2018 CS420, Machine Learning, Lecture 5

Tree Models

Weinan Zhang

Shanghai Jiao Tong University

http://wnzhang.net

ML Task: Function Approximation

- Problem setting
 - Instance feature space \mathcal{X}
 - Instance label space ${\cal Y}$
 - Unknown underlying function (target) $f: \mathcal{X} \mapsto \mathcal{Y}$
 - Set of function hypothesis $H = \{h|h: \mathcal{X} \mapsto \mathcal{Y}\}$
- Input: training data generated from the unknown $(m^{(i)}, u^{(i)}) = (m^{(1)}, u^{(1)}) = (m^{(n)}, u^{(n)})$

$$\{(x^{(i)}, y^{(i)})\} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Output: a hypothesis $h \in H$ that best approximates f
- Optimize in functional space, not just parameter space

Optimize in Functional Space

- Tree models
 - Intermediate node for splitting data
 - Leaf node for label prediction
- Continuous data example

Optimize in Functional Space

- Tree models
 - Intermediate node for splitting data
 - Leaf node for label prediction
- Discrete/categorical data example

	Response			
Outlook	Temperature	Humidity Wind		Class
				Play=Yes
				Play=No
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Decision Tree Learning

- Problem setting
 - Instance feature space \mathcal{X}
 - Instance label space ${\cal Y}$
 - Unknown underlying function (target) $f: \mathcal{X} \mapsto \mathcal{Y}$
 - Set of function hypothesis $H = \{h|h: \mathcal{X} \mapsto \mathcal{Y}\}$
- Input: training data generated from the unknown

$$\{(x^{(i)}, y^{(i)})\} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Output: a hypothesis $h \in H$ that best approximates f
- Here each hypothesis h is a decision tree

Decision Tree – Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label
 - or a probabilistic distribution over labels

History of Decision-Tree Research

- Hunt and colleagues used exhaustive search decision-tree methods (CLS) to model human concept learning in the 1960's.
- In the late 70's, Quinlan developed ID3 with the information gain heuristic to learn expert systems from examples.
- Simultaneously, Breiman and Friedman and colleagues developed CART (Classification and Regression Trees), similar to ID3.
- In the 1980's a variety of improvements were introduced to handle noise, continuous features, missing features, and improved splitting criteria. Various expert-system development tools results.
- Quinlan's updated decision-tree package (C4.5) released in 1993.
- Sklearn (python)Weka (Java) now include ID3 and C4.5

Decision Trees

- Tree models
 - Intermediate node for splitting data
 - Leaf node for label prediction

- Key questions for decision trees
 - How to select node splitting conditions?
 - How to make prediction?
 - How to decide the tree structure?

Node Splitting

Which node splitting condition to choose?

- Choose the features with higher classification capacity
 - Quantitatively, with higher information gain

Fundamentals of Information Theory

- Entropy (more specifically, Shannon entropy) is the expected value (average) of the information contained in each message.
- Suppose X is a random variable with n discrete values

$$P(X = x_i) = p_i$$

• then its entropy H(X) is

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$

• It is easy to verify

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$$

Illustration of Entropy

Entropy of binary distribution

$$H(X) = -p_1 \log p_1 - (1 - p_1) \log(1 - p_1)$$

Cross Entropy

 Cross entropy is used to measure the difference between two random variable distributions

$$H(X,Y) = -\sum_{i=1}^{n} P(X=i) \log P(Y=i)$$

Continuous formulation

$$H(p,q) = -\int p(x)\log q(x)dx$$

Compared to KL divergence

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx = H(p,q) - H(p)$$

KL-Divergence

Kullback–Leibler divergence (also called relative entropy) is a measure of how one probability distribution diverges from a second, expected probability distribution

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx = H(p,q) - H(p)$$

Original Gaussian PDF's

KL Area to be Integrated

Cross Entropy in Logistic Regression

Logistic regression is a binary classification model

$$p_{\theta}(y = 1|x) = \sigma(\theta^{\top}x) = \frac{1}{1 + e^{-\theta^{\top}x}}$$
 $p_{\theta}(y = 0|x) = \frac{e^{-\theta^{\top}x}}{1 + e^{-\theta^{\top}x}}$

Cross entropy loss function

$$\mathcal{L}(y, x, p_{\theta}) = -y \log \sigma(\theta^{\top} x) - (1 - y) \log(1 - \sigma(\theta^{\top} x))$$

