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Transfer Learning Materials

Our course on TL is mainly based on the materials from Prof. Qiang Yang
and his students

Prof. Qiang Yang

* Chair Professor, Department Head of CSE, HKUST

* http://www.cs.ust.hk/~qyang/

e SJPan, QYang. A survey on transfer learning. IEEE TKDE 2010.
* 2800+ citations on this survey paper (May 2017)




Machine Learning Process
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* Assumption: training and test data has the same
distribution



Practical Cases

e Data distributions p(x) change across different
domains or vary over time

Xs # Xr or pg(x)# pr(z)

Real images Cartoon images



Practical Cases

* Data dependencies p(y|x) could be also different

Vs #Yr or ps(ylr) # pr(ylz)

Apple recognition Pear recognition



Transfer Learning

; y o : , Learning Process of Transfer Learning
Learning Process of Traditional Machine Learning

Different Tasks Source Tasks Target Task

(a) Traditional Machine Learning (b) Transfer Learning




Notation and Definition of TL

* Notation

* Adomain D = {X,p(x)}
* Feature space X
* Data distribution p(x)

+ Atask T = {J, ()}
* Label space Y

* Objective predictive function f(+)
* Definition

e Given a source domain Dg with corresponding learning

task 7g and a target domain D with corresponding
learning task 7

* transfer learning is the process of improving the target

predictive function fr(-) by using the related information
from Dg and 7g, where Dg # Dy or Tg # Tt



Explanation

*Ds # Dr

* Xg # Ar

* Heterogeneous transfer learning

* Two sets of documents are described in different languages
* P(Xs) # P(XT)

 Domain adaptation

* Two sets of documents focus on different topics

*Ts # It
* Vs # Vr

* Source has two classes: positive or negative; target adds one
class: neutral

* Ps(ylz) # Pr(y|z)
* A word can have different meanings in two domains



Categorization of Transfer Learning
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Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2010): 1345-1359.



Transfer Learning Settings

 Homogeneous/heterogeneous transfer learning

Homogeneous

Transfer
Learning

Feature
Space

Transfer Learning

Heterogeneous

Supervised Transfer
Learning

Semi-Supervised

Transfer Learning

Unsupervised
Transfer Learning

Transfer Learning




Transfer Learning Methods

* Instance Transfer
* Reweight instances of target data according to source

* Feature Transfer

* Mapping features of source and target datain a
common space

 Parameter Transfer

* Learn target model parameters according to source
model

Relational approaches are relatively unpopular, thus omitted in this talk



Transfer Learning Methods

* Instance Transfer
* Reweight instances of target data according to source

Relational approaches are relatively unpopular, thus omitted in this talk



Instance-based Transfer Learning

* General assumption

* Source and target domains have a lot of overlapping
features or even share the same feature spaces

XS ~ XT XS XT

* Label space should be the same
Vs = Vr

* Example applications
* Electronic medical record across different departments
* Sentiment analysis over different topics



Instance TL Case 1: Domain Adaption

* Problem setting
* Given source domain labeled data Dg = {zg;, ys, }.%;
and target domain data D = {z1,}1'%,
* learn fr such that the loss on target data is small

Zﬁ(fﬂa:n),ym

 where yr1; is unknown.

* Assumption
* The same label space Vg = Y1
* The same dependency p(ys|zs) = p(yr|zT)
* (Almost) the same feature space Xg ~ X1
» Different data distribution pg(z) # pr(x)



Importance Sampling for Domain Adaption

* Importance sampling

0* = arg mein E(z,y)~pr 1LY fo(2))]
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* Re-weight each instance by 3(x) =



Importance Sampling for Domain Adaption

* How to estimate [(x) =

* A simple solution would be to first estimate ps(x) and pr(x)
respectively, and then calculate (§(x)
* May suffer from huge variance problem

pr(z)

ps(x)

* A more practical solution is to estimate directly



Importance Sampling for Domain Adaption

* Imagine a rejection sampling process, and view the target
domain as samples from the source domain

