2018 CS420 Machine Learning, Lecture 4

Neural Networks

Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Breaking News of Al in 2016

• AlphaGo wins Lee Sedol (4-1)

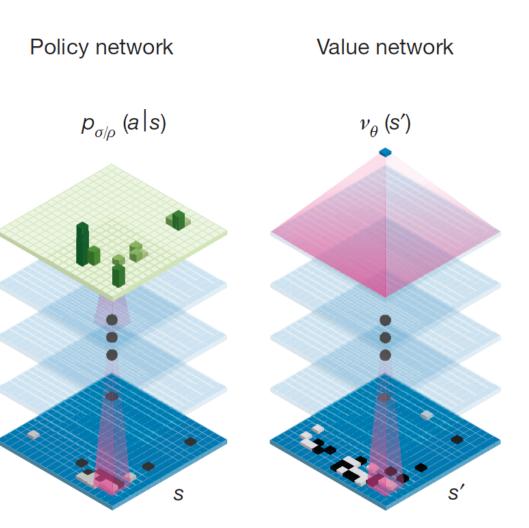
https://deepmind.com/research/alphago/

Rank	Name	<u>የ</u>	F1ag	E1o
1	<u>Ke Jie</u>	\$	•0	3628
2	<u>AlphaGo</u>			3598
3	<u>Park Junghwan</u>	\$:0;	3585
4	<u>Tuo Jiaxi</u>	\$	*)	3535
5	<u>Mi Yuting</u>	\$	*)	3534
6	<u>Iyama Yuta</u>	\$	٠	3525
7	<u>Shi Yue</u>	\$	*)	3522
8	<u>Lee Sedol</u>	\$:•:	3521
9	<u>Zhou Ruiyang</u>	\$	*)	3517
10	<u>Shin Jinseo</u>	\$:•:	3503
11	<u>Chen Yaoye</u>	\$	*)	3495
12	<u>Lian Xiao</u>	\$	*)	3493
13	<u>Tan Xiao</u>	\$	*)	3489
14	<u>Kim Jiseok</u>	\$:•:	3489
15	<u>Choi Cheolhan</u>	\$:•:	3482
16	<u>Park Yeonghun</u>	\$:•:	3482
17	<u>Gu Zihao</u>	\$	•)	3468
18	<u>Fan Yunruo</u>	\$	*)	3468
19	<u>Huang Yunsong</u>	\$	•)	3467
	<u>Li Qincheng</u>	\$	•)	3465
21	<u>Tang Weixing</u>	\$	•)	3461
22	<u>Lee Donghoon</u>	\$:•:	3460
23	<u>Lee Yeongkyu</u>	\$:•:	3459
24	<u>Fan Tingyu</u>	\$	•0	3459
25	Tong Mengcheng	\$	•0	3447
26	<u>Kang Dongyun</u>	\$:•:	3442
27	<u>¥ang Xi</u>	\$	*)	3439
	<u>Weon Seongjin</u>	\$:•:	3439
29	<u>Yang Dingxin</u>	\$	*)	3439
30	<u>Gu Li</u>	\$	*)	3436

https://www.goratings.org/

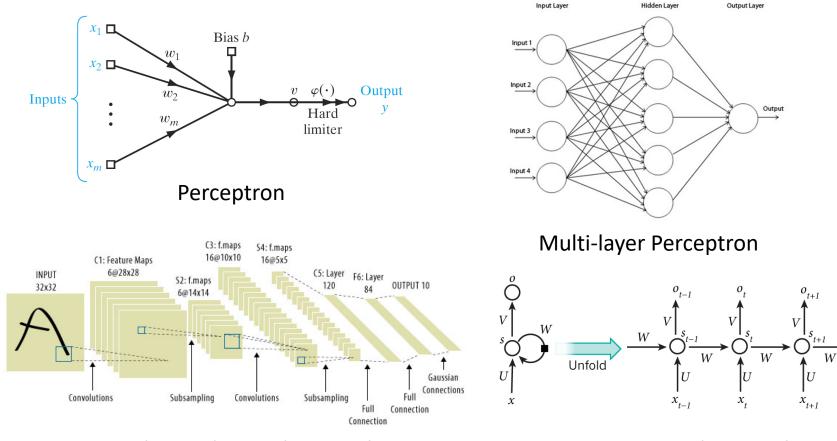
Machine Learning in AlphaGo

- Policy Network
 - Supervised Learning
 - Predict what is the best next human move
 - Reinforcement Learning
 - Learning to select the next move to maximize the winning rate
- Value Network
 - Expectation of winning given the board state
- Implemented by (deep) neural networks



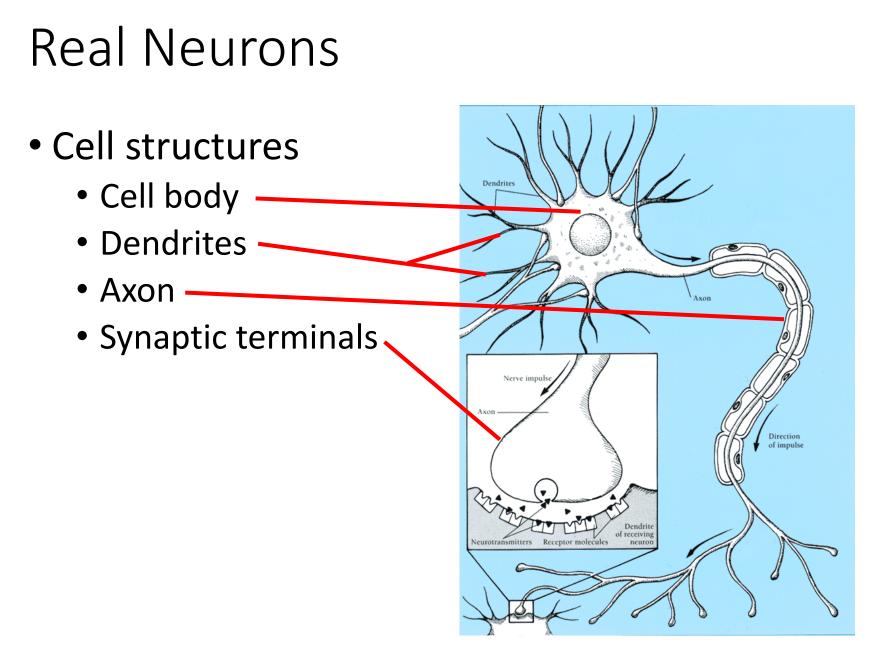
Neural Networks

Neural networks are the basis of deep learning



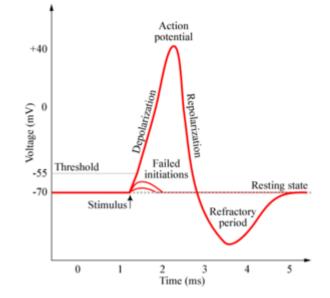
Convolutional Neural Network

Recurrent Neural Network



Neural Communication

- Electrical potential across cell membrane exhibits spikes called action potentials.
- Spike originates in cell body, travels down axon, and causes synaptic terminals to release neurotransmitters.
- Chemical diffuses across synapse to dendrites of other neurons.
- Neurotransmitters can be excitatory or inhibitory.
- If net input of neurotransmitters to a neuron from other neurons is excitatory and exceeds some threshold, it fires an action potential.



Real Neural Learning

- Synapses change size and strength with experience.
- Hebbian learning: When two connected neurons are firing at the same time, the strength of the synapse between them increases.
- "Neurons that fire together, wire together."
- These motivate the research of artificial neural nets

Brief History of Artificial Neural Nets

- The First wave
 - 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model
 - 1958 Rosenblatt introduced the simple single layer networks now called Perceptrons.
 - 1969 Minsky and Papert's book Perceptrons demonstrated the limitation of single layer perceptrons, and almost the whole field went into hibernation.
- The Second wave
 - 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was rediscovered and the whole field took off again.
- The Third wave
 - 2006 Deep (neural networks) Learning gains popularity and
 - 2012 made significant break-through in many applications.

Artificial Neuron Model

- Model network as a graph with cells as nodes and synaptic connections as weighted edges from node *i* to node *j*, w_{ii}
- Model net input to cell as

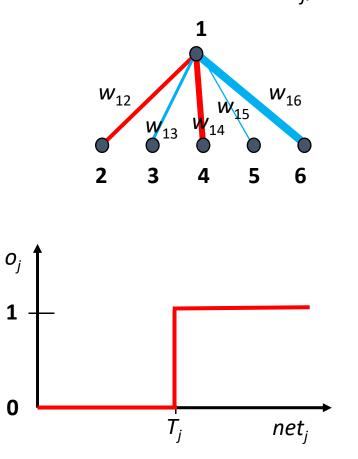
$$\operatorname{net}_j = \sum_i w_{ji} o_i$$

• Cell output is

$$o_j = \begin{cases} 0 & \text{if } \operatorname{net}_j < T_j \\ 1 & \text{if } \operatorname{net}_j \ge T_j \end{cases}$$

(*T_i* is threshold for unit *j*)

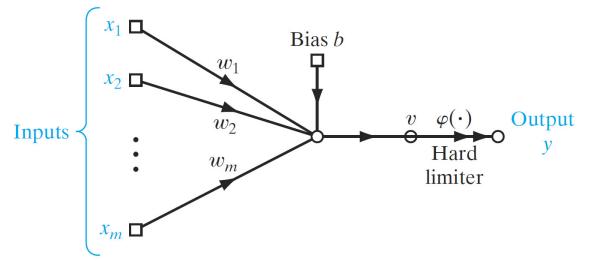
McCulloch and Pitts [1943]



Slides credit: Ray Mooney

Perceptron Model

Rosenblatt's single layer perceptron [1958]



• Prediction

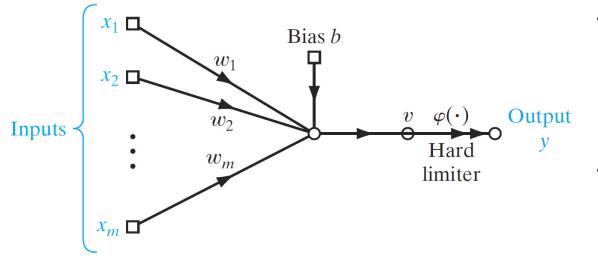
Activation function

$$\hat{y} = \varphi \Big(\sum_{i=1}^{m} w_i x_i + b \Big) \qquad \varphi(z) = \begin{cases} 1 & \text{if } z \ge 0\\ -1 & \text{otherwise} \end{cases}$$

