
Ensemble and Boosting
Algorithms

Weinan Zhang
Shanghai Jiao Tong University

http://wnzhang.net

CS420, Machine Learning, Lecture 6

http://wnzhang.net/teaching/cs420/index.html

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

Ensemble Learning
• Consider a set of predictors f1, …, fL

• Different predictors have different performance across
data

• Idea: construct a predictor F(x) that combines the
individual decisions of f1, …, fL

• E.g., could have the member predictor vote
• E.g., could use different members for different region of

the data space
• Works well if the member each has low error rates

• Successful ensembles require diversity
• Predictors should make different mistakes
• Encourage to involve different types of predictors

Ensemble Learning

• Although complex, ensemble learning probably
offers the most sophisticated output and the best
empirical performance!

x

f1(x)

f2(x)

fL(x)

…

Ensemble F(x)
Data

Single model

Ensemble model
Output

Practical Application in Competitions

• Netflix Prize Competition
• Task: predict the user’s rating on a movie, given some

users’ ratings on some movies
• Called ‘collaborative filtering’ (we will have a lecture

about it later)

[Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. 2009.]

• Winner solution
• BellKor’s Pragmatic Chaos – an

ensemble of more than 800
predictors

Yehuda Koren

Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some
users’ ratings on some music

• With music information like album, artist, genre IDs

• Winner solution
• From A graduate course of National Taiwan University -

an ensemble of 221 predictors

Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some
users’ ratings on some music

• With music information like album, artist, genre IDs

• 3rd place solution
• SJTU-HKUST joint team, an ensemble of 16 predictors

Combining Predictor: Averaging

• Averaging for regression; voting for classification

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

1/L

1/L

1/L

F (x) =
1

L

LX
i=1

fi(x)F (x) =
1

L

LX
i=1

fi(x)

Combining Predictor: Weighted Avg

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

w1

w2

wL

F (x) =
LX

i=1

wifi(x)F (x) =
LX

i=1

wifi(x)

Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi = μ>i xgi = μ>i xE.g.,
Design different learnable gating functions

Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi =
exp(w>

i x)PL
j=1 exp(w>

i x)
gi =

exp(w>
i x)PL

j=1 exp(w>
i x)

E.g.,

Design different learnable gating functions

Combining Predictor: Stacking

• This is the general formulation of an ensemble

x

f1(x)

f2(x)

fL(x)

…

g(f1, f2,… fL) F(x)
Data

Single model

Ensemble model
Output

F (x) = g(f1(x); f2(x); : : : ; fL(x))F (x) = g(f1(x); f2(x); : : : ; fL(x))

Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model

x

f1(x)

f2(x)

fL(x)

…

Layer
1 F(x)

Data

Single model

Ensemble model

Output
Layer

2

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)

Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model
• Incorporate x into the first hidden layer (as gating)

x

f1(x)

f2(x)

fL(x)

…

Layer
1 F(x)

Data

Single model

Ensemble model

Output
Layer

2

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)

f1(x) < a1

f2(x) < a2 x2 < a3

Yes No

Yes No Yes No

Intermediate
Node

Leaf
Node

Root Node

y = -1 y = 1 y = 1 y = -1

Combining Predictor: Tree Models

• Use decision trees as the ensemble model
• Splitting according to the value of f ’s and x

x

f1(x)

f2(x)

fL(x)

…

F(x)

Data

Single model
Ensemble model

Output

Diversity for Ensemble Input
• Successful ensembles require diversity

• Predictors may make different mistakes
• Encourage to

• involve different types of predictors
• vary the training sets
• vary the feature sets

[Based on slide by Leon Bottou]

Cause of the Mistake Diversification Strategy
Pattern was difficult Try different models
Overfitting Vary the training sets
Some features are noisy Vary the set of input features

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

Manipulating the Training Data
• Bootstrap replication

• Given n training samples Z, construct a new training set
Z* by sampling n instances with replacement