Source @ 000 —0—0 00— 0
Selection variable | | i ] s € {0,1}
Target 000 O e 1

* Probabilistic density function (p.d.f.) relationship
pr(z) « ps(z)p(s = 1|z)

* And we estimate p(s=1|x) as a binary classification model
pr(z)

B(x) =
(@) ps(z)

x p(s = 1|z)

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004



Importance Sampling for Domain Adaption

* Imagine a rejection sampling process, and view the target
domain as samples from the source domain

Source O 000 —0 000 — 0
Selection variable | | 1 o s € {0,1}
Target 000 O e 1

* Estimate p(s=1|x) as a binary classification model
* Label instance from the target domain as 1
* Label instance from the source domain as 0

_ pr(z)
ﬁ(ﬂ?) T ps(l’)

x p(s = 1|z)

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004



Importance Sampling for Domain Adaption

* How to estimate [(x) =

* Build the estimator with a list of basis functions
b
Bz) =) outy(x)
=1

The estimated target p.d.f. pr(x) = B(x)pg(x)

* Minimize KL divergence * Minimize squared error
A 2
min KL{pr (z) |7 (2) min [ (3(x) - 4(2) ps(a)da
{oa}—4 {aut_ Jz
Sugiyama et al., Direct Importance Estimation with Model Kanamori et al., A Least-squares Approach to Direct
Selection and Its Application to Covariate Shift Adaptation, Importance Estimation, JMLR 2009

NIPS 2007



Unbiased Training in Display Advertising

* In display advertising, the label data is observed by an advertiser only
when she wins the auction, thus it is biased.

Auction Selection

] A

— as a Filter Lose

P = = e e = = = = = n

E—

1 |

I

— I

I .

Bid Auction

s | |

I I A I

I : : I

U . | .

— Win S 2 with sl
L e.g., click,

I I w?n price

I I

I I

p(data) Train Model p(d‘?ta)
&
Opt. Est.

Data Distribution

Pre-bid Full-Volume Discrepancy Post-bid Winning
Bid Request Data Impressions Data

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Unbiased Learning Framework

e Data observation process
A bid .
[request} -> [ Bid

p(x)w(be) o g(x)

observation

=

* Importance sampling

[ﬁ(ya.f/@(m))]

min Eg[:wp(m) [ﬁ'(ya fﬁ (.’L‘) )} = min EGBNQ(;C) w(b )

B B

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Performance Comparison on Yahoo! DSP

* A/B Testing on Yahoo! United States

2.97% AUC lift
Camp. | BIas AUC.  kKMmMP AUC  AUC Lift
CI G3.78% 61.12% 0.34%
C2 87.45% 88.58% 1.13%
C3 69.73% 75.52% 5.79%
C4 38.82% 89.55% 0.73%
Ch 6G9.71% 72.29% 2.58%
C6 89.33% 90.70% 1.37%
CT T7.76% 78.92% 1.16%
C8 T4.57% 76.98% 2.41%
C9 71.04% 73.12% 2.08%
all 73.48% 76.45% 2.97%
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eCPC Difference

Cc8

10.3% more clicks

42.8% higher CTR

9.3% lower eCPC

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16



Instance TL Case 2: Labels in 2 Domains

* Problem setting
* Given source domain labeled data Dg = {zg;, ys, }.=%;
* and very limited target domain data Dy = {z1,, y1 },4
* learn fr such that the loss on target data is small

Z ‘C(fT(qu;)? yTi)

* Assumption
* The same label space Vg = Y1
* Different dependency p(ys|zs) # p(yr|zT)
* (Almost) the same feature space Xg ~ Xt
* Different data distribution ps(z) # pr(z)



TrAdaBoost

* For each boosting iteration

e Use the same strategy as AdaBoost to update the
weights of target domain data

* Use a new mechanism to decrease the weights of
misclassified source domain data

Wenyuan Dai et al., Boosting for Transfer Learning, ICML 2007



TrAdaBoost

* Source/target domain data D (combined)

* Initialize the weight vector

e Fort=1, ..., Nrounds
» et p' =w!/(Z1" wh)
Learn the model h; based on the weighted data D, p!

