Linear Models for Supervised Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net
Discriminative Model and Generative Model

• **Discriminative model**
 • modeling the dependence of unobserved variables on observed ones
 • also called conditional models.
 • Deterministic: \(y = f_\theta(x) \)
 • Probabilistic: \(p_\theta(y|x) \)

• **Generative model**
 • modeling the joint probabilistic distribution of data
 • given some hidden parameters or variables
 \[p_\theta(x, y) \]
 • then do the conditional inference
 \[
 p_\theta(y|x) = \frac{p_\theta(x, y)}{p_\theta(x)} = \frac{p_\theta(x, y)}{\sum_{y'} p_\theta(x, y')}
 \]
Discriminative Model and Generative Model

• **Discriminative model**
 - modeling the dependence of unobserved variables on observed ones
 - also called conditional models.
 - Deterministic: \(y = f_\theta(x) \)
 - Probabilistic: \(p_\theta(y|x) \)

• Directly model the dependence for label prediction
• Easy to define dependence specific features and models
• Practically yielding higher prediction performance

• Linear regression, logistic regression, k nearest neighbor, SVMs, (multi-layer) perceptrons, decision trees, random forest etc.
Discriminative Model and Generative Model

• **Generative model**
 • modeling the joint probabilistic distribution of data
 • given some hidden parameters or variables
 \[p_\theta(x, y) \]
 • then do the conditional inference
 \[p_\theta(y|x) = \frac{p_\theta(x, y)}{p_\theta(x)} = \frac{p_\theta(x, y)}{\sum_{y'} p_\theta(x, y')} \]

• Recover the data distribution [essence of data science]
• Benefit from hidden variables modeling

• Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov Random Fields, Latent Dirichlet Allocation etc.
Linear Regression
Linear Discriminative Models

• Discriminative model
 • modeling the dependence of unobserved variables on observed ones
 • also called conditional models.
 • Deterministic: \(y = f_\theta(x) \)
 • Probabilistic: \(p_\theta(y|x) \)

• Focus of this course
 • Linear regression model
 • Linear classification model
Linear Discriminative Models

• Discriminative model
 • modeling the dependence of unobserved variables on observed ones
 • also called conditional models.
 • **Deterministic**: \(y = f_\theta(x) \)
 • Probabilistic: \(p_\theta(y|x) \)

• Linear regression model

\[
y = f_\theta(x) = \theta_0 + \sum_{j=1}^{d} \theta_j x_j = \theta^\top x
\]

\[
x = (1, x_1, x_2, \ldots, x_d)
\]
Linear Regression

- One-dimensional linear & quadratic regression

\[f(x) = \theta_0 + \theta_1 x \]

Linear Regression

\[f(x) = \theta_0 + \theta_1 x + \theta_2 x^2 \]

Quadratic Regression

(A kind of generalized linear model)
Linear Regression

- Two-dimensional linear regression

\[f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \]
Learning Objective

• Make the prediction close to the corresponding label

\[
\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, f_\theta(x_i))
\]

• Loss function \(\mathcal{L}(y_i, f_\theta(x_i)) \) measures the error between the label and prediction

• The definition of loss function depends on the data and task

• Most popular loss function: squared loss

\[
\mathcal{L}(y_i, f_\theta(x_i)) = (y_i - f_\theta(x_i))^2
\]
Squared Loss

\[\mathcal{L}(y_i, f_\theta(x_i)) = \frac{1}{2}(y_i - f_\theta(x_i))^2 \]

- Penalty much more on larger distances
- Accept small distance (error)
 - Observation noise etc.
 - Generalization
Least Square Linear Regression

• Objective function to minimize

\[J_\theta = \frac{1}{2N} \sum_{i=1}^{N} (y_i - f_\theta(x_i))^2 \]

\[\min_\theta J_\theta \]
Minimize the Objective Function

• Let \(N=1 \) for a simple case, for \((x,y) = (2,1)\)

\[
J(\theta) = \frac{1}{2}(y - \theta_0 - \theta_1 x)^2 = \frac{1}{2}(1 - \theta_0 - 2\theta_1)^2
\]
Gradient Learning Methods

\[
\theta_{\text{new}} \leftarrow \theta_{\text{old}} - \eta \frac{\partial \mathcal{L}(\theta)}{\partial \theta}
\]
Batch Gradient Descent

\[J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - f_\theta(x_i))^2 \]

\[\min_{\theta} J(\theta) \]

