CS420, Machine Learning, Lecture 6

Ensemble and Boosting
Algorithms

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Content of this lecture

e Ensemble Methods

* Bagging
e Random Forest

e AdaBoost

* Gradient Boosting Decision Trees

Content of this lecture

e Ensemble Methods

Ensemble Learning

* Consider a set of predictors f,, ..., f;

* Different predictors have different performance across
data

* |dea: construct a predictor F(x) that combines the
individual decisions of f,, ..., f;
e E.g., could have the member predictor vote

* E.g., could use different members for different region of
the data space

 Works well if the member each has low error rates

» Successful ensembles require diversity
* Predictors should make different mistakes
* Encourage to involve different types of predictors

Ensemble Learning

Single model

i f1(x) :

§ . Ensemble model

Data Output
X

X N f2x)) Ensemble}—» F(x)

fix)

* Although complex, ensemble learning probably
offers the most sophisticated output and the best
empirical performance!

Practical Application in Competitions

* Netflix Prize Competition

e Task: predict the user’s rating on a movie, given some
users’ ratings on some movies

 Called ‘collaborative filtering’ (we will have a lecture
about it later)

 Winner solution

* BellKor’s Pragmatic Chaos —an
ensemble of more than 800
predictors

Yehuda Koren

[Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. 2009.]

Practical Application in Competitions
e KDD-Cup 2011 Yahoo! Music Recommendation

e Task: predict the user’s rating on a music, given some
users’ ratings on some music

e With music information like album, artist, genre IDs

 Winner solution

* From A graduate course of National Taiwan University -
an ensemble of 221 predictors

A Linear Ensemble of Individual and Blended Models
for Music Rating Prediction

Po-Lung Chen, Chen-Tse Tsai, Yao-Nan Chen, Ku-Chun Chou, Chun-Liang Li,
Cheng-Hao Tsai, Kuan-Wei Wu, Yu-Cheng Chou, Chung-Yi Li, Wei-Shih Lin,
Shu-Hao Yu, Rong-Bing Chiu, Chieh-Yen Lin, Chien-Chih Wang, Po-Wei Wang,
Wei-Lun Su, Chen-Hung Wu, Tsung-Ting Kuo, Todd G. McKenzie, Ya-Hsuan
Chang, Chun-Sung Ferng, Chia-Mau Ni, Hsuan-Tien Lin, Chih-Jen Lin, Shou-
De Lin

{rR99922038, R98922028, R99922008, R99922095, BIT018, BITT05004, B96018, B96115, BIG069,
BY96113, BY5076, 897114, B97042, pI98922007, BOT058, BI6110, BIG0OSS, DIT7I44007, p9T041,
BY96025, r99922054, B96092. HTLIN, CJLIN, SDLlN}@CSlE,NTU.EDU.TW

Department of Computer Science and Information Engineering,

National Taiwan University

Practical Application in Competitions
e KDD-Cup 2011 Yahoo! Music Recommendation

* Task: predict the user’s rating on a music, given some
users’ ratings on some music

e With music information like album, artist, genre IDs

* 31 place solution
e SJTU-HKUST joint team, an ensemble of 16 predictors

Informative Ensemble of Multi-Resolution Dynamic
Factorization Models

Tianqgi Chen , Zhao Zheng, Qiuxia Lu, Xiao Jiang, Yugiang Chen, Weinan Zhang
Kailong Chen and Yong Yu
Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240 China

{tgchen, zhengzhao,lugiuxia,jiangxiao,yugiangchen,wnzhang,chenkl,yyu}@apex.sjtu.edu.cn

Nathan N. Liu' , Bin Cao, Luheng He and Qiang Yang
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{nliu,caobin,luhenghe,qyang}@cse.ust.hk

Combining Predictor: Averaging

Single model

A

Ensemble model

D t (N
ata

fr(x)

\ J

* Averaging for regression; voting for classification

Combining Predictor: Weighted Avg

Single model

A

Ensemble model

Data i b
f>(x)
\\ J

e Just like linear regression or classification
* Note: single model will not be updated when training ensemble model

Combining Predictor: Gating

Single model

A

Data i b
f>(x)
1\ J

| / L
fix F(a)= Y aifi

Gating Fn. g(x) } g, g =0

Design different learnable gating functions

e Just like linear regression or classification
* Note: single model will not be updated when training ensemble model