>t W [h(@i) — e(xi)]

Calculate the error on target data € = ntm 1
Zz’:n-i—l wy

Set Bt:et/(l—et)<1 ﬂzl/(l—l—lenn/N)

Update the new weight vector

t+1 {wfﬁht(xl)c(:vz), 1= 17 AL
7 — —|ht(x;)—c(x;
wt g )=o)

w .
, 1=n+1,....n+m

. N —hy(x) N
* Output the model i(z) = { Lo ez Be 7 2 iz B

(0. otherwise

[ [

Wenyuan Dai et al., Boosting for Transfer Learning, ICML 2007



Number of labeld images

Distant Domain Transfer Learning

Classification Accuracy of Tiger

0.85

0-61 -
—

Supervised Leanring Transfer Learning

Classification Accuracy of Airplane
0.95

0.63
Ee=e——

Supervised Leanring Transfer Learning SLA

Tags

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Problem Setting

* Sufficient source domain data s = {(z}, ), ..., (%%, y%%)}
* Limited target domain data 7 = {(z}, y%), ..., (227, 477}

* Mixture of unlabeled data of multiple intermediate
domains I = {z1,...,27'}, n; is large enough

* Homogeneous: same feature space but different
distributions

pr(z) # ps(x)
pr(z) # pr(z)
pr(y|z) # ps(yl|r)

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Selective Learning Algorithm

Sample Convolution and Fully connected Deconvolution
Selection pooling layers autoencoder and unpooling
(optional) layers layers(optinal)

selected
source data

l E
I selected = - :D
ntermediate reconstructed
data data

target data

preditive model on
the labeled data

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Selective Learning Algorithm

* Instance selection via reconstruction error by an AE

12
(feafdav&vt $5H2+_ mZIHQ
1 & -
+—Z P& = 2% ||, + R(vs, vi)
nri=
* selection indicators vg,v; € {0, 1}
ngs
* regularization term g(vs,v;) = _As g——ZvI
ns

1=1

. Incorporation of label informatlon

To(fer fer fa) = Z vsl(ys, fo(his)) + — Z Vil(yh, fo(hp)) + niI > vig(fe(hD))
=1

* Entropy function ¢g(z) = —zlogz — (1 — z) log(1 — 2)
e Overall objective function minJ = J1 + 72

,U



Selective Learning Algorithm
* Update O: back propagation

1AL fe(fe(@))) + 12 — 2%]3 < As
* Update v ol = ¢ ’ (4)
0 otherwise

L if | &% — &b 13 + g(fe(fe(2h))) < A

vh = ¢ (5)
\ (0  otherwise

P

Sample Convolution and Fully connected Deconvolution
Selection pooling layers autoencoder and unpooling
(optional) layers layers(optinal)

selected I
|source data
[ = ] -
selected = "I-I
reconstructed
data
— —

ntermediate
preditive model on

target data

data
the labeled data

Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



DDTL by Selective Learning Algorithm

Table 2: Accuracies (%) of selected tasks on Catech-256 and AwA with SIFT features.

SVM DTL GFK LAN | ASVM | TTL STL SLA
‘horse-to-face’ 84+2 | 8+2 | 773 | 79+£2 | 7644 | 7T8+2 | 863 | 92 L2
‘airplane-to-gorilla” | 75+ 1 | 624+ 3 | 6745 | 664 | 512 | 66+2 | 7T6L£3 | 84+ 2
‘face-to-watch’ HET 683|614 | 634 605 | 674 | 755 | 884
‘zebra-to-collie’ 1E£3[69L£2 | 56L£2 | H7E3 | 59L£2 | 70L£3 | 72L£3 | 7T6L2
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Ben Tan and Qiang Yang et al. Distant Domain Transfer Learning. AAAI 2017.