- Update \(\theta_{\text{new}} \leftarrow \theta_{\text{old}} - \eta \frac{\partial J(\theta)}{\partial \theta} \) for the whole batch

\[
\frac{\partial J(\theta)}{\partial \theta} = -\frac{1}{N} \sum_{i=1}^{N} (y_i - f_\theta(x_i)) \frac{\partial f_\theta(x_i)}{\partial \theta}
\]

\[= -\frac{1}{N} \sum_{i=1}^{N} (y_i - f_\theta(x_i))x_i \]

\[\theta_{\text{new}} = \theta_{\text{old}} + \eta \frac{1}{N} \sum_{i=1}^{N} (y_i - f_\theta(x_i))x_i \]
Learning Linear Model - Curve

\[f(x) = \theta_0 + \theta_1 x \]
Learning Linear Model - Weights
Stochastic Gradient Descent

\[J^{(i)}(\theta) = \frac{1}{2} (y_i - f_\theta(x_i))^2 \quad \min_\theta \frac{1}{N} \sum_i J^{(i)}(\theta) \]

• Update \(\theta_{\text{new}} = \theta_{\text{old}} - \eta \frac{\partial J^{(i)}(\theta)}{\partial \theta} \) for every single instance

\[
\frac{\partial J^{(i)}(\theta)}{\partial \theta} = -(y_i - f_\theta(x_i)) \frac{\partial f_\theta(x_i)}{\partial \theta} \\
= -(y_i - f_\theta(x_i))x_i \\
\theta_{\text{new}} = \theta_{\text{old}} + \eta (y_i - f_\theta(x_i))x_i
\]

• Compare with BGD
 • Faster learning
 • Uncertainty or fluctuation in learning
Linear Classification Model
Mini-Batch Gradient Descent

• A combination of batch GD and stochastic GD

• Split the whole dataset into K mini-batches

 \{1, 2, 3, \ldots, K\}

• For each mini-batch k, perform one-step BGD toward minimizing

 $$J^{(k)}(\theta) = \frac{1}{2N_k} \sum_{i=1}^{N_k} (y_i - f_\theta(x_i))^2$$

• Update $\theta_{\text{new}} = \theta_{\text{old}} - \eta \frac{\partial J^{(k)}(\theta)}{\partial \theta}$ for each mini-batch
Mini-Batch Gradient Descent

• Good learning stability (BGD)
• Good convergence rate (SGD)

• Easy to be parallelized
 • Parallelization within a mini-batch
Basic Search Procedure

• Choose an initial value for θ
• Update θ iteratively with the data
• Until we research a minimum
Basic Search Procedure

• Choose a new initial value for θ
• Update θ iteratively with the data
• Until we research a minimum

$J(\theta_0, \theta_1)$
Unique Minimum for Convex Objective

- Different initial parameters and different learning algorithm lead to the same optimum
Convex Set

• A convex set S is a set of points such that, given any two points A, B in that set, the line AB joining them lies entirely within S.

\[tx_1 + (1 - t)x_2 \in S \]
for all $x_1, x_2 \in S, 0 \leq t \leq 1$

Convex Function

A function \(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(\text{dom } f \) is a convex set and

\[
\forall x_1, x_2 \in \text{dom } f, 0 \leq t \leq 1, \quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)
\]
Choosing Learning Rate

\[\theta_{\text{new}} = \theta_{\text{old}} - \eta \frac{\partial J(\theta)}{\partial \theta} \]

- \(\eta \) too small
 - slow convergence

- \(\eta \) too large
 - May overshoot the minimum
 - May fail to converge
 - May even diverge
 - Increasing value of \(J(\theta) \)

- The initial point may be too far away from the optimal solution, which takes much time to converge