Combining Predictor: Gating

Single model

A

Data i b
f>(x)
1\ J

| / L
fix F(a)= Y aifi

exp(w,)

Gating Fn. g(x)} g, i =

L
Zj:l exp(w;)

Design different learnable gating functions

e Just like linear regression or classification
* Note: single model will not be updated when training ensemble model

Combining Predictor: Stacking

Single model
f1(x)
; : Ensemble model
Data Output
(x)
X N fz J g(flerr---fL) F(X)
f(x)

F(z) =g(fi(z), f2(x),..., fr(z))

* This is the general formulation of an ensemble

Combining Predictor: Multi-Layer

Single model
()
| fl(x) | Ensemble model
Dat f)
ata
X b g

f(x)

Output

F(x)

== tanh Wlf + bl

F(z) = o(Wah + b)

 Use neural networks as the ensemble model

Combining Predictor: Multi-Layer

Single model

A

Ensemble model
1 Output
ayer
2 F(x)

h = tanh(W1 [f, $] -+ bl)
F(x) = oc(Wah + bo)

Data

Cf

f(x)

* Use neural networks as the ensemble model
* Incorporate x into the first hidden layer (as gating)

Combining Predictor: Tree Models

Single model

Ensemble model
4 Y

f1(X)
- o fi(x) < a, Root Node

D t 4 N\

ata fz(x) Yes No
X \ J

Intermediate
£(x) <a, X, < 0, Node

Yes No Yes No

o) e Jmt)) v

Output F(X)

fi(x)

e Use decision trees as the ensemble model
* Splitting according to the value of f’s and x

Diversity for Ensemble Input

* Successful ensembles require diversity
* Predictors may make different mistakes

* Encourage to
* involve different types of predictors
e vary the training sets
e vary the feature sets

Cause of the Mistake Diversification Strategy
Pattern was difficult Try different models
Overfitting Vary the training sets

Some features are noisy Vary the set of input features

[Based on slide by Leon Bottou]

Content of this lecture

* Bagging

Manipulating the Training Data

* Bootstrap replication

* Given n training samples Z, construct a new training set
Z* by sampling n instances with replacement

* Excludes about 37% of the training instances

1\N
P{observation ¢ € bootstrap samples} =1 — (1 — N)

~1—¢e 1 =0.632

* Bagging (Bootstrap Aggregating)
* Create bootstrap replicates of training set
* Train a predictor for each replicate
 Validate the predictor using out-of-bootstrap data
* Average output of all predictors

---- Bootstrap
---- replications

[U ---2. Bootstrap
e em- ammmmmT | -----"777__.-- samples

@S -
. . sample
 Basicidea

 Randomly draw datasets with replacement from the training data
* Each replicate with the same size as the training set
* Evaluate any statistics S() over the replicates
* For example, variance B
Var[s(2)] = S (5(2) - §°)

---- Bootstrap
---- replications

[U ---2. Bootstrap
e em- ammmmmT | -----"777__.-- samples

@S -
. . sample
 Basicidea

 Randomly draw datasets with replacement from the training data
* Each replicate with the same size as the training set

* Evaluate any statistics S() over the replicates
* For example, model error

1 B N
EITboot — EN ZZL yza)
b=1 =1

Bootstrap for Model Evaluation

* If we directly evaluate the model using the whole training

data
EITboot — 5 AT ZZL yz:

blzl

* As the probability of a data instance in the bootstrap
samples is

1\N
P{observation ¢ € bootstrap samples} =1 — (1 — N)

~1—e ' =0.632

* |f validate on training data, it is much likely to overfit
* For example in a binary classification problem where y is indeed
independent with x

* Correct error rate: 0.5
* Above bootstrap error rate: 0.632*0 + (1-0.632)*0.5=0.184

Leave-One-Out Bootstrap

* Build a bootstrap replicate with one instance i out,
then evaluate the model using instance i

N

~ (1) 1 1 £xb

1=1 beC—t

* C'is the set of indices of the bootstrap samples b that
do not contain the instance i

* For some instance i, the set C' could be null set, just
ignore such cases

e We shall come back to the model evaluation and
select in later lectures.