• Excludes about 37% of the training instances

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• Bagging (Bootstrap Aggregating)
• Create bootstrap replicates of training set
• Train a predictor for each replicate
• Validate the predictor using out-of-bootstrap data
• Average output of all predictors

Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, variance

V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2

Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, model error

Êrrboot =
1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))

Bootstrap for Model Evaluation
• If we directly evaluate the model using the whole training

data
Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• As the probability of a data instance in the bootstrap
samples is

• If validate on training data, it is much likely to overfit
• For example in a binary classification problem where y is indeed

independent with x
• Correct error rate: 0.5
• Above bootstrap error rate: 0.632*0 + (1-0.632)*0.5=0.184

Leave-One-Out Bootstrap
• Build a bootstrap replicate with one instance i out,

then evaluate the model using instance i

Êrr
(1)

=
1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))Êrr

(1)
=

1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))

• C-i is the set of indices of the bootstrap samples b that
do not contain the instance i

• For some instance i, the set C-i could be null set, just
ignore such cases

• We shall come back to the model evaluation and
select in later lectures.

Bootstrap for Model Parameters
• Sec 8.4 of Hastie et al. The elements of statistical

learning.

• Bootstrap mean is approximately a posterior
average.

Bagging: Bootstrap Aggregating
• Bootstrap replication

• Given n training samples Z = {(x1,y1), (x2,y2),…,(xn,yn)},
construct a new training set Z* by sampling n instances
with replacement

• Construct B bootstrap samples Z*b , b = 1,2,…,B
• Train a set of predictors

• Bagging average the predictions

f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)

f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)

B-spline smooth of data B-spline smooth plus and minus 1.96×
standard error bands

Ten bootstrap replicates of
the B-spline smooth.

B-spline smooth with 95% standard error bands
computed from the bootstrap distributionFig 8.2 of Hastie et al. The

elements of statistical learning.

Fig 8.9 of Hastie et al. The
elements of statistical learning.

Bagging trees on simulated dataset. The top left panel shows the original tree. 5 trees
grown on bootstrap samples are shown. For each tree, the top split is annotated.

Fig 8.10 of Hastie et al. The
elements of statistical learning.

For classification bagging, consensus vote vs. class probability averaging

Why Bagging Works
• Bias-Variance Decomposition

• Assume where
• Then the expected prediction error at an input point x0

Y = f(X) + ²Y = f(X) + ² E[²] = 0 Var[²] = ¾2
²E[²] = 0 Var[²] = ¾2
²

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially well based on low-bias and high-
variance prediction models

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

The Problem of Bagging

• If the variables (with variance σ2) are i.d. (identically
distributed but not necessarily independent) with positive
correlation ρ, the variance of the average is

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially based on low-bias and high-variance
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2

• Which reduces to ρσ2, even if the bootstrap sample size
goes to infinity

The Problem of Bagging

• Problem: the models trained from bootstrap
samples are probably positively correlated

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially based on low-bias and high-variance
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2

Random Forest
• Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 532.

• Random forest is a substantial modification of bagging that
builds a large collection of de-correlated trees, and then
average them.

Image credit: https://i.ytimg.com/vi/-bYrLRMT3vY/maxresdefault.jpg

Tree De-correlation in Random Forest

• Before each tree node split, select m ≤ p variables
at random as candidates of splitting

• Typically values or even low as 1 m =
p

pm =
p

p

p variables in total

Random Forest Algorithm
• For b = 1 to B:

a) Draw a bootstrap sample Z* of size n from training data
b) Grow a random-forest tree Tb to the bootstrap data, by

recursively repeating the following steps for each leaf node of the
tree, until the minimum node size is reached
I. Select m variables at random from the p variables
II. Pick the best variable & split-point among the m
III. Split the node into two child nodes

• Output the ensemble of trees {Tb}b=1…B

• To make a prediction at a new point x

Algorithm 15.1 of Hastie et al. The
elements of statistical learning.

f̂B
rf (x) =

1

B

BX
b=1

Tb(x)f̂B
rf (x) =

1

B

BX
b=1

Tb(x)

Classification: majority voting

Regression: prediction average

ĈB
rf (x) = majority vote fĈb(x)gB

1ĈB
rf (x) = majority vote fĈb(x)gB

1

Performance Comparison

Fig. 15.1 of Hastie et al. The
elements of statistical learning.