Gradient

$$\frac{\partial \mathcal{L}(y, x, p_{\theta})}{\partial \theta} = -y \frac{1}{\sigma(\theta^{\top} x)} \sigma(z) (1 - \sigma(z)) x - (1 - y) \frac{-1}{1 - \sigma(\theta^{\top} x)} \sigma(z) (1 - \sigma(z)) x$$

$$= (\sigma(\theta^{\top} x) - y) x$$

$$\theta \leftarrow \theta + (y - \sigma(\theta^{\top} x)) x$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) (1 - \sigma(z))$$

Conditional Entropy

• Entropy
$$H(X) = -\sum_{i=1}^{n} P(X=i) \log P(X=i)$$

• Specific conditional entropy of X given Y = v

$$H(X|Y = v) = -\sum_{i=1}^{n} P(X = i|Y = v) \log P(X = i|Y = v)$$

Specific conditional entropy of X given Y

$$H(X|Y) = \sum_{v \in \text{values}(Y)} P(Y = v)H(X|Y = v)$$

Information Gain or Mutual Information of X given Y

$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

= $H(X) + H(Y) - H(X,Y)$

Entropy of (X,Y) instead of cross entropy

Information Gain

Information Gain or Mutual Information of X given Y

$$I(X,Y) = H(X) - H(X|Y)$$

$$= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} P(Y=u) \sum_{v} P(X=v|Y=u) \log P(X=v|Y=u)$$

$$= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} \sum_{v} P(X=v,Y=u) \log P(X=v|Y=u)$$

$$= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} \sum_{v} P(X=v,Y=u) [\log P(X=v,Y=u) - \log P(Y=u)]$$

$$= -\sum_{v} P(X=v) \log P(X=v) - \sum_{v} P(Y=v) \log P(Y=v) + \sum_{u,v} P(X=v,Y=u) \log P(X=v,Y=u)$$

$$= H(X) + H(Y) - H(X,Y)$$

Entropy of (*X,Y*) instead of cross entropy

Node Splitting

Information gain

$$H(X|Y=v) = -\sum_{i=1}^{n} P(X=i|Y=v) \log P(X=i|Y=v)$$
 $H(X|Y) = \sum_{v \in \text{values}(Y)} P(Y=v)H(X|Y=v)$

$$H(X|Y=S) = -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.9710$$

$$H(X|Y=O) = -\frac{4}{4}\log\frac{4}{4} = 0$$

$$H(X|Y=R) = -\frac{4}{5}\log\frac{4}{5} - \frac{1}{5}\log\frac{1}{5} = 0.7219$$

$$H(X|Y) = \frac{5}{14} \times 0.9710 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.7219 = 0.6046$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.6046 = 0.3954$$

$$H(X|Y = H) = -\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4} = 1$$

$$H(X|Y = M) = -\frac{1}{4}\log\frac{1}{4} - \frac{3}{4}\log\frac{3}{4} = 0.8113$$

$$H(X|Y = C) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.9183$$

$$H(X|Y) = \frac{4}{14} \times 1 + \frac{4}{14} \times 0.8113 + \frac{5}{14} \times 0.9183 = 0.9111$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.9111 = 0.0889$$

Information Gain Ratio

The ratio between information gain and the entropy

$$I_R(X,Y) = \frac{I(X,Y)}{H_Y(X)} = \frac{H(X) - H(X|Y)}{H_Y(X)}$$

where the entropy (of Y) is

$$H_Y(X) = -\sum_{v \in \text{values}(Y)} \frac{|X_{y=v}|}{|X|} \log \frac{|X_{y=v}|}{|X|}$$

• where $|X_{y=v}|$ is the number of observations with the feature y=v

Node Splitting

• Information gain ratio
$$I_R(X,Y) = \frac{I(X,Y)}{H_Y(X)} = \frac{H(X) - H(X|Y)}{H_Y(X)}$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.6046 = 0.3954$$

$$H_Y(X) = -\frac{5}{14} \log \frac{5}{14} - \frac{4}{14} \log \frac{4}{14} - \frac{5}{14} \log \frac{5}{14} = 1.5774$$

$$I_R(X,Y) = \frac{0.3954}{1.5774} = 0.2507$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.9111 = 0.0889$$

$$H_Y(X) = -\frac{4}{14} \log \frac{4}{14} - \frac{4}{14} \log \frac{4}{14} - \frac{6}{14} \log \frac{6}{14} = 1.5567$$

$$I_R(X,Y) = \frac{0.0889}{1.5567} = 0.0571$$

- Algorithm framework
 - Start from the root node with all data
 - For each node, calculate the information gain of all possible features
 - Choose the feature with the highest information gain
 - Split the data of the node according to the feature
 - Do the above recursively for each leaf node, until
 - There is no information gain for the leaf node
 - Or there is no feature to select

