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What is Machine Learning
A more mathematical definition by Tom Mitchell

• Machine learning is the study of algorithms that
• improve their performance P
• at some task T
• based on experience E
• with non-explicit programming

• A well-defined learning task is given by <P, T, E>

REVIEW



Machine Learning
• What we have learned so far

• Supervised Learning
• To perform the desired output given the data and labels
• e.g., to build a loss function to minimize

• Unsupervised Learning
• To analyze and make use of the underlying data 

patterns/structures
• e.g., to build a log-likelihood function to maximize

REVIEW



Supervised Learning
• Given the training dataset of (data, label) pairs, 

let the machine learn a function from data to label

• Learning is referred to as updating the parameter
• Learning objective: make the prediction close to 

the ground truth

D = f(xi; yi)gi=1;2;:::;ND = f(xi; yi)gi=1;2;:::;N

yi ' fμ(xi)yi ' fμ(xi)

μμ
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μ

1

N

NX
i=1

L(yi; fμ(xi))

REVIEW



Unsupervised Learning
• Given the training dataset

let the machine learn the data underlying patterns
D = fxigi=1;2;:::;ND = fxigi=1;2;:::;N

p(x; μ) =
X

z

p(xjz; μ)p(z; μ)p(x; μ) =
X

z

p(xjz; μ)p(z; μ)

• Estimate the probabilistic density function (p.d.f.)

• Sometimes build latent variables
z ! xz ! x

• Maximize the log-likelihood of training data

REVIEW
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Two Kinds of Machine Learning
• Prediction

• Predict the desired output given the data (supervised 
learning)

• Generate data instances (unsupervised learning)
• We mainly covered this category in previous lectures

• Decision Making
• Take actions based on a particular state in a dynamic 

environment (reinforcement learning)
• to transit to new states
• to receive immediate reward
• to maximize the accumulative reward over time

• Learning from interaction



Machine Learning Categories
• Supervised Learning

• To perform the desired output given the 
data and labels

• Unsupervised Learning
• To analyze and make use of the underlying 

data patterns/structures

• Reinforcement Learning
• To learn a policy of taking actions in a 

dynamic environment and acquire rewards

REVIEW

p(yjx)p(yjx)

p(x)p(x)

¼(ajx)¼(ajx)



Reinforcement Learning Materials
Prof. Richard Sutton
• University of Alberta, Canada
• http://incompleteideas.net/sutton/index.html
• Reinforcement Learning: An Introduction (2nd edition)
• http://www.incompleteideas.net/book/the-book-2nd.html

Dr. David Silver
• Google DeepMind and UCL, UK

• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html

• UCL Reinforcement Learning Course

• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Our course on RL is mainly based on the materials from these masters.

Prof. Andrew Ng
• Stanford University, US
• http://www.andrewng.org/
• Machine Learning (CS229) Lecture Notes 12: RL
• http://cs229.stanford.edu/materials.html



Content
• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
• Markov Decision Process
• Planning by Dynamic Programming

• Model-free Reinforcement Learning
• On-policy SARSA
• Off-policy Q-learning
• Model-free Prediction and Control
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Reinforcement Learning
• Learning from interaction

• Given the current situation, what to do next in order to 
maximize utility?

Observation Action

Reward

Agent



Reinforcement Learning Definition
• A computational approach by learning from 

interaction to achieve a goal

• Three aspects
• Sensation: sense the state of the environment to some 

extent
• Action: able to take actions that affect the state and 

achieve the goal
• Goal: maximize the cumulative reward over time

Observation Action

Reward

Agent



Reinforcement Learning
• At each step t, the agent

• Receives observation Ot
• Receives scalar reward Rt
• Executes action At

• The environment
• Receives action At
• Emits observation Ot+1
• Emits scalar reward Rt+1

• t increments at 
environment step

Agent

Environment



Elements of RL Systems
• History is the sequence of observations, action, rewards

Ht = O1; R1; A1; O2; R2; A2; : : : ; Ot¡1; Rt¡1; At¡1; Ot; RtHt = O1; R1; A1; O2; R2; A2; : : : ; Ot¡1; Rt¡1; At¡1; Ot; Rt

• i.e. all observable variables up to time t
• E.g., the sensorimotor stream of a robot or embodied agent

• What happens next depends on the history:
• The agent selects actions
• The environment selects observations/rewards

• State is the information used to determine what happens 
next (actions, observations, rewards)

• Formally, state is a function of the history

St = f(Ht)St = f(Ht)



Elements of RL Systems
• Policy is the learning agent’s way of behaving at a 

given time
• It is a map from state to action
• Deterministic policy

a = ¼(s)a = ¼(s)

• Stochastic policy

¼(ajs) = P (At = ajSt = s)¼(ajs) = P (At = ajSt = s)



Elements of RL Systems
• Reward

• A scalar defining the goal in an RL problem
• For immediate sense of what is good

• Value function
• State value is a scalar specifying what is good in the long 

run
• Value function is a prediction of the cumulative future 

reward
• Used to evaluate the goodness/badness of states (given the 

current policy)

v¼(s) = E¼[Rt+1 + °Rt+2 + °2Rt+3 + : : : jSt = s]v¼(s) = E¼[Rt+1 + °Rt+2 + °2Rt+3 + : : : jSt = s]



Elements of RL Systems

• A Model of the environment 
that mimics the behavior of 
the environment
• Predict the next state

• Predicts the next 
(immediate) reward

Pa
ss0 = P[St+1 = s0jSt = s;At = a]Pa
ss0 = P[St+1 = s0jSt = s;At = a]

Ra
s = E[Rt+1jSt = s;At = a]Ra
s = E[Rt+1jSt = s;At = a]