1536 test data instances

Performance Comparison

• RF-m: m means the randomly selected variables for each splitting
Fig. 15.2 of Hastie et al. The
elements of statistical learning.

Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
• Nest spheres data

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

Bagging vs. Random Forest vs. Boosting

• Bagging (bootstrap aggregating) simply treats each
predictor trained on a bootstrap set with the same
weight

• Random forest tries to de-correlate the bootstrap-
trained predictors (decision trees) by sampling
features

• Boosting strategically learns and combines the next
predictor based on previous predictors

Additive Models and Boosting
• Strongly recommend:

• Friedman, Jerome, Trevor Hastie, and Robert Tibshirani.
"Additive logistic regression: a statistical view of
boosting." The annals of statistics 28.2 (2000): 337-407.

Additive Models
• General form of an additive model

F (x) =

MX
m=1

fm(x)F (x) =

MX
m=1

fm(x)

fm(x) = ¯mb(x; °m)fm(x) = ¯mb(x; °m)

• For regression problem

FM (x) =

MX
m=1

¯mb(x; °m)FM (x) =

MX
m=1

¯mb(x; °m)

• Least-square learning of a predictor with others fixed

f¯m; °mg Ã arg min
¯;°

E
h
y ¡

X
k 6=m

¯kb(x; °k)¡ ¯b(x; °)
i2f¯m; °mg Ã arg min

¯;°
E

h
y ¡

X
k 6=m

¯kb(x; °k)¡ ¯b(x; °)
i2

• Stepwise least-square learning of a predictor with previous ones fixed

f¯m; °mg Ã arg min
¯;°

E
h
y ¡ Fm¡1(x)¡ ¯b(x; °)

i2f¯m; °mg Ã arg min
¯;°

E
h
y ¡ Fm¡1(x)¡ ¯b(x; °)

i2

Additive Regression Models
• Least-square learning of a predictor with others fixed

f¯m; °mg Ã arg min
¯;°

E
h
y ¡

X
k 6=m

¯kb(x; °k)¡ ¯b(x; °)
i2f¯m; °mg Ã arg min

¯;°
E

h
y ¡

X
k 6=m

¯kb(x; °k)¡ ¯b(x; °)
i2

• Stepwise least-square learning of a predictor with previous
ones fixed

f¯m; °mg Ã arg min
¯;°

E
h
y ¡ Fm¡1(x)¡ ¯b(x; °)

i2f¯m; °mg Ã arg min
¯;°

E
h
y ¡ Fm¡1(x)¡ ¯b(x; °)

i2

• Essentially, the additive learning is equivalent with modifying the
original data as

ym Ã y ¡
X
k 6=m

fk(x)ym Ã y ¡
X
k 6=m

fk(x)

• Essentially, the additive learning is equivalent with modifying the
original data as

ym Ã y ¡ Fm¡1(x) = ym¡1 ¡ fm¡1(x)ym Ã y ¡ Fm¡1(x) = ym¡1 ¡ fm¡1(x)

Additive Classification Models
• For binary classification

P (y = 1jx) =
exp(F (x))

1 + exp(F (x))
P (y = 1jx) =

exp(F (x))

1 + exp(F (x))

F (x) =
MX

m=1

fm(x)F (x) =
MX

m=1

fm(x)

P (y = ¡1jx) =
1

1 + exp(F (x))
P (y = ¡1jx) =

1

1 + exp(F (x))

log
P (y = 1jx)

