CS420, Machine Learning, Lecture 9

Unsupervised Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

What is Data Science

* Physics

* Goal: discover the
underlying Principal of the
world

e Solution: build the model of
the world from observations

mimsa

F=cg2
7“2

e Data Science

* Goal: discover the
underlying Principal of the
data

)
S

e Solution: build the model of
the data from observations

o/ (@)
p(x) _ zwl ef(m/)

Data Science

* Mathematically

* Find joint data
distribution p(x)

e Then the conditional
distribution p(x2|z1)

e Gaussian distribution

e Multivariate

o~ (@—p) ' E7H(z—p)

p($) — \/W

Problem Setting

* First build and learn p(x) and then infer the
conditional dependence p(x,|x;)

* Unsupervised learning
e Each dimension of x is equally treated

* Directly learn the conditional dependence p(x,|x))
* Supervised learning
* X, is the label to predict

Definition of Unsupervised Learning

* Given the training dataset
D ={x;}i=12,.. N
let the machine learn the data underlying patterns

e Latent variables
Z — X

e Density (p.d.f.) estimation
p()
* Good data representation (used for discrimination)

¢(z)

Uses of Unsupervised Learning

* Data structure discovery, data science
* Data compression
e Outlier detection

* Input to supervised/reinforcement algorithms (causes
may be more simply related to outputs or rewards)

» A theory of biological learning and perception

Slide credit: Maneesh Sahani

Content

* Fundamentals of Unsupervised Learning

* K-means clustering
* Principal component analysis

* Probabilistic Unsupervised Learning

* Mixture Gaussians
e EM Methods

* Deep Unsupervised Learning
 Auto-encoders
 Generative adversarial nets

Content

* Fundamentals of Unsupervised Learning
* K-means clustering
* Principal component analysis

K-Means Clustering

]
| '.";3.
. ® .". S ...
« * . S » ..
voy Fund &'} v
... .t
et ‘s
.:‘. “ a2t et ':'~..’u:
L o b
oo;...°. .‘ * \ "} o.
.'0{.;.
. Lo o o..
. l...o.: '.3:. ‘.:
R J AL
el ¢ .'o

K-Means Clustering

K-Means Clustering

* Provide the number of desired clusters k

* Randomly choose k instances as seeds, one per
each cluster, i.e. the centroid for each cluster

* [terate

e Assign each instance to the cluster with the closest
centroid

e Re-estimate the centroid of each cluster

e Stop when clustering converges
* Or after a fixed number of iterations

Slide credit: Ray Mooney

K-Means Clustering: Centriod

e Assume instances are real-valued vectors
€T € R

* Clusters based on centroids, center of gravity, or
mean of points in a cluster C,

1
Mkzc—kzx

xeCl,

Slide credit: Ray Mooney

K-Means Clustering: Distance

» Distance to a centroid L(z, u*)

 Euclidian distance (L2 norm)

d
Lo(z, ") = ||z — p¥| = \ (2 — k)2

m=1

* Euclidian distance (L1 norm)

d
Ly(z, pF) = |o — 1| =) |as — pl|
m=1

* Cosine distance

Slide credit: Ray Moone

K-Means Example (k=2)

Pick seeds
Reassign clusters
Compute centroids
Reasssign clusters
Compute centroids

Reassign clusters

Converged!

Slide credit: Ray Mooney

K-Means Time Complexity

* Assume computing distance between two instances
is O(d) where d is the dimensionality of the vectors

* Reassigning clusters: O(knd) distance computations

* Computing centroids: Each instance vector gets
added once to some centroid: O(nd)

* Assume these two steps are each done once for /
iterations: O(/knd)

Slide credit: Ray Mooney

K-Means Clustering Objective

* The objective of K-means is to minimize the total
sum of the squared distance of every point to its
corresponding cluster centroid

K
min S:S:L(x—,uk) ,uk:CLka

k1K
I Hemn k=1 zeC} r€Ck

* Finding the global optimum is NP-hard.

* The K-means algorithm is guaranteed to converge a
local optimum.

Seed Choice

e Results can vary based on random seed selection.

* Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings.

* Select good seeds using a heuristic or the results of
another method.

