CS420, Machine Learning, Lecture 12

Approximation Methods in
Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html



Reinforcement Learning Materials

Our course on RL is mainly based on the materials from these masters.

Prof. Richard Sutton

* University of Alberta, Canada

* http://incompleteideas.net/sutton/index.html

* Reinforcement Learning: An Introduction (2" edition)

* http://incompleteideas.net/sutton/book/the-book-2nd.html
Dr. David Silver

* Google DeepMind and UCL, UK

* http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Home.html

* UCL Reinforcement Learning Course

* http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng

* Stanford University, US

* http://www.andrewng.org/

* Machine Learning (CS229) Lecture Notes 12: RL
* http://cs229.stanford.edu/materials.html




Last Lecture

* Model-based dynamic programming

* Value iteration v(s)=R(s)+ rgleajcvsé;gPsa(s’)V(s')
* Policy iteration «(s) =arg max ZgPsa(S')V(S/)
s'e

* Model-free reinforcement learning
* On-policy MC  V(sy) « V(s¢) + Gy — V(sp))
* On-policy TD V(st) « V(st) + alrer + YV (ser1) — V(st))
* On-policy TD SARSA
Q(st,at) «— Q(st,ar) + alreyr + vQ(Se41, apy1) — Q(s¢,a))
e Off-policy TD Q-learning
Q(st, ar) = Qlst, ar) + arer +ymax Q(ser1, ag1) — Q(se, ar))



Key Problem to Solve in This Lecture

* In all previous models, we have created a lookup
table to maintain a variable V(s) for each state or
Q(s,a) for each state-action

 What if we have a large MDP, i.e.
* the state or state-action space is too large
e or the state or action space is continuous
to maintain V(s) for each state or Q(s,a) for each
state-action?
* For example
* Game of Go (1079 states)
* Helicopter, autonomous car (continuous state space)



Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation

* Policy gradient

* Deep reinforcement learning



Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation



Discretization Continuous MDP

* For a continuous-state MDP, we can discretize the
state space

* For example, if we have

2D states (s,, s,), we can

use a grid to discretize

the state space S,

Val

 The discrete state s

* The discretized MDP:

(Sv A7 {PEa}7 Vs R)

* Then solve this MDP with
any previous solutions



Bucketize Large Discrete MDP

* For a large discrete-state
MDP, we can bucketize
the states to ‘down
sample’ the states

 To use domain
knowledge to merge
similar discrete states

* For example, clustering
using state features
extracted from domain
knowledge



Discretization/Bucketization

* Pros

e Straightforward and off-the-

shelf

 Efficient S,

Va]

* Can work well for many

problems

* Cons

* A fairly naive representation
for Vv

* Assumes a constant value over
each discretized cell

* Curse of dimensionality

S=R"=S={1,...,k}"




Parametric Value Function Approximation

* Create parametric (thus learnable) functions to
approximate the value function

Vo(s) = V" (s)
Qo(s,a) ~ Q" (s,a)

e Jis the parameters of the approximation function,
which can be updated by reinforcement learning

 Generalize from seen states to unseen states



Main Types of Value Function Approx.

Vo (s)

i
/)

V)

Qo(s,a)

i
A~ )

1

Many function approximations
* (Generalized) linear model
* Neural network

* Decision tree

* Nearest neighbor

* Fourier / wavelet bases

Differentiable functions
* (Generalized) linear model
e Neural network

We assume the model is
suitable to be trained for non-
stationary, non-iid data



Value Function Approx. by SGD

e Goal: find parameter vector & minimizing mean-squared
error between approximate value function Vy(s) and true
value V7(s)

7(6) = Ex [ 5 (V™(s) — Vi(s))?]

e Gradient to minimize the error

0J(0) _ . Vp(s)
59 — ExlV7(s) = Vols)l—,
* Stochastic gradient descent on one sample
0J(60)
0— 60—« 5
OV (s)

=0+ a(V7(s) = Vils) o



Featurize the State

* Represent state by a feature vector

x1(s)

(s) =

T (s)

* For example of a helicopter
* 3D location
* 3D speed (differentiation of location)
* 3D acceleration (differentiation of speed)