1¡ P (y = 1jx)
= F (x)log

P (y = 1jx)

1¡ P (y = 1jx)
= F (x)

• The monotone logit transformation

y = f1;¡1gy = f1;¡1g

AdaBoost
• For binary classification, consider minimizing the criterion

J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]

• It is (almost) equivalent with logistic cross entropy loss
• for y=+1 and -1 label

L(y; x) = ¡1 + y

2
log

eF (x)

1 + eF (x)
¡ 1¡ y

2
log

1

1 + eF (x)

= ¡1 + y

2

³
F (x)¡ log(1 + eF (x))

´
+

1¡ y

2
log(1 + eF (x))

= ¡1 + y

2
F (x) + log(1 + eF (x))

= log
1 + eF (x)

e
1+y
2

F (x)
=

(
log(1 + eF (x)) if y = ¡1

log(1 + e¡F (x)) if y = +1
= log(1 + e¡yF (x))

L(y; x) = ¡1 + y

2
log

eF (x)

1 + eF (x)
¡ 1¡ y

2
log

1

1 + eF (x)

= ¡1 + y

2

³
F (x)¡ log(1 + eF (x))

´
+

1¡ y

2
log(1 + eF (x))

= ¡1 + y

2
F (x) + log(1 + eF (x))

= log
1 + eF (x)

e
1+y
2

F (x)
=

(
log(1 + eF (x)) if y = ¡1

log(1 + e¡F (x)) if y = +1
= log(1 + e¡yF (x))

[proposed by Schapire and Singer 1998 as an upper bound on misclassification error]

AdaBoost: an Exponential Criterion

• For binary classification, consider minimizing the criterion

J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]

• Solution

E[e¡yF (x)] =

Z
E[e¡yF (x)jx]p(x)dxE[e¡yF (x)] =

Z
E[e¡yF (x)jx]p(x)dx

E[e¡yF (x)jx] = P (y = 1jx)e¡F (x) + P (y = ¡1jx)eF (x)E[e¡yF (x)jx] = P (y = 1jx)e¡F (x) + P (y = ¡1jx)eF (x)

@E[e¡yF (x)jx]

@F (x)
= ¡P (y = 1jx)e¡F (x) + P (y = ¡1jx)eF (x)@E[e¡yF (x)jx]

@F (x)
= ¡P (y = 1jx)e¡F (x) + P (y = ¡1jx)eF (x)

@E[e¡yF (x)jx]

@F (x)
= 0) F (x) =

1

2
log

P (y = 1jx)

P (y = ¡1jx)

@E[e¡yF (x)jx]

@F (x)
= 0) F (x) =

1

2
log

P (y = 1jx)

P (y = ¡1jx)

AdaBoost: an Exponential Criterion

• Solution
@E[e¡yF (x)jx]

@F (x)
= 0) F (x) =

1

2
log

P (y = 1jx)

P (y = ¡1jx)

@E[e¡yF (x)jx]

@F (x)
= 0) F (x) =

1

2
log

P (y = 1jx)

P (y = ¡1jx)

) P (y = 1jx) =
e2F (x)

1 + e2F (x)
) P (y = 1jx) =

e2F (x)

1 + e2F (x)

• Hence, AdaBoost and LR are equivalent up to a
factor 2

Discrete AdaBoost
J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]• Criterion

• Current estimate F (x)F (x)

• Seek an improved estimate F (x) + cf(x)F (x) + cf(x)

• Taylor series

f(a + x) = f(a) +
f 0(a)

1!
(x¡ a) +

f 00(a)

2!
(x¡ a)2 +

f 000(a)

3!
(x¡ a)3f(a + x) = f(a) +

f 0(a)

1!
(x¡ a) +

f 00(a)

2!
(x¡ a)2 +

f 000(a)

3!
(x¡ a)3

• With second-order Taylor series
J(F + cf) = E[e¡y(F (x)+cf(x))]

