; bjc) =
p(a; b; c)

p(c)

=
p(a)p(cja)p(bjc)

p(c)

= p(ajc)p(bjc)

Not conditional independence

Conditional independence a b j ca b j c

a b j ;a b j ;
• With c observed

• With c unobserved



Conditional Independence in Graph

• Example 3: head-to-head
• With c unobserved

p(a; b; c) = p(cja; b)p(a)p(b)p(a; b; c) = p(cja; b)p(a)p(b)

Conditional independence a b j ;a b j ;
p(a; b) = p(a)p(b)p(a; b) = p(a)p(b)

Marginalize both sides over c

p(a; bjc) =
p(a; b; c)

p(c)

=
p(a)p(b)p(cja; b)

p(c)

p(a; bjc) =
p(a; b; c)

p(c)

=
p(a)p(b)p(cja; b)

p(c)

a b j ca b j cNot conditional independence

• With c observed



Understanding head-to-head Case

• Variables
• B: battery state, either charged (B=1) or flat (B=0)
• F: fuel tank state, either full of fuel (F=1) or empty (F=0)
• G: electric fuel gauge, either full (G=1) or empty (G=0)

• (Conditional) probabilities

p(B = 1) = 0:9

p(F = 1) = 0:9

p(B = 1) = 0:9

p(F = 1) = 0:9

p(G = 1jB = 1; F = 1) = 0:8

p(G = 1jB = 1; F = 0) = 0:2

p(G = 1jB = 0; F = 1) = 0:2

p(G = 1jB = 0; F = 0) = 0:1

p(G = 1jB = 1; F = 1) = 0:8

p(G = 1jB = 1; F = 0) = 0:2

p(G = 1jB = 0; F = 1) = 0:2

p(G = 1jB = 0; F = 0) = 0:1All remaining probabilities are determined by 
the requirement that probabilities sum to one



Understanding head-to-head Case

• If we observe the fuel gauge reads empty, i.e., G=0
p(G = 0) =

X
B2f0;1g

X
F2f0;1g

p(G = 0jB; F )p(B)p(F ) = 0:315p(G = 0) =
X

B2f0;1g

X
F2f0;1g

p(G = 0jB; F )p(B)p(F ) = 0:315

p(G = 0jF = 0) =
X

B2f0;1g
p(G = 0jB; F = 0)p(B) = 0:81p(G = 0jF = 0) =

X
B2f0;1g

p(G = 0jB; F = 0)p(B) = 0:81

p(F = 0jG = 0) =
p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1p(F = 0jG = 0) =

p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1

Thus observing that the gauge reads empty makes it more likely that the 
tank is indeed empty



Understanding head-to-head Case

• If we observe the fuel gauge reads empty, i.e., G=0

p(F = 0jG = 0) =
p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1p(F = 0jG = 0) =

p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1

p(F = 0jG = 0; B = 0) =
p(G = 0jB = 0; F = 0)p(F = 0)P

F2f0;1g p(G = 0jB = 0; F )p(F )
' 0:111 > p(F = 0) = 0:1p(F = 0jG = 0; B = 0) =

p(G = 0jB = 0; F = 0)p(F = 0)P
F2f0;1g p(G = 0jB = 0; F )p(F )

' 0:111 > p(F = 0) = 0:1

• The probability that the tank is empty has decreased (from 0.257 to 0.111) 
as a result of the observation of the state of the battery

• Explaining away: the battery is flat explains away the observation that the 
fuel gauge reads empty



Understanding head-to-head Case

• If we observe the fuel gauge reads empty, i.e., G=0

p(F = 0jG = 0) =
p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1p(F = 0jG = 0) =

p(G = 0jF = 0)p(F = 0)

p(G = 0)
' 0:257 > p(F = 0) = 0:1

p(F = 0jG = 0; B = 0) =
p(G = 0jB = 0; F = 0)p(F = 0)P

F2f0;1g p(G = 0jB = 0; F )p(F )
' 0:111 > p(F = 0) = 0:1p(F = 0jG = 0; B = 0) =

p(G = 0jB = 0; F = 0)p(F = 0)P
F2f0;1g p(G = 0jB = 0; F )p(F )

' 0:111 > p(F = 0) = 0:1

• Note that the probability p(F=0|G=0,B=0) ~ 0.111 is greater than the prior 
probability p(F=0)=0.1 because the observation that the fuel gauge reads 
zero still provides some evidence in favor of an empty fuel tank.