Linear Value Function Approximation

* Represent value function by a linear combination of
features

V(s) = 6" x(s)
e Objective function is quadratic in parameters U

1
J(0) = Ex | 5(V7(s) = 07 a(s))*
* Thus stochastic gradient descent converges on global
optimum
0J(0)

06
=04+ a(V™(s) — Vy(s))z(s)

0 «— 60— «

Step Prediction  Feature
size error value



Monte-Carlo with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* Now we specify the target value function V7(s)

* We can apply supervised learning to “training data”

<81, G1>, <82, G2>, c e e <ST, GT>

For each data instance <s,, G,>
0 — 0+ a(Gr — Va(s))z(st)

MC evaluation converges to a local optimum



TD Learning with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* TD target 7.1 + vVo(s¢+1) is a biased sample of true target
value V™ (s;)

e Supervised learning from “training data”
<317 ro + ’7%(52)>7 <827 T3 + 7%(83)% LI <ST7 RT>

* For each data instance (s¢, rer1 + YVa(Str1))
0 — 0+ a(reen +7Vo(ser1) — Va(s))z(st)

 Linear TD(0) converges (close) to global optimum [why?]



Action-Value Function Approximation

* Approximate the action-value function

Qo(s,a) ~ Q" (s,a)

* Minimize mean squared error
1
J(0) = Ex | 5(Q7(s,0) = Qo(s,a))*

* Stochastic gradient descent on one sample

. (6)
a0

=0 +a(Q"(s,a) = Qo(s,a))

0 «— 60—«

0Qy(s,a)
00




Linear Action-Value Function Approx.

* Represent state-action pair by a feature vector

11(s,a)

z(s,a) =

|T1(5,a)
* Parametric Q function

Qo(s,a) =0 z(s,a)
* Stochastic gradient descent update

0J(0)
06
=0+ a(Q™(s,a) — 0" x(s,a))z(s,a)

0 «— 60— «




TD Learning with Value Function Approx.

0Qy(s,a)

00— 0+ a(Q(s,a) —Qy(s,a)) 90

* For MC, the target is the return G,

0Qy(s,a)

HHQ—FO‘(Gt_Q@(S?a’)) o0

* For TD(0), the TD targetis r;11 + vQg(Str1, ats1)

0Q¢(s,a)
00

0«0+ a(ri1+7Qo(si11,ai11) — Qols,a))



Control with Value Function Approx.

Qo ~ Q"

Starting 6

7 = e-greedy(Qp)

* Policy evaluation: approximately policy evaluation Qg ~ Q"

* Policy improvement: e-greedy policy improvement



NOTE of TD Update

* For TD(0), the TD target is

e State value

) 0+ a(V7(s,)  Vi(s)) o
= -+ alris +2Valse1) = Vo(s) 2 oo
* Action value
0 — 0+ a(Q(s,a) — Qols. a))aQ%(;’ 2
5Qo(s,a)

=0+ a(ri +7Qo(st11,ar41) — Qo(s,a)) o0

e Although ¥ is in the TD target, we don’t calculate gradient
from the target. Think about why.



ase Study: Mountain Car

MOUNTAIN CAR Goal

Episode 12

Step 428
-'.‘i.\"‘"f ’.\"”i’ﬂ_&
‘\"i".ll i

AL
FEETC , L

el AN
AN
i

A iy '].“ G

l"lll[“ﬂ"'

Ll

ST

ol
L]

'l Ly P O

"'!ro.ir'&'n:*:!- 'S 0
L P oty

R GGA G

ZERT 2y

~f i Y
L S Pl

R RS,

‘.”mf Z

The gravity is stronger Py S
. “ﬁ Wi

than the car’s engine !
0g"

LR

AN A R




Ablation Study

1000

Mountain Car *°
Steps per episode

log scale
averaged over 100 runs 200

100

a=0.1/8
a=0.2/8

300

280

Mountain Car

Steps per episode 260
averaged over
first 50 episodes
and 100 runs 240

220

1
0 500

Episode

- n=4

0 0.5 1 1.5
Q¢ x number of tilings (8)




Content

* Policy gradient



Parametric Policy

* We can parametrize the policy

mo(als)
which could be deterministic
a = mp(s)
or stochastic
mo(als) = P(als; 0)

e ¥is the parameters of the policy
* Generalize from seen states to unseen states
* We focus on model-free reinforcement learning



