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ML Task: Function Approximation

* Problem setting
* Instance feature space X
* Instance label space )
* Unknown underlying function (target) f : X — Y
* Set of function hypothesis H = {h|h: X — Y}

* Input: training data generated from the unknown
{@", 4} = {(=,yW),..., (@™, y")}
* Qutput: a hypothesis h ¢ H that best approximates f

* Optimize in functional space, not just parameter
space



Optimize in Functional Space

* Tree models
* Intermediate node for splitting data
* Leaf node for label prediction

* Continuous data example
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Optimize in Functional Space

* Tree models
* Intermediate node for splitting data
* Leaf node for label prediction

* Discrete/categorical data example

Predictors Response
Outlook Temperature Humidity Wind Class
Play=Yes
Play=No
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool Nermal Strong  Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak  Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Outlook Root Node
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N ] Intermediate
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Decision Tree Learning

* Problem setting
* Instance feature space X
* Instance label space )
* Unknown underlying function (target) f : X — Y
* Set of function hypothesis H = {h|h: X — Y}

* Input: training data generated from the unknown
{@9, g} = {@W,yM),..., (=", y")}

e Qutput: a hypothesis h ¢ H that best approximates f

* Here each hypothesis h is a decision tree



Decision Tree — Decision Boundary

* Decision trees divide the feature space into axis-
parallel (hyper-)rectangles

* Each rectangular region is labeled with one label
e or a probabilistic distribution over labels
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Slide credit: Eric Eaton



History of Decision-Tree Research

* Hunt and colleagues used exhaustive search decision-tree
mgeécgods (CLS) to model human concept learning in the
1960’s.

* In the late 70’s, Quinlan developed ID3 with the information
gain heuristic to learn expert systems from examples.

e Simultaneously, Breiman and Friedman and colleagues
developed CART (Classification and Regression Trees),
similar to ID3.

* In the 1980’s a variety of improvements were introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

. (lléjsi)glan’s updated decision-tree package (C4.5) released in

e Sklearn (python)Weka (Java) now include ID3 and C4.5

Slide credit: Raymond J. Mooney



Decision Trees

* Tree models
* Intermediate node for splitting data
* Leaf node for label prediction

* Key questions for decision trees
* How to select node splitting conditions?
 How to make prediction?
* How to decide the tree structure?



Node Splitting

* Which node splitting condition to choose?

000000 0000000
000000 000000
Outlook Temperature
Sunny Overcast "\ Rain Hot Ml”d Cool
00 0000 X @ 0000
0 000 @ 0 000 C X

* Choose the features with higher classification
capacity
* Quantitatively, with higher information gain



Fundamentals of Information Theory

* Entropy (more specifically, Shannon entropy) is the
expected value (average) of the information contained in

each message.
e Suppose X is a random variable with n discrete values
P(X = xz) — P;

then its entropy H(X) is
H(X)=—) pilogp;
i=1

It is easy to verify

mn n
1 1
H(X)=-) pilogp; < —Zﬁlogﬁ = logn
i—1 i—1



Illustration of Entropy
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* Entropy of binary distribution
—p1logpr — (1 — p1)log(1 — p1)



Cross Entropy

* Cross entropy is used to measure the difference
between two random variable distributions

Z P(X =1i)log P(Y =)

e Continuous formulation

H(p,q) = — / p(z)log q(x)dx

* Compared to KL divergence

Dra(pll) = [ plo)tog 253z = Hip.a) ~ Hp



KL-Divergence

Kullback—Leibler divergence (also called relative entropy) is a measure of
how one probability distribution diverges from a second, expected
probability distribution

Dia(pll) = [ plo)tog 253 de = Hip.a) ~ Hp
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Review

Cross Entropy In Logistic Regression

 Logistic regression is a binary classification model

1 ho — o(x)
-
poly = 1) = o(072) = /
U t;z"'
p@(y = O|x) = 1 _|_ e_e—l_x -I. :‘f/co ; : ; .