Maze Example

• State: agent’s location
• Action: N,E,S,W



Maze Example

• State: agent’s location
• Action: N,E,S,W
• State transition: move 

to the next grid 
according to the action
• No move if the action is 

to the wall



Maze Example

• State: agent’s location
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• Reward: -1 per time 
step



Maze Example

• State: agent’s location
• Action: N,E,S,W
• State transition: move 

to the next grid 
according to the action

• Reward: -1 per time 
step

• Given a policy as shown above
• Arrows represent policy π(s) for each state s



Maze Example

• State: agent’s location
• Action: N,E,S,W
• State transition: move 

to the next grid 
according to the action

• Reward: -1 per time 
step

• Numbers represent value vπ(s) of each state s

-1-2

-3-4

-5

-6 -7

-8

-9-10-11

-12

-12-13-14

-15-16

-16 -17

-18 -19

-20

-21 -22-23 -22

-24



Categorizing RL Agents
• Model based RL

• Policy and/or value function
• Model of the environment
• E.g., the maze game above, game of Go

• Model-free RL
• Policy and/or value function
• No model of the environment
• E.g., general playing Atari games



Atari Example

• Rules of the game 
are unknown

• Learn from 
interactive game-play

• Pick actions on 
joystick, see pixels 
and scores



Categorizing RL Agents
• Value based

• No policy (implicit)
• Value function

• Policy based
• Policy
• No value function

• Actor Critic
• Policy
• Value function
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Markov Decision Process
• Markov decision processes (MDPs) provide a 

mathematical framework for modeling decision 
making in situations where outcomes are partly 
random and partly under the control of a decision 
maker.

• MDPs formally describe an environment for RL
• where the environment is FULLY observable
• i.e. the current state completely characterizes the 

process (Markov property)



Markov Property

• Definition
• A state St is Markov if and only if

“The future is independent of the past given the present”

P[St+1jSt] = P[St+1jS1; : : : ; St]P[St+1jSt] = P[St+1jS1; : : : ; St]

• Properties
• The state captures all relevant information from the 

history
• Once the state is known, the history may be thrown away
• i.e. the state is sufficient statistic of the future



Markov Decision Process
• A Markov decision process is a tuple (S, A, {Psa}, γ, R)
• S is the set of states

• E.g., location in a maze, or current screen in an Atari game

• A is the set of actions
• E.g., move N, E, S, W, or the direction of the joystick and the 

buttons

• Psa are the state transition probabilities
• For each state s ∈ S and action a ∈ A, Psa is a distribution over the 

next state in S

• γ ∈[0,1] is the discount factor for the future reward
• is the reward function

• Sometimes the reward is only assigned to state
R : S £A 7! RR : S £A 7! R



Markov Decision Process
The dynamics of an MDP proceeds as
• Start in a state s0

• The agent chooses some action a0 ∈ A
• The agent gets the reward R(s0,a0)
• MDP randomly transits to some successor state
• This proceeds iteratively

s1 » Ps0a0s1 » Ps0a0

s0
a0¡¡¡¡¡!

R(s0;a0)
s1

a1¡¡¡¡¡!
R(s1;a1)

s2
a2¡¡¡¡¡!

R(s2;a2)
s3 ¢ ¢ ¢s0

a0¡¡¡¡¡!
R(s0;a0)

s1
a1¡¡¡¡¡!

R(s1;a1)
s2

a2¡¡¡¡¡!
R(s2;a2)

s3 ¢ ¢ ¢

• Until a terminal state sT or proceeds with no end
• The total payoff of the agent is

R(s0; a0) + °R(s1; a1) + °2R(s2; a2) + ¢ ¢ ¢R(s0; a0) + °R(s1; a1) + °2R(s2; a2) + ¢ ¢ ¢



Reward on State Only
• For a large part of cases, reward is only assigned to 

the state
• E.g., in maze game, the reward is on the location
• In game of Go, the reward is only based on the final 

territory
• The reward function R(s) : S 7! RR(s) : S 7! R

• MDPs proceed
s0

a0¡¡¡!
R(s0)

s1
a1¡¡¡!

R(s1)
s2

a2¡¡¡!
R(s2)

s3 ¢ ¢ ¢s0
a0¡¡¡!

R(s0)
s1

a1¡¡¡!
R(s1)

s2
a2¡¡¡!

R(s2)
s3 ¢ ¢ ¢

• cumulative reward (total payoff)
R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢



MDP Goal and Policy
• The goal is to choose actions over time to maximize the 

expected cumulative reward

E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ ]E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ ]
• γ ∈[0,1] is the discount factor for the future reward, which 

makes the agent prefer immediate reward to future reward
• In finance case, today’s $1 is more valuable than $1 in tomorrow

• Given a particular policy
• i.e. take the action                     at state s

• Define the value function for 

¼(s) : S 7! A¼(s) : S 7! A
a = ¼(s)a = ¼(s)

¼¼

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

• i.e. expected cumulative reward given the start state and taking 
actions according to ¼¼



Bellman Equation for Value Function

• Define the value function for ¼¼

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢| {z }
°V ¼(s1)

js0 = s; ¼]

= R(s) + °
X
s02S

Ps¼(s)(s
0)V ¼(s0)

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢| {z }
°V ¼(s1)

js0 = s; ¼]

= R(s) + °
X
s02S

Ps¼(s)(s
0)V ¼(s0) Bellman Equation 

Immediate
Reward

Value of 
the next 

state

State 
transition

Time 
decay



Optimal Value Function
• The optimal value function for each state s is best possible 

sum of discounted rewards that can be attained by any policy
V ¤(s) = max

¼
V ¼(s)V ¤(s) = max

¼
V ¼(s)

• The Bellman’s equation for optimal value function
V ¤(s) = R(s) + max

a2A
°

X
s02S

Psa(s
0)V ¤(s0)V ¤(s) = R(s) + max

a2A
°

X
s02S

Psa(s
0)V ¤(s0)