- Rosenblatt [1958] further proposed the *perceptron* as the first model for learning with a teacher (i.e., supervised learning)
- Focused on how to find appropriate weights w_m for two-class classification task
 - y = 1: class one
 - y = -1: class two

Training Perceptron

• Rosenblatt's single layer perceptron [1958]



• Prediction

Activation function

$$\hat{y} = \varphi \Big(\sum_{i=1}^{m} w_i x_i + b \Big) \qquad \varphi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

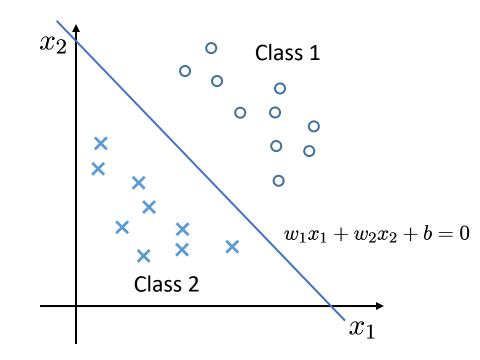
• Training

$$w_i = w_i + \eta (y - \hat{y}) x_i$$
$$b = b + \eta (y - \hat{y})$$

- Equivalent to rules:
 - If output is correct, do nothing
 - If output is high, lower weights on positive inputs
 - If output is low, increase weights on active inputs

Properties of Perceptron

• Rosenblatt's single layer perceptron [1958]

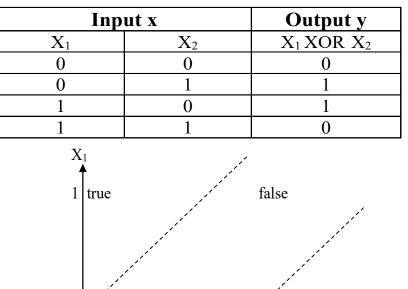


- Rosenblatt proved the convergence of a learning algorithm if two classes said to be linearly separable (i.e., patterns that lie on opposite sides of a hyperplane)
- Many people hoped that such a machine could be the basis for artificial intelligence

Properties of Perceptron

• The XOR problem

false



XOR is non linearly separable: These two classes (true and false) cannot be separated using a line.

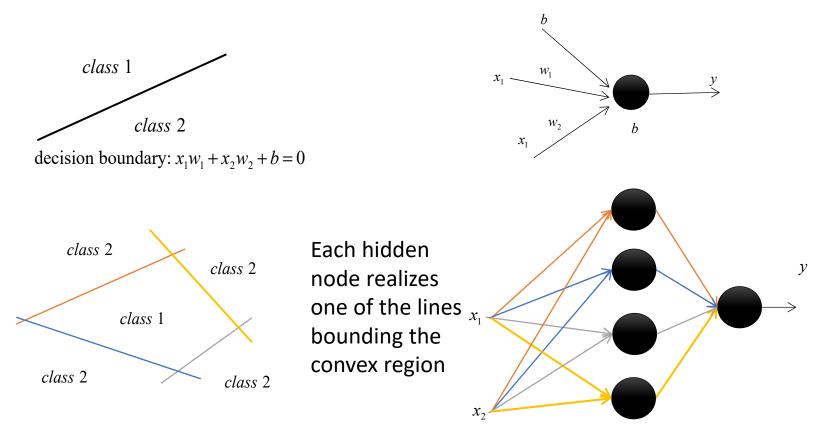
true

1

 \mathbf{X}_2

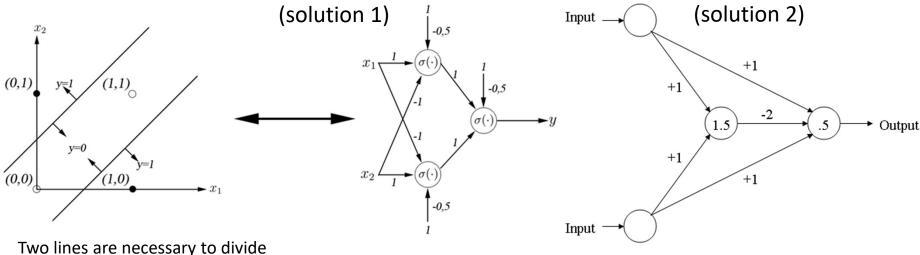
- However, Minsky and Papert [1969] showed that some rather elementary computations, such as *XOR* problem, could not be done by Rosenblatt's one-layer perceptron
- However Rosenblatt believed the limitations could be overcome if more layers of units to be added, but no learning algorithm known to obtain the weights yet
- Due to the lack of learning algorithms people left the neural network paradigm for almost 20 years

 Adding hidden layer(s) (internal presentation) allows to learn a mapping that is not constrained by linearly separable



• But the solution is quite often not unique

Inp	Output y		
X1	X_2	X ₁ XOR X ₂	
0	0	0	
0	1	1	
1	0	1	
1	1	0	



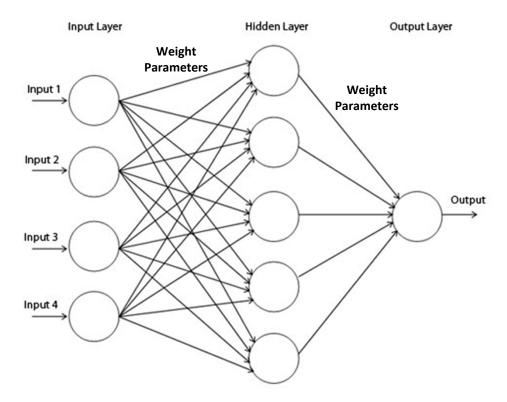
Two lines are necessary to divide the sample space accordingly

Sign activation function

The number in the circle is a threshold

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR148.pdf http://recognize-speech.com/basics/introduction-to-artificial-neural-networks

 Feedforward: massages move forward from the input nodes, through the hidden nodes (if any), and to the output nodes. There are no cycles or loops in the network



Two-layer feedforward neural network

Single / Multiple Layers of Calculation

• Single layer function

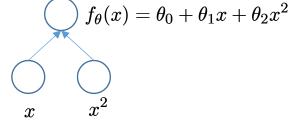
 $f_{\theta}(x) = \sigma(\theta_0 + \theta_1 x + \theta_2 x^2)$

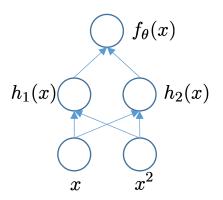
• Multiple layer function

$$h_1(x) = \tanh(\theta_0 + \theta_1 x + \theta_2 x^2)$$

$$h_2(x) = \tanh(\theta_3 + \theta_4 x + \theta_5 x^2)$$

$$f_{\theta}(x) = f_{\theta}(h_1(x), h_2(x)) = \sigma(\theta_6 + \theta_7 h_1 + \theta_8 h_2)$$





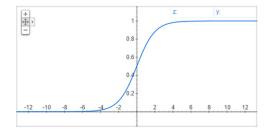
• With non-linear activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

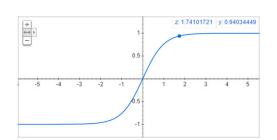
Non-linear Activation Functions

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

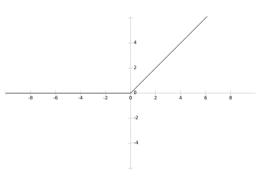


• Tanh $\tanh(z) = \frac{1 - e^{-2z}}{1 + e^{-2z}}$



• Rectified Linear Unit (ReLU)

 $\operatorname{ReLU}(z) = \max(0, z)$



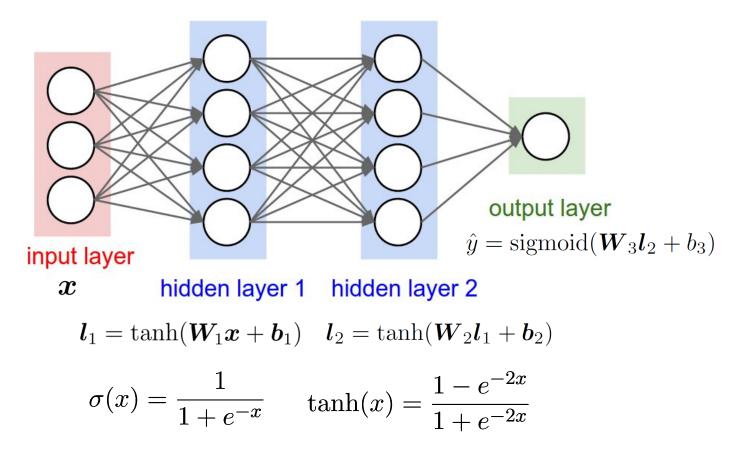
Universal Approximation Theorem

- A feed-forward network with a single hidden layer containing a finite number of neurons (i.e., a multilayer perceptron), can approximate continuous functions
 - on compact subsets of \mathbb{R}^n
 - under mild assumptions on the activation function
 - Such as Sigmoid, Tanh and ReLU

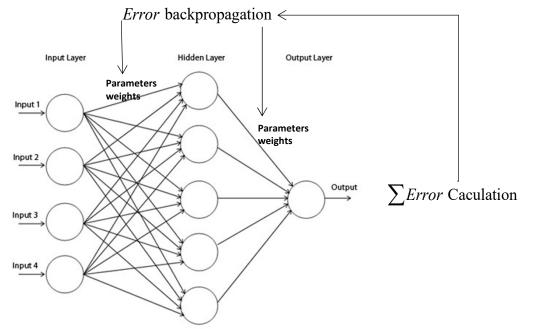
[Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." *Neural networks* 2.5 (1989): 359-366.]