Bootstrap for Model Parameters

e Sec 8.4 of Hastie et al. The elements of statistical
learning.

* Bootstrap mean is approximately a posterior
average.

Bagging: Bootstrap Aggregating

* Bootstrap replication

* Given n training samples Z = {(xy,¥1), (X5,¥5),-,(X.,¥,)},
construct a new training set Z* by sampling n instances
with replacement

 Construct B bootstrap samples Z*¢,b=1,2,...,B
* Train a set of predictors f*'(z), /*2(x),..., f*2(x)

* Bagging average the predictions

1 B
fbag Z *b

Fig 8.2 of Hastie et al. The
elements of statistical learning.

00 05 1.0 156 20 25 30

X
B-spline smooth of data

00 05 10 15 20 25 3.0

X
Ten bootstrap replicates of

the B-spline smooth.

B-spline smooth plus and minus 1.96 X
standard error bands

00 05 10 15 20 25 3.0

X
B-spline smooth with 95% standard error bands

computed from the bootstrap distribution

Original Tree b=1 b=2
x.1<0.395 x.1<0.555 x.2 <0.205

o []

0 1 1 0 0 1 0 1

b=3 b=4 b=5
Xx.2<0.285 Xx.3 <0.985 Xx.4 <-1.36

| l |

1 o 7 1r_‘ . T L

1 1 0 1 1 0

Bagging trees on simulated dataset. The top left panel shows the original tree. 5 trees
grown on bootstrap samples are shown. For each tree, the top split is annotated.

Fig 8.9 of Hastie et al. The
elements of statistical learning.

Consensus
O Probability

0.50
l

Original Tree

0.45
|

0.40
|

Test Error
0.30 0.35
| |

0.25
l

0.20
|

Number of Bootstrap Samples

For classification bagging, consensus vote vs. class probability averaging

Fig 8.10 of Hastie et al. The
elements of statistical learning.

Why Bagging Works

* Bias-Variance Decomposition
* Assume Y = f(X)+¢ where E[e] =0 Varle] = o?
* Then the expected prediction error at an input point x,
Err(zo) = E[(Y — f(x0))?| X = zo)

= 02 + [E[f(0)] — f(20)]* + E[f(x0) — E[f(z0)])?
= o2 + Bias?(f(20)) + Var(f(zo))

* Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

* Works especially well based on low-bias and high-
variance prediction models

Content of this lecture

e Random Forest

The Problem of Bagging

* Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

* Works especially based on low-bias and high-variance
prediction models

* |f the variables (with variance %) are i.d. (identically
distributed but not necessarily independent) with positive
correlation p, the variance of the average is

1—p

,002+ B o

* Which reduces to po?, even if the bootstrap sample size
goes to infinity

The Problem of Bagging

* Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

* Works especially based on low-bias and high-variance
prediction models

* Problem: the models trained from bootstrap
samples are probably positively correlated

1_
BPJQ

po? +

Random Forest

« Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 532.

 Random forest is a substantial modification of bagging that
builds a large collection of de-correlated trees, and then
average them.

All data
Random subset Random subset Random subset Random subset
I Fan
./ | |
Pan
1 | 771 | u :
] 1 0
1A o | O Y | R
[] []
0 1 0 1
V“
&
v
® LAY

Image credit: https://i.ytimg.com/vi/-bYrLRMT3vY/maxresdefault.jpg

Tree De-correlation in Random Forest

All data p variables in total

Random subset Random subset Random subset Random subset
I Fan
\/ | |
an
1 71 | n ﬂ
0 1 0
| 1 L 1
[1]]
0 1 0 1
\r““
&
v
® A

* Before each tree node split, select m < p variables
at random as candidates of splitting

* Typically values m = /p or even low as 1

Random Forest Algorithm

e Forb=11to0B:

a) Draw a bootstrap sample Z* of size n from training data
b) Grow a random-forest tree T, to the bootstrap data, by

recursively repeating the following steps for each leaf node of the

tree, until the minimum node size is reached
l. Select m variables at random from the p variables
ll. Pick the best variable & split-point among the m
lll. Split the node into two child nodes

* Output the ensemble of trees {T,},_; 5

* To make a prediction at a new point x

B
Regression: prediction average fR@) ==Y Ti(x)
b=1

Classification: majority voting CZ(2) = majority vote {Cp(z)}?