D-separation
• Consider a general directed graph in which A, B, and C are 

arbitrary nonintersecting sets of nodes.
• Any such path is said to be blocked if it includes a node such 

that either
a) the arrows on the path meet either head-to-tail or tail-to-tail at 

the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and neither the 

node, nor any of its descendants, is in the set C.

• If all paths are blocked, then A is said to be d-separated 
from B by C, and the joint distribution over all of the 
variables in the graph will satisfy

A B j CA B j C



D-separation Illustration

• A, B, C satisfy                       if
a) the arrows on the path meet either head-to-tail or tail-to-tail at 

the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and neither the 

node, nor any of its descendants, is in the set C.

A B j CA B j C

a b j ca b j ca b j fa b j f



Markov Blanket in Bayesian Network

• The Markov blanket of a node xi comprises the set of 
parents, children and co-parents of the children.

• It has the property that the conditional distribution of xi, 
conditioned on all the remaining variables in the graph, is 
dependent only on the variables in the Markov blanket.



i.i.d. Cases

• Independent identically distributed (i.i.d.) cases
• Goal: given x observed, infer µ

• If we integrate over µ, the observations are in general 
independent

p(¹jD) / p(¹)p(Dj¹)

= p(¹)
NY

i=1

p(xij¹)

p(¹jD) / p(¹)p(Dj¹)

= p(¹)
NY

i=1

p(xij¹)

p(D) =

Z
p(Dj¹)p(¹)d¹ 6=

NY
i=1

p(xi)p(D) =

Z
p(Dj¹)p(¹)d¹ 6=

NY
i=1

p(xi)

• We may say these data instances are jointly distributed.



i.i.d. Cases

• Independent identically distributed (i.i.d.) cases
• Goal: given x observed, infer µ

• If we condition on µ and consider the joint distribution of 
the observations

• A unique path from xi to xj
• The path is tail-to-tail w.r.t. µ
• Thus the path is blocked given µ observed

• Data instances are independent conditioned on the model

p(¹jD) / p(¹)p(Dj¹)

= p(¹)
NY

i=1

p(xij¹)

p(¹jD) / p(¹)p(Dj¹)

= p(¹)
NY

i=1

p(xij¹)



Naive Bayes Classification Model
• K-class classification
• The classes z are represented in 1-of-K encoding vector

• Multinomial prior
• µk is the prior probability of class Ck

• Each data instance (e.g. a piece of text) is represented by a 
d-dimensional vector x (each dimension as a word)

• The generation of x conditioned on z is
• The principle of naive Bayes is the conditional independence of xj’s

p(zj¹)p(zj¹)

dd

p(xjz)p(xjz)

p(xjz) =

dY
j=1

p(xjjz)p(xjz) =

dY
j=1

p(xjjz)

• Class label inference

p(zjx) / p(xjz)p(zj¹)p(zjx) / p(xjz)p(zj¹)



Multinomial Naive Bayes
• Each class y is modeled as a histogram of words

• y=y(z) is the index of 1 in z
μy = (μy1; μy2; : : : ; μyn)μy = (μy1; μy2; : : : ; μyn)

• The parameter θy is estimated as

μ̂yi =
Nyi + ®

Ny + ®d
μ̂yi =

Nyi + ®

Ny + ®d

• Nyi is the count of word i appears in any instance of class 
y in the training set

• Ny is the total count of all words for class y

p(zjx) / p(zj¹)p(xjz) = p(zj¹)
dY

i=1

μy(z)ip(zjx) / p(zj¹)p(xjz) = p(zj¹)
dY

i=1

μy(z)i



Content of This Lecture
• Introduction

• Bayes Networks (Directed Graphs)

• Markov Networks (Undirected Graphs)

• Inferences in Graphical Models



Markov Random Fields
• Undirected network, also called Markov network
• Compared to Bayes Network, it is more straightforward to 

ascertain the conditional independence in Markov network:
• If all paths linking any nodes in A and B is blocked by the nodes in C, 

then



Markov Blanket in Markov Network

• For an undirected graph, the Markov 
blanket of a node xi consists of the set of 
neighboring nodes. 