Clustering Applications

* Text mining
* Cluster documents for related search
* Cluster words for query suggestion

* Recommender systems and advertising
* Cluster users for item/ad recommendation
* Cluster items for related item suggestion

* Image search

e Cluster images for similar image search and duplication
detection

e Speech recognition or separation
e Cluster phonetical features

Principal Component Analysis (PCA)

* An example of 2-
dimensional data

* x,: the piloting skill

of pilot :E
* X,: how much he/she %
enjoys flying 5“’
o X
* Main components %
* uy:intrinsic piloting X X

“karma” of a person
* U,:some noise

X1 (Skl]l)

Example credit: Andrew Ng

Principal Component Analysis (PCA)

* PCA tries to identify the subspace in which the data
approximately lies

* PCA uses an orthogonal transformation to convert a
set of observations of possibly correlated variables
into a set of values of linearly uncorrelated
variables called principal components.

* The number of principal components is less than or
equal to the smaller of the number of original variables
or the number of observations.

RT o RF k< d

PCA Data Preprocessing

e Given the dataset
D = {x(i)}?ll

* Typically we first pre-process the data to normalize
its mean and variance

1. Move the central of the data setto 0
1 o~ . |
— (2) (4) (1) _
v - ;az T\ — T]
2. Unify the variance of each variable

1 ; . .
7= w2 @ e o

PCA Data Preprocessing

X1 (skill)

e Zero out the mean of the data

X2 (enjoyment

= . 5
O XX X X
= X X
3 % T
= X X ><>< X W ><>< X
Q@ X % X
Xy X :
<) L . N X4 (skill)
x X X X
x X 5 X

* Rescale each coordinate to have unit variance, which ensures that

different attributes are all treated on the same “scale”.

PCA Solution

* PCA finds the directions with the largest variable
variance

* which correspond to the eigenvectors of the matrix X'X
with the largest eigenvalues

PCA Solution: Data Projection

* The projection of each

point x!) to a directionu (||ul| = 1)

2@ 'y

e The variance of the
projection

%Z Zu"l' (i)

=T (E Z x(z’)x(i)T)u
1=1

=u'Yu

PCA Solution: Largest Eigenvalues

1 <
max u' Su Y= — Zzzz(z)az(z)T
U m
i=1
s.t. |u|| =1

* Find k principal components of the
data is to find the k principal
eigenvectors of 2

* i.e. the top-k eigenvectors with the .y
largest eigenvalues P

* Projected vector for x!) P
] ()] A

w20

y(i) = e RF

).

Eigendecomposition Revisit

* For a semi-positive square matrix 2 ;. 4

suppose u to be its eigenvector (||lul| =1)
with the scalar eigenvaluew Yu = wu

There are d eigenvectors-eigenvalue pairs (u;,, w))

These d eigenvectors are orthogonal, thus they form an
orthonormal basis d

Zuzu: =1

1=1

Thus any vector v can be written as

d d d
v = (Zuzuj)v = Z(ujv)uz = Zv(i)ui
i=1

U= [ul,u2,...,ud]
2 ., can be written as -
dxd w1 0
d d 0 wo
Z:Zuiu;Z:Zwiuiu;:UWUT W=1|. .
i=1 i=1 O O

Eigendecomposition Revisit
- T
1|_
+ Giventhe data x = | 2| and its covariance matrix ¥ = X T X
a:T (here we may drop m for simplicity)

* The variance in direction u; is
1 Xu||? = u) X' Xu; =) Suy =) wiu; = w

* The variance in any direction v is

d d
| Xv||* = HX(ZU(@')W) H2 = Zv(i)uiTEuiv(j) = Zva)wi
i=1 ij i=1

where v, is the projection length of v on u;

 Ifviv=1,then arg max 1 X0]1* = tgmax)
vil=1

The direction of greatest variance is the eigenvector with the largest eigenvalue

PCA Discussion

* PCA can also be derived by picking the basis that minimizes
the approximation error arising from projecting the data
onto the k-dimensional subspace spanned by them.