• The optimal policy
¼¤(s) = arg max

a2A

X
s02S

Psa(s
0)V ¤(s0)¼¤(s) = arg max

a2A

X
s02S

Psa(s
0)V ¤(s0)

• For every state s and every policy ¼¼

V ¤(s) = V ¼¤
(s) ¸ V ¼(s)V ¤(s) = V ¼¤
(s) ¸ V ¼(s)



Value Iteration & Policy Iteration
• Note that the value function and policy are correlated

V ¼(s) = R(s) + °
X
s02S

Ps¼(s)(s
0)V ¼(s0)V ¼(s) = R(s) + °

X
s02S

Ps¼(s)(s
0)V ¼(s0)

¼(s) = arg max
a2A

X
s02S

Psa(s
0)V ¼(s0)¼(s) = arg max

a2A

X
s02S

Psa(s
0)V ¼(s0)

• It is feasible to perform iterative update towards the optimal 
value function and optimal policy
• Value iteration
• Policy iteration



Value Iteration
• For an MDP with finite state and action spaces

jSj < 1; jAj < 1jSj < 1; jAj < 1

• Value iteration is performed as

1. For each state s, initialize V(s) = 0.
2. Repeat until convergence {

For each state, update

}

V (s) = R(s) + max
a2A

°
X
s02S

Psa(s
0)V (s0)V (s) = R(s) + max

a2A
°

X
s02S

Psa(s
0)V (s0)

• Note that there is no explicit policy in above calculation



Synchronous vs. Asynchronous VI
• Synchronous value iteration stores two copies of value 

functions
1. For all s in S

Vnew(s) Ã max
a2A

Ã
R(s) + °

X
s02S

Psa(s
0)Vold(s

0)

!
Vnew(s) Ã max

a2A

Ã
R(s) + °

X
s02S

Psa(s
0)Vold(s

0)

!
2. Update Vold(s

0) Ã Vnew(s)Vold(s
0) Ã Vnew(s)

• In-place asynchronous value iteration stores one copy of 
value function

1. For all s in S

V (s) Ã max
a2A

Ã
R(s) + °

X
s02S

Psa(s
0)V (s0)

!
V (s) Ã max

a2A

Ã
R(s) + °

X
s02S

Psa(s
0)V (s0)

!



Value Iteration Example: Shortest Path



Policy Iteration
• For an MDP with finite state and action spaces

jSj < 1; jAj < 1jSj < 1; jAj < 1

• Policy iteration is performed as

1. Initialize π randomly
2. Repeat until convergence {

a) Let
b) For each state, update

}

¼(s) = arg max
a2A

X
s02S

Psa(s
0)V (s0)¼(s) = arg max

a2A

X
s02S

Psa(s
0)V (s0)

• The step of value function update could be time-consuming

V := V ¼V := V ¼



Policy Iteration

• Policy evaluation
• Estimate Vπ

• Iterative policy evaluation

• Policy improvement
• Generate
• Greedy policy improvement

¼0 ¸ ¼¼0 ¸ ¼



Evaluating a Random Policy in a Small Gridworld

• Undiscounted episodic MDP (γ=1)
• Nonterminal states 1,…,14
• Two terminal states (shaded squares)
• Actions leading out of the grid leave state unchanged
• Reward is -1 until the terminal state is reached
• Agent follows a uniform random policy

r = -1
on all transitions

¼(nj¢) = ¼(ej¢) = ¼(sj¢) = ¼(wj¢) = 0:25¼(nj¢) = ¼(ej¢) = ¼(sj¢) = ¼(wj¢) = 0:25



K=0

K=1

K=2

Vk for the
random policy

Greedy policy
w.r.t. Vk

Random policy

Evaluating a Random Policy in a Small Gridworld



K=3

K=10

K=∞

Vk for the
random policy

Greedy policy
w.r.t. Vk

Optimal policy

V := V ¼V := V ¼

Evaluating a Random Policy in a Small Gridworld



Value Iteration vs. Policy Iteration

1. For each state s, initialize V(s) = 0.
2. Repeat until convergence {

For each state, update

}

V (s) = R(s) + max
a2A

°
X
s02S

Psa(s
0)V (s0)V (s) = R(s) + max

a2A
°

X
s02S

Psa(s
0)V (s0)

1. Initialize π randomly
2. Repeat until convergence {

a) Let
b) For each state, update

}

¼(s) = arg max
a2A

X
s02S

Psa(s
0)V (s0)¼(s) = arg max

a2A

X
s02S

Psa(s
0)V (s0)

Value iteration Policy iteration

Remarks:
1. Value iteration is a greedy update strategy
2. In policy iteration, the value function update by bellman equation is costly
3. For small-space MDPs, policy iteration is often very fast and converges quickly
4. For large-space MDPs, value iteration is more practical (efficient)
5. If there is no state-transition loop, it is better to use value iteration

My point of view: value iteration is like SGD and policy iteration is like BGD

V := V ¼V := V ¼



Learning an MDP Model
• So far we have been focused on 

• Calculating the optimal value function
• Learning the optimal policy
given a known MDP model
• i.e. the state transition Psa(s’) and reward function R(s) are explicitly 

given

• In realistic problems, often the state transition and reward 
function are not explicitly given
• For example, we have only observed some episodes

s
(1)
0
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(1)
0¡¡¡¡¡!
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1
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1¡¡¡¡¡!
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Episode 1:
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Learning an MDP Model

• Learn an MDP model from “experience”
• Learning state transition probabilities Psa(s’) 

Episode 1:

Episode 2:

…
Psa(s

0) =
#times we took action a in state s and got to state s0

#times we took action a in state s
Psa(s

0) =
#times we took action a in state s and got to state s0

#times we took action a in state s

…

• Learning reward R(s), i.e. the expected immediate reward 

R(s) = average
n
R(s)(i)

o
R(s) = average

n
R(s)(i)

o
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Learning Model and Optimizing Policy

• Algorithm

1. Initialize π randomly.
2. Repeat until convergence {

a) Execute π in the MDP for some number of trials
b) Using the accumulated experience in the MDP, update our 

estimates for Psa and R
c) Apply value iteration with the estimated Psa and R to get the 

new estimated value function V
d) Update π to be the greedy policy w.r.t. V
}



Learning an MDP Model
• In realistic problems, often the state transition and reward 

function are not explicitly given
• For example, we have only observed some episodes

Episode 1:

Episode 2:

• Another branch of solution is to directly learning value & 
policy from experience without building an MDP

• i.e. Model-free Reinforcement Learning
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Model-free Reinforcement Learning

• Model-free RL is to directly learn value & policy from 
experience without building an MDP

• Key steps: (1) estimate value function; (2) optimize policy

• In realistic problems, often the state transition and reward 
function are not explicitly given
• For example, we have only observed some episodes
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Value Function Estimation
• In model-based RL (MDP), the value function is 

calculated by dynamic programming

• Now in model-free RL
• We cannot directly know Psa and R
• But we have a list of experiences to estimate the values

Episode 1:

Episode 2:
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Monte-Carlo Methods
• Monte-Carlo methods are a broad class of 

computational algorithms that rely on repeated 
random sampling to obtain numerical results.

• Example, to calculate the circle’s surface

Circle Surface = Square Surface£ #points in circle

#points in total
Circle Surface = Square Surface£ #points in circle

#points in total



Monte-Carlo Methods

Win Rate(s) =
#win simulation cases started from s

#simulation cases started from s in total
Win Rate(s) =

#win simulation cases started from s

#simulation cases started from s in total

• Go: to estimate the winning rate given the current state



Monte-Carlo Value Estimation
• Goal: learn Vπ from episodes of experience under policy π

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

= E[Gtjst = s; ¼]

' 1

N

NX
i=1

G
(i)
t

V ¼(s) = E[R(s0) + °R(s1) + °2R(s2) + ¢ ¢ ¢ js0 = s; ¼]

= E[Gtjst = s; ¼]

' 1

N

NX
i=1

G
(i)
t

s
(i)
0

a
(i)
0¡¡!

R
(i)
1

s
(i)
1

a
(i)
1¡¡!

R
(i)
2

s
(i)
2

a
(i)
2¡¡!

R
(i)
3

s
(i)
3 ¢ ¢ ¢ s(i)

T » ¼s
(i)
0

a
(i)
0¡¡!

R
(i)
1

s
(i)
1

a
(i)
1¡¡!

R
(i)
2

s
(i)
2

a
(i)
2¡¡!

R
(i)
3

s
(i)
3 ¢ ¢ ¢ s(i)

T » ¼

• Recall that the return is the total discounted reward
Gt = Rt+1 + °Rt+2 + : : : °T¡1RTGt = Rt+1 + °Rt+2 + : : : °T¡1RT

• Recall that the value function is the expected return

• Sample N episodes from state s using policy π
• Calculate the average of cumulative reward

• Monte-Carlo policy evaluation uses empirical mean return instead of expected 
return



Monte-Carlo Value Estimation

• Implementation
• Sample episodes policy π
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• Every time-step t that state s is visited in an 
episode
• Increment counter
• Increment total return
• Value is estimated by mean return
• By law of large numbers

N(s) Ã N(s) + 1N(s) Ã N(s) + 1

S(s) Ã S(s) + GtS(s) Ã S(s) + Gt

V (s) = S(s)=N(s)V (s) = S(s)=N(s)

V (s) ! V ¼(s) as N(s) !1V (s) ! V ¼(s) as N(s) !1



Incremental Monte-Carlo Updates
• Update V(s) incrementally after each episode
• For each state St with cumulative return Gt

N(St) Ã N(St) + 1N(St) Ã N(St) + 1

V (St) Ã V (St) +
1

N(St)
(Gt ¡ V (St))V (St) Ã V (St) +

1

N(St)
(Gt ¡ V (St))

• For non-stationary problems (i.e. the environment could be 
varying over time), it can be useful to track a running mean, 
i.e. forget old episodes

V (St) Ã V (St) + ®(Gt ¡ V (St))V (St) Ã V (St) + ®(Gt ¡ V (St))



Monte-Carlo Value Estimation

• MC methods learn directly from episodes of experience
• MC is model-free: no knowledge of MDP transitions / rewards
• MC learns from complete episodes: no bootstrapping (discussed 

later)
• MC uses the simplest possible idea: value = mean return
• Caveat: can only apply MC to episodic MDPs

• All episodes must terminate
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G
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G
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t

V (St) Ã V (St) + ®(Gt ¡ V (St))V (St) Ã V (St) + ®(Gt ¡ V (St))

Idea:

Implementation:



Temporal-Difference Learning

• TD methods learn directly from episodes of experience
• TD is model-free: no knowledge of MDP transitions / 

rewards
• TD learns from incomplete episodes, by bootstrapping
• TD updates a guess towards a guess

V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))

Observation Guess of 
future

Gt = Rt+1 + °Rt+2 + °2Rt+3 + : : : = Rt+1 + °V (St+1)Gt = Rt+1 + °Rt+2 + °2Rt+3 + : : : = Rt+1 + °V (St+1)



Monte Carlo vs. Temporal Difference

• The same goal: learn Vπ from episodes of experience under 
policy π

• Incremental every-visit Monte-Carlo
• Update value V(St) toward actual return Gt