* Cross entropy loss function
L(y,x,pp) = —ylogo(0'z) — (1 —y)log(l — (')

* Gradient
8£(yég,p0) _ —yﬁg(z)(l —o(2))x— (1 —y) - ;(sz)a(z)(l —o(2))x

= (0(0Tz) - y)a
6 —0+(y—o(0 a))e 6?922)

= 0(z)(1 = o(2))




Conditional Entropy

Entropy  H(X Z P(X =i)log P(X =1)

Specific conditional entropy of XgivenY=v

H(X|Y =v) = ZP = ilY =v)log P(X = i|Y = v)

Specific condltlonal entropy of X given Y

HX|Y)= Y P =v)H(X|Y =v)

vevalues(Y)

Information Gain or Mutual Information of X given Y

I[(X,Y)=H(X) - HX|Y) = HY) - HY|X)
—H(X)+ H(Y) - H(X,Y)

Entropy of (X,Y) instead of cross entropy



Information Gain

* Information Gain or Mutual Information of X given Y
I(X,Y) = H(X)— HX|Y)
__Zp v)log P(X =v)+ Y P(Y =u)) P(X =0|]Y =u)log P(X =v|Y = u)
:_ZP v)log P(X :v)—|—2u:ZP(X::),Y:u)logP(X:v|Y=u)
:—ZP = v)log P(X :v)—l—iiP(X:U,Y:u)[logP(sz,Y:u)—logP(Y:u)]
:—ZP v) log P(X ZP V)1log P(Y =v)+ Y P(X =v,Y =u)logP(X =v,Y = u)

U,V

=H(X)+H(Y)-H(X,Y)

Entropy of (X,Y) instead of cross entropy



Node Splitting

H(X|)Y =v) =

* Information gain

Outlook

Overcast

l

L X X 000
e 000 @
3 3 2 2
H(X[Y =8)=-21 log = = 0.971
(X| S) - log - — —log 0.9710
4 4
H(X|Y—O)——Zlog4 0
4 4 1 1
H(X|Y =R) = —glogg—5logg—07219
5) 4 5)
H(X|Y)= ﬁX09710+ﬁxo+ﬁ><07219_06046
I(X,Y) = H(X) — HX|[Y) = 1 — 0.6046 = 0.3954

ZP =Y = v)log P(X =i|Y =)
Z P(Y =0)H(X|Y =)
vevalues(Y')
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H(X[Y = M) = —log; — S log 7 = 0.8113

4

4 2 2
H(X|Y =C)=—-log- ——-log— =0.9183

H(X|Y) =
I(X,Y)

= H(X)
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— H(X|Y) =1-0.9111 = 0.0889



Information Gain Ratio

* The ratio between information gain and the entropy

I(X,Y) H(X)-HXY)
XY =3 5 = By

* where the entropy (of Y) is
Hy(X)=— )

vevalues(Y)

| Xy=v|
X

| Xy=0|
X

log

 where |X,—,| is the number of observations with the
feature y=v



Node Splitting

. . . I(X,)Y) H(X)-H(X|Y)
o Ir(X,Y) = -
Information gain ratio 1x(x.,v) 7y () T (X)
000000 0000000
000000 0000000
Outlook Temperature
Sunny Overcast "\ Rain Hot Ml”d Cool
00 0000 X @ 0000
X 000 @ X 000 e

I(X,Y)=H(X)— H(X|Y) = 1 — 0.6046 = 0.3954
) 5) 4 4 ) 5)

0.3954
IR(X)Y) = T oy = 0.2507

I(X,)Y)=H(X)-H(X|Y)=1-0.9111 = 0.0889
4 4 4 4
—log — — ElogE = 1.5567

Hy(X) = —— log — —
v(X) =—qglog 7 — gy log 17 — gy loe 7

0.0889
IR(X,Y) = T o = 0.0571




Decision Tree Building: ID3 Algorithm

e Algorithm framework
e Start from the root node with all data

For each node, calculate the information gain of all
possible features

Choose the feature with the highest information gain
Split the data of the node according to the feature

Do the above recursively for each leaf node, until
e There is no information gain for the leaf node
* Or there is no feature to select



Decision Tree Building: ID3 Algorithm

* An example decision tree from ID3

000000
000000

Outlook

Sunny Overcast Rain

000 0000
e 0000 @
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Hot Ml"d Cool
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* Each path only involves a feature at most once



Decision Tree Building: ID3 Algorithm

* An example decision tree from ID3

000000
000000

Outlook

Sunny Overcast Rain

00 000
C X 000 @
Temperature Wind
Hot Ml"d Cool Stror:AWeak
X @ C X 0000 @

* How about this tree, yielding perfect partition?