- To see if gradient descent is working, print out \(J(\theta) \) for each or every several iterations. If \(J(\theta) \) does not drop properly, adjust \(\eta \)
Algebra Perspective

\[X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} \]

\[\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \]

- Prediction \(\hat{y} = X\theta = \begin{bmatrix} x^{(1)} \theta \\ x^{(2)} \theta \\ \vdots \\ x^{(n)} \theta \end{bmatrix} \)

- Objective \(J(\theta) = \frac{1}{2} (y - \hat{y})^\top (y - \hat{y}) = \frac{1}{2} (y - X\theta)^\top (y - X\theta) \)
Matrix Form

• Objective

\[J(\theta) = \frac{1}{2}(y - X\theta)^{\top}(y - X\theta) \min_{\theta} J(\theta) \]

• Gradient

\[\frac{\partial J(\theta)}{\partial \theta} = -X^{\top}(y - X\theta) \]

• Solution

\[\frac{\partial J(\theta)}{\partial \theta} = 0 \Rightarrow X^{\top}(y - X\theta) = 0 \]

\[\Rightarrow X^{\top}y = X^{\top}X\theta \]

\[\Rightarrow \hat{\theta} = (X^{\top}X)^{-1}X^{\top}y \]
Matrix Form

• Then the predicted values are

\[\hat{y} = X(X^\top X)^{-1}X^\top y \]

\[= Hy \]

\(H: \) hat matrix

• Geometrical Explanation

• The column vectors \([x_1, x_2, \ldots, x_d]\) form a subspace of \(\mathbb{R}^n\)

• \(H\) is a least square projection

\[
X = \begin{bmatrix}
 x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \ldots & x_d^{(1)} \\
 x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \ldots & x_d^{(2)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \ldots & x_d^{(n)} \\
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{bmatrix}
\]

More details refer to Sec 3.2. Hastie et al. The elements of statistical learning.
$X^\top X$ Might be Singular

- When some column vectors are not independent
 - For example, $x_2 = 3x_1$

 then $X^\top X$ is singular, thus $\hat{\theta} = (X^\top X)^{-1} X^\top y$
 cannot be directly calculated.

- Solution: regularization

$$J(\theta) = \frac{1}{2} (y - X\theta)^\top (y - X\theta) + \frac{\lambda}{2} \|\theta\|^2_2$$
Matrix Form with Regularization

• Objective

\[J(\theta) = \frac{1}{2}(y - X\theta)^\top(y - X\theta) + \frac{\lambda}{2}\|\theta\|_2^2 \quad \text{min}_{\theta} J(\theta) \]

• Gradient

\[\frac{\partial J(\theta)}{\partial \theta} = -X^\top(y - X\theta) + \lambda\theta \]

• Solution

\[\frac{\partial J(\theta)}{\partial \theta} = 0 \quad \rightarrow \quad -X^\top(y - X\theta) + \lambda\theta = 0 \]
\[\rightarrow \quad X^\top y = (X^\top X + \lambda I)\theta \]
\[\rightarrow \quad \hat{\theta} = (X^\top X + \lambda I)^{-1}X^\top y \]
Linear Discriminative Models

- Discriminative model
 - modeling the dependence of unobserved variables on observed ones
 - also called conditional models.
- Deterministic: \(y = f_\theta(x) \)
- Probabilistic: \(p_\theta(y|x) \)

- Linear regression with Gaussian noise model

\[
y = f_\theta(x) + \epsilon = \theta_0 + \sum_{j=1}^{d} \theta_j x_j + \epsilon = \theta^\top x + \epsilon
\]

\(\epsilon \sim \mathcal{N}(0, \sigma^2) \)

\(x = (1, x_1, x_2, \ldots, x_d) \)
Objective: Likelihood

\[\epsilon \sim \mathcal{N}(0, \sigma^2) \]

\[p(\epsilon) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\epsilon^2}{2\sigma}} \]

\[y = \theta^\top x + \epsilon \]

• Data likelihood

\[p(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^\top x)^2}{2\sigma}} \]
Learning

• Maximize the data likelihood

$$\max_{\theta} \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^\top x_i)^2}{2\sigma}}$$

