
Neural Networks
Weinan Zhang

Shanghai Jiao Tong University
http://wnzhang.net

CS420 Machine Learning, Lecture 4

http://wnzhang.net/teaching/cs420/index.html

Breaking News of AI in 2016
• AlphaGo wins Lee Sedol (4-1)

https://www.goratings.org/

https://deepmind.com/research/alphago/

Machine Learning in AlphaGo

• Policy Network
• Supervised Learning

• Predict what is the best
next human move

• Reinforcement Learning
• Learning to select the

next move to maximize
the winning rate

• Value Network
• Expectation of winning

given the board state

• Implemented by (deep)
neural networks

Neural Networks
• Neural networks are the basis of deep learning

Perceptron

Multi-layer Perceptron

Convolutional Neural Network Recurrent Neural Network

Real Neurons

• Cell structures
• Cell body
• Dendrites
• Axon
• Synaptic terminals

Slides credit: Ray Mooney

Neural Communication
• Electrical potential across cell membrane exhibits spikes

called action potentials.
• Spike originates in cell body, travels down

axon, and causes synaptic terminals to
release neurotransmitters.

• Chemical diffuses across synapse to
dendrites of other neurons.

• Neurotransmitters can be excitatory or
inhibitory.

• If net input of neurotransmitters to a neuron from other
neurons is excitatory and exceeds some threshold, it fires an
action potential.

Slides credit: Ray Mooney

Real Neural Learning
• Synapses change size and strength with experience.

• Hebbian learning: When two connected neurons
are firing at the same time, the strength of the
synapse between them increases.

• “Neurons that fire together, wire together.”

• These motivate the research of artificial neural nets

Slides credit: Ray Mooney

Brief History of Artificial Neural Nets
• The First wave

• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron
model

• 1958 Rosenblatt introduced the simple single layer networks now
called Perceptrons.

• 1969 Minsky and Papert’s book Perceptrons demonstrated the
limitation of single layer perceptrons, and almost the whole field
went into hibernation.

• The Second wave
• 1986 The Back-Propagation learning algorithm for Multi-Layer

Perceptrons was rediscovered and the whole field took off again.

• The Third wave
• 2006 Deep (neural networks) Learning gains popularity and
• 2012 made significant break-through in many applications.

Slides credit: Jun Wang

Artificial Neuron Model
• Model network as a graph with cells as nodes and synaptic

connections as weighted edges from node i to node j, wji

• Model net input to cell as

• Cell output is

1

32 54 6

w12

w13 w14
w15

w16

(Tj is threshold for unit j)
netj

oj

Tj
0

1

netj =
X

i

wjioinetj =
X

i

wjioi

oj =

(
0 if netj < Tj

1 if netj ¸ Tj

oj =

(
0 if netj < Tj

1 if netj ¸ Tj

Slides credit: Ray Mooney
McCulloch and Pitts [1943]

Perceptron Model
• Rosenblatt’s single layer perceptron [1958]

• Rosenblatt [1958] further
proposed the perceptron
as the first model for
learning with a teacher
(i.e., supervised learning)

• Focused on how to find
appropriate weights wm
for two-class classification
task

• y = 1: class one
• y = -1: class two

• Activation function

'(z) =

(
1 if z ¸ 0

¡1 otherwise
'(z) =

(
1 if z ¸ 0

¡1 otherwise
ŷ = '

³ mX
i=1

wixi + b
´

ŷ = '
³ mX

i=1

wixi + b
´• Prediction

Training Perceptron
• Rosenblatt’s single layer perceptron [1958]

• Activation function

'(z) =

(
1 if z ¸ 0

¡1 otherwise
'(z) =

(
1 if z ¸ 0

¡1 otherwise

• Prediction

wi = wi + ´(y ¡ ŷ)xiwi = wi + ´(y ¡ ŷ)xi

• Training

ŷ = '
³ mX

i=1

wixi + b
´

ŷ = '
³ mX

i=1

wixi + b
´

b = b + ´(y ¡ ŷ)b = b + ´(y ¡ ŷ)

• Equivalent to rules:
• If output is correct, do

nothing
• If output is high, lower

weights on positive
inputs

• If output is low, increase
weights on active inputs

Properties of Perceptron
• Rosenblatt’s single layer perceptron [1958]

x1x1

x2x2

• Rosenblatt Proved the
convergence of a learning
algorithm if two classes
said to be linearly
separable (i.e., patterns
that lie on opposite sides
of a hyperplane)