Universal Approximation

• Multi-layer perceptron approximate any continuous functions on compact subset of \mathbb{R}^n

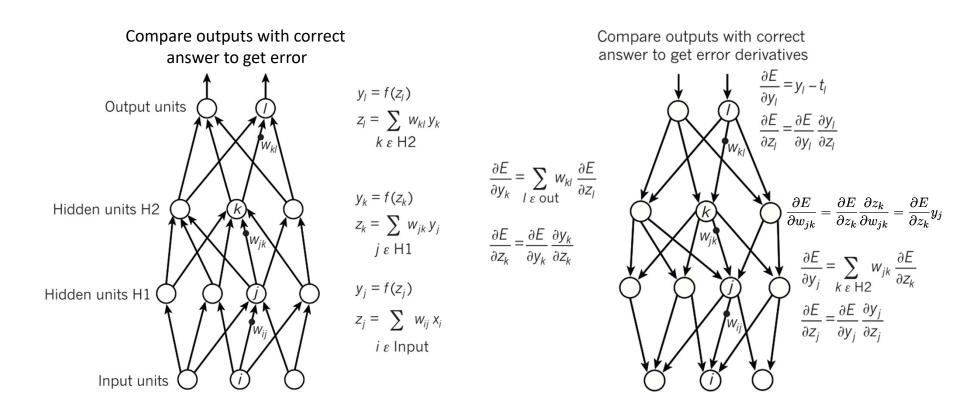


- One of the efficient algorithms for multi-layer neural networks is the *Backpropagation* algorithm
- It was re-introduced in 1986 and Neural Networks regained the popularity



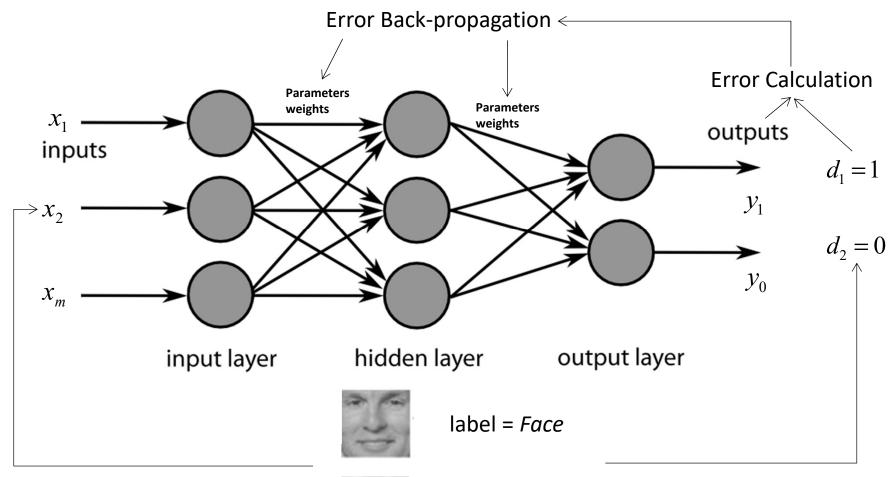
Note: *backpropagation* appears to be found by Werbos [1974]; and then independently rediscovered around 1985 by Rumelhart, Hinton, and Williams [1986] and by Parker [1985]

Learning NN by Back-Propagation



[LeCun, Bengio and Hinton. Deep Learning. Nature 2015.]

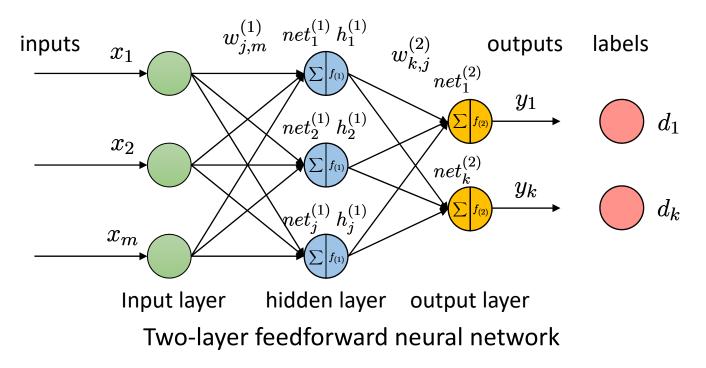
Learning NN by Back-Propagation



label = *no face*

Training instances...

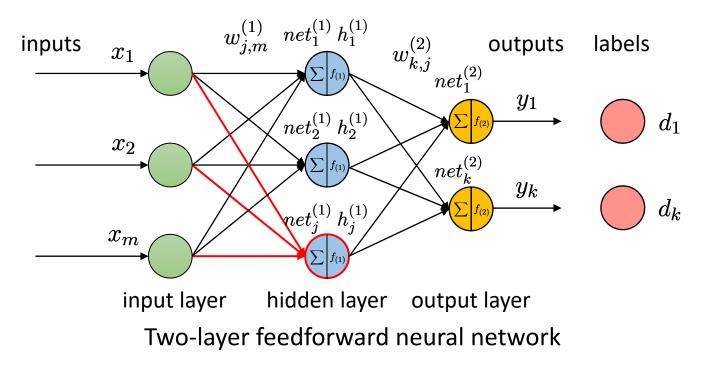
Make a Prediction



Feed-forward prediction:

where
$$net_{j}^{(1)} = \sum_{m} w_{j,m}^{(1)} x_{m}$$
 $net_{k}^{(2)} = \sum_{j} w_{k,j}^{(2)} h_{j}^{(1)}$

Make a Prediction



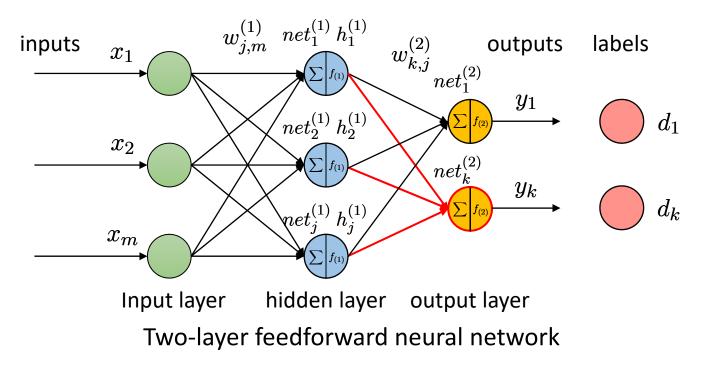
Feed-forward prediction:

$$\begin{aligned} & h_{j}^{(1)} = f_{(1)}(net_{j}^{(1)}) = f_{(1)}(\sum_{m} w_{j,m}^{(1)} x_{m}) \quad y_{k} = f_{(2)}(net_{k}^{(2)}) = f_{(2)}(\sum_{j} w_{k,j}^{(1)} h_{j}^{(1)}) \\ & \longrightarrow \quad h_{j}^{(1)} \longrightarrow \quad h_{j}^{(1)} \longrightarrow \quad y_{k} \\ & \text{where} \qquad net_{j}^{(1)} = \sum_{j} w_{j,m}^{(1)} x_{m} \qquad \qquad net_{k}^{(2)} = \sum_{j} w_{k,j}^{(2)} h_{j}^{(1)} \end{aligned}$$

j

 \boldsymbol{m}

Make a Prediction



Feed-forward prediction:

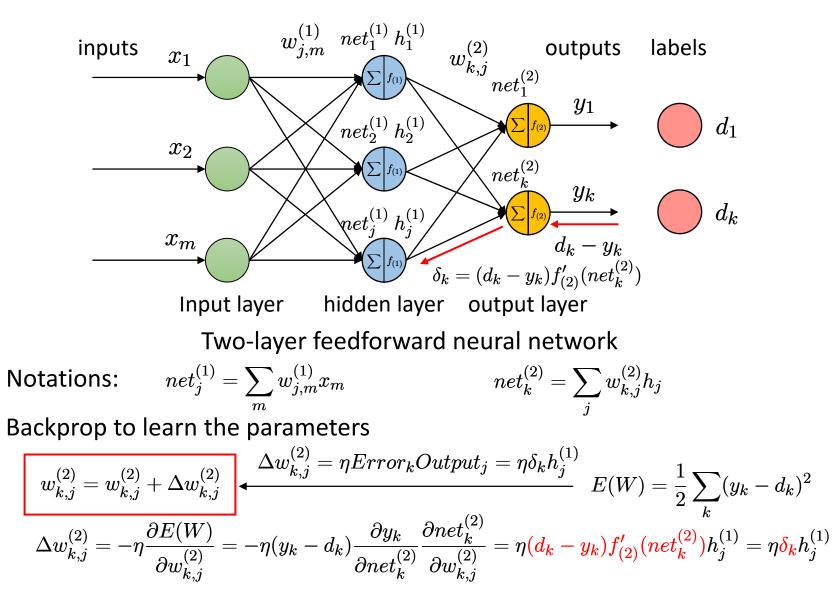
$$x = (x_1, \dots, x_m) \xrightarrow{h_j^{(1)} = f_{(1)}(net_j^{(1)}) = f_{(1)}(\sum_m w_{j,m}^{(1)} x_m)}_{m} y_k = f_{(2)}(net_k^{(2)}) = f_{(2)}(\sum_j w_{k,j}^{(1)} h_j^{(1)})$$

$$y_k$$
where
$$net_j^{(1)} = \sum_m w_{j,m}^{(1)} x_m$$

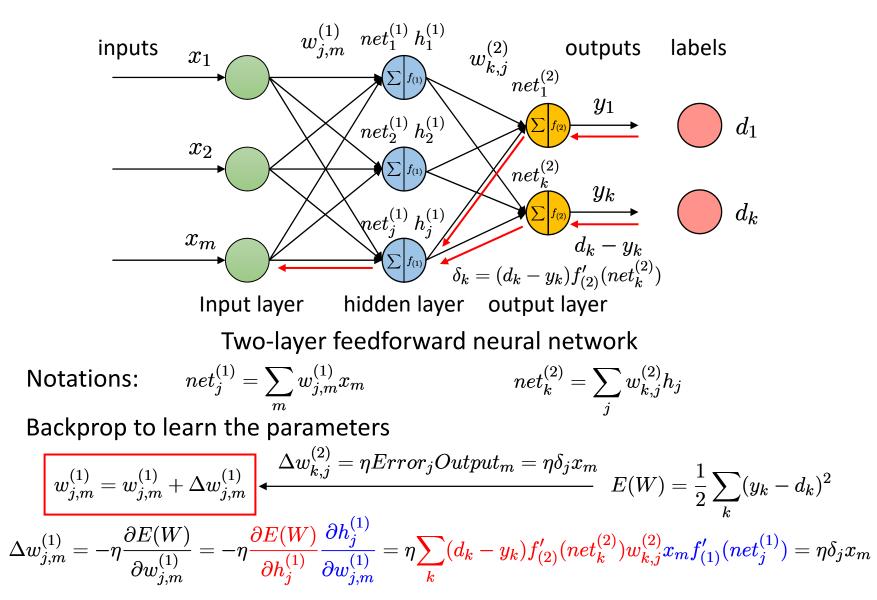
$$net_k^{(2)} = \sum_j w_{k,j}^{(2)} h_j^{(1)}$$