Policy-based RL

* Advantages

 Better convergence properties

 Effective in high-dimensional or continuous action
spaces

e Can learn stochastic polices

* Disadvantages
* Typically converge to a local rather than global optimum

e Evaluating a policy is typically inefficient and of high
variance



Policy Gradient

* For stochastic policy mg(a|s) = P(als;6)

* Intuition
 lower the probability of the action that leads to low value/reward
* higher the probability of the action that leads to high value/reward

* A 5-action example

1. Initialize 0 3. Update @ by policy gradient 5. Update U by policy gradient
Action Probability Action Probability Action Probability
0.25 0.4 0.4
0.2 0.3 0.3
0.15
0.1 0.2 0.2
IIIIIIIIIIII 11
0 0 0 .
Al A2 A3 Ad A5 Al A2 A3 Ad A5 Al A2 A3 A4 A5
2. Take action A2 4. Take action A3

Observe positive reward Observe negative reward



Policy Gradient in One-Step MDPs

* Consider a simple class of one-step MDPs
e Starting in state s ~ d(s)
* Terminating after one time-step with reward r_,

* Policy expected value

J(0) =Erylr] =) d(s) > mo(als)rsa

sesS aEA

0J(0) _ Zd(s) Z 87?9(a|3)rsa

0
sesS acA J




Likelihood Ratio

* Likelihood ratios exploit the following identity
Omg(als) 1 Omg(als)
o0 mo(als) mg(als) 06

0lo
— el 20Tk

* Thus the policy’s expected value

J(O) =E,,[r] = Zd ZT(@CL| frsa

seS a€A
Omg(als)
Zd Z T'sa
seS ac€A oo L
1 |
= Zd Zﬂe als) 8 ogw@(a|s) T'sa!
seS acA .__________________'

0log mg(als) This can be approximated by sampling
00 5@¢| state s from d(s) and action a from r,

|



Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs

* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to
 start state objective, average reward objective, and average value
objective
* Theorem

e For any differentiable policy my(a|s), for any of policy objective
functionJ =14, J, s, 4, , the policy gradient is

8.J(6)
"o =l

0log mg(als)
00

Q™ (s,a)

Please refer to appendix of the slides for detailed proofs



Monte-Carlo Policy Gradient (REINFORCE)

* Update parameters by stochastic gradient ascent

* Using policy gradient theorem
* Using return v, as an unbiased sample of Q™ (s,a)

0log mg(ay|sy)

Af, —
V)

t

* REINFORCE Algorithm
Initialize & arbitrarily
for each episode {si,a1,72,...,8r_1,ar_1,77} ~ T doO
fort=1to T-1 do
0 «— 0+ Oz% log mg(ay|s:)vy
end for
end for
return 9



Puck World Example

o

target O

% @ -50 r_-rf
iy -55

‘.@. 0

-5

-10

L e e O O O

@’I
n
A
A
P
g i
'

V

-15

-20

-25

-30

-35

Average Reward

-40

-—\\

-45

/A

Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds

3e+07 6e+07 9e+07
[terations

Policy is trained using variant of MC policy gradient

1.2e+08

1.5e+08



Sequence Generation Example

G Next MC D

action search
True data

Real World

G Generate

.- S

Policy Gradient

* Generator is a reinforcement learning policy Gy(y|Y14—1) Of
generating a sequence
* Decide the next word to generate given the previous ones

e Discriminator provides the reward (i.e. the probability of being
true data) for the whole sequence

* Gis trained by MC policy gradient (REINFORCE)

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.]



Experiments on Synthetic Data

e Fvaluation measure with Oracle

T
NLLoracle = _]EYLTNGO [Z log Goracle (yt‘Ylit—l)]

t=1
Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
p-value <107° | <107° | <107®° | <10°°
100 Learning curve
SeqGAN

98 N VILE
% 9.6 - == Schedule Sampling
© | N\ e PG-BLEU
5 94
>
2 92
-l
= 90

8.8

8.6

50

100

150

Epochs

200

250

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.]