• Many people hoped that
such a machine could be
the basis for artificial
intelligence

Class 1

Class 2

w1x1 + w2x2 + b = 0w1x1 + w2x2 + b = 0

Properties of Perceptron
• The XOR problem

Input x Output y
X1 X2 X1 XOR X2
0 0 0
0 1 1
1 0 1
1 1 0

• However, Minsky and Papert
[1969] showed that some rather
elementary computations, such
as XOR problem, could not be
done by Rosenblatt’s one-layer
perceptron

• However Rosenblatt believed the
limitations could be overcome if
more layers of units to be added,
but no learning algorithm known
to obtain the weights yet

• Due to the lack of learning
algorithms people left the neural
network paradigm for almost 20
years

 X1

 1 true false

 false true
 0 1 X2

XOR is non linearly separable: These two classes
(true and false) cannot be separated using a line.

• Adding hidden layer(s) (internal presentation) allows
to learn a mapping that is not constrained by linearly
separable

decision boundary: x1w1 + x2w2 + b = 0

class 1

class 2

b

x1

x1 yw1

w2 b

class 1

class 2
class 2

class 2 class 2
x2

x1

y
Each hidden
node realizes
one of the lines
bounding the
convex region

Hidden Layers and Backpropagation (1986~)

• But the solution is quite often not unique

The number in the circle is a threshold

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR148.pdf
http://recognize-speech.com/basics/introduction-to-artificial-neural-networks

(solution 1) (solution 2)

Hidden Layers and Backpropagation (1986~)

Input x Output y
X1 X2 X1 XOR X2
0 0 0
0 1 1
1 0 1
1 1 0

Two lines are necessary to divide
the sample space accordingly Sign activation function

Two-layer feedforward neural network

• Feedforward: massages move forward from the input nodes,
through the hidden nodes (if any), and to the output nodes.
There are no cycles or loops in the network

Weight
Parameters

Weight
Parameters

Hidden Layers and Backpropagation (1986~)

Single / Multiple Layers of Calculation

• Single layer function

fμ(x) = ¾(μ0 + μ1x + μ2x
2)fμ(x) = ¾(μ0 + μ1x + μ2x
2)

h1(x) = tanh(μ0 + μ1x + μ2x
2)

h2(x) = tanh(μ3 + μ4x + μ5x
2)

fμ(x) = fμ(h1(x); h2(x)) = ¾(μ6 + μ7h1 + μ8h2)

h1(x) = tanh(μ0 + μ1x + μ2x
2)

h2(x) = tanh(μ3 + μ4x + μ5x
2)

fμ(x) = fμ(h1(x); h2(x)) = ¾(μ6 + μ7h1 + μ8h2)

fμ(x) = μ0 + μ1x + μ2x
2fμ(x) = μ0 + μ1x + μ2x
2

xx x2x2

xx x2x2

fμ(x)fμ(x)

h1(x)h1(x) h2(x)h2(x)

¾(x) =
1

1 + e¡x
¾(x) =

1

1 + e¡x tanh(x) =
1¡ e¡2x

1 + e¡2x
tanh(x) =

1¡ e¡2x

1 + e¡2x

• Multiple layer function

• With non-linear activation function

Non-linear Activation Functions
• Sigmoid

• Tanh

• Rectified Linear Unit (ReLU)

tanh(z) =
1¡ e¡2z

1 + e¡2z
tanh(z) =

1¡ e¡2z

1 + e¡2z

ReLU(z) = max(0; z)ReLU(z) = max(0; z)

¾(z) =
1

1 + e¡z
¾(z) =

1

1 + e¡z

Universal Approximation Theorem
• A feed-forward network with a single hidden layer

containing a finite number of neurons (i.e., a
multilayer perceptron), can approximate
continuous functions

• on compact subsets of

• under mild assumptions on the activation function.
• Such as Sigmoid, Tanh and ReLU

RnRn

[Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal
approximators." Neural networks 2.5 (1989): 359-366.]