' E[e¡yF (x)(1¡ ycf(x) + c2y2f(x)2=2)]

= E[e¡yF (x)(1¡ ycf(x) + c2=2)]

J(F + cf) = E[e¡y(F (x)+cf(x))]

' E[e¡yF (x)(1¡ ycf(x) + c2y2f(x)2=2)]

= E[e¡yF (x)(1¡ ycf(x) + c2=2)]

Note that y2 = 1 f(x)2 = 1y2 = 1 f(x)2 = 1

f(x) = §1f(x) = §1

Discrete AdaBoost
J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]• Criterion

• Solve f with fixed c

f(x) = §1f(x) = §1

J(F + cf) ' E[e¡yF (x)(1¡ ycf(x) + c2=2)]J(F + cf) ' E[e¡yF (x)(1¡ ycf(x) + c2=2)]

f = arg min
f

J(F + cf) = arg min
f

E[e¡yF (x)(1¡ ycf(x) + c2=2)]

= arg min
f

Ew[1¡ ycf(x) + c2=2jx]

= arg max
f

Ew[yf(x)jx] (for c > 0)

f = arg min
f

J(F + cf) = arg min
f

E[e¡yF (x)(1¡ ycf(x) + c2=2)]

= arg min
f

Ew[1¡ ycf(x) + c2=2jx]

= arg max
f

Ew[yf(x)jx] (for c > 0)

Ew[yf(x)jx] =
E[e¡yF (x)yf(x)]

E[e¡yF (x)]
Ew[yf(x)jx] =

E[e¡yF (x)yf(x)]

E[e¡yF (x)]

where the weighted conditional expectation

The weight is the normalized error factor e-yF(x) on each data instance

Discrete AdaBoost
• Solve f with fixed c

f(x) = §1f(x) = §1

f = arg min
f

J(F + cf) = arg max
f

Ew[yf(x)jx] (for c > 0)f = arg min
f

J(F + cf) = arg max
f

Ew[yf(x)jx] (for c > 0)

• Solution

f(x) =

(
1; if Ew(yjx) = Pw(y = 1jx)¡ Pw(y = ¡1jx) > 0

¡1; otherwise
f(x) =

(
1; if Ew(yjx) = Pw(y = 1jx)¡ Pw(y = ¡1jx) > 0

¡1; otherwise

Weighted expectationEw[yf(x)jx] =
E[e¡yF (x)yf(x)]

E[e¡yF (x)]
Ew[yf(x)jx] =

E[e¡yF (x)yf(x)]

E[e¡yF (x)]

• i.e., train a f() with each training data instance weighted
proportional to its previous error factor e-yF(x)

Discrete AdaBoost
J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]• Criterion

• Solve c with fixed f

f(x) = §1f(x) = §1

c = arg min
c

J(F + cf) = arg min
c

Ew[e¡cyf(x)]c = arg min
c

J(F + cf) = arg min
c

Ew[e¡cyf(x)]

@Ew[e¡cyf(x)]

@c
= Ew[¡e¡cyf(x)yf(x)]

= Ew[P (y 6= f(x)) ¢ ec + (1¡ P (y 6= f(x))) ¢ (¡e¡c)]

= err ¢ ec + (1¡ err) ¢ (¡e¡c) = 0

) c =
1

2
log

1¡ err

err

@Ew[e¡cyf(x)]

@c
= Ew[¡e¡cyf(x)yf(x)]

= Ew[P (y 6= f(x)) ¢ ec + (1¡ P (y 6= f(x))) ¢ (¡e¡c)]

= err ¢ ec + (1¡ err) ¢ (¡e¡c) = 0

) c =
1

2
log

1¡ err

err err = Ew[1[y 6=f(x)]]err = Ew[1[y 6=f(x)]]