V (St) Ã V (St) + ®(Gt ¡ V (St))V (St) Ã V (St) + ®(Gt ¡ V (St))

• Simplest temporal-difference learning algorithm: TD
• Update value V(St) toward estimated return Rt+1 + °V (St+1)Rt+1 + °V (St+1)

V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))

• TD target:
• TD error:  

Rt+1 + °V (St+1)Rt+1 + °V (St+1)

±t = Rt+1 + °V (St+1)¡ V (St)±t = Rt+1 + °V (St+1)¡ V (St)



Driving Home Example

State Elapsed Time
(Minutes)

Predicted
Time to Go

Predicted 
Total Time

Leaving office 0 30 30
Reach car, 

raining 5 35 40

Exit highway 20 15 35
Behind truck 30 10 40
Home street 40 3 43
Arrow home 43 0 43



Driving Home Example: MC vs. TD



Advantages and Disadvantages of MC vs. TD

• TD can learn before knowing the final outcome
• TD can learn online after every step
• MC must wait until end of episode before return is 

known

• TD can learn without the final outcome
• TD can learn from incomplete sequences
• MC can only learn from complete sequences
• TD works in continuing (non-terminating) environments
• MC only works for episodic (terminating) environments



Bias/Variance Trade-Off
• Return                                                                 is unbiased 

estimate of Vπ(St)
• True TD target                                      is unbiased estimate of 

Vπ(St)
• TD target                                        is biased estimate of Vπ(St)

Gt = Rt+1 + °Rt+2 + : : : + °T¡1RTGt = Rt+1 + °Rt+2 + : : : + °T¡1RT

Rt+1 + °V ¼(St+1)Rt+1 + °V ¼(St+1)

Rt+1 + ° V (St+1)| {z }
current estimate

Rt+1 + ° V (St+1)| {z }
current estimate

• TD target is of much lower variance than the return
• Return depends on many random actions, transitions and rewards
• TD target depends on one random action, transition and reward



Advantages and Disadvantages of MC vs. TD (2)

• MC has high variance, zero bias
• Good convergence properties
• (even with function approximation)
• Not very sensitive to initial value
• Very simple to understand and use

• TD has low variance, some bias
• Usually more efficient than MC
• TD converges to Vπ(St)

• (but not always with function approximation)
• More sensitive to initial value than MC



Random Walk Example



Random Walk Example

V (St) Ã V (St) + ®(Gt ¡ V (St))V (St) Ã V (St) + ®(Gt ¡ V (St))

V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))



Monte-Carlo Backup

V (St) Ã V (St) + ®(Gt ¡ V (St))V (St) Ã V (St) + ®(Gt ¡ V (St))



Temporal-Difference Backup

V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))V (St) Ã V (St) + ®(Rt+1 + °V (St+1)¡ V (St))



Dynamic Programming Backup

V (St) Ã E[Rt+1 + °V (St+1)]V (St) Ã E[Rt+1 + °V (St+1)]



• For time constraint, we may jump n-step 
prediction section and directly head to 
model-free control

G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)

• Define the n-step return

• n-step temporal-difference learning

V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))



Content
• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
• Markov Decision Process
• Planning by Dynamic Programming

• Model-free Reinforcement Learning
• Model-free Prediction

• Monte-Carlo and Temporal Difference
• Model-free Control

• On-policy SARSA and off-policy Q-learning



Uses of Model-Free Control
• Some example problems that can be modeled as MDPs

• For most of real-world problems, either:
• MDP model is unknown, but experience can be sampled
• MDP model is known, but is too big to use, except by samples

• Model-free control can solve these problems

• Elevator
• Parallel parking
• Ship steering
• Bioreactor
• Helicopter
• Aeroplane logistics

• Robocup soccer
• Atari & StarCraft
• Portfolio management
• Protein folding
• Robot walking
• Game of Go



On- and Off-Policy Learning
• Two categories of model-free RL

• On-policy learning
• “Learn on the job”
• Learn about policy π from experience sampled from π

• Off-policy learning
• “Look over someone’s shoulder”
• Learn about policy π from experience sampled from 

another policy μ



State Value and Action Value

• State value
• The state-value function Vπ(s) of an MDP is the expected 

return starting from state s and then following policy π

V ¼(s) = E¼[GtjSt = s]V ¼(s) = E¼[GtjSt = s]

Q¼(s; a) = E¼[GtjSt = s; At = a]Q¼(s; a) = E¼[GtjSt = s; At = a]

• Action value
• The action-value function Qπ(s,a) of an MDP is the 

expected return starting from state s, taking action a, 
and then following policy π

Gt = Rt+1 + °Rt+2 + : : : °T¡1RTGt = Rt+1 + °Rt+2 + : : : °T¡1RT



Bellman Expectation Equation
• The state-value function Vπ(s) can be decomposed 

into immediate reward plus discounted value of 
successor state

V ¼(s) = E¼[Rt+1 + °V ¼(St+1)jSt = s]V ¼(s) = E¼[Rt+1 + °V ¼(St+1)jSt = s]

Q¼(s; a) = E¼[Rt+1 + °Q¼(St+1; At+1)jSt = s; At = a]Q¼(s; a) = E¼[Rt+1 + °Q¼(St+1; At+1)jSt = s; At = a]

• The action-value function Qπ(s,a) can similarly be 
decomposed



State Value and Action Value

V ¼(s) Ã sV ¼(s) Ã s

Q¼(s; a) Ã s; aQ¼(s; a) Ã s; a

V ¼(s) =
X
a2A

¼(ajs)Q¼(s; a)V ¼(s) =
X
a2A

¼(ajs)Q¼(s; a)