m

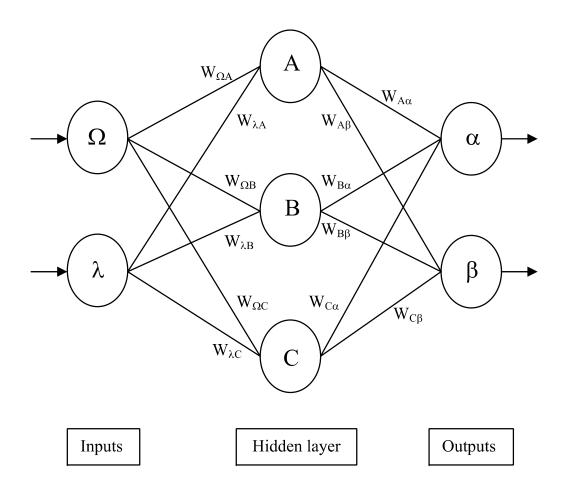
When Backprop/Learn Parameters



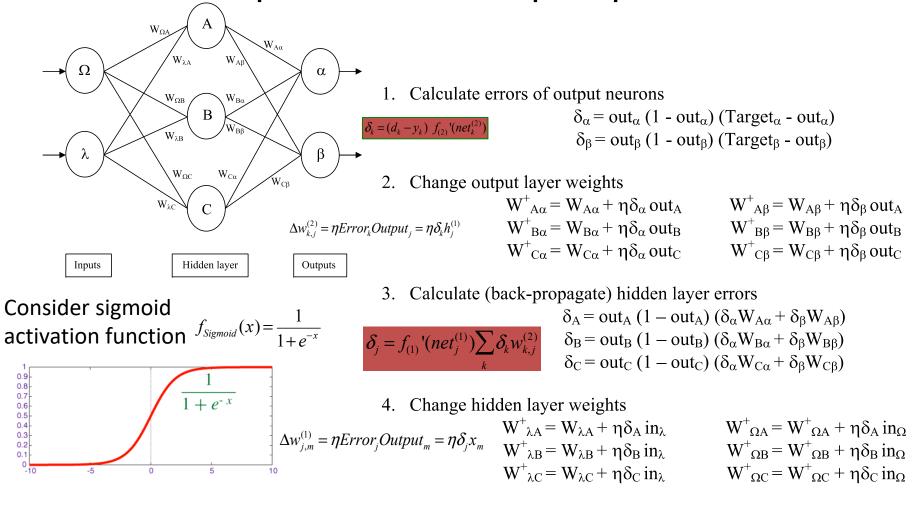
When Backprop/Learn Parameters



An example for Backprop



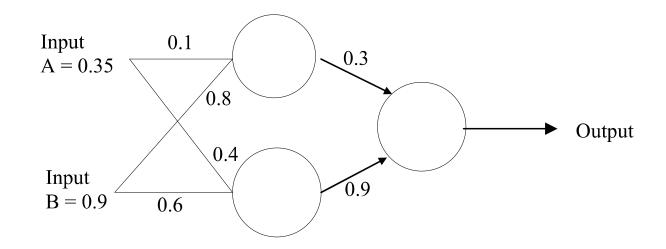
An example for Backprop



 $f'_{Sigmoid}(x) = f_{Sigmoid}(x)(1 - f_{Sigmoid}(x))$

Let us do some calculation

Consider the simple network below:



Assume that the neurons have a Sigmoid activation function and

- 1. Perform a forward pass on the network
- 2. Perform a reverse pass (training) once (target = 0.5)
- 3. Perform a further forward pass and comment on the result

Let us do some calculation

Answer:

(i)

Input to top neuron = (0.35x0.1)+(0.9x0.8)=0.755. Out = 0.68. Input to bottom neuron = (0.9x0.6)+(0.35x0.4) = 0.68. Out = 0.6637. Input to final neuron = (0.3x0.68)+(0.9x0.6637) = 0.80133. Out = 0.69.

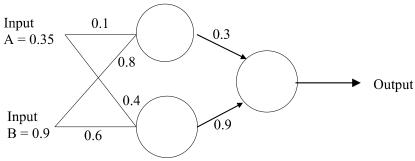
(ii) Output error $\delta = (t-0)(1-0)0 = (0.5-0.69)(1-0.69)0.69 = -0.0406.$

New weights for output layer $w1^+ = w1 + (\delta x \text{ input}) = 0.3 + (-0.0406x0.68) = 0.272392.$ $w2^+ = w2 + (\delta x \text{ input}) = 0.9 + (-0.0406x0.6637) = 0.87305.$

Errors for hidden layers:

 $\delta 1 = \delta x w 1 = -0.0406 x 0.272392 x (1-0)0 = -2.406x10^{-3}$ $\delta 2 = \delta x w 2 = -0.0406 x 0.87305 x (1-0)0 = -7.916x10^{-3}$

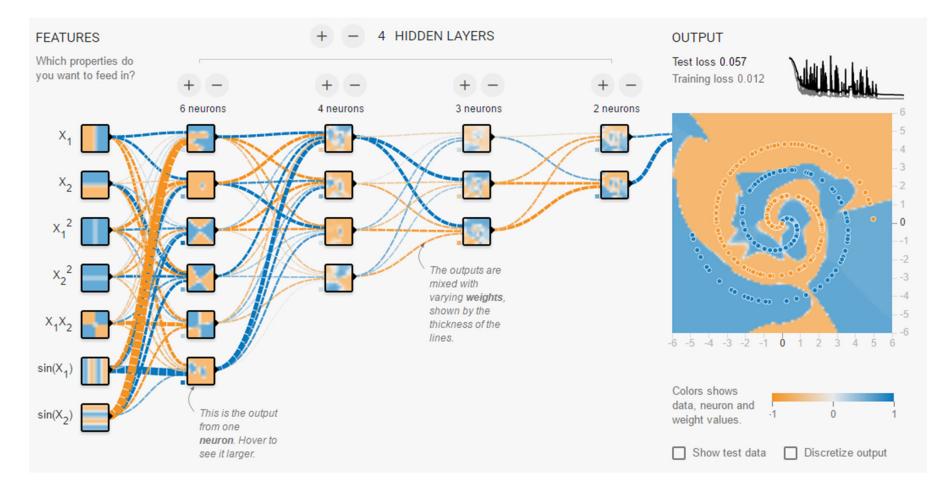
New hidden layer weights: $w3^{+}=0.1 + (-2.406 \times 10^{-3} \times 0.35) = 0.09916.$ $w4^{+} = 0.8 + (-2.406 \times 10^{-3} \times 0.9) = 0.7978.$ $w5^{+} = 0.4 + (-7.916 \times 10^{-3} \times 0.35) = 0.3972.$ $w6^{+} = 0.6 + (-7.916 \times 10^{-3} \times 0.9) = 0.5928.$



(iii)

Old error was -0.19. New error is -0.18205. Therefore error has reduced.

A demo from Google

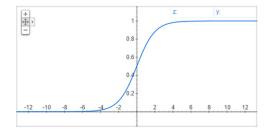


http://playground.tensorflow.org/

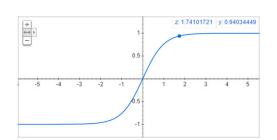
Non-linear Activation Functions

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

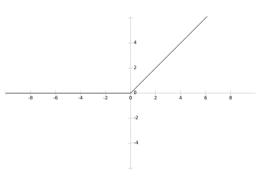


• Tanh $\tanh(z) = \frac{1 - e^{-2z}}{1 + e^{-2z}}$

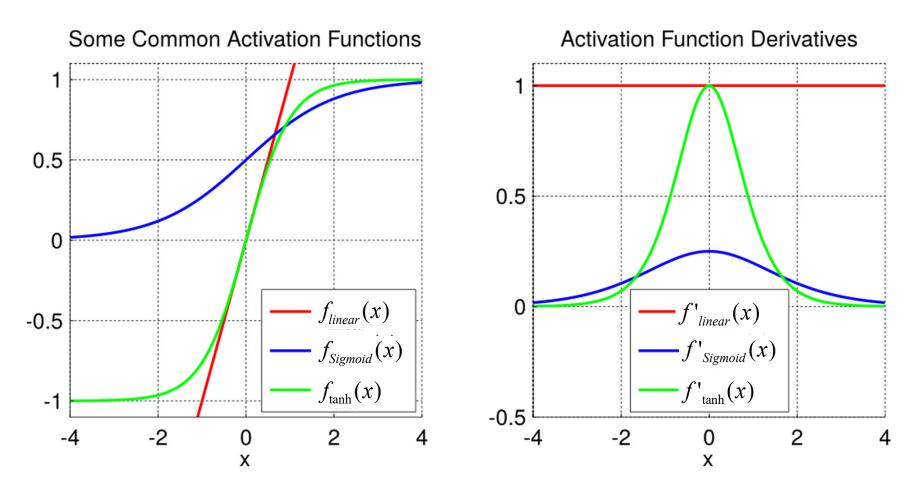


• Rectified Linear Unit (ReLU)

 $\operatorname{ReLU}(z) = \max(0, z)$



Active functions

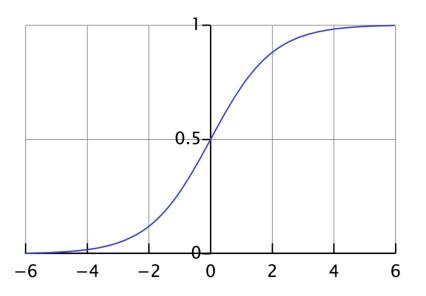


https://theclevermachine.wordpress.com/tag/tanh-function/

Activation functions

• Logistic Sigmoid:

$$f_{Sigmoid}(x) = \frac{1}{1 + e^{-x}}$$



Its derivative:

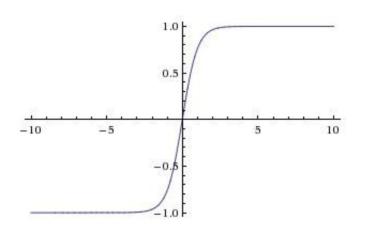
$$f'_{Sigmoid}(x) = f_{Sigmoid}(x)(1 - f_{Sigmoid}(x))$$

- Output range [0,1]
- Motivated by biological neurons and can be interpreted as the probability of an artificial neuron "firing" given its inputs
- However, saturated neurons make gradients vanished (why?)