Universal Approximation
• Multi-layer perceptron approximate any continuous

functions on compact subset of

¾(x) =
1

1 + e¡x
¾(x) =

1

1 + e¡x tanh(x) =
1¡ e¡2x

1 + e¡2x
tanh(x) =

1¡ e¡2x

1 + e¡2x

RnRn

• One of the efficient algorithms for multi-layer neural
networks is the Backpropagation algorithm

• It was re-introduced in 1986 and Neural Networks regained
the popularity

Note: backpropagation appears to be found by Werbos [1974]; and then independently
rediscovered around 1985 by Rumelhart, Hinton, and Williams [1986] and by Parker [1985]

Error Caculation

Error backpropagation

Parameters
weights

Parameters
weights

Hidden Layers and Backpropagation (1986~)

Compare outputs with correct
answer to get error

[LeCun, Bengio and Hinton. Deep Learning. Nature 2015.]

@E

@wjk
=

@E

@zk

@zk

@wjk
=

@E

@zk
yj

@E

@wjk
=

@E

@zk

@zk

@wjk
=

@E

@zk
yj

Learning NN by Back-Propagation

d1 =1

d2 = 0

x1

x2

xm

y1

Parameters
weights Parameters

weights

label = Face

label = no face

Training instances…

y0

Learning NN by Back-Propagation
Error Back-propagation

Error Calculation

yk = f2 (netk
(1)) = f2 (wk, j

(2)hj
(1)

j
)Feed-forward /

prediction:

Two-layer feedforward neural network

hj
1

hj
1 = f1(net j

(1)) = f1(wj,m
(1) xm

m
)

x = (x1,..., xm) yk

net j
(1) ≡ wj,m

(1) xm
m


x1

x2

xm

wj,m
(1)

wk, j
(2)

y1

yk

h1
(1)

h2
(1)

hj
(1)

d1

dk

f(1)





f(1)

f(1)





f(2)

f(2)

labelsnet1
(1)

net2
(1)

netk
(2)

net1
(2)

where

net j
(1)

Make a Prediction

netk
(2) ≡ wk, j

(2)hj
(1)

j


When backprop/learn the parameters

E(W) = 1
2

(yk − dk
k
)2

Δwk, j
(2) ≡ −η ∂E(W)

∂wk, j
(2) = −η(yk − dk) ∂yk

∂netk
(2)

∂netk
(2)

∂wk, j
(2) = η(dk − yk) f(2) '(netk

(2))hj
(1) = ηδkhj

(1)

Two layer feedforward neural network

x1

x2

xm

wj,m
(1) wk, j

(2)

y1

yk

h1
(1)

h2
(1)

hj
(1)

d1

dk

f(1)





f(1)

f(1)





f(2)

f(2)

labelsnet1
(1)

net2
(1)

net j
(1)

netk
(2)

net1
(2)

netk
(2) ≡ wk, j

(2)hj
(1)

j
net j

(1) ≡ wj,m
(1) xm

m
Notation:

output
neuron:

wk, j
(2) = wk, j

(2) + Δwk, j
(2)

Error :δk ≡ (dk − yk) f(2) '(netk
(2))

Δwk, j
(2) = ηErrorkOutput j = ηδkhj

(1)

δk = (dk − yk) f(2) '(netk
(2))

dk − yk

Backprop to learn the parameters:

η : the given learning rate

Multi-layer feedforward neural network

E(W) = 1
2

(yk − dk
k
)2

Two layer feedforward neural network

x1

x2

xm

wj,m
(1) wk, j

(2)

y1

yk

h1
(1)

h2
(1)

hj
(1)

d1

dk

f(1)





f(1)

f(1)





f(2)

f(2)

labelsnet1
(1)

net2
(1)

net j
(1)

netk
(2)

net1
(2)

netk
(1) ≡ wk, j

(2)hj
(1)

j
net j

(1) ≡ wj,m
(1) xm

m
Notation:

hidden
neuron:

wj,m
(1) = Δwj,m

(1) + Δwj,m
(1)

Error :δ j ≡ f(1) '(net j
(1)) (dk − yk) f(2) '(netk

(2))wk, j
(2)]

k
 = f(1) '(net j

(1)) δkwk, j
(2)

k


Δwj,m
(1) = ηErrorjOutputm = ηδ j xm

δk

Δwj,m
(1) = −η ∂E(W)

∂wj,m
(1) = −η ∂E(W)

∂hj
(1)

∂hj
(1)