• It has the property that the conditional 
distribution of xi , conditioned on all the 
remaining variables in the graph, is 
dependent only on the variables in the 
Markov blanket.

xi



Conditional Independence in Markov Network

• Consider two nodes xi and xj that are not connected 
by a link, then these variables must be conditionally 
independent given all other nodes in the graph

p(xi; xj jxnfi;jg) = p(xijxnfi;jg)p(xj jxnfi;jg)p(xi; xj jxnfi;jg) = p(xijxnfi;jg)p(xj jxnfi;jg)

• The factorization of the joint distribution must 
therefore be such that xi and xj do not appear in the 
same factor



An Example of Cliques in Markov Networks

• Clique: a subset of the nodes in a graph in which the nodes 
are fully connected

• A Markov network of four nodes {x1, x2, x3, x4}
• 5 two-node cliques {x1, x2}, {x2, x3}, {x3, x4}, {x2, x4}, {x1, x3}
• 2 maximal cliques {x1, x2, x3}, {x2, x3, x4}

• Note that {x1, x2, x3, x4} is not a clique



Joint Distribution Decomposition
• Define the factors in the decomposition of the joint 

distribution to be functions of the variables in the cliques
• Let C denote a clique and the set of variables in it as xC

p(x) =
1

Z

Y
C

ÃC(xC)p(x) =
1

Z

Y
C

ÃC(xC)

• The quantity Z, also called the partition 
function, is a normalization factor

Z =
X
x

Y
C

ÃC(xC)Z =
X
x

Y
C

ÃC(xC)

p(x) =
1

Z
Ãf2;3;4g(x2; x3; x4)Ãf1;2;3g(x1; x2; x3)p(x) =

1

Z
Ãf2;3;4g(x2; x3; x4)Ãf1;2;3g(x1; x2; x3)

Potential function



Joint Distribution Decomposition
• Define the factors in the decomposition of the joint 

distribution to be functions of the variables in the cliques
• Let C denote a clique and the set of variables in it as xC

p(x) =
1

Z

Y
C

ÃC(xC)p(x) =
1

Z

Y
C

ÃC(xC)

• Potential function satisfies                        to 
ensure the probability is non-negative

• Potential functions can be defined with 
domain knowledge

Potential function

ÃC(xC) ¸ 0ÃC(xC) ¸ 0



Energy Function for Potential
• If we define the potential function to be strictly positive, i.e., 

ÃC(xC) > 0ÃC(xC) > 0

• It is convenient to express the potential functions as 
exponentials

ÃC(xC) = expf¡E(xC)gÃC(xC) = expf¡E(xC)g
• E(xC) is called an energy function
• With such an exponential representation, the distribution 

p(x) is called Boltzmann distribution

p(x) =
1

Z

Y
C

ÃC(xC) =
1

Z
expf¡

X
C

E(xC)gp(x) =
1

Z

Y
C

ÃC(xC) =
1

Z
expf¡

X
C

E(xC)g



Boltzmann Distribution
• Boltzmann distribution is a probability distribution, 

probability measure, or frequency distribution of particles in 
a system over various possible states

p(s) =
e¡E(s)=kTP
s0 e

¡E(s0)=kT
p(s) =

e¡E(s)=kTP
s0 e

¡E(s0)=kT

• s denotes a particular state
• E(s) is the state energy
• k = 1.381×10-23 J/K is Boltzmann constant
• T is thermodynamic temperature

• Low-energy state is more stable, i.e., with higher probability



MRF Application Example: Image Denoising

Original
Image

Denoised
By ICM

Denoised
By Graph-Cut

Corrupted
Image



MRF Application Example: Image Denoising

• Observed noisy image is described by an array of binary 
pixel values

yi 2 f¡1; +1g; i = 1; : : : ; dyi 2 f¡1; +1g; i = 1; : : : ; d runs over all pixels

• Suppose the ground-truth noise-free image
xi 2 f¡1; +1g; i = 1; : : : ; dxi 2 f¡1; +1g; i = 1; : : : ; d

• Noise generation: randomly flipping the sign of pixels with 
some small probability, e.g., 10%

• Model assumptions
• There is a strong correlation between xi and yi
• There is a strong correlation between neighboring pixels xi and xj