• Maximize the data log-likelihood

$$\log \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^\top x_i)^2}{2\sigma}} = \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^\top x_i)^2}{2\sigma}}$$

$$= - \sum_{i=1}^{N} \frac{(y_i - \theta^\top x_i)^2}{2\sigma} + \text{const}$$

$$\min_{\theta} \sum_{i=1}^{N} (y_i - \theta^\top x_i)^2 \quad \text{Equivalent to least square error learning}$$
Linear Classification
Classification Problem

• Given:
 • A description of an instance, $x \in \mathbb{X}$, where \mathbb{X} is the instance space.
 • A fixed set of categories: $C = \{c_1, c_2, \ldots, c_m\}$

• Determine:
 • The category of $x: f(x) \in C$, where $f(x)$ is a categorization function whose domain is \mathbb{X} and whose range is C
 • If the category set binary, i.e. $C = \{0, 1\}$ (\{false, true\}, \{negative, positive\}) then it is called binary classification.
Binary Classification

Linearly inseparable

Non-linearly inseparable
Linear Discriminative Models

• Discriminative model
 • modeling the dependence of unobserved variables on observed ones
 • also called conditional models.
• Deterministic: \(y = f_\theta(x) \)
 • Non-differentiable
• Probabilistic: \(p_\theta(y|x) \)
 • Differentiable

• For binary classification

\[
p_\theta(y = 1|x) \\
p_\theta(y = 0|x) = 1 - p_\theta(y = 1|x)
\]
Loss Function

• Cross entropy loss

Discrete case: \(H(p, q) = - \sum_x p(x) \log q(x) \)

Continuous case: \(H(p, q) = - \int_x p(x) \log q(x) dx \)

• For classification problem

\(\mathcal{L}(y, x, p_\theta) = - \sum_k \delta(y = c_k) \log p_\theta(y = c_k | x) \)

\(\delta(z) = \begin{cases}
1, & z \text{ is true} \\
0, & \text{otherwise}
\end{cases} \)
Cross Entropy for Binary Classification

- Loss function

\[\mathcal{L}(y, x, p_{\theta}) = -\delta(y = 1) \log p_{\theta}(y = 1|x) - \delta(y = 0) \log p_{\theta}(y = 0|x) \]

\[= -y \log p_{\theta}(y = 1|x) - (1 - y) \log(1 - p_{\theta}(y = 1|x)) \]
Logistic Regression

• Logistic regression is a binary classification model

\[p_\theta(y = 1|x) = \sigma(\theta^\top x) = \frac{1}{1 + e^{-\theta^\top x}} \]
\[p_\theta(y = 0|x) = \frac{e^{-\theta^\top x}}{1 + e^{-\theta^\top x}} \]

• Cross entropy loss function

\[L(y, x, p_\theta) = -y \log \sigma(\theta^\top x) - (1 - y) \log(1 - \sigma(\theta^\top x)) \]

• Gradient

\[\frac{\partial L(y, x, p_\theta)}{\partial \theta} = -y \frac{1}{\sigma(\theta^\top x)} \sigma(z)(1 - \sigma(z))x - (1 - y) \frac{-1}{1 - \sigma(\theta^\top x)} \sigma(z)(1 - \sigma(z))x \]
\[= (\sigma(\theta^\top x) - y)x \]
\[\theta \leftarrow \theta + \eta (y - \sigma(\theta^\top x))x \]

\[\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z)) \]
Label Decision

- Logistic regression provides the probability

\[p_\theta(y = 1|x) = \sigma(\theta^\top x) = \frac{1}{1 + e^{-\theta^\top x}} \]

\[p_\theta(y = 0|x) = \frac{e^{-\theta^\top x}}{1 + e^{-\theta^\top x}} \]

- The final label of an instance is decided by setting a threshold \(h \)

\[\hat{y} = \begin{cases} 1, & p_\theta(y = 1|x) > h \\ 0, & \text{otherwise} \end{cases} \]
Evaluation Measures