∂wj,m
(1) = η[(dk − yk) f(2) '(netk

(1))wk, j
(2)]

k
 [xm f(1) '(net j

(1))] = ηδ j xm

δ j = f(1) '(net j
(1)) δkwk, j

(2)

k


δ1

Backprop to learn the parameters:

η : the given learning rate

An example for Backprop

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

An example for Backprop

Consider sigmoid
activation function

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

f 'Sigmoid (x) = fSigmoid (x)(1− fSigmoid (x))

fSigmoid (x) = 1
1+ e−x

δk = (dk − yk) f(2) '(netk
(2))

Δwk, j
(2) = ηErrorkOutput j = ηδkhj

(1)

δ j = f(1) '(net j
(1)) δkwk, j

(2)

k


Δwj,m
(1) = ηErrorjOutputm = ηδ j xm

Let us do some calculation

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

Let us do some calculation

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

A demo from Google

http://playground.tensorflow.org/

Non-linear Activation Functions
• Sigmoid

• Tanh

• Rectified Linear Unit (ReLU)

¾(z) =
1

1 + e¡z
¾(z) =

1

1 + e¡z

tanh(z) =
1¡ e¡2z

1 + e¡2z
tanh(z) =

1¡ e¡2z

1 + e¡2z

ReLU(z) = max(0; z)ReLU(z) = max(0; z)

Active functions

https://theclevermachine.wordpress.com/tag/tanh-function/

fSigmoid (x)

flinear (x)

ftanh (x) f 'tanh (x)

f 'Sigmoid (x)
f 'linear (x)

Activation functions
• Logistic Sigmoid:

fSigmoid (x) = 1
1+ e−x

• Output range [0,1]
• Motivated by biological neurons and can

be interpreted as the probability of an
artificial neuron “firing” given its inputs

• However, saturated neurons make
gradients vanished (why?)

Its derivative:

f 'Sigmoid (x) = fSigmoid (x)(1− fSigmoid (x))

Activation functions
• Tanh function

ftanh (x) = sinh(x)
cosh(x)

= e
x − e−x

ex + e−x

• Output range [-1,1]
• Thus strongly negative inputs to the tanh

will map to negative outputs.
• Only zero-valued inputs are mapped to

near-zero outputs
• These properties make the network less

likely to get “stuck” during training

Its gradient:

https://theclevermachine.wordpress.com/tag/tanh-function/

ftanh(x) = 1¡ ftanh(x)2ftanh(x) = 1¡ ftanh(x)2

Active Functions
• ReLU (rectified linear unit)

• Another version is
Noise ReLU:

• ReLU can be approximated by
softplus function

• ReLU gradient doesn't vanish as we
increase x

• It can be used to model positive number
• It is fast as no need for computing the

exponential function
• It eliminates the necessity to have a

“pretraining” phase

• The derivative:

http://static.googleusercontent.com/media/research.
google.com/en//pubs/archive/40811.pdf

fReLU(x) =

(
1 if x > 0

0 if x · 0
fReLU(x) =

(
1 if x > 0

0 if x · 0

fNoisyReLU(x) = max(0; x + N(0; ±(x)))fNoisyReLU(x) = max(0; x + N(0; ±(x)))

fSoftplus(x) = log(1 + ex)fSoftplus(x) = log(1 + ex)

fReLU(x) = max(0; x)fReLU(x) = max(0; x)

Active Functions
• ReLU (rectified linear unit)

ReLU can be approximated by softplus function

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

• The only non-linearity comes from
the path selection with individual
neurons being active or not

• It allows sparse representations:
• for a given input only a subset

of neurons are active

Sparse propagation of activations and gradientsAdditional active functions:
Leaky ReLU, Exponential LU, Maxout etc

fSoftplus(x) = log(1 + ex)fSoftplus(x) = log(1 + ex)

fReLU(x) = max(0; x)fReLU(x) = max(0; x)

Error/Loss function
• Recall stochastic gradient descent

• Update from a randomly picked example (but in practice do a
batch update)

• Squared error loss for one binary output:

input output

w = w ¡ ´
@L(w)

@w
w = w ¡ ´

@L(w)

@w

L(w) =
1

2
(y ¡ fw(x))2L(w) =

1

2
(y ¡ fw(x))2

fw(x)fw(x)xx

Error/Loss function
• Softmax (cross-entropy loss) for multiple classes

where

wj,m
(1) wk, j

(2)

y1

yk

h1
(1)

h2
(1)

hj
(1)

d1

dk

f(1)





f(1)

f(1)





f(2)

f(2)