Discrete AdaBoost
J(F) = E[e¡yF (x)]J(F) = E[e¡yF (x)]• Criterion

• Solve c with fixed f

f(x) = §1f(x) = §1

c =
1

2
log

1¡ err

err
c =

1

2
log

1¡ err

err
err = Ew[1[y 6=f(x)]]err = Ew[1[y 6=f(x)]]

c

err

Discrete AdaBoost f(x) = §1f(x) = §1

• Iteration

F (x) Ã F (x) +
1

2
log

1¡ err

err
f(x)F (x) Ã F (x) +

1

2
log

1¡ err

err
f(x)

f(x) =

(
1; if Ew(yjx) = Pw(y = 1jx)¡ Pw(y = ¡1jx) > 0

¡1; otherwise
f(x) =

(
1; if Ew(yjx) = Pw(y = 1jx)¡ Pw(y = ¡1jx) > 0

¡1; otherwise

train f() with each training data instance weighted
proportional to its error factor e-yF(x)

w(x; y) Ã w(x; y)e¡cf(x)y = w(x; y) exp
³

log
1¡ err

err
1[y 6=f(x)]¡

1

2

´
w(x; y) Ã w(x; y)e¡cf(x)y = w(x; y) exp

³
log

1¡ err

err
1[y 6=f(x)]¡

1

2

´
Reduced after
normalization

err = Ew[1[y 6=f(x)]]err = Ew[1[y 6=f(x)]]

Discrete AdaBoost Algorithm

Real AdaBoost Algorithm

• Real AdaBoost uses class probability estimates pm(x) to construct real-valued
contributions fm(x).

Bagging vs. Boosting

• Stump: a single-split tree with only two terminal nodes.

LogitBoost

• More advanced than previous version of AdaBoost
• May not discussed in details

• Exponential criterion and log-likelihood (cross entropy) is
equivalent on first 2 orders of Taylor series.

A Brief History of Boosting
• 1990 - Schapire showed that a weak learner

could always improve its performance by
training two additional classifiers on filtered
versions of the input data stream

• A weak learner is an algorithm for producing a two-
class classifier with performance guaranteed (with
high probability) to be significantly better than a
coinflip

• Specifically
• Classifier h1 is learned on the original data with N samples
• Classifier h2 is then learned on a new set of N samples, half of

which are misclassified by h1
• Classifier h3 is then learned on N samples for which h1 and h2

disagree
• The boosted classifier is hB = Majority Vote(h1, h2, h3)
• It is proven hB has improved performance over h1

Robert Schapire

A Brief History of Boosting
• 1995 – Freund proposed a “boost by majority”

variation which combined many weak learners
simultaneously and improved the performance of
Schapire’s simple boosting algorithm

• Both two algorithms require the weak learner has a
fixed error rate

• 1996 – Freund and Schapire proposed AdaBoost
• Dropped the fixed-error-rate requirement

• 1996~1998 – Freund, Schapire and Singer proposed some theory
to support their algorithms, in the form of the upper bound of
generalization error

• But the bounds are too loose to be of practical importance
• Boosting achieves far more impressive performance than bounds

Yoav Freund

Content of this lecture
• Ensemble Methods

• Bagging

• Random Forest

• AdaBoost

• Gradient Boosting Decision Trees

Gradient Boosting Decision Trees
• Boosting with decision trees

• fm(x) is a decision tree model
• Many aliases such as GBRT, boosted trees, GBM

• Strongly recommend Tianqi Chen’s
tutorial

• http://www.52cs.org/?p=429
• http://homes.cs.washington.edu/~tqchen/data/pdf/B

oostedTree.pdf
• https://xgboost.readthedocs.io/en/latest/model.html

Additive Trees

• Grow the next tree ft to minimize the loss function
J(t), including the tree penalty Ω(ft)

ŷ
(t)
i =

tX
m=1

fm(xi) = ŷ
(t¡1)
i + ft(xi)ŷ

(t)
i =

tX
m=1

fm(xi) = ŷ
(t¡1)
i + ft(xi)