Xy (enjoyment)

X1 (Sklll)

PCA Visualization

original data set output from PCA
10+ o)
8- o
[]
2 |
6] % .
v 0O+ o © g g ®
“ °
,2 |
L
2 N
0 T T T T 1 -6 T T T I T 1
0 2 4 é 8 10 -4 2 0 2 4 6
X pcl
Y T &—8— @ 1 4 1] T @@ ® | L& 1
0 2 4 o) 8 10 aa 4 4 -2 0 2 4 6
y I T o —o & — 1 I I - T
0 2 4 & 8 10 -6 4 -2 0] 2 4 &

http://setosa.io/ev/principal-component-analysis/

PCA Visualization

ady

[L
VT
-10 -5 0 3 10
———
|
E__=
o

http://setosa.io/ev/principal-component-analysis/

Content

* Probabilistic Unsupervised Learning

* Mixture Gaussians
e EM Methods

Mixture Gaussian

]
’ '.";3.
B . o". s
- * o "’ g
ATRL & il
'“t:".' . .
':\‘ o -.' . Y .‘o~-‘
L 2 o
.oo...o'o' .‘ . N ':‘}
.'0".;.
* * e o-;
. ...'..:'.8:0
B ..“0‘..'.
ey ¢ .'o.

Mixture Gaussian

Graphic Model for Mixture Gaussian

e Given a training set {z!), 23 ... z(m)
* Model the data by specifying a joint distribution
pla®,2) = p(a|z)p(=)

qb Parameters of latent variable distribution

2 ~ Multinomial(¢)

p(z(i) = j) = 5 Latent varialgle: the Gaussian cluster ID
Indicates which Gaussian each x comes from

X Observed data points

Data Likelihood

e We want to maximize

U1, 8) =) logp(a; ¢, 1, %)
1=1

m k
= log > pa®]0: 1, Dp(=;)

1=1 ~(1) =1
m k '

= log Y N(W|u;,%;)8;
i=1 =1

* No closed form solution by simply setting

o, w>) _, WUomS) o Ol
O ou [9)y

=0

Data Likelihood Maximization

* For each data point x!), latent variable z) indicates
which Gaussian it comes from

* If we knew z\) the data likelihood
U1, 5) = logp(z'; ¢, pu, 30)
1=1

= > logp(zV]2; p, Z)p(; 9)
1=1

=Y log N (2|10, S,0) + log p(27; ¢)
1=1

Data Likelihood Maximization

e Given z), maximize the data likelihood

max [(¢, 1, 2) = max > log N (2P|, X.5)) + log p(z¥;
%> (@41, %) cm,z; g N (@i, 2.0) +logp(2"; 9)

* It is easy to get the solution

m

6= = 31420 = j)

=1
o S 1{z(i) — j}x(i)
SR VIRTECEYY
iny {2 =} —) (@@ —)
D im 1{'2(2) =7J}

;=

Latent Variable Inference

e Given the parameters i, 2, @, it is not hard to infer the
posterior of the latent variable z') for each instance

1) _ 14.(2). _) y @y 1y
p(2Y =gV, pu, X)) = -
(|) p(z®; b, p, X)
_ oW 29 = g, S)p(z) = ji ¢)
- > (@20 = 15 1, D)p(20) =1)
[y 2 where

' « The prior of z0lis p(z® = j; ¢)
@ * The likelihood is p(z?]z® = j; u, %)

Expectation Maximization Methods

 E-step: infer the posterior distribution of the latent
variables given the model parameters

* M-step: tune parameters to maximize the data
likelihood given the latent variable distribution

e EM methods

* |teratively execute E-step and M-step until convergence

EM Methods for Mixture Gaussians

* Mixture Gaussian example

Repeat until convergence: {

(E-step) For each j, j, set
wy) = p(z" = .2V, ,%)

(M-step) Update the parameters
¢j = %Zwﬁi)
1=1

D it w§i)w(i)

lu’] pr— m /L v
> e w§. : @
S wd (@® —) (@® —)T

2, = z_
D i w](' :

General EM Methods

e Claims:

1. After each E-M step, the data likelihood will not
decrease.

2. The EM algorithm finds a (local) maximum of a
latent variable model likelihood

* Now let’s discuss the general EM methods and
verify its effectiveness of improving data likelihood
and its convergence

Jensen’s Inequality

Theorem. Let f be a convex function, and let X be a
random variable.