Activation functions

Tanh function

$$f_{tanh}(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$



Its gradient:

$$f_{tanh}(x) = 1 - f_{tanh}(x)^2$$

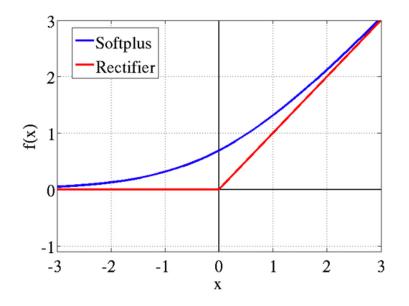
- Output range [-1,1]
- Thus strongly negative inputs to the tanh will map to negative outputs.
- Only zero-valued inputs are mapped to near-zero outputs
- These properties make the network less likely to get "stuck" during training

https://theclevermachine.wordpress.com/tag/tanh-function/

Active Functions

• ReLU (rectified linear unit)

 $f_{\text{ReLU}}(x) = \max(0, x)$



http://static.googleusercontent.com/media/research. google.com/en//pubs/archive/40811.pdf

- The derivative: $f_{\rm ReLU}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$
- Another version is Noise ReLU:

 $f_{\text{NoisyReLU}}(x) = \max(0, x + N(0, \delta(x)))$

 ReLU can be approximated by softplus function

 $f_{\text{Softplus}}(x) = \log(1 + e^x)$

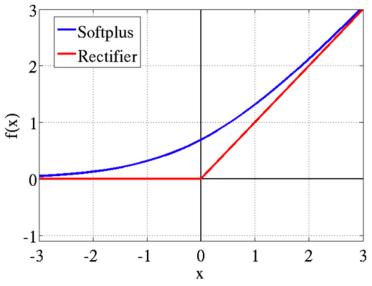
- ReLU gradient doesn't vanish as we increase x
- It can be used to model positive number
- It is fast as no need for computing the exponential function
- It eliminates the necessity to have a "pretraining" phase

Active Functions

- ReLU (rectified linear unit)
 - $f_{\text{ReLU}}(x) = \max(0, x)$

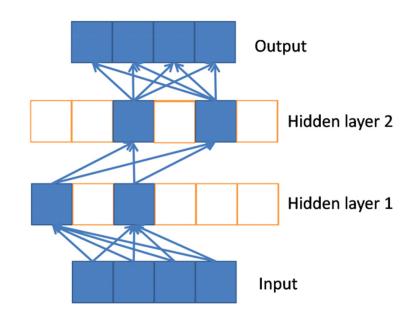
ReLU can be approximated by softplus function

 $f_{\text{Softplus}}(x) = \log(1 + e^x)$



Additional active functions: Leaky ReLU, Exponential LU, Maxout etc

- The only non-linearity comes from the path selection with individual neurons being active or not
- It allows sparse representations:
 - for a given input only a subset of neurons are active



Sparse propagation of activations and gradients

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

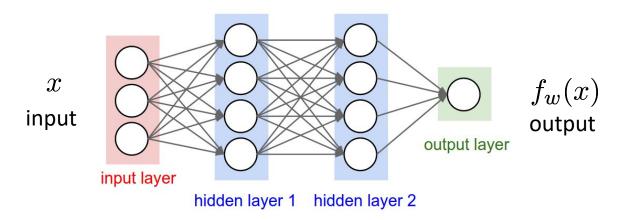
Error/Loss function

- Recall stochastic gradient descent
 - Update from a randomly picked example (but in practice do a batch update)

$$w = w - \eta \frac{\partial \mathcal{L}(w)}{\partial w}$$

• Squared error loss for one binary output:

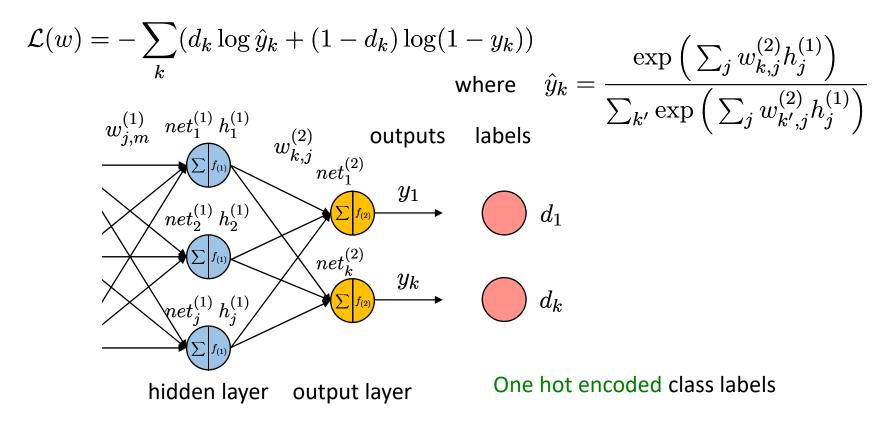
$$\mathcal{L}(w) = \frac{1}{2}(y - f_w(x))^2$$



Error/Loss function

Softmax (cross-entropy loss) for multiple classes

(Class labels follow multinomial distribution)



Advanced Topic of this Lecture

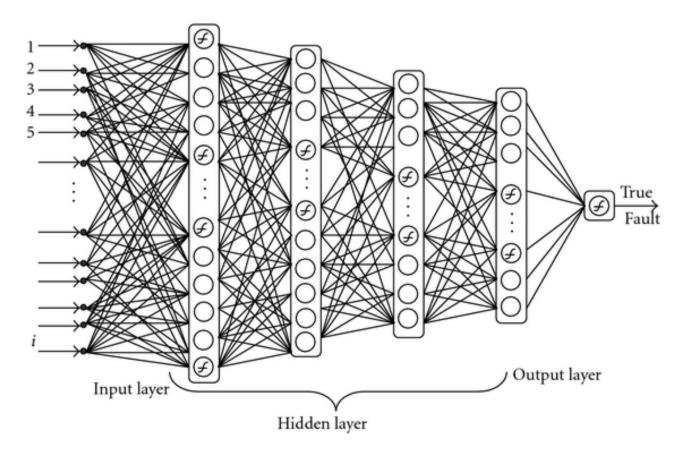
Deep Learning

As a prologue of the DL Course in the next semester

What is Deep Learning

- Deep learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level.
- Mostly implemented via neural networks

Deep Neural Network (DNN)



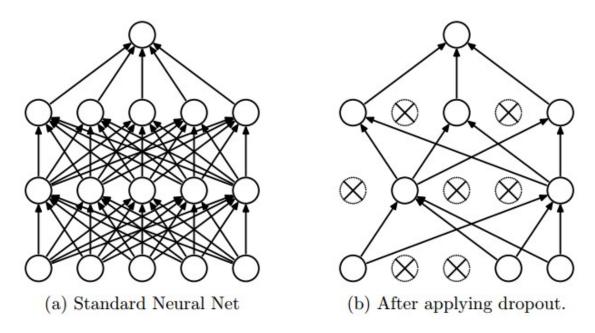
Multi-layer perceptron with many hidden layers

Difficulty of Training Deep Nets

- Lack of big data
 - Now we have a lot of big data
- Lack of computational resources
 - Now we have GPUs and HPCs
- Easy to get into a (bad) local minimum
 - Now we use pre-training techniques & various optimization algorithms
- Gradient vanishing
 - Now we use ReLU
- Regularization
 - Now we use Dropout

Dropout

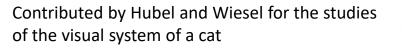
- Dropout randomly 'drops' units from a layer on each training step, creating 'sub-architectures' within the model.
- It can be viewed as a type of sampling of a smaller network within a larger network
- Prevent neural networks from overfitting

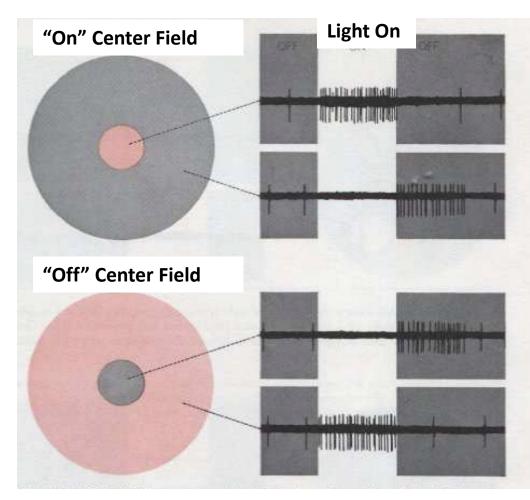


Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

Convolutional neural networks: Receptive field

- Receptive field: Neurons in the retina respond to light stimulus in restricted regions of the visual field
- Animal experiments on receptive fields of two retinal ganglion cells
 - Fields are circular areas of the retina
 - The cell (upper part) responds when the center is illuminated and the surround is darkened.
 - The cell (lower part) responds when the center is darkened and the surround is illuminated.
 - Both cells give on- and offresponses when both center and surround are illuminated, but neither response is as strong as when only center or surround is illuminated





Hubel D.H.: The Visual Cortex of the Brain Sci Amer 209:54-62, 1963

Convolutional neural networks

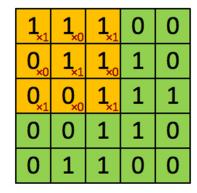
- Sparse connectivity by local correlation
 - Filter: the input of a hidden unit in layer m are from a subset of units in layer m-1 that have spatially connected receptive fields