Transfer Learning Methods

* Feature Transfer

* Mapping features of source and target datain a
common space

Relational approaches are relatively unpopular, thus omitted in this talk



Feature-based Transfer Learning

* When source and Xs Xr
target domains only
have some overlapping
features

* Lots of features only
have support in either
the source or the target

domain ¥
* Possible solutions Y
* Encode application-
specific knowledge
* General approaches to v
learn the

transformation ¢



General Feature-Based TL Approach

* Learning new data representations by minimizing
the distance between two domain distributions

* Learning new data representations by multi-task
learning

* Learning new data representations by self-taught
learning



Principle Component Analysis (PCA)

60

First

40} - -
Second i -component

20+

=20}

-60 1 I I I I
-60 -40 =20 0 20 40 60

* PCA uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components



Principle Component Analysis (PCA)

First Second Noise
Component Component Components

* PCA uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components



Transtfer Component Analysis

* Motivation

* Minimize the distance between domain distributions by
projecting data onto the learned transfer components

Two Domain
Data Target

NS4
Do
Jop et 1 "X N K K . ?

The latent factors that cause the two-domain data distributions different

Pan, Sinno Jialin, et al. "Domain adaptation via transfer component analysis." IEEE Transactions on Neural Networks 22.2 (2011): 199-210.



Transtfer Component Analysis

* Main idea

* Learn © to map the source and target domain data to
the latent space spanned by the factors which can
reduce domain difference and preserve original data
structure

min Dist(¢(Xs), p(XT)) + AQ(p)

s.t. constraints on p(Xg) and ¢(X7)



Transtfer Component Analysis

* Maximum Mean Discrepancy (MMD)
* Given the source and target domain data

Xs = {zg,}15; X = {zn )5

drawn from P¢(x) and P.(s) respectively

Dist(p(Xs), p(X1)) =

Mapping Kernel function



Transtfer Component Analysis

* An illustrative example Latent features learned by

PCA and TCA

+ Pos. source domain data
| # Neg. source domain data ||
o Pos. target domain data

o Neg. target domain data

Isfour'c@a dorhain data : | !

-2

ISOLErce domain data

%2 1 0 1 2 3 4 5 6 7 8

X

Original feature space
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Maximum Mean Discrepancy

Problem 1 Let x and y be random variables defined on a topological space X, with respective

Borel probability measures p and q . Given observations X := {xi,..., Xm} and Y :={y1,.... v},

independently and identically distributed (i.i.d.) from p and g, respecfwef}, can we decide whether

p#q’

Lemma 1 Let (X,d) be a metric space, and let p,q be two Borel probability measures defined on
X. Then p = q if and only if Ex(f(x)) = E,(f(v)) for all f € C(X), where C(X) is the space of
bounded continuous functions on X,

Definition 2 Let F be a class of functions [ : X — R and let p.q.x,y,X.,Y be defined as above. We

define the maximum mean discrepancy (MMD) as

MMD|(J, p,q] := sup (E[/ ()] = E[fO)])- (1)

MMDy, [F, X, Y] —sup( fog)——ZfU ) (2)

fe



MMD in Transfer Learning

Deep Adaptation Network

fine-
tune

fimg-
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* Multi-kernels, e.g., some RBF kernels with different standard deviations

w2
K(x,x') = exp (—”X XH)

202

Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.



How transferable are features in deep
neural networks? [NIPS 2014]

Standard BP training
on dataset A

Standard BP training
on dataset B

Reuse first n=3 layers
weights of baseB
and train on B

Reuse first n=3 layers
weights of baseA
and trained on B
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How transferable are features in deep
neural networks? [NIPS 2014]
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How transferable are features in deep
neural networks?

5: Transfer + fine-tuning improves generalization

0.641

3: Fine-tuning recovers co-adapted interactions

0.62f 2: Performance drops

due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

o

i

=)
T

Top-1 accuracy (higher is better)
o
o
=

0.56f

0.54

0 1 2 3 4 5 6 7
Layer n at which network is chopped and retrained



Domain Adversarial Neural Network

Definition 1 (Ben-David et al., 2006, 2010; Kifer et al., 2004) Given two domain
distributions DF and Df over X, and a hypothesis class H, the H-divergence between
D& and Dy is

dy(DS, DY) = 2 511£
ne

ron(x) =1 - P1 [r; = 1| ‘

XN'D b %

Pr [n(z) =11+ Pr [n(z)=0]=1

w~D§ xNDgf
. 1 X
du(S.T) = (1 —gg,;} - an =0] + ;{;11[-@(&):11”
[ S | '
Source domain Target domain

Ajakan, Hana, et al. "Domain-adversarial neural networks." JMLR 2016



Domain Adversarial Neural Network

o

forwardprop

feature e tr;{“tﬂr Gel(0f) 2%, U
T Ty Sy
AL,
26,

backprop (and produced derivatives)

I |:> Itlfm label 3

_‘F_
g :

Fvs

i

=t

-

=

I:> o
i\.