Then:
E[f(X)] > f(E[X])

* Moreover, if f is strictly convex, then

Elf(X)] = F(E[X])
holds true if and only if
X = E[X]

with probability 1 (i.e., if X is a constant).

Jensen’s Inequality

f(a)

E[f(X)]

f(b)
f(EX)

Figure credit: Andrew Ng

Jensen’s Inequality

log(ax; + (1 — a)x2)
alog(x1) + (1 — «) log(x2)

Xi aXi + (1 — C}i)Xg Xo

Figure credit: Maneesh Sahani

General EM Methods: Problem

* Given the training dataset
D ={x;}i=12.. N
let the machine learn the data underlying patterns

e Assume latent variables
Z — X

* We wish to fit the parameters of a model p(x,z) to the data,
where the log-likelihood is

N
1(0) = Z log p(z; 6)

N
=) log» p(z,20)
1=1 z

General EM Methods: Problems

* EM methods solve the problems where

e Explicitly find the maximum likelihood estimation (MLE)
is hard

= arg max Z log Z p(z®, 2.)

 But given z\) observed, the MLE is easy

N
* OIFOF
0" = arg meaxiz:; log p(z*/|2\"; 9)

* EM methods give an efficient solution for MLE, by
iteratively doing
e E-step: construct a (good) lower-bound of log-likelihood
* M-step: optimize that lower-bound

General EM Methods: Lower Bound

* For each instance j, let g; be some distribution of z
Zqz = (z) >0

* Thus the data log-likelihood

Zlogp OF ZlogZp (@) Z)Q

1=1 2 (%)

p(z®, 20)
__jzjlogZE::Qz p
1=1 (Z())
(%)

— Z() QZ

. (4). . 9)
E § (4) ol Lower bound
- %:(2 >1°g ((z)) of I(9)

Jensen’s inequality
-log(x) is a convex function

General EM Methods: Lower Bound

* Then what q,-(z) should we choose?

REVIEW

Jensen’s Inequality

Theorem. Let f be a convex function, and let X be a
random variable.

Then:
E[f(X)] > f(E[X])

* Moreover, if f is strictly convex, then

Elf(X)] = F(E[X])
holds true if and only if
X = E[X]

with probability 1 (i.e., if X is a constant).

General EM Methods: Lower Bound

* Then what q,-(z) should we choose?

* In order to make above inequality tight (to hold with
equality), it is sufficient that

p(z®, 29, 0) = ¢;(z¥) - ¢
 We can derive

(@, 20,0
p(x\W, 2\Y;
log p(x OF) logZp @) 5 long (Z C—Zq (Z log MEG))

* As such g,(z) is written as the posterior distribution
() = ZE2 00 p@ D 200) _)0,
>0 p(a®,20) p(z®;0) |

General EM Methods

Repeat until convergence: {
(E-step) For each i, set
qi(z(i)) _ p(z(i)|x(i); 9)
(M-step) Update the parameters

0 iz (21 p(z®, 2; 0)
= arg max qi(2 og :

Convergence of EM

* Denote $) and 3+ as the parameters of two successive
iterations of EM, we prove that

l(e(t)) < l(e(i-kl))

which shows EM always monotonically improves the log-
likelihood, thus ensures EM will at least converge to a local
optimum.

Proof of EM Convergence

« Start from 9, we choose the posterior of latent variable
R N
q(=9) = p(z17[z1;60)
* This choice ensures the Jensen’s inequality holds with equality
(2@, 20, 90y X (2@, 20, (1))
(t) (t) () p L7, 2 (z) 33 WS
(0 Z log Z q; Z(t)() Z Z qi(2 log gt)(z(i))

z(Z = z(l)

* Then the parameters 3{*1) are then obtained by maximizing
the right hand side of above equation

(1) (9. g(t+1)
* Thus 1(p0+Y) >ZZq) log 2 plz®, =7 07)

[lower bound]

(3) q@(t) (2(9)
() 00). gt
>quz log p(z (t,)z -) [parameter optimization]
=1 (%) 4d; (Z(Z))

— 1(6®)