MRF for Image Denoising
• Model assumptions

• There is a strong correlation between xi and yi

• There is a strong correlation between neighboring pixels xi and xj

• Model
• For the cliques {xi, yi}

p(x;y) =
1

Z
expf¡E(x;y)gp(x;y) =

1

Z
expf¡E(x;y)g

E(fxi; yig) = ¡´xiyiE(fxi; yig) = ¡´xiyi

• For the cliques {xi, xj}

xjxj

E(fxi; xjg) = ¡¯xixjE(fxi; xjg) = ¡¯xixj

• Moreover, for each {xi}
E(fxig) = hxiE(fxig) = hxi

• Complete energy function

E(x;y) = h
X

i

xi ¡ ¯
X
i;j

xixj ¡ ´
X

i

xiyiE(x;y) = h
X

i

xi ¡ ¯
X
i;j

xixj ¡ ´
X

i

xiyi



Solution: Iterated Conditional Modes (ICM)

• Idea: coordinate-wise gradient ascent
• For each node xj , check which one of xj=+1 or -1 leads to 

lower E(x,y)
• Implementation β=1.0, η=2.1 and h=0

p(x;y) =
1

Z
expf¡E(x;y)gp(x;y) =

1

Z
expf¡E(x;y)g

E(x;y) = h
X

i

xi ¡ ¯
X
i;j

xixj ¡ ´
X

i

xiyiE(x;y) = h
X

i

xi ¡ ¯
X
i;j

xixj ¡ ´
X

i

xiyi

• Energy function

• Objective
max

x
p(xjy) = max

x
p(x;y)max

x
p(xjy) = max

x
p(x;y) Given y observed



MRF Application Example: Image Denoising

Original
Image

Denoised
By ICM

Denoised
By Graph-Cut

Corrupted
Image



Directed Graphs vs. Undirected Graphs

• Convert a directed graph to an undirected graph
• Directed graphical model

p(x) = p(x1)p(x2jx1)p(x3jx2) ¢ ¢ ¢ p(xN jxN¡1)p(x) = p(x1)p(x2jx1)p(x3jx2) ¢ ¢ ¢ p(xN jxN¡1)

• Undirected graphical model

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

xN¡1xN¡1 xNxN



Directed Graphs vs. Undirected Graphs

• Convert a directed graph to an undirected graph
• Directed graphical model

p(x) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)p(x) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)

• Undirected graphical model

p(x) =
1

Z
Ã1;2;3;4(x1; x2; x3; x4)p(x) =

1

Z
Ã1;2;3;4(x1; x2; x3; x4)

moralization

Moralization: marrying the parents



Directed Graphs vs. Undirected Graphs

• Although each directed graph can be converted into an 
undirected graph

• One brute-force solution is to use a fully connected undirected 
graph

• Directed and undirected graphs can express different 
conditional independence properties

• P: all possible distributions
• D/U: distributions that can be represented 

by directed/undirected graphs



Directed Graphs vs. Undirected Graphs

A directed graph whose 
conditional independence 
properties cannot be 
expressed using an 
undirected graph over the 
same three variables
• Directed graph

An undirected graph whose 
conditional independence 
properties cannot be 
expressed in terms of a 
directed graph over the same 
variables
• Undirected graph



Content of This Lecture
• Introduction

• Bayes Networks (Directed Graphs)

• Markov Networks (Undirected Graphs)

• Inferences in Graphical Models



Variable Inference and Parameter Estimation

• Random variable inference
• Infer the posterior distribution of 

random variables given their prior 
and the observed data

Tzikas, Dimitris G., Aristidis C. Likas, and Nikolaos P. Galatsanos. "The variational approximation for Bayesian 
inference." IEEE Signal Processing Magazine 25.6 (2008): 131-146.

• Parameter estimation
• Find the optimal parameter value 

for an objective, e.g., minimum 
loss or maximum likelihood

μ̂ = arg min
μ
L(D; μ)μ̂ = arg min

μ
L(D; μ)

p(zjx) / p(zj¹)p(xjz)p(zjx) / p(zj¹)p(xjz)

dd



A Basic Case for Inference

• Joint distribution of two random variables x and y
p(x; y) = p(x)p(yjx)p(x; y) = p(x)p(yjx)

• The marginal distribution of y
p(y) =

X
x0

p(x0)p(yjx0)p(y) =
X
x0

p(x0)p(yjx0)

