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Transfer Learning Materials

Prof. Qiang Yang
• Chair Professor, Department Head of CSE, HKUST
• http://www.cs.ust.hk/~qyang/
• SJ Pan, Q Yang. A survey on transfer learning. IEEE TKDE 2010.
• 2800+ citations on this survey paper (May 2017)

Our course on TL is mainly based on the materials from Prof. Qiang Yang 
and his students



Machine Learning Process

• Assumption: training and test data has the same 
distribution
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Practical Cases
• Data distributions p(x) change across different 

domains or vary over time
XS 6= XT or pS(x) 6= pT (x)XS 6= XT or pS(x) 6= pT (x)

Real images Cartoon images



Practical Cases

• Data dependencies p(y|x) could be also different

YS 6= YT or pS(yjx) 6= pT (yjx)YS 6= YT or pS(yjx) 6= pT (yjx)

Apple recognition Pear recognition



Transfer Learning



Notation and Definition of TL

• Definition 
• Given a source domain       with corresponding learning 

task      and a target domain      with corresponding 
learning task 

• transfer learning is the process of improving the target 
predictive function         by using the related information 
from       and     , where                 or

DSDS

TSTS DTDT

TTTT

fT (¢)fT (¢)
DSDS TSTS

• Notation
• A domain

• Feature space 
• Data distribution

• A task
• Label space       
• Objective predictive function

D = fX ; p(x)gD = fX ; p(x)g

T = fY ; f(¢)gT = fY ; f(¢)g

XX
p(x)p(x)

YY
f(¢)f(¢)



Explanation
•

•
• Heterogeneous transfer learning
• Two sets of documents are described in different languages

•
• Domain adaptation
• Two sets of documents focus on different topics

•
•

• Source has two classes: positive or negative; target adds one 
class: neutral

•
• A word can have different meanings in two domains



Categorization of Transfer Learning

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2010): 1345-1359.



Transfer Learning Settings
• Homogeneous/heterogeneous transfer learning

Transfer 
Learning

Feature 
Space

Homogeneous
Transfer Learning

Heterogeneous
Transfer Learning

Supervised Transfer 
Learning

Semi-Supervised 
Transfer Learning

Unsupervised 
Transfer Learning



Transfer Learning Methods
• Instance Transfer

• Reweight instances of target data according to source

• Feature Transfer
• Mapping features of source and target data in a 

common space

• Parameter Transfer
• Learn target model parameters according to source 

model

Relational approaches are relatively unpopular, thus omitted in this talk



Transfer Learning Methods
• Instance Transfer

• Reweight instances of target data according to source

• Feature Transfer
• Mapping features of source and target data in a 

common space

• Parameter Transfer
• Learn target model parameters according to source 

model

Relational approaches are relatively unpopular, thus omitted in this talk



Instance-based Transfer Learning
• General assumption

• Source and target domains have a lot of overlapping 
features or even share the same feature spaces

• Label space should be the same

• Example applications
• Electronic medical record across different departments
• Sentiment analysis over different topics

XS ' XTXS ' XT

YS ' YTYS ' YT

XSXS XTXT



Instance TL Case 1: Domain Adaption

• Problem setting
• Given source domain labeled data

and target domain data
• learn       such that the loss on target data is small 

DS = fxSi ; ySig
nS
i=1DS = fxSi ; ySig
nS
i=1

DT = fxTig
nT
i=1DT = fxTig
nT
i=1

fTfT X
i

L(fT (xTi); yTi)
X

i

L(fT (xTi); yTi)

• where        is unknown. yTiyTi

• Assumption
• The same label space
• The same dependency
• (Almost) the same feature space
• Different data distribution

YS = YTYS = YT

p(yS jxS) = p(yT jxT )p(yS jxS) = p(yT jxT )

XS ' XTXS ' XT

pS(x) 6= pT (x)pS(x) 6= pT (x)



Importance Sampling for Domain Adaption

• Importance sampling
μ¤ = arg min
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• Re-weight each instance by ¯(x) =

pT (x)

pS(x)
¯(x) =

pT (x)

pS(x)



Importance Sampling for Domain Adaption

• How to estimate ¯(x) =
pT (x)

pS(x)
¯(x) =

pT (x)

pS(x)

• A simple solution would be to first estimate            and  
respectively, and then calculate

• May suffer from huge variance problem

pS(x)pS(x) pT (x)pT (x)

¯(x)¯(x)

• A more practical solution is to estimate               directlypT (x)

pS(x)

pT (x)

pS(x)