Algorithm 15.1 of Hastie et al. The
elements of statistical learning.

Performance Comparison

Spam Data
=
Q7 Bagging
e Random Forest
o —— Gradient Boosting (5 Node)
Q
o
o
©
g |
o
S
O ©
TR iy
|
K N,
o ‘
Tp]
P
O‘
Tp]
¢
S
o
o
oy
S -
e | | | T I |
0 500 1000 1500 2000 2500
Number of Trees
Fig. 15.1 of Hastie et al. The 1536 test data instances

elements of statistical learning.

Performance Comparison

Nested Spheres

© S i
5 S . =—
i — .
S = '
"g o _—
s o | &
w
w
m
& " o
-E- g — et e
w o —_—
@
|_
= Bayes Error
;e = mews = S W S R SES S SIS = SN S SR S = =
° [T | | 1
RF-1 RF-3 Bagging GBM-1 GBM-6

1 if Y2 X2 >9.34

— 1 otherwise

* Nestspheresdata Y = {

 RF-m: m means the randomly selected variables for each splitting

Fig. 15.2 of Hastie et al. The
elements of statistical learning.

Content of this lecture

e AdaBoost

Bagging vs. Random Forest vs. Boosting

* Bagging (bootstrap aggregating) simply treats each
predictor trained on a bootstrap set with the same

weight

 Random forest tries to de-correlate the bootstrap-
trained predictors (decision trees) by sampling
features

* Boosting strategically learns and combines the next
predictor based on previous predictors

Additive Models and Boosting

e Strongly recommend:

* Friedman, Jerome, Trevor Hastie, and Robert Tibshirani.
"Additive logistic regression: a statistical view of
boosting." The annals of statistics 28.2 (2000): 337-407.

Additive Models

 General form of an additive model
M
F(z) =Y fm(®)
m=1

* For regression problem

M
Jm(z) = Bmb(z; ym) Fr(z) =) Bmb(a;9m)
m=1

e Least-square learning of a predictor with others fixed
2
{Bmsm} < arg rgiynE[y — > Brb(x; k) — Bb(w; ”y)}
’ k#m

» Stepwise least-square learning of a predictor with previous ones fixed

{BmsYm} « argminE [y — Fin1(z) — Bb(x; 7)] 2
B,y

Additive Regression Models

* Least-square learning of a predictor with others fixed
2
{Bms¥m} < arg minE[y — > Brbla;) — Bb(x; ’y)}
Byy km
* Essentially, the additive learning is equivalent with modifying the

original data as
Um —y— Y fu(@)
k#m

* Stepwise least-square learning of a predictor with previous
ones fixed

{BmsYm} « argminE [y — Fin1(z) — Bb(x; 7)] 2
B,y

* Essentially, the additive learning is equivalent with modifying the
original data as

Ym — Y — Fn1(2) = ym-1 — fm-1()

Additive Classification Models

* For binary classification y = {1,-1}

M
F(z) = Z fm(z)

exp(F(z))

1 4 exp(F(x))
1

1 + exp(F(z))

P(y =1lz) =

P(y = —1fz) =

* The monotone logit transformation

P(y = 1|z)
1—P(y = 1|z)

log = F(z)

AdaBoost

* For binary classification, consider minimizing the criterion
J(F) = E[e vF®@)]
[proposed by Schapire and Singer 1998 as an upper bound on misclassification error]

* Itis (almost) equivalent with logistic cross entropy loss
e fory=+1and -1 label

1 +y eF (@) 11—y 1
Lly.o) = ——~le 5w ~ 3 8T @
_ 1ty (F(a:) —log(1 + eF(x))) + 1~y log(1 + ef'®))
2 2
_ —#F(ag) +log(1 + eF @)

= log(1 + e ¥F(®)

“HLF(x) log(1+ e F@)Y if y =41

1+ '@ {log(l + @)y ify=—1
—_= log =
e 2

AdaBoost: an Exponential Criterion

* For binary classification, consider minimizing the criterion
J(F) = E[e ¥F@)]
* Solution