Remark of EM Convergence

 If we define

(2@, 2. ¢
(Z) ZC y &)
Z Z q" log Z.(Z(z))

1=1 (i)

Then we know
1(0) > J(q,0)

* EM can also be viewed as a coordinate ascent on J

* E-step maximizes it w.r.t. g
* M-step maximizes it w.r.t. 0

Coordinate Ascent in EM

WL o A
L1 7741 L
T (L EE L

0.9 I 101 14 A
WL
e

.
0.8 il
Wit iAo
1117
Ea
i
U7 it
wiiee
o
I
0.6 yret
Awis
q
\)
0.5 4
i

¢ (20 = p(z0|z; 00 ¢

7

0.3

0.1

-
0.1 0.2 0.3 0.4 0.5 0.6 0.

g 0.9

o1 N 001 p(x(i)7z(i)’0)
—argmélxzz:qi (') log '

Figure credit: Maneesh Sahani 1=1 (4)

Content

* Deep Unsupervised Learning
 Auto-encoders
 Generative adversarial nets

Neural Nets for Unsupervised Learning

e Basic idea: use neural networks to recover the data

e Restricted Boltzmann Machine

Hidden units

Visible units

Restricted Boltzmann Machine

* An RBM is an a generative stochastic artificial
neural network that can learn a probability
distribution over its set of inputs

Hidden units

Visible units

* Undirected graphical model

* Restricted: Visible (hidden)
units are not connected to
each other

* Energy function
E(?}, h) = — EZ: b@'?}i — Zj: bjhj — sz:?)@"wi,jhj h 0

L _ v
p(v,h) = —e o)

Deep Belief Networks

| 2000 |
500 | We,
1 1rw3 i H | 10?“ I
P 1000 | RBM! i wg W3ieq
.. i Em:l i EM:I
o0] b [30] Codelayer: | [30]
.Wz ' Wy ! Wytey
' [500 |
F 3
Wiytey
| 1000 |
F
W+,
| 2000 |

Pretraining Unrolling Fine-tuning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." science 313.5786 (2006): 504-507.

Performance of Latent Factor Analysis

Latent semantic analysis
based on PCA

European Community
Interbank markets monetary/economic

Disasters and
accidents

.

-’

. i T D R « s Bl 5 pis
Leading economic® *? 2 ’ﬁ T --;-:h Legal/judicial
indicators . ‘? & o LR ’% ;

- . F o0
R L 4
2.7 %o Government
<o :
Accounts/ . % e borrowings
eamings -.f

A 2000- 500-250-125-2 autoencoder
Trained by DBN

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural

networks." science 313.5786 (2006): 504-507.

Auto-encoder

* An auto-encoder is an artificial neural net used
for unsupervised learning of efficient codings

* |earn a representation (encoding) for a set of data,

typically for the purpose of dimensionality reduction Twie,

z IO'(leU—I—bl) < =1
T = O(WQZ —+ bz) — Wateq

X A —

z is regarded as the low :

dimensional latent
factor representation
of x

Fine-tuning

Learning Auto-encoder

* Objective: squared difference between x and &

J(W1,b1, Wa,by) = Y (30 — 2(9)?2

=1
m

=) (W2 4 by —)’
1=1
= i (WQU(W1$(i) +b1) + ba — x(z))2

1=1

* Auto-encoder is an unsupervised learning model trained in a
supervised fashion

6’<—9—n%

Denoising Auto-encoder
L(x,T)

[OOO]\\
/ _ ”/’V %

ROXROOle—(OO0000) (OOO0O0)

x qdD x X

e Clean input x is partially destroyed, yielding corrupted input

T ~ qD(j'; ZL‘) e.g. Gaussian noise
* The corrupted input Z is mapped to hidden representation
Z = f@(ff?)

* From z reconstruct the data

T = ggf(z)

Stacked Auto-encoder

* Layer-by-layer training =3 [O Qj
1. Train the first layer to use z, to "
reconstruct x f

2. Train the second layer to use z, [}
<
to reconstruct z, ? O Q

3. Train the third layer to use z; to (@ T

reconstruct z,
J(elele)

]

(e]e]elele)

ing AE Examples

Some Denois

Reconstructed

Corrupted

Original

Generative Adversarial
Networks (GANS)

[Goodfellow, I., et al. 2014. Generative adversarial nets. In
NIPS 2014.]