An example decision tree from ID3

Each path only involves a feature at most once

An example decision tree from ID3

How about this tree, yielding perfect partition?

Overfitting

 Tree model can approximate any finite data by just growing a leaf node for each instance

Decision Tree Training Objective

Cost function of a tree T over training data

$$C(T) = \sum_{t=1}^{|T|} N_t H_t(T)$$

where for the leaf node t

- $H_t(T)$ is the empirical entropy
- N_t is the instance number, N_{tk} is the instance number of class k

$$H_t(T) = -\sum_{k} \frac{N_{tk}}{N_t} \log \frac{N_{tk}}{N_t}$$

• Training objective: find a tree to minimize the cost

$$\min_{T} C(T) = \sum_{t=1}^{|T|} N_t H_t(T)$$

Decision Tree Regularization

Cost function over training data

$$C(T) = \sum_{t=1}^{|T|} N_t H_t(T) + \lambda |T|$$

where

- |T| is the number of leaf nodes of the tree T
- λ is the hyperparameter of regularization

An example decision tree from ID3

Whether to split this node?

• Calculate the cost function difference. $C(T) = \sum_{t=1}^{|T|} N_t H_t(T) + \lambda |T|$

Summary of ID3

- A classic and straightforward algorithm of training decision trees
 - Work on discrete/categorical data
 - One branch for each value/category of the feature
- Algorithm C4.5 is similar and more advanced to ID3
 - Splitting the node according to information gain ratio
- Splitting branch number depends on the number of different categorical values of the feature
 - Might lead to very broad tree

CART Algorithm

- Classification and Regression Tree (CART)
 - Proposed by Leo Breiman et al. in 1984
 - Binary splitting (yes or no for the splitting condition)
 - Can work on continuous/numeric features
 - Can repeatedly use the same feature (with different splitting)

CART Algorithm

- Regression Tree
 - Output the predicted value

For example: predict the user's rating to a movie

- Classification Tree
 - Output the predicted class

For example: predict whether the user like a move

Regression Tree

Let the training dataset with continuous targets y

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

• Suppose a regression tree has divided the space into M regions R_1 , R_2 , ..., R_M , with c_m as the prediction for region R_m

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

• Loss function for (x_i, y_i)

$$\frac{1}{2}(y_i - f(x_i))^2$$

It is easy to see the optimal prediction for region m is

$$\hat{c}_m = \operatorname{avg}(y_i | x_i \in R_m)$$

Regression Tree

- How to find the optimal splitting regions?
- How to find the optimal splitting conditions?
 - Defined by a threshold value s on variable j
 - Lead to two regions

$$R_1(j,s) = \{x | x^{(j)} \le s\}$$
 $R_2(j,s) = \{x | x^{(j)} > s\}$

Training based on current splitting

$$\min_{j,s} \left[\min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

$$\hat{c}_m = \arg(y_i | x_i \in R_m)$$

- INPUT: training data D
- OUTPUT: regression tree f(x)
- Repeat until stop condition satisfied:
 - Find the optimal splitting (j,s)

$$\min_{j,s} \left[\min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

• Calculate the prediction value of the new region R_1 , R_2

$$\hat{c}_m = \operatorname{avg}(y_i | x_i \in R_m)$$

Return the regression tree

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[\min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value

How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[\min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value

$$loss_{6,7} = -\left(\frac{1}{6}\sum_{i=1}^{6}y_i\right)^2 - \left(\frac{1}{6}\sum_{i=7}^{12}y_i\right)^2 + C$$