J (t) =
nX

i=1

l
³
yi; ŷ

(t)
i

´
+ Ð(ft)J (t) =

nX
i=1

l
³
yi; ŷ

(t)
i

´
+ Ð(ft)

J (t) =
nX

i=1

l
³
yi; ŷ

(t¡1)
i + ft(xi)

´
+ Ð(ft)J (t) =

nX
i=1

l
³
yi; ŷ

(t¡1)
i + ft(xi)

´
+ Ð(ft)Objective w.r.t. ft

min
ft

J (t)min
ft

J (t)

Taylor Series Approximation

• Taylor series

J (t) =
nX

i=1

l
³
yi; ŷ

(t¡1)
i + ft(xi)

´
+ Ð(ft)J (t) =

nX
i=1

l
³
yi; ŷ

(t¡1)
i + ft(xi)

´
+ Ð(ft)Objective w.r.t. ft

f(a + x) = f(a) +
f 0(a)

1!
(x¡ a) +

f 00(a)

2!
(x¡ a)2 +

f 000(a)

3!
(x¡ a)3f(a + x) = f(a) +

f 0(a)

1!
(x¡ a) +

f 00(a)

2!
(x¡ a)2 +

f 000(a)

3!
(x¡ a)3

• Let’s define the gradients

gi = rŷ(t¡1)l(yi; ŷ
(t¡1)
i)gi = rŷ(t¡1)l(yi; ŷ
(t¡1)
i) hi = r2

ŷ(t¡1)l(yi; ŷ
(t¡1)
i)hi = r2

ŷ(t¡1)l(yi; ŷ
(t¡1)
i)

• Approximation

J (t) '
nX

i=1

h
l(yi; ŷ

(t¡1)
i) + gift(xi) +

1

2
hif

2
t (xi)

i
+ Ð(ft)J (t) '

nX
i=1

h
l(yi; ŷ

(t¡1)
i) + gift(xi) +

1

2
hif

2
t (xi)

i
+ Ð(ft)

Penalty on Tree Complexity
• Prediction variety on leaves

ft(x) = wq(x); w 2 RT ; q : Rd 7! f1; 2; : : : ; Tgft(x) = wq(x); w 2 RT ; q : Rd 7! f1; 2; : : : ; Tg

w1 = +2w1 = +2 w2 = +0:1w2 = +0:1 w3 = ¡1w3 = ¡1

T: # leaves

Penalty on Tree Complexity
• We could define the tree complexity as

Ð(ft) = °T +
1

2
¸

TX
j=1

w2
jÐ(ft) = °T +

1

2
¸

TX
j=1

w2
j

w1 = +2w1 = +2 w2 = +0:1w2 = +0:1 w3 = ¡1w3 = ¡1

size weight

Ð(ft) = °3 +
1

2
¸(4 + 0:01 + 1)Ð(ft) = °3 +

1

2
¸(4 + 0:01 + 1)

Rewritten Objective
• With the penalty

J (t) '
nX

i=1

h
l(yi; ŷ

(t¡1)
i) + gift(xi) +

1

2
hif

2
t (xi)

i
+ Ð(ft)

=
nX

i=1

h
gift(xi) +

1

2
hif

2
t (xi)

i
+ °T +

1

2
¸

TX
j=1

w2
j + const

=
TX

j=1

h
(
X
i2Ij

gi)wj +
1

2
(
X
i2Ij

hi + ¸)w2
j

i
+ °T + const

J (t) '
nX

i=1

h
l(yi; ŷ

(t¡1)
i) + gift(xi) +

1

2
hif

2
t (xi)

i
+ Ð(ft)