- **True / False**
 - True: prediction = label
 - False: prediction ≠ label

- **Positive / Negative**
 - Positive: predict $y = 1$
 - Negative: predict $y = 0$

<table>
<thead>
<tr>
<th>Label</th>
<th>Prediction</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>True Positive</td>
<td>False Negative</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>False Positive</td>
<td>True Negative</td>
<td></td>
</tr>
</tbody>
</table>

Class 1
- TP: if predicting 1
- FN: if predicting 0

Class 0
- FP: if predicting 1
- TN: if predicting 0
Evaluation Measures

- **Accuracy**: the ratio of cases when prediction = label

<table>
<thead>
<tr>
<th>Label</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>True Positive</td>
</tr>
<tr>
<td>0</td>
<td>False Positive</td>
</tr>
</tbody>
</table>

\[
\text{Acc} = \frac{TP + TN}{TP + TN + FP + FN}
\]
Evaluation Measures

- **Precision**: the ratio of true class 1 cases in those with prediction 1

 \[
 \text{Prec} = \frac{TP}{TP + FP}
 \]

- **Recall**: the ratio of cases with prediction 1 in all true class 1 cases

 \[
 \text{Rec} = \frac{TP}{TP + FN}
 \]
Evaluation Measures

• Precision-recall tradeoff

\[\hat{y} = \begin{cases}
1, & \text{ } \quad p_\theta(y = 1|x) > h \\
0, & \text{otherwise}
\end{cases} \]

 • Higher threshold, higher precision, lower recall
 • Extreme case: threshold = 0.99
 • Lower threshold, lower precision, higher recall
 • Extreme case: threshold = 0

• F1 Measure

\[F1 = \frac{2 \times \text{Prec} \times \text{Recall}}{\text{Prec} + \text{Rec}} \]
Evaluation Measures

- Ranking-based measure: Area Under ROC Curve (AUC)
Evaluation Measures

- Ranking-based measure: Area Under ROC Curve (AUC)

Perfect Prediction
AUC = 1

Random Prediction
AUC = 0.5
Evaluation Measures

- A simple example of Area Under ROC Curve (AUC)

AUC = 0.75
Multi-Class Classification

- Still cross entropy loss

\[
\mathcal{L}(y, x, p_\theta) = -\sum_k \delta(y = c_k) \log p_\theta(y = c_k | x)
\]

\[
\delta(z) = \begin{cases}
1, & z \text{ is true} \\
0, & \text{otherwise}
\end{cases}
\]
Multi-Class Logistic Regression

• Class set \(C = \{c_1, c_2, \ldots, c_m\} \)

• Predicting the probability of \(p_\theta(y = c_j|x) \)

\[
p_\theta(y = c_j|x) = \frac{e^{\theta_j^T x}}{\sum_{k=1}^{m} e^{\theta_k^T x}} \quad \text{for } j = 1, \ldots, m
\]

• Softmax
 • Parameters \(\theta = \{\theta_1, \theta_2, \ldots, \theta_m\} \)
 • Can be normalized with m-1 groups of parameters
Multi-Class Logistic Regression

• Learning on one instance \((x, y = c_j)\)
 • Maximize log-likelihood
 \[
 \max_{\theta} \log p_\theta(y = c_j | x)
 \]

• Gradient
 \[
 \frac{\partial \log p_\theta(y = c_j | x)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \log \frac{e^{\theta_j^\top x}}{\sum_{k=1}^m e^{\theta_k^\top x}}
 = x - \frac{\partial}{\partial \theta_j} \log \sum_{k=1}^m e^{\theta_k^\top x}
 = x - \frac{e^{\theta_j^\top x} x}{\sum_{k=1}^m e^{\theta_k^\top x}}
 \]
Application Case Study
Click-Through Rate (CTR) Estimation in Online Advertising
Ad Click-Through Rate Estimation

Click or not?