One hot encoded class labels

net1
(1)

net2
(1)

net j
(1)

netk
(2)

net1
(2)

(Class labels follow multinomial distribution)

L(w) = ¡
X

k

(dk log ŷk + (1¡ dk) log(1¡ yk))L(w) = ¡
X

k

(dk log ŷk + (1¡ dk) log(1¡ yk))

ŷk =
exp

³P
j w

(2)
k;jh

(1)
j

´
P

k0 exp
³P

j w
(2)
k0;jh

(1)
j

´ŷk =
exp

³P
j w

(2)
k;jh

(1)
j

´
P

k0 exp
³P

j w
(2)
k0;jh

(1)
j

´

Advanced Topic of this Lecture

Deep Learning
As a prologue of the DL Course in the next semester

What is Deep Learning
• Deep learning methods are representation-learning

methods with multiple levels of representation,
obtained by composing simple but non-linear
modules that each transform the representation at
one level (starting with the raw input) into a
representation at a higher, slightly more abstract
level.

• Mostly implemented via neural networks

[LeCun, Bengio and Hinton. Deep Learning. Nature 2015.]

Deep Neural Network (DNN)

• Multi-layer perceptron with many hidden layers

Difficulty of Training Deep Nets
• Lack of big data

• Now we have a lot of big data

• Lack of computational resources
• Now we have GPUs and HPCs

• Easy to get into a (bad) local minimum
• Now we use pre-training techniques, various optimization algorithms

• Gradient vanishing
• Now we use ReLU

• Regularization
• Now we use Dropout

Dropout
• Dropout randomly ‘drops’ units from a layer on each training step,

creating ‘sub-architectures’ within the model.
• It can be viewed as a type of sampling of a smaller network within a

larger network
• Prevent Neural Networks from Overfitting

Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The
Journal of Machine Learning Research 15.1 (2014): 1929-1958.

Convolutional neural networks: Receptive field

• Receptive field: Neurons in the
retina respond to light stimulus in
restricted regions of the visual field

• Animal experiments on receptive
fields of two retinal ganglion cells

• Fields are circular areas of the retina
• The cell (upper part) responds when

the center is illuminated and the
surround is darkened.

• The cell (lower part) responds when
the center is darkened and the
surround is illuminated.

• Both cells give on- and off-
responses when both center and
surround are illuminated, but
neither response is as strong as
when only center or surround is
illuminated

Hubel D.H. : The Visual Cortex of the Brain Sci Amer 209:54-62, 1963
Contributed by Hubel and Wiesel for the studies
of the visual system of a cat

“On” Center Field

“Off” Center Field

Light On

Convolutional neural networks
• Sparse connectivity by local

correlation
• Filter: the input of a hidden unit in

layer m are from a subset of units
in layer m-1 that have spatially
connected receptive fields

• Shared weights
• each filter is replicated across the

entire visual field. These replicated
units share the same weights and
form a feature map.

http://deeplearning.net/tutorial/lenet.htmledges that have the same color have the same weight

2-d case (subscripts are weights)

1-d case
m layer

m-1 layer

m-1 layer one filter
at m layer

Convolutional Neural Network (CNN)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11) 1998]

Example: a 10x10 input image with a 3x3 filter result in a 8x8 output image

Convolution Layer

f

Input image 10x10 8x8

Convolutions

• Example: a 10x10 input image with a 3x3 filter result in a 8x8 output image
• 3 different filters (weights are different) lead to 3 8x8 out images

Convolution Layer

Activation
functionInput image Feature map10x10 8x8kernel 3x3

f

f

f

Convolutions

• Pooling: partitions the input image into a set of non-overlapping rectangles
and, for each such sub-region, outputs the maximum or average value.