Q¼(s; a) Ã s; aQ¼(s; a) Ã s; a

V ¼(s0) Ã s0V ¼(s0) Ã s0

Q¼(s; a) = R(s; a) + °
X
s02S

Psa(s
0)V ¼(s0)Q¼(s; a) = R(s; a) + °

X
s02S

Psa(s
0)V ¼(s0)R(s; a)R(s; a)



Model-Free Policy Iteration
• Given state-value function V(s) and action-value function 

Q(s,a), model-free policy iteration shall use action-value 
function

• Greedy policy improvement over V(s) requires model of MDP

¼new(s) = arg max
a2A

n
R(s; a) + °

X
s02S

Psa(s
0)V ¼(s0)

o
¼new(s) = arg max

a2A

n
R(s; a) + °

X
s02S

Psa(s
0)V ¼(s0)

o
We don’t know the transition probability

• Greedy policy improvement over Q(s,a) is model-free

¼new(s) = arg max
a2A

Q(s; a)¼new(s) = arg max
a2A

Q(s; a)



Generalized Policy Iteration with Action-Value Function

• Policy evaluation: Monte-Carlo policy evaluation, Q = Qπ

• Policy improvement: Greedy policy improvement?



Example of Greedy Action Selection

• Greedy policy improvement 
over Q(s,a) is model-free

“Behind one door is tenure – behind the other 
is flipping burgers at McDonald’s.”

¼new(s) = arg max
a2A

Q(s; a)¼new(s) = arg max
a2A

Q(s; a)

Left:
20% Reward = 0
80% Reward = 5

Right:
50% Reward = 1
50% Reward = 3

• Given the right example
• What if the first action is to 

choose the left door and 
observe reward=0?

• The policy would be 
suboptimal if there is no 
exploration



ɛ-Greedy Policy Exploration
• Simplest idea for ensuring continual exploration
• All m actions are tried with non-zero probability
• With probability 1-ɛ, choose the greedy action
• With probability ɛ, choose an action at random

¼(ajs) =

(
²=m + 1¡ ² if a¤ = arg maxa2A Q(s; a)

²=m otherwise
¼(ajs) =

(
²=m + 1¡ ² if a¤ = arg maxa2A Q(s; a)

²=m otherwise



ɛ-Greedy Policy Improvement
• Theorem

• For any ɛ-greedy policy π, the ɛ-greedy policy π’ w.r.t. Qπ 

is an improvement, i.e. V ¼0
(s) ¸ V ¼(s)V ¼0
(s) ¸ V ¼(s)

V ¼0
(s) = Q¼(s; ¼0(s)) =

X
a2A

¼0(ajs)Q¼(s; a)

=
²

m

X
a2A

Q¼(s; a) + (1¡ ²)max
a2A

Q¼(s; a)

¸ ²

m

X
a2A

Q¼(s; a) + (1¡ ²)
X
a2A

¼(ajs)¡ ²=m

1¡ ²
Q¼(s; a)

=
X
a2A

¼(ajs)Q¼(s; a) = V ¼(s)

V ¼0
(s) = Q¼(s; ¼0(s)) =

X
a2A

¼0(ajs)Q¼(s; a)

=
²

m

X
a2A

Q¼(s; a) + (1¡ ²)max
a2A

Q¼(s; a)

¸ ²

m

X
a2A

Q¼(s; a) + (1¡ ²)
X
a2A

¼(ajs)¡ ²=m

1¡ ²
Q¼(s; a)

=
X
a2A

¼(ajs)Q¼(s; a) = V ¼(s)

m actions



Generalized Policy Iteration with Action-Value Function

• Policy evaluation: Monte-Carlo policy evaluation, Q = Qπ

• Policy improvement: ɛ-greedy policy improvement



Monte-Carlo Control

Every episode:
• Policy evaluation: Monte-Carlo policy evaluation, Q ≈ Qπ

• Policy improvement: ɛ-greedy policy improvement



MC Control vs. TD Control
• Temporal-difference (TD) learning has several advantages 

over Monte-Carlo (MC)
• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our control loop
• Apply TD to update action value Q(s,a)
• Use ɛ-greedy policy improvement
• Update the action value function every time-step



SARSA
• For each state-action-reward-state-action by the current 

policy

At state s, take action a

Observe reward r

Transit to the next state s’

At state s’, take action a’

Q(s; a) Ã Q(s; a) + ®(r + °Q(s0; a0)¡Q(s; a))Q(s; a) Ã Q(s; a) + ®(r + °Q(s0; a0)¡Q(s; a))

• Updating action-value functions with Sarsa



On-Policy Control with SARSA

Every time-step:
• Policy evaluation: Sarsa
• Policy improvement: ɛ-greedy policy improvement

Q(s; a) Ã Q(s; a) + ®(r + °Q(s0; a0)¡Q(s; a))Q(s; a) Ã Q(s; a) + ®(r + °Q(s0; a0)¡Q(s; a))



SARSA Algorithm

• NOTE: on-policy TD control sample actions by the current policy, i.e., the 
two ‘A’s in SARSA are both chosen by the current policy



SARSA Example: Windy Gridworld

• Reward = -1 per time-step until reaching goal
• Undiscounted



SARSA Example: Windy Gridworld

Note: as the training proceeds, the Sarsa policy achieves the goal more and 
more quickly

optimal a trajectory



Off-Policy Learning
• Evaluate target policy π(a|s) to compute Vπ(s) or Qπ(s,a)
• While following behavior policy μ(a|s)

fs1; a1; r2; s2; a2; : : : ; sTg » ¹fs1; a1; r2; s2; a2; : : : ; sTg » ¹

• Why off-policy learning is important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy
• An example of my research in MSR Cambridge

• Collective Noise Contrastive Estimation for Policy Transfer Learning. AAAI 2016. 