ElevF@)] = / Ele™ @ |2]p(z)d

Ele ¥ ®|a] = P(y = L|z)e "™ + P(y = ~1|z)e"™

OE[e™¥F(@)|g] —F() F
CFe = ~P= 1)) 4 Py = 1la)e
OE[e~¥F(®)|g] 1 P(y = 1|x)

9F (2) =0 = F(a:):§log

AdaBoost: an Exponential Criterion

e Solution
OR[evE(®)|g] 1 P(y = 1|z)
OF (z) 0 = Fla)=gle 5o =11
e2F ()
= P(y=1lzx) = 2@

* Hence, AdaBoost and LR are equivalent up to a
factor 2

Discrete AdaBoost () = +1

* Criterion J(F) = E[e %@

Current estimate F'(z)

Seek an improved estimate F(x) + cf(«x)

Taylor series

f'(a)
1!

f"(a)
2!

(33—&)2 + f”/(a) (33 —CL)3

flatz) = fla) + ;

(x —a) +

With second-order Taylor series
J(F + cf) = E[e-vF@+ef (@)
~ Ele 4" @ (1 — yef (z) + Py f(2)?/2)]
— Ele V" @(1 — yef(z) + 2/2)]

Notethat 2 =1 f(z)?=1

Discrete AdaBoost () = +1
* Criterion J(F) = E[e ¥F'@)]
J(F +cf) = E[e ") (1 — yef (z) + */2)]

* Solve f with fixed ¢
f = arg m}n J(F + cf) = arg mfin]E[e_yF(x)(l —yef(x) 4+ c2/2)]

= argmfin]Ew[l — yef(x) + ¢*/2|x]
= arg mjgx Eulyf(x)|z] (for ¢ > 0)

where the weighted conditional expectation

Ele ¥" @y f ()]
E[e—yF(IB)]

Ewlyf(z)|x] =

The weight is the normalized error factor e’ on each data instance

Discrete AdaBoost () = +1
 Solve f with fixed ¢
f= argmj@n J(F +cf) = argm?XEw[yf(x)M (for ¢ > 0)

Ele v @y f ()]
E[e—vF(2)]

* i.e., train a f() with each training data instance weighted
proportional to its previous error factor e

Ewlyf(z)|z] =

Weighted expectation

e Solution

1, ifEu(ylx)=Py(y=1|z) — Py(y=—1|z) >0
flx) = .
—1, otherwise

Discrete AdaBoost () = +1
* Criterion J(F) = E[e ¥F'@)]

e Solve c with fixed f
c =argmin J(F + cf) = argminE,, [e_cyf("’“’)]

e—cyf(z)

c’ﬂEw[aC | = B[Oy ()]

= Eu[P(y # f(x)) - e+ (1 = Py # f(x))) - (—e7°)]
=err-e“+ (1 —err)-(—e) =0

1 1l—err o ______,

T3 log err :L ert = Bu Ly (o)) |

Discrete AdaBoost () = +1
* Criterion J(F) = E[e—yF(w)]

e Solve c with fixed f

1 1l—err .,
c = —log
2 err L

1.
04 02 02 0.4 W‘ﬁ#\l i2

Discrete AdaBoost () = +1

* |teration

train f() with each training data instance weighted
proportional to its error factor eVfix)

L, iwa(y|33) :wa(yzllw)_Pw(y: —1|33) >0
fla) = .
—1, otherwise

err = Eop [11y f(2))]

1 1 —err
F(z) « F(x) + 5 log - f(x)
w(z,y) — w(y)e—Cf(:c)y = w(x,y) exp (log - errl _l)
’ ’ ’ err WE(@)] 9

Reduced after
normalization

Discrete AdaBoost Algorithm

Discrete AdaBoost [Freund and Schapire (1996b)]

1. Start with weights w;, =1/N,i=1,..., N.

2. Repeat form=1,2,..., M:
(a) Fit the classifier f,,(x) € {-1, 1} using weights w; on the training data.

(b) Compute err,, = Ew[l(y#m(x))] = log((1 — err,,)/err,,).
(c) Set w; < w;explc, Ly 4r ()i = 1, 2, ..., N, and renormalize so that

>w; = 1.
3. Output the classifier sign[) . _; ¢,, 1 . (%)].