• The inverse conditional distribution

p(xjy) =
p(x)p(yjx)

p(y)
p(xjy) =

p(x)p(yjx)

p(y)



Inference on a Chain

• Joint distribution

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

• Discrete variable setting
• N nodes represent discrete variables each having K states
• Each potential function                                 comprises a K×K table
• Thus the joint distribution has (N-1)K2 parameters

Ãn¡1;n(xn¡1; xn)Ãn¡1;n(xn¡1; xn)

xN¡1xN¡1 xNxN



Calculate the Marginal Distribution

• Inference problem of finding the marginal distribution p(xn)p(xn)

p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)

• A brute-force solution
• Sum up KN-1 values, introducing exponential complexity O(KN-1)

• An efficient dynamic programming solution
• Exploit the conditional independence properties

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

general sum-product algorithm ab + ac = a(b + c)ab + ac = a(b + c)

xN¡1xN¡1 xNxN



DP for Calculating Marginal Distribution

• Conditional independence
• The potential                                       is the only one that depends on 

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

ÃN¡1;N (xN¡1; xN )ÃN¡1;N (xN¡1; xN ) xNxN

p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)

=
1

Z

X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

Ã1;2(x1; x2) ¢ ¢ ¢ÃN¡1;N(xN¡1; xN )

=
1

Z

X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN¡1

Ã1;2(x1; x2) ¢ ¢ ¢ÃN¡2;N¡1(xN¡2; xN¡1)
X
xN

ÃN¡1;N (xN¡1; xN )

p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)

=
1

Z

X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

Ã1;2(x1; x2) ¢ ¢ ¢ÃN¡1;N(xN¡1; xN )

=
1

Z

X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN¡1

Ã1;2(x1; x2) ¢ ¢ ¢ÃN¡2;N¡1(xN¡2; xN¡1)
X
xN

ÃN¡1;N (xN¡1; xN )

general sum-product algorithm ab + ac = a(b + c)ab + ac = a(b + c)

xN¡1xN¡1 xNxN



DP for Calculating Marginal Distribution

• Conditional independence
• The potential                         is the only one the depends on 

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

Ã1;2(x1; x2)Ã1;2(x1; x2) x1x1

p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)

=
1

Z

X
xn

¢ ¢ ¢
X
xn+1

X
xn¡1

¢ ¢ ¢
X
x1

ÃN¡1;N (xN¡1; xN ) ¢ ¢ ¢Ã1;2(x1; x2)

=
1

Z

X
xn

¢ ¢ ¢
X
xn+1

X
xn¡1

¢ ¢ ¢
X
x2

ÃN¡1;N (xN¡1; xN ) ¢ ¢ ¢Ã1;2(x1; x2)
X
x1

Ã1;2(x1; x2)

p(xn) =
X
x1

¢ ¢ ¢
X
xn¡1

X
xn+1

¢ ¢ ¢
X
xN

p(x)

=
1

Z

X
xn

¢ ¢ ¢
X
xn+1

X
xn¡1

¢ ¢ ¢
X
x1

ÃN¡1;N (xN¡1; xN ) ¢ ¢ ¢Ã1;2(x1; x2)

=
1

Z

X
xn

¢ ¢ ¢
X
xn+1

X
xn¡1

¢ ¢ ¢
X
x2

ÃN¡1;N (xN¡1; xN ) ¢ ¢ ¢Ã1;2(x1; x2)
X
x1

Ã1;2(x1; x2)

xN¡1xN¡1 xNxN



DP for Calculating Marginal Distribution

• Conditional independence
• The potential                         is the only one that depends on 

p(x) =
1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )p(x) =

1

Z
Ã1;2(x1; x2)Ã2;3(x2; x3) ¢ ¢ ¢ÃN¡1;N (xN¡1; xN )