Pooling Subsampling Layer

Max pooling

Max in a 2x2
filter

Average pooling

Average in a
2x2 filter

Sampling

Max pooling
• reduces computation and
• is a way of taking the most

responsive node of the given
interest region,

• but may result in loss of
accurate spatial information

Use Case: Face Recognition

Use Case: Digits Recognition
• MNIST (handwritten digits) Dataset:

• 60k training and 10k test examples

• Test error rate 0.95%

4−>6 3−>5 8−>2 2−>1 5−>3 4−>8 2−>8 3−>5 6−>5 7−>3

9−>4 8−>0 7−>8 5−>3 8−>7 0−>6 3−>7 2−>7 8−>3 9−>4

8−>2 5−>3 4−>8 3−>9 6−>0 9−>8 4−>9 6−>1 9−>4 9−>1

9−>4 2−>0 6−>1 3−>5 3−>2 9−>5 6−>0 6−>0 6−>0 6−>8

4−>6 7−>3 9−>4 4−>6 2−>7 9−>7 4−>3 9−>4 9−>4 9−>4

8−>7 4−>2 8−>4 3−>5 8−>4 6−>5 8−>5 3−>8 3−>8 9−>8

1−>5 9−>8 6−>3 0−>2 6−>5 9−>5 0−>7 1−>6 4−>9 2−>1

2−>8 8−>5 4−>9 7−>2 7−>2 6−>5 9−>7 6−>1 5−>6 5−>0

4−>9 2−>8

Total only 82 errors from LeNet-5. correct
answer left and right is the machine answer.

4

C 1 S 2 C 3 S 4 C 5

F6

O utput
8

3 3

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998

http://yann.lecun.com/exdb/mnist/

More General Image Recognition

• ImageNet
• Over 15M labeled high

resolution images
• Roughly 22K categories
• Collected from web and

labeled by Amazon
Mechanical Turk

• The Image/scene
classification challenge
• Image/scene

classification
• Metric: Hit@5 error rate -

make 5 guesses about
the image label

http://cognitiveseo.com/blog/6511/will-google-read-rank-images-near-future/
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

Leadertable (ImageNet image classification)

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

Unofficial human error is around 5.1% on a subset
Why human error still? When labeling, human raters judged whether it belongs to a class (binary classification); the challenge is a 1000-class classification problem.

2015 ResNet (ILSVRC’15) 3.57

GoogLeNet, 22 layers network

Microsoft ResNet, a 152 layers network

U. of Toronto, SuperVision, a 7 layers network

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/)

Use Case: Text Classification

• Word embedding: map each word to a k-dimensional dense vector
• CNN kernel: n x k matrix to explore the neighbor k words’ patterns
• Max-over-time pooling: find the most salient pattern from the text for

each kernel
• MLP: further feature interaction and distill high-level patterns

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

Recurrent Neural Network (RNN)
• To model sequential data

• Text
• Time series

• Trained by Back-Propagation Through Time (BPTT)

[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

s = f (xU)

o = f (sV)

x : input vector, o : output vector,
s : hidden state vector,
U : layer 1 param. matrix,
V : layer 2 param. matrix,
f : tanh or ReLU

Two-layer feedforward network

Add time-dependency
of the hidden state s

W : State transition param. matrix

st+1 = f (xt+1U + stW)

ot+1 = f (st+1V)

Different RNNs

• Different architecture for various tasks
• Strongly recommend Andrej Karpathy’s blog

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Vanilla NN Image captioning
Text generation

Text classification
Sentiment analysis

Machine translation
Dialogue system

Stock price estimation
Video frame classification

Use Case: Language Model
• Word-level or even character-level language model

• Given previous words/characters, predict the next

[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]

Use Case: Machine Translation
• Encode/decode RNN

• First, encode the input sentence (into a vector e.g. h3)
• Then decode the vector into the sentence in another

language

[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

Problem of RNN

Gap dependency

[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

• Problem: RNN cannot nicely leverage the early information

Long-term dependency

Long Short-Term Memory (LSTM)

[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
[Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

LSTM Cell
• An LSTM cell learn to decide which to remember/forget

st−1 st

xt

ct−1 ct

ot...

f i o

input gate

forget gate

output gate

“candidate” hidden state:

Cell internal memory

Hidden state

σ : sigmoid (control signal between 0 and 1); o: elementwise multiplication

st−1

xt

ot...

st
st = tanh(xtU + st−1W)

SRN cell

An LSTM cell

[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
[Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

Use Case: Text Generation

• A demo on character-level text generation
• http://cs.stanford.edu/people/karpathy/recurrentjs/

<START> I love machine learningreally

I love machine learningreally <END>

LSTM

LSTM

Input

Output

Use Case: Named Entity Recognition

[Guillaume Lample et al. Neural Architectures for Named Entity Recognition. NAACL-HLT]

Word embedding
• From bag of word to word embedding

• Use a a real- valued vector in Rm to represent a word (concept)
v(‘‘cat")=(0.2, -0.4, 0.7, ...)
v(‘‘mat")=(0.0, 0.6, -0.1, ...)