Real AdaBoost Algorithm

Real AdaBoost

1. Start with weights w; =1/N,i=1,2,..., N.
2. Repeat form=1,2,..., M:

(a) Fit the classifier to obtain a class probability estimate p,,(x) = P,(y =
1|x) € [0, 1], using weights w; on the training data.

(b) Set f,,(x) <- 110g pu(x)/(1 — p,,(x)) € R.
(c) Set w; < w;exp[—y;f,,(x:)],i=1,2,..., N, and renormalize so that

iw; =1
3. Output the classifier sign[Y¥_, ,,(x)].

* Real AdaBoost uses class probability estimates p, (x) to construct real-valued
contributions f,(x).

Test Error

Bagging vs. Boosting

0.1 0.2 0.3 0.4

0.0

10 Node Trees

k Bagging
Discrete AdaBoost
Real AdaBoo_st
0 100 200 300 400

Number of Terms

Test Error

0.2 0.3 0.4

0.1

0.0

Stumps

Bagging

Discrete AdaBoost

-
e e T

Real AdaBoost

T T T

100 200 300 400

Number of Terms

e Stump: a single-split tree with only two terminal nodes.

LogitBoost

LogitBoost (two classes)

1. Start with weights w;=1/N i=1,2,..., N, F(x)=0 and probability esti-
mates p(x;) = %
2. Repeatform=1,2,..., M:
(a) Compute the working response and weights
_ y; — p(x;)
p(x;)(1 = p(x;))’
w; = p(x;)(1 — p(x;)).
(b) Fit the function f,,(x) by a weighted least-squares regression of z; to

x; using weights w;.
(c) Update F(x) < F(x)+ 3, (x) and p(x) < (eF®))/(eF®) 4 = F®),

Zi

3. Output the classifier sign[F(x)] = sign[zg=1 fn(x)]

 More advanced than previous version of AdaBoost
* May not discussed in details

\
\
<+ \
N\
\
\
Y , L
\\ \ ——— Misclassification
o \\‘:._‘ ------------- Exponential
N —— Log-likelihood
N
. N e Squared Error (p)
§ Tl \ ———- Squared Error(F)
- ol - ‘-“'\ .'.‘-,
™ o
//
1’_/
.
I I I | I
2 1 0 1 2
yF

* Exponential criterion and log-likelihood (cross entropy) is
equivalent on first 2 orders of Taylor series.

A Brief History of Boosting

* 1990 - Schapire showed that a weak learner
could always improve its performance by
training two additional classifiers on filtered
versions of the input data stream

* A weak learner is an algorithm for producing a two-
class classifier with performance guaranteed (with
high probability) to be significantly better than a
coinflip Robert Schapire

. SpeC|f|caIIy
* Classifier h, is learned on the original data with N samples

* Classifier h, is then learned on a new set of N samples, half of
which are misclassified by h,

* Classifier h; is then learned on N samples for which h, and h,
disagree

* The boosted classifier is h; = Majority Vote(h,, h,, h;)

* Itis proven h;has improved performance over h,

A Brief History of Boosting

e 1995 — Freund proposed a “boost by majority”
variation which combined many weak learners
simultaneously and improved the performance of
Schapire’s simple boosting algorithm

* Both two algorithms require the weak learner has a
fixed error rate

Yoav Freund

* 1996 — Freund and Schapire proposed AdaBoost

* Dropped the fixed-error-rate requirement

* 1996~1998 — Freund, Schapire and Singer proposed some theory
to support their algorithms, in the form of the upper bound of
generalization error

* But the bounds are too loose to be of practical importance
* Boosting achieves far more impressive performance than bounds

Content of this lecture

* Gradient Boosting Decision Trees

Gradient Boosting Decision Trees

* Boosting with decision trees
* f..(x) is a decision tree model
* Many aliases such as GBRT, boosted trees, GBM

 Strongly recommend Tiangi Chen’s

tutorial

* http://www.52cs.org/?p=429

* http://homes.cs.washington.edu/~tqchen/data/pdf/B
oostedTree.pdf

* https://xgboost.readthedocs.io/en/latest/model.html

Additive Trees

J = Zl(yz-,:&?)) + Q(f)
i=1

A(t) me = t 1)+ft(33i)

n

Objective w.r.t. f, J(t) = Zl(yz, ﬁz(t Y + ft(iﬁz)) + Q(ft)
1=1

* Grow the next tree f, to minimize the loss function
J®, including the tree penalty Q(f,)

min J®
ft

Taylor Series Approximation

n

Objective w.rt.f, J®) = Zl(yi, @§t_1) + ft(CIZZ‘)) + Q(f)
im1

e Taylor series

Flat+a) = fa)+ 1Y

1!

f"(a)
2!

f/l/(a)
3!