Importance Sampling for Domain Adaption

pT (x) / pS(x)p(s = 1jx)pT (x) / pS(x)p(s = 1jx)

• Imagine a rejection sampling process, and view the target 
domain as samples from the source domain

• Probabilistic density function (p.d.f.) relationship

Source

Selection variable

Target

s 2 f0; 1gs 2 f0; 1g

• And we estimate p(s=1|x) as a binary classification model

¯(x) =
pT (x)

pS(x)
/ p(s = 1jx)¯(x) =

pT (x)

pS(x)
/ p(s = 1jx)

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004
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Importance Sampling for Domain Adaption

• Imagine a rejection sampling process, and view the target 
domain as samples from the source domain

• Estimate p(s=1|x) as a binary classification model
• Label instance from the target domain as 1
• Label instance from the source domain as 0

Source

Selection variable

Target

s 2 f0; 1gs 2 f0; 1g

¯(x) =
pT (x)

pS(x)
/ p(s = 1jx)¯(x) =

pT (x)

pS(x)
/ p(s = 1jx)

11

00

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004



Importance Sampling for Domain Adaption

• How to estimate ¯(x) =
pT (x)

pS(x)
¯(x) =

pT (x)

pS(x)

• Build the estimator with a list of basis functions

• The estimated target p.d.f. p̂T (x) = ^̄(x)pS(x)p̂T (x) = ^̄(x)pS(x)

^̄(x) =
bX

l=1

®lÃl(x)^̄(x) =
bX

l=1

®lÃl(x)

• Minimize KL divergence • Minimize squared error
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Sugiyama et al., Direct Importance Estimation with Model 
Selection and Its Application to Covariate Shift Adaptation, 
NIPS 2007 

Kanamori et al., A Least-squares Approach to Direct 
Importance Estimation, JMLR 2009



Unbiased Training in Display Advertising
• In display advertising, the label data is observed by an advertiser only 

when she wins the auction, thus it is biased.

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Unbiased Learning Framework
• Data observation process

A bid 
request Bid Data 

observation

If win

• Importance sampling

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Performance Comparison on Yahoo! DSP

• A/B Testing on Yahoo! United States

10.3% more clicks

42.8% higher CTR

9.3% lower eCPC

2.97% AUC lift

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Instance TL Case 2: Labels in 2 Domains

• Problem setting
• Given source domain labeled data
• and very limited target domain data
• learn       such that the loss on target data is small 

DS = fxSi ; ySig
nS
i=1DS = fxSi ; ySig
nS
i=1

DT = fxTi ; yTig
nT
i=1DT = fxTi ; yTig
nT
i=1

fTfT X
i

L(fT (xTi); yTi)
X

i

L(fT (xTi); yTi)

• Assumption
• The same label space
• Different dependency
• (Almost) the same feature space
• Different data distribution

YS = YTYS = YT

p(yS jxS) 6= p(yT jxT )p(yS jxS) 6= p(yT jxT )

XS ' XTXS ' XT

pS(x) 6= pT (x)pS(x) 6= pT (x)



TrAdaBoost
• For each boosting iteration

• Use the same strategy as AdaBoost to update the 
weights of target domain data

• Use a new mechanism to decrease the weights of 
misclassified source domain data

Wenyuan Dai et al., Boosting for Transfer Learning, ICML 2007 



TrAdaBoost

Wenyuan Dai et al., Boosting for Transfer Learning, ICML 2007 

• Source/target domain data D (combined)

xi =

(
xSi ; i = 1; : : : ; n

xTi ; i = n + 1; : : : ; n + m
xi =

(
xSi ; i = 1; : : : ; n

xTi ; i = n + 1; : : : ; n + m

• Initialize the weight vector
• For t = 1, …, N rounds

• Set
• Learn the model      based on the weighted data D, pt

pt = wt=(
Pn+m

i=1 wt
i)pt = wt=(

Pn+m
i=1 wt

i)

htht

²t =

Pn+m
i=n+1 wt

i ¢ jht(xi)¡ c(xi)jPn+m
i=n+1 wt

i

²t =

Pn+m
i=n+1 wt

i ¢ jht(xi)¡ c(xi)jPn+m
i=n+1 wt

i

¯t = ²t=(1¡ ²t) < 1¯t = ²t=(1¡ ²t) < 1 ¯ = 1=(1 +
p

2 ln n=N)¯ = 1=(1 +
p

2 ln n=N)