Ã1;2(x1; x2)Ã1;2(x1; x2) x1x1

p(xn) =
1

Z

24X
xn¡1

Ãn¡1;n(xn¡1; xn) ¢ ¢ ¢
h X

x2

Ã2;3(x2; x3)
hX

x1

Ã1;2(x1; x2)
ii
¢ ¢ ¢

35
| {z }

¹®(xn)24X
xn+1

Ãn;n+1(xn; xn+1) ¢ ¢ ¢
hX

xN

ÃN¡1;N(xN¡1; xN )
i
¢ ¢ ¢

35
| {z }

¹¯(xn)

p(xn) =
1

Z

24X
xn¡1

Ãn¡1;n(xn¡1; xn) ¢ ¢ ¢
h X

x2

Ã2;3(x2; x3)
hX

x1

Ã1;2(x1; x2)
ii
¢ ¢ ¢

35
| {z }

¹®(xn)24X
xn+1

Ãn;n+1(xn; xn+1) ¢ ¢ ¢
hX

xN

ÃN¡1;N(xN¡1; xN )
i
¢ ¢ ¢

35
| {z }

¹¯(xn)

Complexity O(NK2)O(NK2)

xN¡1xN¡1 xNxN



Interpretation: Message Passing
• Passing of local messages around on the graph

p(xn) =
1

Z

24X
xn¡1

Ãn¡1;n(xn¡1; xn) ¢ ¢ ¢
h X

x2

Ã2;3(x2; x3)
h X

x1

Ã1;2(x1; x2)
ii
¢ ¢ ¢

35
| {z }

¹®(xn)24X
xn+1

Ãn;n+1(xn; xn+1) ¢ ¢ ¢
hX

xN

ÃN¡1;N (xN¡1; xN )
i
¢ ¢ ¢

35
| {z }

¹¯(xn)

p(xn) =
1

Z
¹®(xn)¹¯(xn)

p(xn) =
1

Z

24X
xn¡1

Ãn¡1;n(xn¡1; xn) ¢ ¢ ¢
h X

x2

Ã2;3(x2; x3)
h X

x1

Ã1;2(x1; x2)
ii
¢ ¢ ¢

35
| {z }

¹®(xn)24X
xn+1

Ãn;n+1(xn; xn+1) ¢ ¢ ¢
hX

xN

ÃN¡1;N (xN¡1; xN )
i
¢ ¢ ¢

35
| {z }

¹¯(xn)

p(xn) =
1

Z
¹®(xn)¹¯(xn)



Interpretation: Message Passing
• Passing of local messages around on the graph

p(xn) =
1

Z
¹®(xn)¹¯(xn)p(xn) =

1

Z
¹®(xn)¹¯(xn)

¹®(xn) =
X
xn¡1

Ãn¡1;n(xn¡1; xn)
h X

xn¡2

Ãn¡2;n¡1(xn¡2; xn¡1)
X
xn¡3

¢ ¢ ¢
i

=
X
xn¡1

Ãn¡1;n(xn¡1; xn)¹®(xn¡1)

¹®(xn) =
X
xn¡1

Ãn¡1;n(xn¡1; xn)
h X

xn¡2

Ãn¡2;n¡1(xn¡2; xn¡1)
X
xn¡3

¢ ¢ ¢
i

=
X
xn¡1

Ãn¡1;n(xn¡1; xn)¹®(xn¡1)

• Message passes recursively

• With the start
¹®(x2) =

X
x1

Ã1;2(x1; x2)¹®(x2) =
X
x1

Ã1;2(x1; x2)



Tree Graphical Models

• Undirected graph tree: graph in which there is one, and only one, path 
between any pair of nodes

• Directed graph tree: there is a single node, called the root, which has no 
parents, and all other nodes have one parent

• Thus the moralization step will not add any links
• Polytree: nodes in a directed graph that have more than one parent, but 

there is still only one path (ignoring the direction of the arrows) between 
any two nodes

• Before introducing inference algorithm, let’s discuss a general form: factor 
graph

Undirected tree Directed tree Directed polytree



Factor Graphs
• Observations: Both directed and undirected graphs allow a 

global function of several variables to be expressed as a 
product of factors over subsets of those variables

• Factor graphs make this decomposition explicit by 
introducing additional nodes for the factors

p(x) =
Y
s

fs(xs)p(x) =
Y
s

fs(xs)

Factor graphs are said to be bipartite



Factor Graphs
• Undirected graphs to factor graphs

An undirected 
graph with a single 
clique potential

Ã(x1; x2; x3)Ã(x1; x2; x3)

A factor graph 
representing the 
same distribution 
with factor

f(x1; x2; x3) = Ã(x1; x2; x3)f(x1; x2; x3) = Ã(x1; x2; x3)

Another factor graph 
representing the 
same distribution

fa(x1; x2; x3)fb(x1; x2)