Softmax Stochastic Policy

e Softmax policy is a very commonly used stochastic policy
efQ(Saa')
Tg(als) = I

* where f4(s,a) is the score function of a state-action pair
parametrized by ¢, which can be defined with domain knowledge

* The gradient of its log-likelihood

0log mg(als) _ Ofo(s,a) Z fo(s.am) Oo(s,a")
00 06 ,efe(sa 00
_ O0fo(s,a)

) [



Softmax Stochastic Policy

e Softmax policy is a very commonly used stochastic policy
efQ(Saa')
Tg(als) = I

* where f4(s,a) is the score function of a state-action pair
parametrized by ¢, which can be defined with domain knowledge

* For example, we define the linear score function
T
fo(s,a) =0 x(s,a)

Ologmg(als)  Ofe(s,a) _E, [3f0(57a/)]
ae T 80 N7T9( |S) ae

= 33(3, a) — Ea/wﬂ'g(a’|8) [:E(S7 CL/)]




Content

* Deep reinforcement learning
* By our invited speaker Xiaohu Zhu



Deep Reinforcement Learning

e Xiaohu Zhu



APPENDIX
Policy Gradient Theorem: Average Reward Setting

* Average reward objective

n—oo N,

ZE{H m)|so = s,a0 = a, 77}

8\/ ZﬂsaQﬁsa Vs

J(m) = lim lIEE {7“1 +ry 4+ Tn|7T} = Z d"(s) Z 7(s,a)r(s,a)

B 87r(s a) . o
= ; 0 Q (S,a)—kﬂ(s,a)%Q (S,Q)}

= Z :8%59,@)@#(3 a) + 7(s, a)(%( —|—ZPG V7™ (s ﬂ
— Z :—871'289, a)Q”(s,a) +7T(s,a)< — 8{9(9 ™) + %ZP;LS/VW s ))}

N 0J(m) _ Z -87(3 a)Q”(s 0) + (s, 0) Z 8V8779(3’)} B 8‘/8”9(3)

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)



APPENDIX
Policy Gradient Theorem: Average Reward Setting

* Average reward objective

oJ(m) on(s,a) N 8‘/” V™ (s)
BL _Z{ o ¢ ZP } a0
S (s)? AT Za“a +Zd“ Zw(s,a)ZP“ sl Zd“ 2

e e S 0 - EE oo Y
:szﬂ (Zmapa)aw szﬂ aW( )

:zS: (SZ - PSS/) Zdﬂ (‘9‘/7’ (s")

:,Esjdf(s Zd” Za”a REPILULY o 2 0) 5
DN zé’” )

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)



APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective
J(r) = ]E:Zyt_l

¢S50, 7Ti|

StZS,at:a,ﬂ'}

Q7(s,a) =E Z’Yk_lmrk

3V defaZWsaQwsa Vs

B '871’(8 a) Y
— za: By Q" (s,a) + m(s, a)(?HQ (s,a)}

_ Z :aﬂgza)QW(S a) + (s, a) ( s, a +Z’YP@ V7 (s )]

Zﬁﬁ(saQ”sa —|—Z7T3avz

a

8‘/”

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)



APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective

oV7™(s or(s,a
89(>:Z ée sa—i—ZwsavZ 551
Z (97?(5 a) Q" (s,a) =" Pr(s — s,0, )Z 67(8 2 Q" (s,a)

a a

Z SCLVZ ss1 ZZWSQV sslavﬁé )

o ) o 0‘/”(51)
—Z’ypssl 50— ZP”I“(S s1,1,7) 5

S1

oV™(s1) on(s,a) . B ) V7™ (s2)

a 52

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)



APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective

8‘/”(8) 0 87'['(8,@) T 1 87'['(81, ) ™
5 =7 Pr(ses,O,w);TQ (s,a) + 7 SZPr(s—nsl,l,ﬁ); Q" (s1,a)
ovT
#7730 Prls s lom) 3 P — s 1m0
on(s,a) on(s1,a)
_ A0 ™ 1 ) T
= PT(S_)&O’W)XG:TQ (s,a) + 7 ;PT(SHsl,l,ﬂ')%: 50 Q™ (s1,a)
+ ~2 Z Pr(s — 59,2, W)—avaéSQ)
DI LR ol D AU E ) TN ke LV
k=0 = 6 r k=0 69 |
aJ(m) aw so . or(s,a) ( 87T (s,a)
= 0 ;kzoy Prso—>sk7r)z 50 Zd 20 —Q"(s,a)

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)