• Output the model hN

• Set
• Update the new weight vector

• Calculate the error on target data



Distant Domain Transfer Learning

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Problem Setting
• Sufficient source domain data
• Limited target domain data
• Mixture of unlabeled data of multiple intermediate 

domains                      , is large enough
• Homogeneous: same feature space but different 

distributions

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Selective Learning Algorithm

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Selective Learning Algorithm
• Instance selection via reconstruction error by an AE

• selection indicators
• regularization term
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• Overall objective function 

• Incorporation of label information

• Entropy function



Selective Learning Algorithm
• Update Θ: back propagation
• Update v

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



DDTL by Selective Learning Algorithm

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Transfer Learning Methods
• Instance Transfer

• Reweight instances of target data according to source

• Feature Transfer
• Mapping features of source and target data in a 

common space

• Parameter Transfer
• Learn target model parameters according to source 

model

Relational approaches are relatively unpopular, thus omitted in this talk



Feature-based Transfer Learning
• When source and 

target domains only 
have some overlapping 
features

• Lots of features only 
have support in either 
the source or the target 
domain

• Possible solutions
• Encode application-

specific knowledge
• General approaches to 

learn the 
transformation

XSXS XTXT

'' ''

''



General Feature-Based TL Approach

• Learning new data representations by minimizing 
the distance between two domain distributions

• Learning new data representations by multi-task 
learning

• Learning new data representations by self-taught 
learning



Principle Component Analysis (PCA)

First 
componentSecond 

component

• PCA uses an orthogonal transformation to convert a set of observations 
of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components 



Principle Component Analysis (PCA)

First
Component

• PCA uses an orthogonal transformation to convert a set of observations 
of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components 

Source

Second
Component

Noise
Components



Transfer Component Analysis
• Motivation

• Minimize the distance between domain distributions by 
projecting data onto the learned transfer components

Pan, Sinno Jialin, et al. "Domain adaptation via transfer component analysis." IEEE Transactions on Neural Networks 22.2 (2011): 199-210.

Source Target
Two Domain

Data

Joint latent
factors

The latent factors that cause the two-domain data distributions different



Transfer Component Analysis
• Main idea

• Learn      to map the source and target domain data to 
the latent space spanned by the factors which can 
reduce domain difference and preserve original data 
structure

''

min
'

Dist('(XS); '(XT )) + ¸Ð(')

s.t. constraints on '(XS) and '(XT )

min
'

Dist('(XS); '(XT )) + ¸Ð(')

s.t. constraints on '(XS) and '(XT )



Transfer Component Analysis
• Maximum Mean Discrepancy (MMD)

• Given the source and target domain data

XS = fxSig
nS
i=1XS = fxSig
nS
i=1 XT = fxTig

nT
i=1XT = fxTig
nT
i=1

drawn from PS(x) and PT(s) respectively
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°°°°°
H

Mapping Kernel function



Transfer Component Analysis
• An illustrative example Latent features learned by 

PCA and TCA

Original feature space PCA TCA



Maximum Mean Discrepancy



MMD in Transfer Learning
Deep Adaptation Network

Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.

• Multi-kernels, e.g., some RBF kernels with different standard deviations

K(x;x0) = exp

μ
¡kx¡ x0k2

2¾2

¶
K(x;x0) = exp

μ
¡kx¡ x0k2

2¾2

¶



How transferable are features in deep 
neural networks? [NIPS 2014]

Standard BP training
on dataset A

Standard BP training
on dataset B

Reuse first n=3 layers
weights of baseB

and train on B

Reuse first n=3 layers
weights of baseA
and trained on B



How transferable are features in deep 
neural networks? [NIPS 2014]



How transferable are features in deep 
neural networks?



Domain Adversarial Neural Network

Pr
x»DX

S

[´(x) = 1] + Pr
x»DX

S

[´(x) = 0] = 1Pr
x»DX

S

[´(x) = 1] + Pr
x»DX

S

[´(x) = 0] = 1

Ajakan, Hana, et al. "Domain-adversarial neural networks." JMLR 2016

Source domain Target domain



Domain Adversarial Neural Network



Experiment Result

AVG    0.763    0.761   0.760    0.813     0.803    0.801     



Experiment Result





Transfer Learning Methods
• Instance Transfer

• Reweight instances of target data according to source

• Feature Transfer
• Mapping features of source and target data in a 

common space

• Parameter Transfer
• Learn target model parameters according to source 

model

Relational approaches are relatively unpopular, thus omitted in this talk



Parameter based Transfer Learning

• The θ-parameterized function fθ(x) learned on two domains

μ¤S = arg min
μ

nSX
i=1

L(ySi ; fμ(xSi)) + ¸Ð(μ)