]

label [JLL(ILLUJI E,-U ; .;

domain classifier G 4(-:#4)

A
r A

E> |:> B domain label d
\9La ~Closs LD

004




Experiment Result

Original data

mSDA representation

SOURCE TARGET DANN NN SVM DANN NN SVM
BOOKS DVD 184 790 .799 .829 824 .830
BOOKS ELECTRONICS 133 747 .7T48 .804 70 766
BOOKS KITCHEN 779 78769 .843 842 821
DVD BOOKS 723 7200 .743 825 823 826
DVD ELECTRONICS .7H4 32 .T48 .809 T68 739
DVD KITCHEN 783 778  .746 .849 .853 842
ELECTRONICS BOOKS 713 709 705 774 770 762
ELECTRONICS DVD 738 733 .T26 781 .7H9 70
ELECTRONICS KITCHEN 854 854  .&847T 881 863 847
KITCHEN BOOKS .709 708 707 T18 721 .769
KITCHEN DVD 740 739 736 .789 .789 788
KITCHEN ELECTRONICS 843 841 .842 856 850 861
AVG 0.763 0.761 0.760 0.813 0.803 0.801



Experiment Result

METHOD Source | AMAZON DSLR WEBCAM
Tarcer | WEBCAM  WEBCAM DSLR
GFK(PLS, PCA) (Gong et al., 2012) | .197 497 6631
SA* (Fernando et al., 2013) 450 648 699
DLID (Chopra et al., 2013) 519 782 899
DDC (Tzeng et al., 2014) 618 950 985
DAN (Long and Wang, 2015) 685 960 990
SOURCE ONLY - 642 961 978
DANN 730 964 992

Table 3: Accuracy evaluation of different DA approaches on the standard OFFICE (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.



1.6.0; Amazon: Phone

b Ameson: Bottle

1.6.8: Amaron: Laptop

L.6.E DSLR: Fhone

1.G.ec DSLR: Bottle

1.6.d: DSLR: Laptop
& IR

1.6.i: Webeam: Phone

1.6.h: Webcam: Bottls

1.6 g Webcam: Laptop
Figure 1.6: Examples from Office dataset



Transfer Learning Methods

 Parameter Transfer

* Learn target model parameters according to source
model

Relational approaches are relatively unpopular, thus omitted in this talk



Parameter based Transfer Learning

* The J-parameterized function fy(x) learned on two domains

ng
05 = arg mein ; L(ys;, fo(xs,)) + AQ(0)

nr
01 = arg mein z_; L(yr,, fo(zT,)) + AQ(6)

* Motivation

* A well-trained model fo= (x) has learned a lot of structure on the
source domain.

* |f two tasks are related, this structure can be transferred to learn
the model fp: () on the target domain



Multi-Task or Collective Learning

* Minimize the joint loss on two tasks and the model
parameters distance

Ns T
1 1
in @— L(y; : 1 —a)— L(y; : A2(0g,0
Join o ; (ir Jos (@) + (1 — ) 1~ ; (Y5> for (25)) + A5, 07)
Source task loss Target task loss Parameter distance

* Different parameter distance definitions
Q(0s,0r) = |10s — Or|*

Qbs,00) = > ||9t—— DAL

te{S,T} se{S T}



Hierarchical Bayesian Network

* |dea: source domain parameters, regarded as
random variables, act as the prior of the target
domain parameters

hyperparameters

ns transfer nrt
@s) | (bs o) | @




Case Study: from web browsing to ad click

* Source task
* Data: user browsed webpage ids
e Task: predict whether a user likes a webpage

e Target task
* Data: user browsed webpage ids
e Task: predict whether a user likes to click an ad

NS Nt
1 1
in a— Y L(y; - 1—a)— > L(y ) + \|0s — 67|
er;l,ler; ozNS - (i, f@s(ﬂfz)) + ( ) Ny < (yj, feT(xj)) + \||0s ll
Logistic regression Logistic regression

[Perlich, Claudia, et al. "Machine learning for targeted display advertising: Transfer learning in action." Machine learning 95.1 (2014): 103-127.]