Overfitting

* Tree model can approximate any finite data by just
growing a leaf node for each instance

000000
000000
Outlook
Sunny Overcast Rain
00 0000
L X 000 @

Temperature Wind

Hot Mild Cool Stror:AWeak

e @ e 000 @




Decision Tree Training Objective

* Cost function of a tree T over training data
T

=Y NH(T)

where for the leaf node t
* H/T) is the empirical entropy

* N, is the instance number, N,, is the instance number of class k

Nig . Nig
Ht(T):—Z N log N,

* Training objective: find a tree to minimize the cost

IIllHC ZNth



Decision Tree Regularization

* Cost function over training data

where
* |T| is the number of leaf nodes of the tree T
* Ais the hyperparameter of regularization



Decision Tree Building: ID3 Algorithm

* An example decision tree from ID3

000000
000000

Outlook

Sunny Overcast Rain

00 000
C X 000 @
S e T
Temperature Wind Whether
Hot Mild Cool Stror:AWeak to Sp|lt
} this node?
0 @ C X \OOOO () J

* Calculate the cost function difference. C(T) =) N.H,(T)+ A|T|



Summary of ID3

A classic and straightforward algorithm of training
decision trees

* Work on discrete/categorical data
* One branch for each value/category of the feature

e Algorithm C4.5 is similar and more advanced to ID3
 Splitting the node according to information gain ratio

* Splitting branch number depends on the number of
different categorical values of the feature

* Might lead to very broad tree



CART Algorithm

e Classification and Regression Tree (CART)
* Proposed by Leo Breiman et al. in 1984

* Binary splitting (yes or

no for the splitting condition)

e Can work on continuous/numeric features
* Can repeatedly use the same feature (with different

splitting)

Condition 1

Yes

Condition 2

Prediction 3

Yemo

Prediction 1 Prediction 2



CART Algorithm

* Classification Tree
e Output the predicted

* Regression Tree
e Output the predicted

value class
Age > 20 Age > 20
Yes No Yes No
Gender=Male 2.8 Gender=Male dislike
Yes No Yes No
4.8 4.1 like dislike

For example: predict the user’s
rating to a movie

For example: predict whether the
user like a move



Regression Tree

Let the training dataset with continuous targets y
D = {(xhyl)’ (:C27y2)7 SRIE (.CUN,ZQIN)}

Suppose a regression tree has divided the space into M

regions R, R,, ..., R, with ¢, as the prediction for region R,
M

m=1
Loss function for (x; y.)

1

5(%‘ — f(x3))?

It is easy to see the optimal prediction for region mis

Cm = avg(yilzi € Rm)



Regression Tree

* How to find the optimal splitting regions?

* How to find the optimal splitting conditions?
* Defined by a threshold value s on variable j
* Lead to two regions

Ri1(j,s) = {z|]2\¥) < s} Ra(j, s) = {z|2\) > s}

* Training based on current splitting

min [min Z (y; —c1)* + H}:;Il Z (i — 62)2}

58 1 . .
ZEERl(],S) x€R2(378)

Cm = avg(y;|z; € Ry)



Regression Tree Algorithm

* INPUT: training data D
 OUTPUT: regression tree f(x)

* Repeat until stop condition satisfied:
e Find the optimal splitting (j,s)

: : N2 : )2
min [Hgn Y., wi-a) +min Y. Wi—c) }
x€R1(3,s) r€R2(j,s)

* Calculate the prediction value of the new region R,, R,
Cm = avg(yilTi € Rin)

* Return the regression tree
M

f(x) = Z cml(x € Ry)

m=1



Regression Tree Algorithm

* How to efficiently find the optimal splitting (j,s)?
min [min Z (y; — ¢1)? + min Z (y; — 62)2}

71,8 C1 . (6] .
z€R1(j,5) 2€R3(j,5)

* Sort the data ascendingly according to feature j value

Splitting threshold s
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Regression Tree Algorithm

* How to efficiently find the optimal splitting (j,s)?
min [min Z (y; — ¢1)? + min Z (y; — 02)2}

J»S c1 . c2 .
zE€R1 (j,5) r€R>(j,5)

* Sort the data ascendingly according to feature j value

Splitting threshold s

Yi W Y3 Va4 Ys Vs l Y7 Ys Vo Vo VY11 Y12
90 900 0090 =) O
small j value large j value