Problem Definition

 Given a dataset D = {z}, build a model gg(x) of
the data distribution that fits the true one p(z)

* Traditional objective: maximum likelihood estimation (MLE)

maX — Z log qe = maX Exwp(a:) [log QH()]
:UED

* Check whether a true data is with a high mass density of
the learned model

Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
true data is with a model-generated
high mass density data is considered as
of the learned true as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(= calculate p(x)

Generative Adversarial Nets (GANSs)

* What we really want

max By gy (z) [log p(2)]

* But we cannot directly calculate p(z)

* |dea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

Generative Adversarial Nets (GANSs)
Real World —N

! '—>© Discriminator
Generator Q—»: :

e Discriminator tries to correctly distinguish the true data and
the fake model-generated data

0000000
0000000
0000000

_—— e ———

* Generator tries to generate high-quality data to fool
discriminator

* G & D can be implemented via neural networks

* |deally, when D cannot distinguish the true and generated
data, G nicely fits the true underlying data distribution

Generator Network

r = G(z;0))

* Must be differentiable
* No invertibility requirement
* Trainable for any size of z

* Can make x conditionally Gaussian given
z but need not do so
e e.g. Variational Auto-Encoder

* Popular implementation: multi-layer
perceptron

O

Discriminator Network

P(true|lz) = D(x; 0P))

e Can be implemented by any neural networks with a
probabilistic prediction

* For example
* Multi-layer perceptron with logistic output
* AlexNet etc.

GAN: A Minimax Game

" b)
Real World ; é
Generator e—»:

min max J &) max J)
G D D

4
I
|
I
I
|
|
|
I
I
I
|
|
|

JO) B, o llog D(@)] + Eany s [log(1 — D(G(2)))]

Generator min max JD) Discriminator max JD)

Illustration of GANSs

Data
Discriminator :....... :,.,: ._A..
\“ e e Generator

L3
: ¥ L : ¥ R
' v R ‘ Y
r v ! v 1
'] LY.
ol L

7. 70

JO) = Eqpp (wyllog D(@)] + Eany.xllog(l — D(G(2)))

|deal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the true
and generated data //// \\\\

Training GANSs

for number of training iterations do Traini ng discriminator
for & steps do
e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for

Training GANSs

for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for Training generator

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for

Optimal Strategy for Discriminator

e Optimal D(x) for any Dalta

PyatalX) and pg(x) is Discriminator &

always \ ¢

D(w) = —Pdata () AVAYEY
pdata(w) + pg(a?)

Generator

e

] 'y ¥
[oy
v B oae
W i LI |
', v

2

Reformulate the Minimax Game

G: minmaxJ®) D: maxJP
G D D

JO) Z By, wllog D(@)] + Eanp.isllog(l — D(G(2))
= Eanpgora(@) 108 D(@)] + Earpg (2)[log(l — D(x))]
pdata(w)]

=K. lo
TrPdata (T) [gpdata($)+pG($)

pc(x)]

pdata(w) + PG (m)

pdata;' PG) + KL (pG H pdata;' j4e)

t Ezpe () [log

— = 10g(4) + KL (pda,ta

m(in JP) is something between max Exrpaas 108 Pa ()] and max Ez~pg 108 Pdata ()]

[Huszar, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]

Case Study of GANSs

g |
-
i

e The rightmost images in each row is the closest training data images to the neighbor
generated ones, which means GAN does not simply memorize training instances

Application: GAN for Image Colorization

Original

noise z Color _:)- H | -)lP(True)

Image

Discriminator D

1| nnr
il >

Conditional Generator G Generated
Grayscale Color
Image Image

e Conditional GAN

* Input: a grayscale image; output: a naturally colored one

Y Cao, Z Zhou, W Zhang, Y Yu. Unsupervised Diverse Colorization via Generative Adversarial Networks. arXiv:1702.06674, 2017

Examples of GAN for Colorization

E

Y Cao, Z Zhou, W Zhang, Y Yu. Unsuper ial Networks. arXiv:1702.06674, 2017