= Ã(x1; x2; x3)

fa(x1; x2; x3)fb(x1; x2)

= Ã(x1; x2; x3)



Factor Graphs
• Directed graphs to factor graphs

A directed graph 
with factorization

p(x1)p(x2)p(x3jx1; x2)p(x1)p(x2)p(x3jx1; x2)

A factor graph 
representing the 
same distribution 
with factor

f(x1; x2; x3) =p(x1)p(x2)

p(x3jx1; x2)

f(x1; x2; x3) =p(x1)p(x2)

p(x3jx1; x2)

Another factor graph 
representing the 
same distribution

fa(x1) = p(x1)

fb(x2) = p(x2)

fc(x1; x2; x3) = p(x3jx1; x2)

fa(x1) = p(x1)

fb(x2) = p(x2)

fc(x1; x2; x3) = p(x3jx1; x2)



Inference on a Tree: Sum-Product
• Consider the marginal of a particular variable x on the factor graph tree

p(x) =
X
xnx

p(x)p(x) =
X
xnx

p(x)

• ne(x): set of neighbor factors of x
• Xs: set of all variables in the subtree connected to the variable node x via 

the factor node
• Fs(x, Xs): the product of all the factors in the group associated with factor fs

p(x) =
Y

s2ne(x)

Fs(x;Xs)p(x) =
Y

s2ne(x)

Fs(x;Xs)



Message Passing
• Consider the marginal of a particular variable x on the factor graph tree

p(x) =
Y

s2ne(x)

"X
Xs

Fs(x; Xs)

#
´

Y
s2ne(x)

¹fs!x(x)

p(x) =
Y

s2ne(x)

"X
Xs

Fs(x; Xs)

#
´

Y
s2ne(x)

¹fs!x(x)

messages from the factor 
nodes fs to the variable node x



Message Passing Iteration
• Denote {x,x1,…,xM} as the set of variables on which the factor fs depends, 

then
Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1; Xs1) ¢ ¢ ¢GM (xM ; XsM )Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1; Xs1) ¢ ¢ ¢GM (xM ; XsM )

¹fs!x(x) =
X
x1

¢ ¢ ¢
X
xM

fs(x; x1; : : : ; xM )
Y

m2ne(fs)nx

"X
Xsm

Gm(xm; Xsm)

#
=

X
x1

¢ ¢ ¢
X
xM

fs(x; x1; : : : ; xM )
Y

m2ne(fs)nx
¹xm!fs(xm)

¹fs!x(x) =
X
x1

¢ ¢ ¢
X
xM

fs(x; x1; : : : ; xM )
Y

m2ne(fs)nx

"X
Xsm

Gm(xm; Xsm)

#
=

X
x1

¢ ¢ ¢
X
xM

fs(x; x1; : : : ; xM )
Y

m2ne(fs)nx
¹xm!fs(xm)



Message Passing Iteration
• Denote {x,x1,…,xM} as the set of variables on which the 

factor fs depends, then
Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ; XsM )Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ; XsM )

Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)



Two Types of Messages

• Messages from variable nodes to factor nodes

• Messages from factor nodes to variable nodes

¹fs!x(x) =
X
Xs

Fs(x;Xs)¹fs!x(x) =
X
Xs

Fs(x;Xs)

¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)

Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ;XsM )Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ;XsM )

Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)



Two Types of Messages
• Relationships of two types of messages

¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)

=
X
Xsm

Y
l2ne(xm)nfs

Fl(xm; Xml)

=
Y

l2ne(xm)nfs

24X
Xml

Fl(xm; Xml)

35
=

Y
l2ne(xm)nfs

¹fl!xm(xm)

¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)

=
X
Xsm

Y
l2ne(xm)nfs

Fl(xm; Xml)

=
Y

l2ne(xm)nfs

24X
Xml

Fl(xm; Xml)

35
=

Y
l2ne(xm)nfs

¹fl!xm(xm)

(Tree structure)



Start of Recursion
¹x!f (x) = 1¹x!f (x) = 1 ¹f!x(x) = f(x)¹f!x(x) = f(x)

¹fs!x(x) =
X
Xs

Fs(x;Xs)¹fs!x(x) =
X
Xs

Fs(x;Xs)

Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ;XsM )Fs(x; Xs) = fs(x; x1; : : : ; xM )G1(x1;Xs1) ¢ ¢ ¢GM (xM ;XsM )

¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)¹xm!fs(xm) =
X
Xsm

Gm(xm; Xsm)

Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm; Xml)

• Messages from factor nodes to variable nodes

• Messages from variable nodes to factor nodes



Marginal of Variables of a Factor

p(xs) = fs(xs)
Y

i2ne(fs)

¹xi!fs(xi)p(xs) = fs(xs)
Y

i2ne(fs)

¹xi!fs(xi)



An Example for Practice
• Unnormalized joint distribution

~p(x) = fa(x1; x2)fb(x2; x3)fc(x2; x4)~p(x) = fa(x1; x2)fb(x2; x3)fc(x2; x4)

• Designate node x3 as the root, messages

¹x1!fa(x1) = 1

¹fa!x2(x2) =
X
x1

fa(x1; x2)

¹x4!fc(x4) = 1

¹fc!x2(x2) =
X
x4

fc(x2; x4)

¹x2!fb
(x2) = ¹fa!x2(x2)¹fc!x2(x2)

¹fb!x3(x3) =
X
x2

fb(x2; x3)¹x2!fb

¹x1!fa(x1) = 1

¹fa!x2(x2) =
X
x1

fa(x1; x2)

¹x4!fc(x4) = 1

¹fc!x2(x2) =
X
x4

fc(x2; x4)

¹x2!fb
(x2) = ¹fa!x2(x2)¹fc!x2(x2)

¹fb!x3(x3) =
X
x2

fb(x2; x3)¹x2!fb

fafa fbfb

fcfc



An Example for Practice
• Unnormalized joint distribution

~p(x) = fa(x1; x2)fb(x2; x3)fc(x2; x4)~p(x) = fa(x1; x2)fb(x2; x3)fc(x2; x4)

• Messages from the root node out to 
the leaf nodes
¹x3!fb

(x3) = 1

¹fb!x2(x2) =
X
x3

fb(x2; x3)

¹x2!fa(x2) = ¹fb!x2(x2)¹fc!x2(x2)

¹fa!x1(x2) =
X
x2

fa(x1; x2)¹x2!fa(x2)

¹x2!fc(x2) = ¹fa!x2(x2)¹fb!x2(x2)

¹fc!x4(x4) =
X
x2

fc(x2; x4)¹x2!fc(x2)

¹x3!fb
(x3) = 1

¹fb!x2(x2) =
X
x3

fb(x2; x3)

¹x2!fa(x2) = ¹fb!x2(x2)¹fc!x2(x2)

¹fa!x1(x2) =
X
x2

fa(x1; x2)¹x2!fa(x2)

¹x2!fc(x2) = ¹fa!x2(x2)¹fb!x2(x2)

¹fc!x4(x4) =
X
x2

fc(x2; x4)¹x2!fc(x2)

fafa fbfb

fcfc



An Example for Practice
• Verify the marginal p(x2)

~p(x2) = ¹fa!x2(x2)¹fb!x2(x2)¹fc!x2(x2)

=

"X
x1

fa(x1; x2)

#"X
x3

fb(x2; x3)

#"X
x4

fc(x2; x4)

#
=

X
x1

X
x3

X
x4

fa(x1; x2)fb(x2; x3)fc(x2; x4)

=
X
x1

X
x3

X
x4

~p(x)

~p(x2) = ¹fa!x2(x2)¹fb!x2(x2)¹fc!x2(x2)

=

"X
x1

fa(x1; x2)

#"X
x3

fb(x2; x3)

#"X
x4

fc(x2; x4)

#
=

X
x1

X
x3

X
x4

fa(x1; x2)fb(x2; x3)fc(x2; x4)

=
X
x1

X
x3

X
x4

~p(x)

Consistent with

p(x) =
X
xnx

p(x)p(x) =
X
xnx

p(x)



Conditioned on Observed Variables

• Suppose we partition x into 
• hidden variables h
• observed variables v = v̂v = v̂

• For the calculation p(hjv = v̂) =
X
xnh

p(x)p(hjv = v̂) =
X
xnh

p(x)

• We just need to update p(x) as

p(x) Ã p(x)
Y

i

I(vi = v̂i)p(x) Ã p(x)
Y

i

I(vi = v̂i)

• The sum-product algorithm is efficient