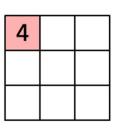
Shared weights

each filter is replicated across the entire visual field. These replicated units share the same weights and form a feature map. 1-d case
 m layer
 m-1 layer

х

2-d case (subscripts are weights)





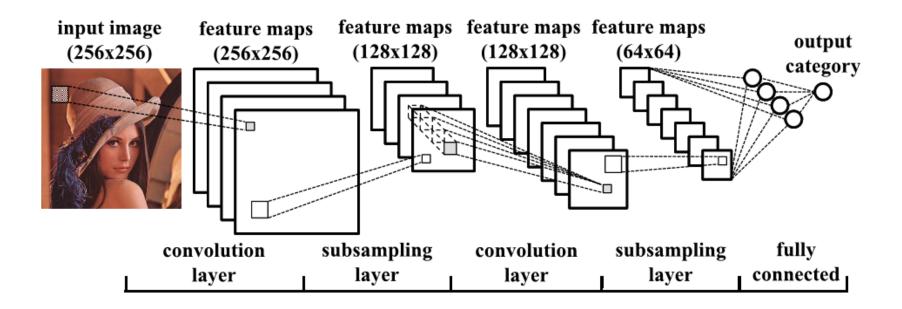
m-1 layer

one filter at m layer

edges that have the same color have the same weight

http://deeplearning.net/tutorial/lenet.html

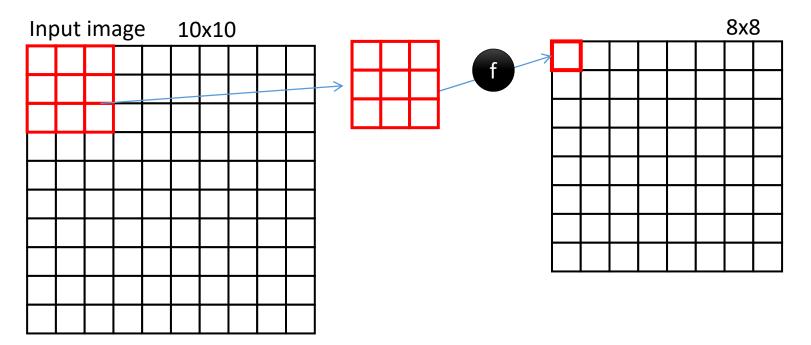
Convolutional Neural Network (CNN)

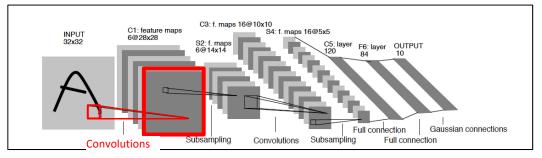


[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11) 1998]

Convolution Layer

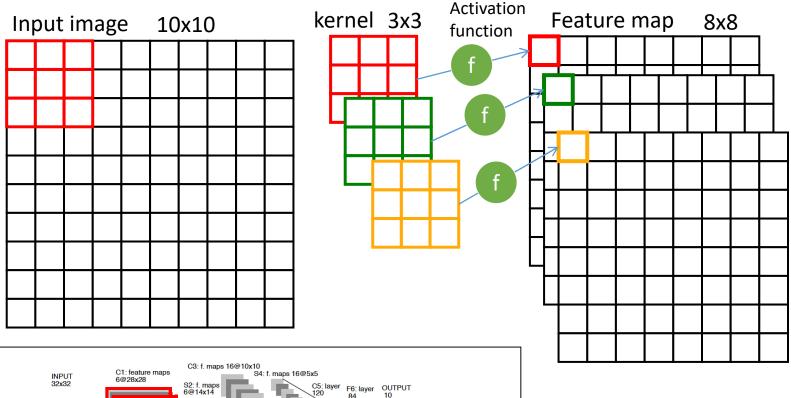
Example: a 10x10 input image with a 3x3 filter result in an 8x8 output image

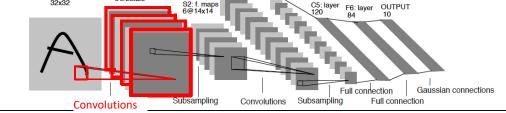




Convolution Layer

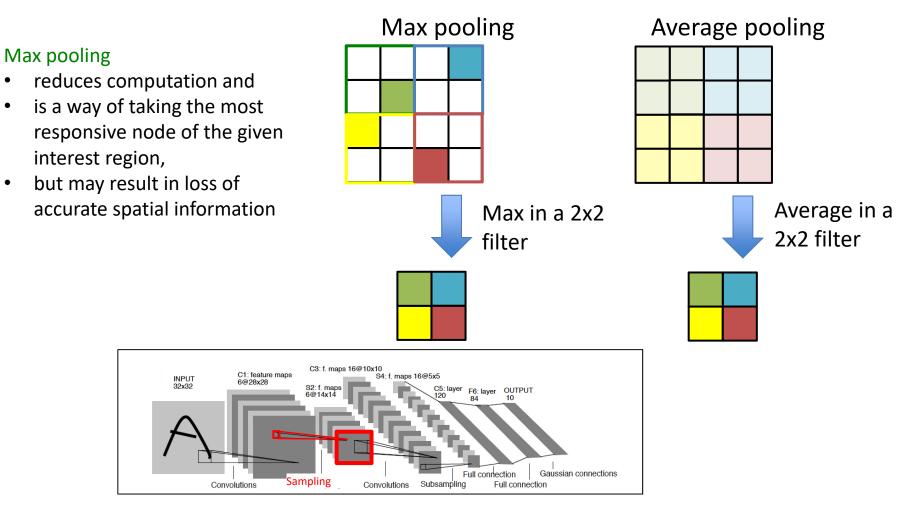
- Example: a 10x10 input image with a 3x3 filter result in an 8x8 output image
- 3 different filters (weights are different) lead to 3 8x8 out images





Pooling Subsampling Layer

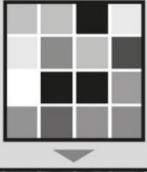
• Pooling: partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum or average value.



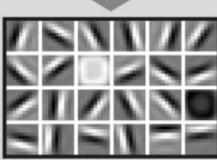
Use Case: Face Recognition

FACIAL RECOGNITION

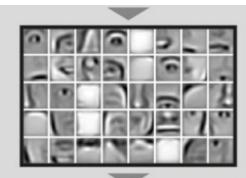
Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.



Layer 1: The computer identifies pixels of light and dark.



Layer 2: The computer learns to identify edges and simple shapes.



Layer 3: The computer learns to identify more complex shapes and objects.

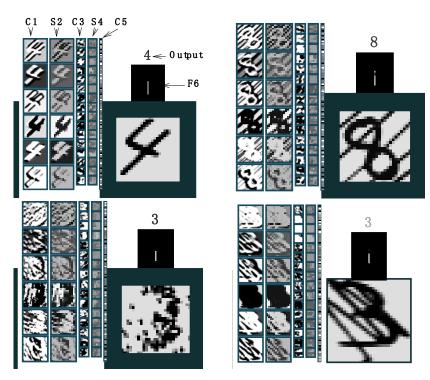
Layer 4: The computer learns which shapes and objects can be used to define a human face.

Use Case: Digits Recognition

• MNIST (handwritten digits) Dataset:

http://yann.lecun.com/exdb/mnist/

- 60k training and 10k test examples
- Test error rate 0.95%



4 4->6	3 3->5	ද 8->2	1 2->1	5 5->3	y 4->8	a 2->8	S 3->5	6 ->5	1 7->3
4 9->4	B 8->0	7 7->8	5 5->3	7 8->7	6 0->6	? 3->7	7 2->7	3 8->3	ç 9->4
8 8->2	5 5->3	4 ->8	م 3->9	U 6->0	9 9->8	9 4->9	6->1	C 9->4	1 9->1
₽ 9->4	9 2->0	L 6->1	3 3->5	> 3->2	9 9->5	b 6->0	6 ->0	ے 6->0	6 ->8
4 4->6	Z 7->3	4 9->4	4 4->6	2->7	9 9->7	4 4->3	9 9->4	9 9->4	4 9->4
7	4 4->2	4	5	4	6	8	3	3	و
] 1->5	g 9->8	6 ->3	ð 0->2	6->5	9->5	9 0->7	/ 1->6	y 4->9	1 2->1
2 2->8	8 ->5	4 ->9	7 7->2	7 7->2	/ 6->5	9 9->7	/ 6->1	6 5->6	5 5->0
4 4->9	a 2->8								

Total only 82 errors from LeNet-5. correct answer left and right is the machine answer.

More General Image Recognition

- ImageNet
 - Over 15M labeled high resolution images
 - Roughly 22K categories
 - Collected from web and labeled by Amazon Mechanical Turk
- The Image/scene classification challenge
 - Image/scene classification
 - Metric: Hit@5 error rate make 5 guesses about the image label

http://cognitiveseo.com/blog/6511/will-google-read-rank-images-near-future/

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

Leadertable (ImageNet image classification)

2015	ResNet (ILSV	RC'15) 3.57	Microsoft ResNet, a 152 layers network			
Year	Codename	Error (percent)	99.9% Conf Int			
2014	GoogLeNet	6.66	6.40 - 6.92	GoogLeNet, 22 layers network		
2014	VGG	7.32	7.05 - 7.60			
2014	MSRA	8.06	7.78 - 8.34			
2014	AHoward	8.11	7.83 - 8.39			
2014	DeeperVision	9.51	9.21 - 9.82			
2013	$\operatorname{Clarifai}^{\dagger}$	11.20	10.87 - 11.53			
2014	$CASIAWS^{\dagger}$	11.36	11.03 - 11.69			
2014	Trimps^\dagger	11.46	11.13 - 11.80			
2014	$\operatorname{Adobe}^\dagger$	11.58	11.25 - 11.91			
2013	Clarifai	11.74	11.41 - 12.08			
2013	NUS	12.95	12.60 - 13.30			
2013	ZF	13.51	13.14 - 13.87			
2013	AHoward	13.55	13.20 - 13.91			
2013	OverFeat	14.18	13.83 - 14.54			
2014	Orange^\dagger	14.80	14.43 - 15.17			
2012	$\operatorname{SuperVision}^\dagger$	15.32	14.94 - 15.69	LL of Toronto SuperVision o 7 lovers		
$\boldsymbol{2012}$	${f SuperVision}$	16.42	16.04 - 16.80	U. of Toronto, SuperVision, a 7 layers		
2012	ISI	26.17	25.71 - 26.65	network		
2012	VGG	26.98	26.53 - 27.43			
2012	XRCE	27.06	26.60 - 27.52			
2012	UvA	29.58	29.09 - 30.04			