[http://news.ifeng.com]
User response estimation problem

• Problem definition

<table>
<thead>
<tr>
<th>One instance data</th>
<th>Corresponding label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 20160320</td>
<td>Click (1) or not (0)?</td>
</tr>
<tr>
<td>Hour: 14</td>
<td>Predicted CTR (0.15)</td>
</tr>
<tr>
<td>Weekday: 7</td>
<td></td>
</tr>
<tr>
<td>IP: 119.163.222.*</td>
<td></td>
</tr>
<tr>
<td>Region: England</td>
<td></td>
</tr>
<tr>
<td>City: London</td>
<td></td>
</tr>
<tr>
<td>Country: UK</td>
<td></td>
</tr>
<tr>
<td>Ad Exchange: Google</td>
<td></td>
</tr>
<tr>
<td>Domain: yahoo.co.uk</td>
<td></td>
</tr>
<tr>
<td>URL: http://www.yahoo.co.uk/abc/xyz.html</td>
<td></td>
</tr>
<tr>
<td>OS: Windows</td>
<td></td>
</tr>
<tr>
<td>Browser: Chrome</td>
<td></td>
</tr>
<tr>
<td>Ad size: 300*250</td>
<td></td>
</tr>
<tr>
<td>Ad ID: a1890</td>
<td></td>
</tr>
<tr>
<td>User occupation: Student</td>
<td></td>
</tr>
<tr>
<td>User tags: Sports, Electronics</td>
<td></td>
</tr>
</tbody>
</table>

Date: 20160320
Hour: 14
Weekday: 7
IP: 119.163.222.*
Region: England
City: London
Country: UK
Ad Exchange: Google
Domain: yahoo.co.uk
URL: http://www.yahoo.co.uk/abc/xyz.html
OS: Windows
Browser: Chrome
Ad size: 300*250
Ad ID: a1890
User occupation: Student
User tags: Sports, Electronics
One-Hot Binary Encoding

• A standard feature engineering paradigm

\[x = [\text{Weekday=Friday, Gender=Male, City=Shanghai}] \]

\[x = [0,0,0,0,1,0,0 0,1 0,0,1,0...0] \]

Sparse representation: \(x = [5:1 \ 9:1 \ 12:1] \)

• High dimensional sparse binary feature vector
 • Usually higher than 1M dimensions, even 1B dimensions
 • Extremely sparse
Training/Validation/Test Data

• Examples (in LibSVM format)

1 5:1 9:1 12:1 45:1 154:1 509:1 4089:1 45314:1 988576:1
0 2:1 7:1 18:1 34:1 176:1 510:1 3879:1 71310:1 818034:1
...

• Training/Validation/Test data split
 • Sort data by time
 • Train:validation:test = 8:1:1
 • Shuffle training data
Training Logistic Regression

• Logistic regression is a binary classification model

\[p_\theta(y = 1|x) = \sigma(\theta^\top x) = \frac{1}{1 + e^{-\theta^\top x}} \]

• Cross entropy loss function with L2 regularization

\[\mathcal{L}(y, x, p_\theta) = -y \log \sigma(\theta^\top x) - (1 - y) \log(1 - \sigma(\theta^\top x)) + \frac{\lambda}{2} \|\theta\|^2 \]

• Parameter learning

\[\theta \leftarrow (1 - \lambda \eta)\theta + \eta(y - \sigma(\theta^\top x))x \]

• Only update non-zero entries
Experimental Results

• Datasets
 • Criteo Terabyte Dataset
 • 13 numerical fields, 26 categorical fields
 • 7 consecutive days out of 24 days in total (about 300 GB) during 2014
 • 79.4M impressions, 1.6M clicks after negative down sampling

 • iPinYou Dataset
 • 65 categorical fields
 • 10 consecutive days during 2013
 • 19.5M impressions, 937.7K clicks without negative down sampling
Performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Linearity</th>
<th>AUC</th>
<th>Log Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Criteo</td>
<td>iPinYou</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>Linear</td>
<td>71.48%</td>
<td>73.43%</td>
</tr>
<tr>
<td>Factorization Machine</td>
<td>Bi-linear</td>
<td>72.20%</td>
<td>75.52%</td>
</tr>
<tr>
<td>Deep Neural Networks</td>
<td>Non-linear</td>
<td>75.66%</td>
<td>76.19%</td>
</tr>
</tbody>
</table>