• Continuous bag of word (CBOW) model (word2vec)
• Input/output words x/y are one-hot encoded
• Hidden layer is shared for all input words

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

Continuous bag of word (CBOW) model

Rong, Xin. "word2vec parameter learning explained." arXiv preprint arXiv:1411.2738 (2014).

Hidden nodes:

The cross-entropy loss:

The gradient updates:

N-dim Vector
representation
of a word

V: vocabulary size;
C: num. input words;
v: row vector of input matrix W;
v’: row vector of output matrix W’

Remarkable properties from Word embedding

• Simple algebraic operations with the word vectors

v(‘‘woman")−v(‘‘man") ≃ v(‘‘aunt")−v(‘‘uncle")
v(‘‘woman")−v(‘‘man") ≃ v(‘‘queen")−v(‘‘king")

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in Continuous Space Word Representations." HLT-NAACL. 2013.

Vector offsets for
gender relation

The singular/plural relation for
two words

Word the relationship is defined by subtracting two word vectors, and the result is added to
another word. Thus for example, Paris - France + Italy = Rome.

Using X = v(”biggest”) − v(”big”) + v(”small”) as query and searching for the nearest word based on
cosine distance results in v(”smallest”)

Zou, Will Y., et al. "Bilingual Word Embeddings for Phrase-Based Machine Translation." EMNLP. 2013.

Neural Language models
• n-gram model

• Construct conditional probabilities for
the next word, given combinations of
the last n-1 words (contexts)

• Neural language model
• associate with each word a distributed

word feature vector for word
embedding,

• express the joint probability function of
word sequences using those vectors,
and

• learn simultaneously the word feature
vectors and the parameters of that
probability function.

where
softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt− 1wt− 2

C(wt− 2) C(wt− 1)C(wt− n+ 1)

wt− n+ 1

i-th output = P(wt = i |context)

Bengio, Yoshua, et al. "Neural probabilistic language models." Innovations in Machine Learning. Springer Berlin Heidelberg, 2006. 137-186.

RNN based Language models

Elman J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.
Mikolov, Tomas, et al. "Recurrent neural network based language model." INTERSPEECH. Vol. 2. 2010.

• The limitation of the feedforward network approach:
• it has to fix the length context

• Recurrent network solves the issue
• by keeping a (hidden) context and updating over time

Elman’s RNN LM

x(t) = [w(t), s(t −1)]x(t) is the input vector:
It is formed by concatenating vector w(t)
representing current word, and hidden
state s at Ɵme t − 1. w(t) is one hot
encoder of a word

s(t) is state of the network (the hidden layer):

output is denoted as y(t):

Sigmoid for hidden layer Softmax for output layer

Learning to align visual and language data

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

• Regional CNN + Bi-directional RNN
– associates the two modalities through a common,

multimodal embedding space

Learning to generate image descriptions

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

• Trained CNN on images + RNN with sentence
– The RNN takes a word, the previous context and defines a

distribution over the next word
– The RNN is conditioned on the image information at the

first time step
– START and END are special tokens.

Summary
• Universal Approximation: two-layer neural

networks can approximate any functions

• Backpropagation is the most important training
scheme for multi-layer neural networks so far

• Deep learning, i.e. deep architecture of NN trained
with big data, works incredibly well

• Neural works built with other machine learning
models achieve further success

Reference Materials
• Prof. Geoffery Hinton’s Coursera course

• https://www.coursera.org/learn/neural-networks

• Prof. Jun Wang’s DL tutorial in UCL (special thanks)
• http://www.slideshare.net/JunWang5/deep-learning-61493694

• Prof. Fei-fei Li’s CS231n in Stanford
• http://cs231n.stanford.edu/

• Prof. Kai Yu’s DL Course in SJTU
• http://speechlab.sjtu.edu.cn/~kyu/node/10

• Michael Nielsen’s online DL book
• http://neuralnetworksanddeeplearning.com/

• Research Blogs
• Andrej Karpathy: http://karpathy.github.io/
• Christopher Olah: http://colah.github.io/