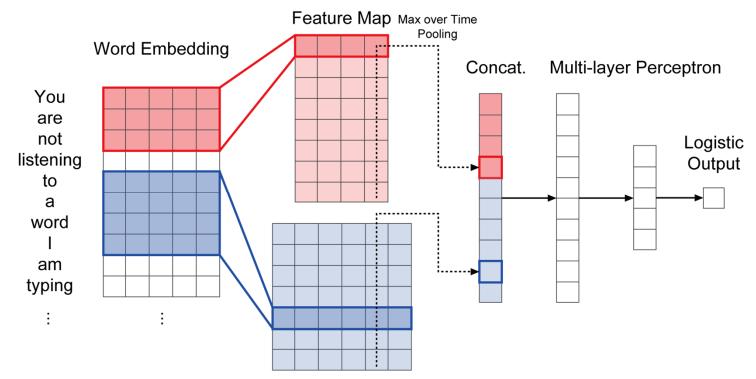
Unofficial human error is around 5.1% on a subset

Why human error still? When labeling, human raters judged whether it belongs to a class (binary classification); the challenge is a 1000-class classification problem.

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/)

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

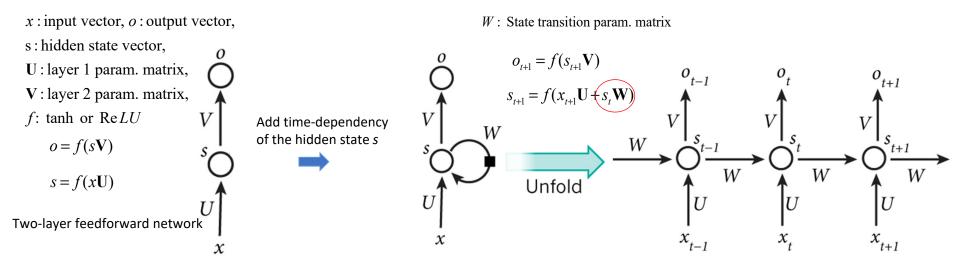
Use Case: Text Classification



- Word embedding: map each word to a *k*-dimensional dense vector
- CNN kernel: *n* x *k* matrix to explore the neighbor *k* words' patterns
- Max-over-time pooling: find the most salient pattern from the text for each kernel
- MLP: further feature interaction and distill high-level patterns [Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

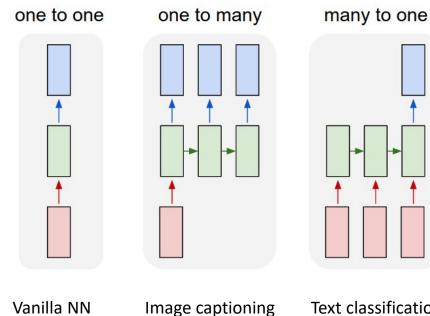
Recurrent Neural Network (RNN)

- To model sequential data
 - Text
 - Time series
- Trained by Back-Propagation Through Time (BPTT)



[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

Different RNNs

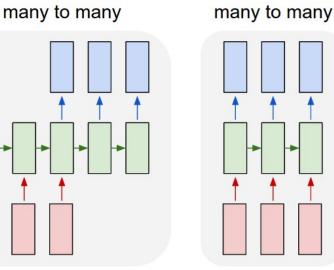


Text generation

Text classification Sentiment analysis

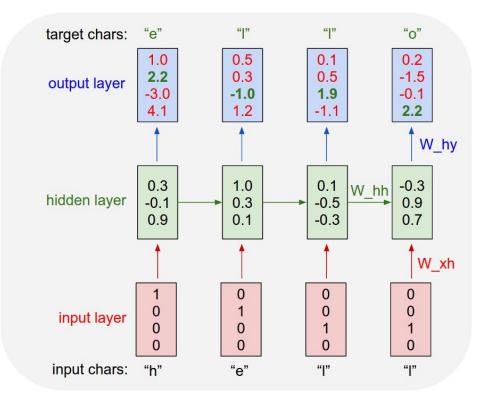
Machine translation Dialogue system Stock price estimation Video frame classification

- Different architecture for various tasks
- Strongly recommend Andrej Karpathy's blog
 - http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Use Case: Language Model

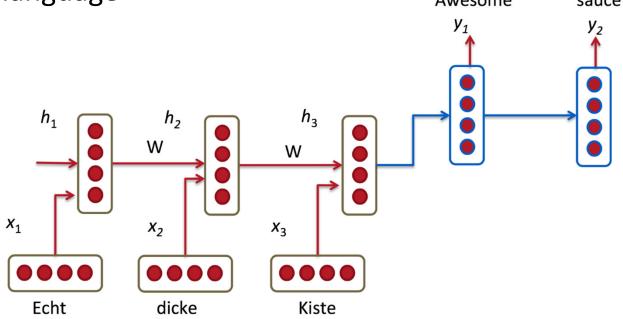
- Word-level or even character-level language model
 - Given previous words/characters, predict the next



[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]

Use Case: Machine Translation

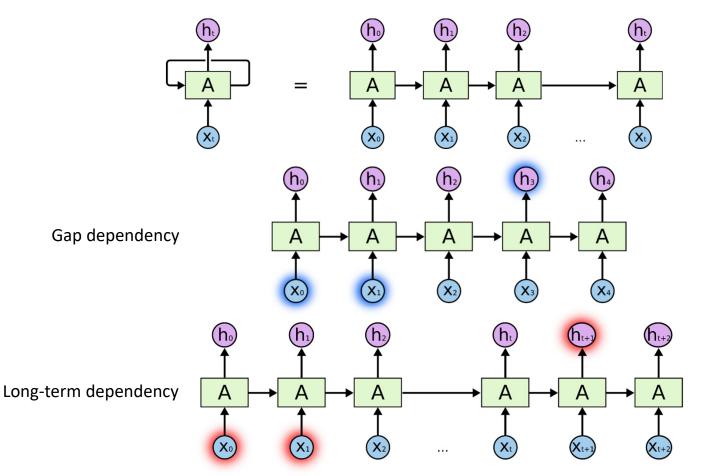
- Encode/decode RNN
 - First, encode the input sentence (into a vector e.g. h_3)



[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

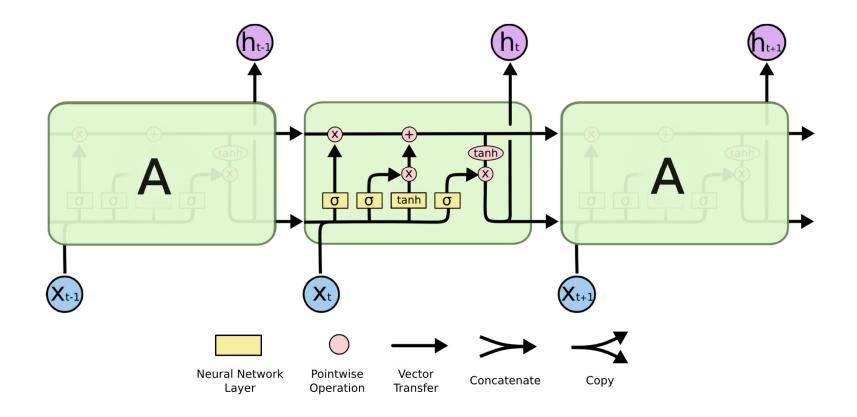
Problem of RNN

• Problem: RNN cannot nicely leverage the early information



[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

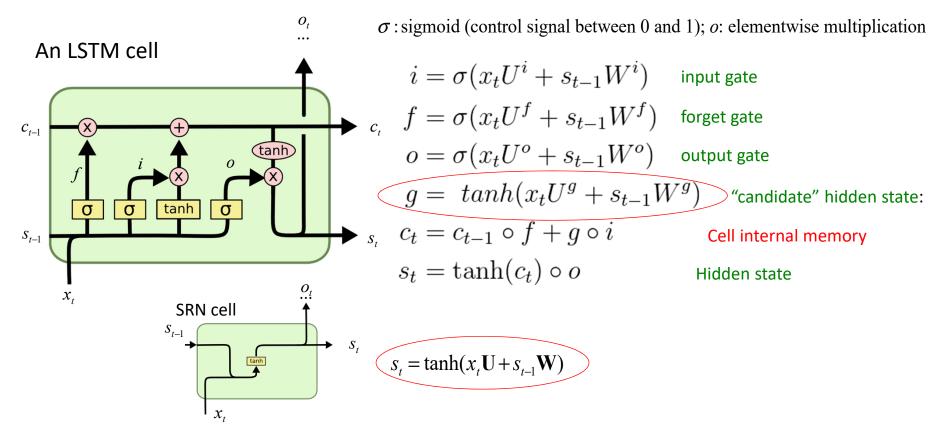
Long Short-Term Memory (LSTM)



[http://colah.github.io/posts/2015-08-Understanding-LSTMs/] [Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

LSTM Cell

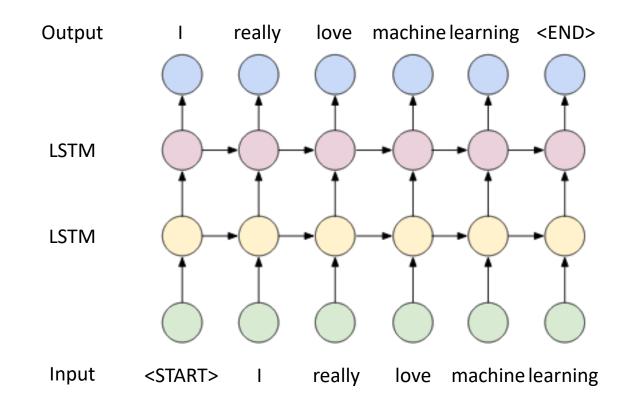
• An LSTM cell learn to decide which to remember/forget