- Compared with non-linear models, linear models
 - Pros: standardized, easily understood and implemented, efficient and scalable
 - Cons: modeling limit (feature independent assumption), cannot explore feature interactions

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016.]
Generalized Linear Models
Review: Linear Regression

\[X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \ldots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \ldots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \ldots & x_d^{(n)} \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \]

- Prediction \(\hat{y} = X\theta = \begin{bmatrix} x^{(1)} \theta \\ x^{(2)} \theta \\ \vdots \\ x^{(n)} \theta \end{bmatrix} \)

- Objective \(J(\theta) = \frac{1}{2}(y - \hat{y})^\top (y - \hat{y}) = \frac{1}{2}(y - X\theta)^\top (y - X\theta) \)
Review: Matrix Form of Linear Reg.

• Objective

\[J(\theta) = \frac{1}{2} (y - X\theta)^\top (y - X\theta) \quad \min_{\theta} J(\theta) \]

• Gradient

\[\frac{\partial J(\theta)}{\partial \theta} = -X^\top (y - X\theta) \]

• Solution

\[\frac{\partial J(\theta)}{\partial \theta} = 0 \quad \rightarrow \quad X^\top (y - X\theta) = 0 \]

\[\rightarrow \quad X^\top y = X^\top X\theta \]

\[\rightarrow \quad \hat{\theta} = (X^\top X)^{-1} X^\top y \]
Generalized Linear Models

• Dependence

\[y = f(\theta^\top \phi(x)) \]

• Feature mapping function \(\phi(x) : \mathbb{R}^d \rightarrow \mathbb{R}^h \)

• Mapped feature matrix \(\Phi_{n \times h} \)

\[
\Phi = \begin{bmatrix}
\phi(x^{(1)}) \\
\phi(x^{(2)}) \\
\vdots \\
\phi(x^{(i)}) \\
\vdots \\
\phi(x^{(n)})
\end{bmatrix} = \begin{bmatrix}
\phi_1(x^{(1)}) & \phi_2(x^{(1)}) & \cdots & \phi_h(x^{(1)}) \\
\phi_1(x^{(2)}) & \phi_2(x^{(2)}) & \cdots & \phi_h(x^{(2)}) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(x^{(i)}) & \phi_2(x^{(i)}) & \cdots & \phi_h(x^{(i)}) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(x^{(n)}) & \phi_2(x^{(n)}) & \cdots & \phi_h(x^{(n)})
\end{bmatrix}
\]
Matrix Form of Kernel Linear Regression

- Objective
 \[J(\theta) = \frac{1}{2} (y - \Phi \theta)^\top (y - \Phi \theta) \quad \min_{\theta} J(\theta) \]

- Gradient
 \[\frac{\partial J(\theta)}{\partial \theta} = -\Phi^\top (y - \Phi \theta) \]

- Solution
 \[\frac{\partial J(\theta)}{\partial \theta} = 0 \quad \Rightarrow \quad \Phi^\top (y - \Phi \theta) = 0 \]
 \[\Rightarrow \quad \Phi^\top y = \Phi^\top \Phi \theta \]
 \[\Rightarrow \quad \hat{\theta} = (\Phi^\top \Phi)^{-1} \Phi^\top y \]
Matrix Form of Kernel Linear Regression

• With the Algebra trick

\[(P^{-1} + B^\top R^{-1} B)^{-1} B^\top R^{-1} = PB^\top (BPB^\top + R)^{-1}\]

• The optimal parameters with L2 regularization

\[\hat{\theta} = (\Phi^\top \Phi + \lambda I_n)^{-1} \Phi^\top y\]
\[= \Phi^\top (\Phi \Phi^\top + \lambda I_n)^{-1} y\]

for prediction, we never actually need access \(\Phi\)

\[\hat{y} = \Phi \hat{\theta} = \Phi \Phi^\top (\Phi \Phi^\top + \lambda I_n)^{-1} y\]
\[= K(K + \lambda I_n)^{-1} y\]

where the kernel matrix \(K = \{K(x^{(i)}, x^{(j)})\}\)