(x —a) + (a:—a)2—|— (w—a)?’

* Let’s define the gradients

gi = V@(t—l)l(yiv g@(t_l)) h’& — V;(t—l)l(yia :&z'(t_l))

* Approximation

n

7O o 3 101 67) + gsfulme) + hif2)] +QAf)
1=1

Penalty on Tree Complexity

* Prediction variety on leaves

fi(2) = wy(zy, w €RT, q: R {1,2,.... T}

T: # leaves

Penalty on Tree Complexity

* We could define the tree complexity as
T

1
Q(ft) =T + 5)\21032-
j=1

size

weight

1
=73+ SA(4+0.01+1)

Rewritten Objective

T
. 1
* With the penalty Q(f;) =~T + §>\ZU{?

. Objective function

j=1

T Z Lo 3) + gifilwi) + %hiff(xz-)] +Q(f2)

Z [ngt(xz) =+ 1h ifi (%)] + 1"+)\Zw -+ const

1=1

~

7=1

= [O gi)w; + %(Z hi + A)wﬂ + 71"+ const

1

7 ’LEI iEIj

Sum over leaves

* | is the instance set {i| g(x;) = j}

Rewritten Objective

* Objective function

J®) = Y [Ygz Jw; + %(Zhi—l-)\)w?] + T

7=1 ZEI iEIj

* Define for simplicity G; =3, 90 Hj =3/ hi
T
1
J® = Z[ijj + i(Hj + A)w?] +~T
j=1
« With the fixed tree structure ¢:R%— {1,2,...,7T}

* The closed-form solution
\ G 1 on G2
w: = — J(t) — _ J T
I T T H + A 2 ; Hora)
This measures how good a tree structure is

The Structure Score Calculation

Instance index

2

#.
5 K B2

gradient statistics

g1, hi

92, h2

g3, h3

g4, h4

g5, h5

e

ISZ{Q*SJS}
Y N
P Gz =92+ 93+ g5
I = {1} Iy = {4} Hs =ha+ h3 + hs
Gi=n G2 = 94
Hi = hy Hi=Ihg4
3 2
1 G;
gt — _— J 3
2;Hj+A 7

The smaller, the better.

Reminder: this is already far from maximizing Gini impurity or information gain

Find the Optimal Tree Structure

e Feature and splitting point

* Greedily grow the tree
 Start from tree with depth O

* For each leaf node of the tree, try to add a split. The
change of objective after adding the split is

G2 G% (GL + GR)?

Gain = + — —
Hr,+X Hr+ XN Hp+Hgrp+ A
left child right child non-split penalty of
score score score the new
leaf

Introducing a split may not obtain positive gain, because of the last term

Efficiently Find the Optimal Split

* For the selected feature j, we sort the data ascendingly

threshold a
28 & 2

g1, h1 g4, h4 g2, h2 g5 h5 @g3,h3

%
8
S

GrL=0g1+ g Gr=¢2+93+ g5

* All we need is sum of g and h on each side, and calculate
G2 N G4 B (GL + GRr)? -
Hr,+AX Hr+ X Hp+Hrp+ A\

Gain =

 Left to right linear scan over sorted instance is enough to
decide the best split along the feature

An Algorithm for Split Finding

* For each node, enumerate over all features
* For each feature, sorted the instances by feature value
e Use a linear scan to decide the best split along that feature
* Take the best split solution along all the features

* Time Complexity growing a tree of depth K

* Itis O(n d K'log n): or each level, need O(n log n) time to sort
* There are d features, and we need to do it for K level

* This can be further optimized (e.g. use approximation or
caching the sorted features)

e Can scale to very large dataset

XGBoost

e The most effective and efficient toolkit for GBDT

Scalable and Flexible Gradient Boosting
(6 ron L]

Get Started

https://xgboost.readthedocs.io