How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[\min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value

$$\log_{6,7} = -\frac{1}{6} \Big(\sum_{i=1}^{6} y_i\Big)^2 - \frac{1}{6} \Big(\sum_{i=7}^{12} y_i\Big)^2 + C \qquad \bullet \quad \text{Maintain and online update in } O(1) \text{ Ti}$$

$$\lim_{i \to \infty} \int_{0}^{1} y_i \int_{0}^{12} y_$$

• Maintain and online update in O(1) Time

$$\operatorname{Sum}(R_1) = \sum_{i=1}^k y_i \quad \operatorname{Sum}(R_2) = \sum_{i=k+1}^n y_i$$

Classification Tree

The training dataset with categorical targets y

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

• Suppose a regression tree has divided the space into M regions R_1 , R_2 , ..., R_M , with c_m as the prediction for region R_m

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

• Here the leaf node prediction c_m is the category distribution

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

• c_m is solved by counting categories

$$P(y_k|x_i \in R_m) = \frac{C_m^k}{C_m} \quad \text{\# instances in leaf m with cat k} \\ \text{\# instances in leaf m} \quad$$

Classification Tree

- How to find the optimal splitting regions?
- How to find the optimal splitting conditions?
 - For continuous feature j, defined by a threshold value s
 - Yield two regions

$$R_1(j,s) = \{x | x^{(j)} \le s\}$$
 $R_2(j,s) = \{x | x^{(j)} > s\}$

- For categorical feature j, select a category a
 - Yield two regions

$$R_1(j,s) = \{x | x^{(j)} = a\}$$
 $R_2(j,s) = \{x | x^{(j)} \neq a\}$

How to select? Argmin Gini impurity.

Gini Impurity

- In classification problem
 - suppose there are K classes
 - let p_k be the probability of an instance with the class k
 - the Gini impurity index is

$$Gini(p) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

• Given the training dataset D, the Gini impurity is

$$\operatorname{Gini}(D) = 1 - \sum_{k=1}^K \left(\frac{|D^k|}{|D|}\right)^2 \quad \text{\# instances in D with cat k} \\ \text{\# instances in D}$$

Gini Impurity

- For binary classification problem
 - let p be the probability of an instance with the class 1
 - Gini impurity is Gini(p) = 2p(1-p)
 - Entropy is $H(p) = -p \log p (1-p) \log(1-p)$

Gini impurity and entropy are quite similar in representing classification error rate.

Gini Impurity

- With a categorical feature j and one of its categories a
 - The two split regions R_1 , R_2

$$R_1(j,a) = \{x | x^{(j)} = a\}$$
 $R_2(j,a) = \{x | x^{(j)} \neq a\}$

$$D_j^1 = \{(x,y)|x^{(j)} = a\}$$
 $D_j^2 = \{(x,y)|x^{(j)} \neq a\}$

The Gini impurity of feature j with the selected category

$$Gini(D_j, j = a) = \frac{|D_j^1|}{|D_j|}Gini(D_j^1) + \frac{|D_j^2|}{|D_j|}Gini(D_j^2)$$

Classification Tree Algorithm

- INPUT: training data D
- OUTPUT: classification tree f(x)
- Repeat until stop condition satisfied:
 - Find the optimal splitting (j,a)

$$\min_{j,a} \operatorname{Gini}(D_j, j = a)$$

• Calculate the prediction distribution of the new region R_1 , R_2

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

Return the classification tree

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

- Node instance number is small
- 2. Gini impurity is small
- 3. No more feature

Classification Tree Output

- Class label output
 - Output the class with the highest conditional probability

$$f(x) = \arg\max_{y_k} \sum_{m=1}^{M} I(x \in R_m) P(y_k | x_i \in R_m)$$

Probabilistic distribution output

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

Converting a Tree to Rules

For example: predict the user's rating to a movie

Decision tree model is easy to be visualized, explained and debugged.

Learning Model Comparison

Characteristic	Neural	SVM	Trees	MARS	k-NN,
	Nets				Kernels
Natural handling of data of "mixed" type	V	▼	A	A	•
Handling of missing values	•	▼	A	A	A
Robustness to outliers in input space	•	▼	A	▼	A
Insensitive to monotone transformations of inputs	•	▼	A	▼	•
Computational scalability (large N)	•	•	A	A	•
Ability to deal with irrelevant inputs	V	▼	A	A	▼
Ability to extract linear combinations of features	A	A	▼	▼	*
Interpretability	V	▼	*	A	V
Predictive power	A	A	▼	*	A