[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

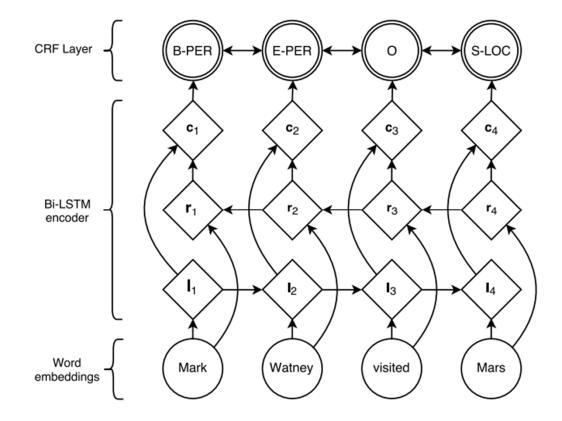
[Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

Use Case: Text Generation



- A demo on character-level text generation
 - <u>http://cs.stanford.edu/people/karpathy/recurrentjs/</u>

Use Case: Named Entity Recognition



[Guillaume Lample et al. Neural Architectures for Named Entity Recognition. NAACL-HLT]

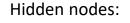
Word embedding

- From bag of words to word embedding ٠
 - Use a real-valued vector in R^m to represent a word (concept)

v("cat")=(0.2, -0.4, 0.7, ...) V: vocabulary size; v("mat")=(0.0, 0.6, -0.1, ...) Input layer Continuous bag of word (CBOW) model (word2vec) x_{lk} $\mathbf{W}_{V \times N}$ Input/output words x/y are one-hot encoded ٠ N-dim Vector

Hidden layer is shared for all input words ٠

h



$$= \frac{1}{C} \mathbf{W} \cdot (\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_C)$$

$$= \frac{1}{C} \cdot (\mathbf{v}_{w_1} + \mathbf{v}_{w_2} + \dots + \mathbf{v}_{w_C})$$

The cross-entropy loss:

$$E = -\log p(w_O|w_{I,1}, \cdots, w_{I,C})$$
$$= -\mathbf{v}'_{w_O}{}^T \cdot \mathbf{h} + \log \sum_{j'=1}^{V} \exp(\mathbf{v}'_{w_j}{}^T \cdot \mathbf{h})$$

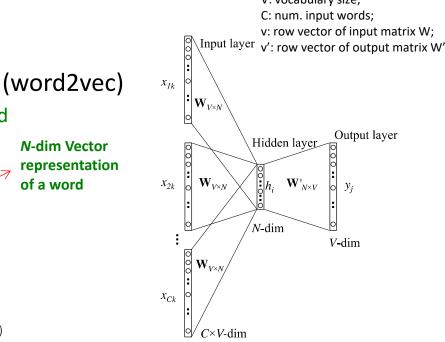
The gradient updates:

 $\mathbf{v}_{w_j}^{\prime (\text{new})} = \mathbf{v}_{w_j}^{\prime (\text{old})} - \eta \cdot e_j \cdot \mathbf{h} \qquad \text{for } j = 1, 2, \cdots, V.$

$$\mathbf{v}_{w_{I,c}}^{(\text{new})} = \mathbf{v}_{w_{I,c}}^{(\text{old})} - \frac{1}{C} \cdot \eta \cdot \text{EH} \qquad \text{for } c = 1, 2, \cdots, C. \qquad \frac{\partial E}{\partial h_i} = \sum_{j=1}^{V} \frac{\partial E}{\partial u_j} \cdot \frac{\partial u_j}{\partial h_i} = \sum_{j=1}^{V} e_j \cdot w_{ij}' := \text{EH}_i$$

Rong, Xin. "word2vec parameter learning explained." arXiv preprint arXiv:1411.2738 (2014).

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).



Continuous bag of word (CBOW) model

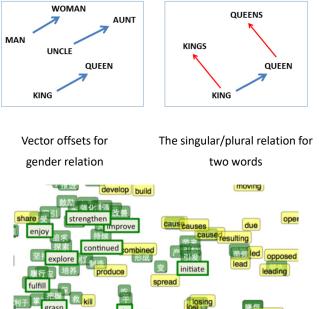
Remarkable properties from Word embedding

Simple algebraic operations with the word vectors

Using X = v("biggest") - v("big") + v("small") as query and searching for the nearest word based on cosine distance results in v("smallest")

$$v("woman")-v("man") \simeq v("aunt")-v("uncle")$$

 $v("woman")-v("man") \simeq v("queen")-v("king")$



pass through

uarantee

Word the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, **Paris - France + Italy = Rome**.

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

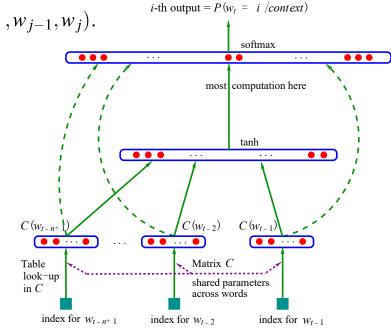
Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in Continuous Space Word Representations." HLT-NAACL. 2013. Zou, Will Y., et al. "Bilingual Word Embeddings for Phrase-Based Machine Translation." EMNLP. 2013.

Neural Language models

- *n-gram* model
 - Construct conditional probabilities for the next word, given combinations of the last *n-1* words (*contexts*)

 $\hat{P}(w_t|w_1^{t-1}) \approx \hat{P}(w_t|w_{t-n+1}^{t-1})$ where $w_i^j = (w_i, w_{i+1}, \cdots, w_{j-1}, w_j).$

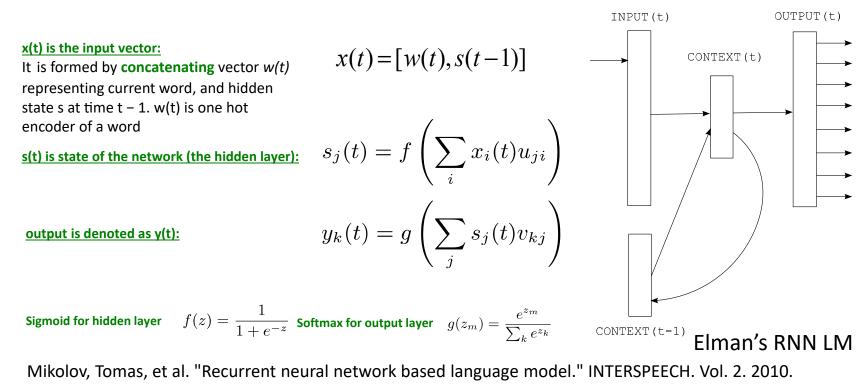
- Neural language model
 - associate with each word a *distributed* word feature vector for word embedding,
 - express the joint *probability function* of word sequences using those vectors, and
 - learn simultaneously the *word feature vectors* and the parameters of that *probability function*.



Bengio, Yoshua, et al. "Neural probabilistic language models." Innovations in Machine Learning. Springer Berlin Heidelberg, 2006. 137-186.

RNN based Language models

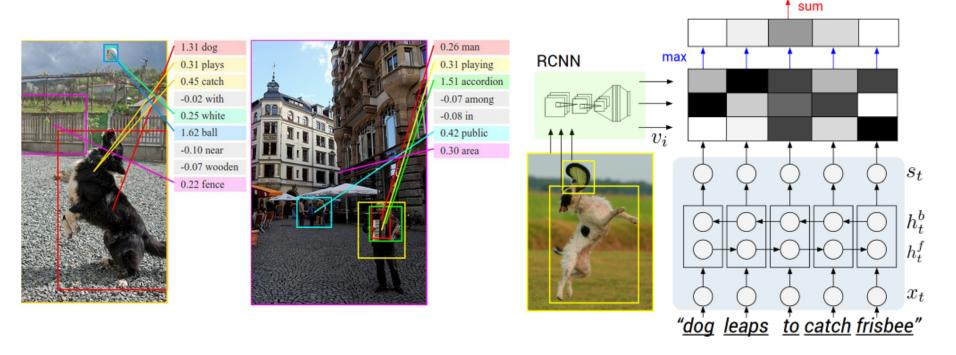
- The limitation of the feedforward network approach:
 - it has to fix the length context
- Recurrent network solves the issue
 - by keeping a (hidden) context and updating over time



Elman J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.

Learning to align visual and language data

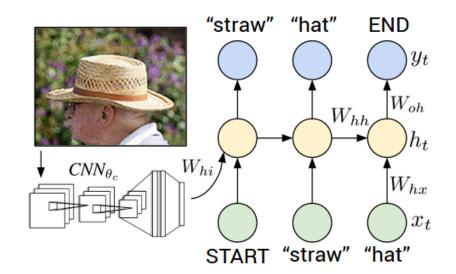
- Regional CNN + Bi-directional RNN
 - associates the two modalities through a common, multimodal embedding space $_{image - sentence \ score \ S_{kl}}$



Learning to generate image descriptions

- Trained CNN on images + RNN with sentence
 - The RNN takes a word, the previous context and defines a distribution over the next word
 - The RNN is conditioned on the image information at the first time step
 - START and END are special tokens.

"two young girls are playing with lego toy."



Summary

- Universal Approximation: two-layer neural networks can approximate any functions
- Backpropagation is the most important training scheme for multi-layer neural networks so far
- Deep learning, i.e. deep architecture of NN trained with big data, works incredibly well
- Neural works built with other machine learning models achieve further success

Reference Materials

- Prof. Geoffery Hinton's Coursera course
 - https://www.coursera.org/learn/neural-networks
- Prof. Jun Wang's DL tutorial in UCL (special thanks)
 - http://www.slideshare.net/JunWang5/deep-learning-61493694
- Prof. Fei-fei Li's CS231n in Stanford
 - http://cs231n.stanford.edu/
- Prof. Kai Yu's DL Course in SJTU
 - http://speechlab.sjtu.edu.cn/~kyu/node/10
- Michael Nielsen's online DL book
 - http://neuralnetworksanddeeplearning.com/
- Research Blogs
 - Andrej Karpathy: http://karpathy.github.io/
 - Christopher Olah: http://colah.github.io/