μ¤T = arg min
μ

nTX
i=1

L(yTi ; fμ(xTi)) + ¸Ð(μ)
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μ

nSX
i=1

L(ySi ; fμ(xSi)) + ¸Ð(μ)

μ¤T = arg min
μ

nTX
i=1

L(yTi ; fμ(xTi)) + ¸Ð(μ)

• Motivation
• A well-trained model              has learned a lot of structure on the 

source domain. 
• If two tasks are related, this structure can be transferred to learn 

the model              on the target domain

fμ¤S (x)fμ¤S (x)

fμ¤T (x)fμ¤T (x)



Multi-Task or Collective Learning

• Minimize the joint loss on two tasks and the model 
parameters distance

min
μS ;μT
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• Different parameter distance definitions



Hierarchical Bayesian Network
• Idea: source domain parameters, regarded as 

random variables, act as the prior of the target 
domain parameters

μSμSxSxS

ySyS

nSnS

μTμT xTxT

yTyT

nTnTtransfer

hyperparameters



Case Study: from web browsing to ad click

• Source task
• Data: user browsed webpage ids
• Task: predict whether a user likes a webpage

• Target task
• Data: user browsed webpage ids
• Task: predict whether a user likes to click an ad

min
μS ;μT

®
1
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NSX
i=1

L(yi; fμS (xi)) + (1¡ ®)
1
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[Perlich, Claudia, et al. "Machine learning for targeted display advertising: Transfer learning in action." Machine learning 95.1 (2014): 103-127.]

Logistic regression Logistic regression



Case Study: from web browsing to ad click

[Zhang, Weinan et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to CTR Estimation. ECIR 2016]

• Illustrated in a hierarchical Bayesian graphical model



Transfer Learning in Deep Learning

• Mostly, neural network reusing
• Feed new data for domain adaptation
• Build higher layers for training another task (feature transfer)

Source Data

Feature 
representation

Source task

Target Data

Feature 
representation

Target task

Target Data

Feature 
representation

Target task



Net2Net Transfer
• Net2Net reuses information of already trained 

model to speedup training of new model

[Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer.“ ICLR 2016.



Net2Net Transfer: Growing Network

• Wider

• Deeper



Net2Net over Inception-BN on ImageNet



ResNet: Deep Residual Networks
• Difficulty of training DEEP networks



ResNet: Deep Residual Networks



Performance on ImageNet

• Thin curves denote training error, and bold curves denote 
validation error of the center crops. 

• The residual networks have no extra parameter compared to their 
plain counterparts.

Plain networks of 18 and 34 layers. ResNets of 18 and 34 layers.



Heterogeneous TL
• Different feature space
• Examples

• Cross-language document classification
• Cross-system recommendation

• Approaches
• Symmetric transformation mapping
• Asymmetric transformation mapping



Cross-system Recommendation



Transfer Learning via CodeBook

Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for 
Sparsity Reduction." IJCAI. Vol. 9. 2009.



Transfer Learning via CodeBook

Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for 
Sparsity Reduction." IJCAI. Vol. 9. 2009.



Cross-Language Text Classification
• A large number of labeled English webpages
• A small number of labeled Chinese webpages
• Solution: information bottleneck

Ling, Xiao, et al. "Can chinese web pages be classified with english data source?." WWW 2008.



Summary of CS420

1. ML Introduction
2. Linear Models
3. SVMs and Kernels
4. Neural Networks
5. Tree Models
6. Ensemble Models
7. Collaborative Filtering

8. Graphic Models
9. Unsupervised Learning

10. Model Selection
11. RL Introduction
12. Model-free RL
13. Transfer Learning
14. Poster Session



Summary of CS420

• Play with the data and get your hands dirty!

Academia
Theoretical novelty

Industry

Large-scale
practice

Startup

Application
novelty

Hands-on
ML

experience

CommunicationSolid math

Solid
engineering



APPENDIX



RKHS
• MMD function class      : the unit ball in RKHS
• Hilbert Space

•

• k: kernel function
• Reproducing Kernel Hilbert Space

•
• If                                satisfies

• (1) 
• (2)  

• k: reproducing kernel
• Define                      



Transfer Component Analysis



Transfer Component Analysis



MMD in RKHS
• MMD function class      : the unit ball in RKHS
• Let                                      , called mean embedding
•
•