Importance Sampling

• Estimate the expectation of a different distribution

Ex»p[f(x)] =

Z
x
p(x)f(x)dx

=

Z
x
q(x)

p(x)

q(x)
f(x)dx

= Ex»q

hp(x)

q(x)
f(x)

i
Ex»p[f(x)] =

Z
x
p(x)f(x)dx

=

Z
x
q(x)

p(x)

q(x)
f(x)dx

= Ex»q

hp(x)

q(x)
f(x)

i

• Re-weight each instance by ¯(x) =
p(x)

q(x)
¯(x) =

p(x)

q(x)



Importance Sampling for Off-Policy Monte-Carlo

• Use returns generated from μ to evaluate π
• Weight return Gt according to importance ratio between 

policies
• Multiply importance ratio along with episode

G
¼=¹
t =

¼(atjst)

¹(atjst)

¼(at+1jst+1)

¹(at+1jst+1)
¢ ¢ ¢ ¼(aT jsT )

¹(aT jsT )
GtG

¼=¹
t =

¼(atjst)

¹(atjst)

¼(at+1jst+1)

¹(at+1jst+1)
¢ ¢ ¢ ¼(aT jsT )

¹(aT jsT )
Gt

fs1; a1; r2; s2; a2; : : : ; sT g » ¹fs1; a1; r2; s2; a2; : : : ; sT g » ¹

• Update value towards corrected return
V (st) Ã V (st) + ®(G

¼=¹
t ¡ V (st))V (st) Ã V (st) + ®(G
¼=¹
t ¡ V (st))

• Cannot use if μ is zero when π is non-zero
• Importance sample can dramatically increase variance



Importance Sampling for Off-Policy TD

• Use TD targets generated from μ to evaluate π
• Weight TD target r+γV(s’) by importance sampling
• Only need a single importance sampling correction

V (st) Ã V (st) + ®

μ
¼(atjst)

¹(atjst)
(rt+1 + °V (st+1))¡ V (st)

¶
V (st) Ã V (st) + ®

μ
¼(atjst)

¹(atjst)
(rt+1 + °V (st+1))¡ V (st)

¶

• Much lower variance than Monte-Carlo importance sampling
• Policies only need to be similar over a single step

importance
sampling

correction

TD
target



Q-Learning
• For off-policy learning of action-value Q(s,a)
• No importance sampling is required (why?)
• The next action is chosen using behavior policy
• But we consider alternative successor action
• And update Q(st,at) towards value of alternative action

at+1 » ¹(¢jst)at+1 » ¹(¢jst)

a » ¼(¢jst)a » ¼(¢jst)

Q(st; at) Ã Q(st; at) + ®(rt+1 + °Q(st+1; a
0)¡Q(st; at))Q(st; at) Ã Q(st; at) + ®(rt+1 + °Q(st+1; a
0)¡Q(st; at))

action
from π
not μ



Off-Policy Control with Q-Learning
• Allow both behavior and target policies to improve
• The target policy π is greedy w.r.t. Q(s,a)

¼(st+1) = arg max
a0 Q(st+1; a

0)¼(st+1) = arg max
a0 Q(st+1; a

0)

• The behavior policy μ is e.g. ɛ-greedy policy w.r.t. Q(s,a)
• The Q-learning target then simplifies

rt+1 + °Q(st+1; a
0) = rt+1 + °Q(st+1; arg max

a0 Q(st+1; a
0))

= rt+1 + ° max
a0 Q(st+1; a

0)

rt+1 + °Q(st+1; a
0) = rt+1 + °Q(st+1; arg max

a0 Q(st+1; a
0))

= rt+1 + ° max
a0 Q(st+1; a

0)

Q(st; at) Ã Q(st; at) + ®(rt+1 + ° max
a0 Q(st+1; a

0)¡Q(st; at))Q(st; at) Ã Q(st; at) + ®(rt+1 + ° max
a0 Q(st+1; a

0)¡Q(st; at))

• Q-learning update



Q-Learning Control Algorithm

• Theorem: Q-learning control converges to the optimal 
action-value function

Q(st; at) Ã Q(st; at) + ®(rt+1 + ° max
a0 Q(st+1; a

0)¡Q(st; at))Q(st; at) Ã Q(st; at) + ®(rt+1 + ° max
a0 Q(st+1; a

0)¡Q(st; at))

Q(s; a) ! Q¤(s; a)Q(s; a) ! Q¤(s; a)

At state s, take action a

Observe reward r

Transit to the next state s’

At state s’, take action argmax Q(s’,a’)



Q-Learning Control Algorithm

• Why Q-learning is an off-policy control method?
• Learning from SARS generated by another policy μ
• The first action a and the corresponding reward r are from μ
• The next action a’ is picked by the target policy 

• Why no importance sampling?
• Action value function not state value function

At state s, take action a

Observe reward r

Transit to the next state s’

At state s’, take action argmax Q(s’,a’)

Q(st; at) Ã Q(st; at) + ®(rt+1 + °max
a0 Q(st+1; a

0)¡Q(st; at))Q(st; at) Ã Q(st; at) + ®(rt+1 + °max
a0 Q(st+1; a

0)¡Q(st; at))

¼(st+1) = arg max
a0 Q(st+1; a

0)¼(st+1) = arg max
a0 Q(st+1; a

0)



SARSA vs. Q-Learning Experiments
• Cliff-walking

• Undiscounted 
reward

• Episodic task
• Reward = -1 on all 

transitions
• Stepping into cliff 

area incurs -100 
reward and sent the 
agent back to the 
start

• Why the results are 
like this? ɛ-greedy policy with ɛ=0.1

Q-learning

SARSA



Further Readings
• You can learn following content offline



Relationship Between DP and TD
Full Backup (DP) Sample Backup (TD)