6 12

s =~ (§0) - (F5om) 0



Regression Tree Algorithm

* How to efficiently find the optimal splitting (j,s)?
min [n%in Y (wi-a)+min > (g @)2}

JS ) c2 )
z€R1(j,5) 2€R3(j,5)

* Sort the data ascendingly according to feature j value

Splitting threshold s
Vi W Y3 V4 Vs Vs Y7 1 Ys Y9 Vo Vi1 Y12
P P o—0-0—0 P
o—©@ o000 @ @ @ L

small j value large j value

lossg.7 = _%(Zyi>2 . 1(2%)2 +Cc * Maintain and online update in O(1) Time

Sum(R;) Zyz Sum(Rz) = Z Yi
i=k+1

IOSS7’8=—%(iyi>2_%(zyi)2—|—c .
i=1

= O(n) in total for checking one feature



Classification Tree

* The training dataset with categorical targets y
D = {(331, y1)7 (332, y2)7 SRIE (.CUN,yN>}

e Suppose a regression tree has divided the space into M
regions R, R,, ..., R, with ¢, as the prediction for region R,
M

f@) =) eml(z € Rp)

m=1
* Here the leaf node prediction c,, is the category distribution
ém — {P(ykpjz S Rm)}kzl...K

* ¢, is solved by counting categories

Ck # instances in leaf m with cat k

Cm # instances in leaf m



Classification Tree

* How to find the optimal splitting regions?

* How to find the optimal splitting conditions?

* For continuous feature j, defined by a threshold value s
* Yield two regions

Ri(j,s) = {x]|z) <5} Ra(j,s) = {x]z() > s}

* For categorical feature j, select a category a
* Yield two regions

Ri(j,s) = {zlz¥) =a}  Ra(j,s) = {az") # a}

* How to select? Argmin Gini impurity.



Ginl Impurity

* In classification problem
* suppose there are K classes
* let p, be the probability of an instance with the class k
* the Gini impurity index is

K K
Gini(p) = > pr(1—pr) =1-) pj
h=1 k=1

* Given the training dataset D, the Gini impurity is

K

.. B |D*|\2  #instances in D with cat k
Gini(D) =1 - ; ( | D] ) # instances in D



Ginl Impurity

* For binary classification problem
* let p be the probability of an instance with the class 1
* Gini impurity is Gini(p) = 2p(1 — p)
* Entropyis H(p) = —plogp — (1 — p)log(1l — p)

0.6
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representing
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Ginl Impurity

* With a categorical feature j and one of its
categories a
* The two split regions R, R,

Ri(j,a) = {zla? =a}  Ro(j,0) = {29 # )
Dl ={@yl? =a}  D?={(z,)a? #a}

* The Gini impurity of feature j with the selected category
a

Dil oy, Pil e
Gini(Dj,j = a) = ID]-I Gini(D;) + ﬁ(}ini(pj)
J J



Classification Tree Algorithm

* INPUT: training data D
 OUTPUT: classification tree f(x) e

2. Gini impurity is small

* Repeat until|stop condition satisfied: | 3. Nomore feature
* Find the optimal splitting (j,a)
min Gini(D;,j = a)

J,a

* Calculate the prediction distribution of the new region R,, R,

em = {P(yg|xi € Rm) }i=1.. K

e Return the classification tree
M

f(x) = Z Eml(x € Ry)

m=1



Classification Tree Output

* Class label output
* Output the class with the highest conditional probability

M
f(x) = argmax Z I(x € R,,)P(yx|z; € Rpy)
Yk =1
* Probabilistic distribution output

M

f(x) = Z cml(x € Ry)

m=1

em = {P(yg|xi € Rm) }i=1.. K



Converting a Tree to Rules

Age > 20
Yes No
Gender=Male 2.8
Yes No
4.8 4.1

For example: predict the
user’s rating to a movie

-—)

IF Age > 20:
IF Gender == Male:
return 4.8
ELSE:
return 4.1
ELSE:
return 2.8

Decision tree model is easy to be
visualized, explained and debugged.



[ ) f [ ]
Learning Model Comparison

Characteristic Neural SVM| Trees | MARS  k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A

[Table 10.3 from Hastie et al. Elements of Statistical Learning, 2nd Edition]