Case Study: from web browsing to ad click

* lllustrated in a hierarchical Bayesian graphical model

[wr NN(wC,O_i}dI)] [ v} NN(U;’,J%/dI)]

2 2
Hap€ s Oppe Myrc, Oyl

_2
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@

®
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E

[Zhang, Weinan et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to CTR Estimation. ECIR 2016]



Transfer Learning in Deep Learning

* Mostly, neural network reusing
* Feed new data for domain adaptation
 Build higher layers for training another task (feature transfer)

Target task
Source task Target task
Feature Feature Feature
representation representation representation

Source Data Target Data Target Data



Net2Net Transfer

* Net2Net reuses information of already trained
model to speedup training of new model

Traditional Workflow Net2Net Workflow

Initial Design Rebuild the Model Initial Design Reuse the Model

= = an,
I;:EI @ Net2Net Operator
Training [lf) Training Training y

gl it | it
< iy g

m i m

[Chen, Tiangi, lan Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer.” ICLR 2016.



Net2Net Transfer: Growing Network

e Wider

A Deeper Model Contains
Identity Mapping Initialized Layers

3 Identity Mapping
# %

Original Model Layers that Initialized as



Net2Net over Inception-BN on ImageNet
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ResNet: Deep Residual Networks

* Difficulty of training DEEP networks
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ResNet: Deep Residual Networks

weight layer
F(x) ! relu

weight layer

X

identity

Figure 2. Residual learning: a building block.



Performance on ImageNet

—~

plain-18 ResNet-18 T AN A A,
—plain-34 —ResNet-34 34-layer

1

0 10 20 30 40 50 0 10 20 30 40 50
iter. (led) iter. (le4)

Plain networks of 18 and 34 layers. ResNets of 18 and 34 layers.

* Thin curves denote training error, and bold curves denote
validation error of the center crops.

* The residual networks have no extra parameter compared to their
plain counterparts.



Heterogeneous TL

 Different feature space

 Examples
* Cross-language document classification
* Cross-system recommendation

* Approaches
* Symmetric transformation mapping
* Asymmetric transformation mapping

e =Ny

(a) (b)
Fig. 1 a The symmetric transformation mapping (T and T) of the source (X) and target (X;) domains into a

common latent feature space. b The asymmetric transformation (T+) of the source domain (Xc) to the target
domain (X5)




Cross-system Recommendation
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Transfer Learning via CodeBook
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Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for

Sparsity Reduction." IJCAI. Vol. 9. 2009.



Transfer Learning via CodeBook

Utgt
1{1[3]3[1] [1]o]o .
3[3[2]213] [ol1]o ABC Vige
2123713127 [0fO0]1 X|3]11(2 0]0)1]11]0
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1[1913713]1 1{0)10] Z|3]12]1 01010010
31312(2(3] |0]1]0 codebook
212131312 0f{0]1
reconstructed
Table 1: MAE on MovieLens (average over 10 splits) Table 2: MAE on Book-Crossing (average over 10 splits)
Training Set | Method | Given5 GivenlO Givenl5 Training Set | Method | GivenS Givenl0) Givenl5
pPCC 0.930 0.883 0.873 PCC 0.677 0.710 0.693
CBS 0.874 0.845 0.839 CBS 0.664 0.655 0.641
ML100 WLR 0.915 0.875 0.890 BX100 WLR 1.170 1.182 1.174
CBT 0.840 0.802 0.786 CBT 0.614 0.611 0.593
PCC 0.905 0.878 0.878 PCC 0.687 0.719 0.695
CBS 0.871 0.833 0.828 CBS 0.661 0.644 0.630
ML200 WLR 0.941 0.903 0.883 BX200 WLR 0.965 1.024 0.991
CBT 0.839 0.800 0.784 CBT 0.614 0.600 0.581
pPCC 0.897 0.882 0.885 PCC 0.688 0.712 0.682
CBS 0.870 0.834 0.819 CBS 0.659 0.655 0.633
ML300 WLR 1.018 0.962 0.938 BX300 WLR 0.842 0.837 0.829
CBT 0.840 0.801 0.785 CBT 0.605 0.592 0.574

Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for
Sparsity Reduction." IJCAI. Vol. 9. 2009.



Cross-Language Text Classification

* A large number of labeled English webpages
* A small number of labeled Chinese webpages
 Solution: information bottleneck

English Web Pages
~
Chinese Web Pages _ ]
information
bottleneck

Ling, Xiao, et al. "Can chinese web pages be classified with english data source?." WWW 2008.




Summary of CS420

1. ML Introduction 8. Graphic Models

2. Linear Models 9. Unsupervised Learning
3. SVMs and Kernels 10. Model Selection

4. Neural Networks 11. RL Introduction

5. Tree Models 12. Model-free RL

6. Ensemble Models 13. Transfer Learning

7. Collaborative Filtering 14. Poster Session



Summary of CS420

Academia
Theoretical novelty

Hands-on
ML
experience

Industry Startup

Application
novelty

Large-scale
practice

* Play with the data and get your hands dirty!



APPENDIX



RKHS

 MMD function class F : the unit ball in RKHS

* Hilbert Space
e given k: X XX —-R,dHand ¢p: X —-H
k(z,z") =< ¢(x), p(2") >, Vx, 2’ € X
* k: kernel function

* Reproducing Kernel Hilbert Space
efeH: X —>Riop: X > H
o If £:X xAX — R satisfies
* (1) Ve e X, k(-,x) e H
* (2) Ve e X Vf e H, f(x) =< f,k(-,x) >y
* k: reproducing kernel
* Define ¢(z) = k(z, )
k(:c,:z:/) =< k('vx/)v k(vx) >H=< ¢(x,)7¢(x) >H



Transtfer Component Analysis

Dist(¢(Xs). 9(X7)) = ||Eanrr@)[®(9(2))] — Eonps(x[@(p())]|
ns l nr
X 'EZ(D ;;‘I’(r(JTJ)H

Assume ¥ = ® o p a RKHS. with kernel £(z;, ;) = W(a i)TlIJ(.rj)

Dist(¢(Xg), o(Xp)) =tr(KL)

4 1 r
— I!'.Ij € 4\5‘.
. . ns
K = I\S,S K ST R('rl.5+?13‘)X(-II.S+?].T) L.. = 4 —12— Tr;, T; € .\T,
\ = K K € R n J
\ .
r,s STT S otherwise.

\ nsnr



Transtfer Component Analysis

@ [?IYHM&? W e RsT1)>m and m < ng + nry.

Parametric kernel

Learning ' = learning a low-rank matrix W
e ularization term

Mirfimize distance

between domains \. -
1min
4
VIKHEKW 9\

Maximize data variance

W* < m leading eigenvectors of (K LK + N )'KHK




MMD in RKHS

* MMD function class JF : the unit ball in RKHS
e let Up = Exwp[k(ilﬁ, )] , called mean embedding
o Ep[f(z)] = Epl< k(z, ), [ > =< pp, [ >n

2
MMD?[F,p.q] = |ﬁupf](Ex [f(.r)]—Ey[f(}»’)])]

2
LA llge=1

= HJ”P_A”IIHIE.FE'
MMD?(F,p,g] = [lup —aqf5¢

= {psttp)gc + (Hasttg) 5e — 2 (Hpstiq) o
= E. v (0(x),0(x)) s +Epy (000),00) )5 —2E; (0(x),0(¥)) g

MMD? (7, p,q] = E, v [k(x,x")] = 2Ey, [k(x,»)] + Eyp [k(»))] ,