Bellman 
Expectation
Equation for

Bellman 
Expectation
Equation for

Bellman 
Optimality 

Equation for

V ¼(s) Ã sV ¼(s) Ã s

aa

rr

V ¼(s0) Ã s0V ¼(s0) Ã s0

Iterative Policy Evaluation TD Learning
Q¼(s; a) Ã s; aQ¼(s; a) Ã s; a

rr

s0s0

Q¼(s0; a0) Ã s0; aQ¼(s0; a0) Ã s0; a

Q-Policy Iteration

s; as; a
rr

s0s0

s0; a0s0; a0

s; as; a

rr

s0s0

s0; a0s0; a0

Q-Learning

s; as; a
rr

s0s0

s0; a0s0; a0

SARSA
Q¤(s; a) Ã s; aQ¤(s; a) Ã s; a

rr

s0s0

Q¤(s0; a0) Ã s0; a0Q¤(s0; a0) Ã s0; a0

Q-Value Iteration

V ¼(s)V ¼(s)

Q¼(s; a)Q¼(s; a)

Q¤(s; a)Q¤(s; a)



Relationship Between DP and TD
Full Backup (DP) Sample Backup (TD)

Iterative Policy Evaluation TD Learning

Q-Policy Iteration

Q-Learning

SARSA

Q-Value Iteration

V (s) Ã E[r + °V (s0)js]V (s) Ã E[r + °V (s0)js] V (s)
®Ã¡ r + °V (s0)V (s)
®Ã¡ r + °V (s0)

Q(s; a) Ã E[r + °Q(s0; a0)js; a]Q(s; a) Ã E[r + °Q(s0; a0)js; a] Q(s; a)
®Ã¡ r + °Q(s0; a0)Q(s; a)
®Ã¡ r + °Q(s0; a0)

Q(s; a) Ã E
h
r + ° max

a0 Q(s0; a0)js; a
i

Q(s; a) Ã E
h
r + ° max

a0 Q(s0; a0)js; a
i

Q(s; a)
®Ã¡ r + ° max

a0 Q(s0; a0)Q(s; a)
®Ã¡ r + ° max

a0 Q(s0; a0)

x
®Ã¡ y ´ x Ã x + ®(y ¡ x)x
®Ã¡ y ´ x Ã x + ®(y ¡ x)

where



n-Step Prediction
• Let TD target look n steps into the future



n-Step Return
• Consider the following n-step return for n=1,2,…,∞

G
(1)
t = Rt+1 + °Rt+2 + : : : + °T¡1RTG
(1)
t = Rt+1 + °Rt+2 + : : : + °T¡1RT

G
(2)
t = Rt+1 + °Rt+2 + °2V (St+2)G
(2)
t = Rt+1 + °Rt+2 + °2V (St+2)

G
(1)
t = Rt+1 + °V (St+1)G
(1)
t = Rt+1 + °V (St+1)n = 1n = 1

n = 2n = 2

n = 1n = 1

(TD)

(MC)

… …
G

(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)

• Define the n-step return

• n-step temporal-difference learning

V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))



n-Step Return

G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)

• Define the n-step return

• n-step temporal-difference learning

V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))



n-Step Return
• Why it can speed up learning compared to one-step 

methods

G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)G
(n)
t = Rt+1 + °Rt+2 + : : : + °n¡1Rt+n + °nV (St+n)

V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))V (St) Ã V (St) + ®(G
(n)
t ¡ V (St))



Random Walk Example for n-step TDs

Average RMS 
error

over 19 states 
and first 10 

episodes

®®



Averaging n-Step Returns
• We can further average n-step returns over different n
• e.g. average the 2-step and 3-step returns 

1

2

1

2

1

2

1

2

1

2
G(2) +

1

2
G(3)1

2
G(2) +

1

2
G(3)

• Combines information from two 
different time-steps

• Can we efficiently combine 
information from all time-steps?



TD(λ) for Averaging n-Step Returns

TD(λ), λ-return

1¡ ¸1¡ ¸

(1¡ ¸)¸(1¡ ¸)¸

(1¡ ¸)¸2(1¡ ¸)¸2

(1¡ ¸)¸n¡1(1¡ ¸)¸n¡1

(1¡ ¸)¸T¡t¡1(1¡ ¸)¸T¡t¡1

1 + ¸ + ¸2 + ¢ ¢ ¢ = 1

1¡ ¸
1 + ¸ + ¸2 + ¢ ¢ ¢ = 1

1¡ ¸



TD(λ) for Averaging n-Step Returns

TD(λ), λ-return

• The λ-return       combines 
all n-step returns 

• Using weight 

G¸
tG¸
t

(1¡ ¸)¸n¡1(1¡ ¸)¸n¡1

G¸
t = (1¡ ¸)

1X
n=1

¸n¡1G
(n)
tG¸

t = (1¡ ¸)

1X
n=1

¸n¡1G
(n)
t

G
(n)
tG
(n)
t

• Forward-view TD(λ)

V (St) Ã V (St) + ®(G¸
t ¡ V (St))V (St) Ã V (St) + ®(G¸
t ¡ V (St))



TD(λ) for Averaging n-Step Returns

• When λ=1,                  , which returns to Monte-Carlo method
• When λ=0,                    , which returns to one-step TD

G¸
t = (1¡ ¸)

T¡t¡1X
n=1

¸n¡1G
(n)
t + ¸T¡t¡1GtG¸

t = (1¡ ¸)

T¡t¡1X
n=1

¸n¡1G
(n)
t + ¸T¡t¡1Gt

G¸
t = GtG¸
t = Gt

G¸
t = G

(1)
tG¸

t = G
(1)
t



TD(λ) vs. n-step TD

®® ®®

RMS error at 
the end of 

the episode 
over the first 
10 episodes

Off-line

TD(λ) n-step TD

19-state Random walk results

• The results with off-line λ-return algorithms are slightly better at 
the best value of α and λ