=
nX

i=1

h
gift(xi) +

1

2
hif

2
t (xi)

i
+ °T +

1

2
¸

TX
j=1

w2
j + const

=
TX

j=1

h
(
X
i2Ij

gi)wj +
1

2
(
X
i2Ij

hi + ¸)w2
j

i
+ °T + const

Ð(ft) = °T +
1

2
¸

TX
j=1

w2
jÐ(ft) = °T +

1

2
¸

TX
j=1

w2
j

• Objective function

• Ij is the instance set {i|q(xi) = j}
gi = rŷ(t¡1)l(yi; ŷ

(t¡1)
i)gi = rŷ(t¡1)l(yi; ŷ
(t¡1)
i)

hi = r2
ŷ(t¡1) l(yi; ŷ

(t¡1)
i)hi = r2

ŷ(t¡1) l(yi; ŷ
(t¡1)
i)

Sum over leaves

Rewritten Objective

J (t) =
TX

j=1

h
(
X
i2Ij

gi)wj +
1

2
(
X
i2Ij

hi + ¸)w2
j

i
+ °TJ (t) =

TX
j=1

h
(
X
i2Ij

gi)wj +
1

2
(
X
i2Ij

hi + ¸)w2
j

i
+ °T

• Objective function

Gj =
P

i2Ij
gi Hj =

P
i2Ij

hiGj =
P

i2Ij
gi Hj =

P
i2Ij

hi• Define for simplicity

J (t) =

TX
j=1

[Gjwj +
1

2
(Hj + ¸)w2

j] + °TJ (t) =

TX
j=1

[Gjwj +
1

2
(Hj + ¸)w2

j] + °T

• With the fixed tree structure q : Rd 7! f1; 2; : : : ; Tgq : Rd 7! f1; 2; : : : ; Tg
• The closed-form solution

w¤
j = ¡ Gj

Hj + ¸
w¤

j = ¡ Gj

Hj + ¸ J (t) = ¡1

2

TX
j=1

G2
j

Hj + ¸
+ °TJ (t) = ¡1

2

TX
j=1

G2
j

Hj + ¸
+ °T

This measures how good a tree structure is

The Structure Score Calculation

J (t) = ¡1

2

3X
j=1

G2
j

Hj + ¸
+ °3J (t) = ¡1

2

3X
j=1

G2
j

Hj + ¸
+ °3

The smaller, the better.

Reminder: this is already far from maximizing Gini impurity or information gain

Find the Optimal Tree Structure
• Feature and splitting point

• Greedily grow the tree
• Start from tree with depth 0
• For each leaf node of the tree, try to add a split. The

change of objective after adding the split is

Gain =
G2

L

HL + ¸
+

G2
R

HR + ¸
¡ (GL + GR)2

HL + HR + ¸
¡ °Gain =

G2
L

HL + ¸
+

G2
R

HR + ¸
¡ (GL + GR)2

HL + HR + ¸
¡ °

left child
score

right child
score

non-split
score

penalty of
the new

leaf
Introducing a split may not obtain positive gain, because of the last term

Efficiently Find the Optimal Split
• For the selected feature j, we sort the data ascendingly

xjxj

threshold

• All we need is sum of g and h on each side, and calculate

Gain =
G2

L

HL + ¸
+

G2
R

HR + ¸
¡ (GL + GR)2

HL + HR + ¸
¡ °Gain =

G2
L

HL + ¸
+

G2
R

HR + ¸
¡ (GL + GR)2

HL + HR + ¸
¡ °

• Left to right linear scan over sorted instance is enough to
decide the best split along the feature

An Algorithm for Split Finding
• For each node, enumerate over all features

• For each feature, sorted the instances by feature value
• Use a linear scan to decide the best split along that feature
• Take the best split solution along all the features

• Time Complexity growing a tree of depth K
• It is O(n d K log n): or each level, need O(n log n) time to sort

• There are d features, and we need to do it for K level
• This can be further optimized (e.g. use approximation or

caching the sorted features)
• Can scale to very large dataset

XGBoost
• The most effective and efficient toolkit for GBDT

https://xgboost.readthedocs.io

