
Search Engines
Weinan Zhang

Shanghai Jiao Tong University
http://wnzhang.net

2019 EE448, Big Data Mining, Lecture 8

http://wnzhang.net/teaching/ee448/index.html

Acknowledgement and References
• Dr. Jun Wang is the Chair Professor of

Data Science and Founding Director of
MSc Web Science and Big Data
Analytics, Dept. of Computer Science,
University College London (UCL)

• Most of slides in this lecture is based
on Jun’s Information Retrieval and
Data Mining (IRDM) course at UCL

• Referred text book:

Christopher D. Manning, Prabhakar Raghavan,
Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press. ISBN:
0521865719. 2008.

Information Retrieval
• Information retrieval (IR) is the activity of obtaining

information items relevant to an information need
from a collection of information items.

Web Search is the Typical Scenario of IR

Information need: query

Information item:
Webpage (or document)

Other IR Scenarios
• Library Book Retrieval System

• Information need: a book title, or an author name etc.
• Information item: the book to seek for

• Recommender Systems
• Information need: a user in a certain context (without

query)
• Information item: a move (music, product etc.) she

would likes
• Search Advertising

• Information need: a user with query keywords
• Information item: a text ad she would click

Prof. Stephen Robertson

• Emeritus professor of
University College London
and City University London

• The pioneer of information
retrieval

• The proposer of
• Probabilistic Ranking

Principle (1977)
• BM25 (1980s)
• Worked in Chengdu

National Library in 1976!

We Focus on Web Search Engines

Information need: query

Information item:
Webpage (or document)

Two fundamental
problems for IR
• How to get the

candidate
documents?

• How to calculate
relevance
between a query
and a document?

Overview Diagram of Information Retrieval

Information Need Information Items

Representation Representation

Query Indexed ItemsRelevance?

Retrieved Items

Evaluating /
Relevance feedback

Overview Diagram of Information Retrieval

Information Need Information Items

Representation Representation

Query Indexed ItemsRelevance?

Retrieved Items

Evaluating /
Relevance feedback

1. Inverted Index

2. Relevance Model

3. Query Expansion &
Relevance feedback model

4. Ranking document
(next lecture)

Content of This Lecture
• Inverted Index for Search Engine

• Relevance Models

• Query Expansion and Relevance Feedback

Overall Indexing Pipeline

Token stream. Friends Romans Countrymen

Modified tokens. friend roman countryman

Inverted index.

Documents to
be indexed.

“Friends, Romans, countrymen,
lend me your ears.”

Indexer

Linguistic modules

Tokenizer

friend 2 4

roman 1 2

countryman 13 16

12

Tokenization
• Tokenization is the task of chopping a character

sequence into the smallest units, called tokens
• It seems very easy: - Chop on whilespace and ignore

punctuation characters
• Input: Friends, Romans, countrymen. So let . . .
• Output: Friends Romans countrymen So let . . .

• But, there are many tricky cases
• Example O’Neill → neill, oneill, or O neill
• How about aren’t , co-education, the While House

• Need to do the exact same tokenization of document
and query terms

• Guarantee that a sequence of characters in a text will match
the same sequence typed in a query

• Tokenization of other languages
• E.g., Chinese (word segmentation)

Normalization with Linguistic Models

• Normalize terms in indexed text and query terms
into the same form

• Words can appear in different forms
• Need some way to recognize common concept

• Examples:
how to match U.S.A and USA → remove punctuaƟon
walking vs. walks → stemming
Retrieval vs. retrieval → case folding

Normalization: Case Folding
• Reduce all letters to lower case

• Retrieval → retrieval
• ETHICS → ethics
• MIT → mit

• Possible exceptions: capitalized words in mid-
sentence

• It is often best to lowercase everything since users
will use lowercase regardless of correct
capitalization

Normalization: Stemming
• Stemming is a technique to reduce morphological

variants of search terms
• Stem: portion of a word which is left after the

removal of its affixes
• walk ← walked, walker, walking, walks
• be ← am, are, is
• cut ← cuƫng
• destroy ← destrucƟon

• Significantly reduce the number of the index terms
• Increase recall while harming precision

Porter Algorithm for Stemming
• One of the most common stemming algorithms in

English
• Conventions plus five phases of reductions
• Phases are applied sequentially
• Each phase consists of a set of commands

• A few rules in phase 1 (apply sequentially)

https://tartarus.org/martin/PorterStemmer/

Rule Example
SSES → SS caresses → caress
IES → Ponies → poni
SS→SS caress → caress
S→ cats→ cat

Normalization: Stop Words
• Drop some extremely common words from the

vocabulary because they are of little value in helping
selecting documents

• examples: “the”, “a”, “by”, “will” ...
• Take the most frequent terms (by collection frequency)

to construct the stop word list
• e.g., remove word that appears in more than 5% of

documents
• Perhaps remove numbers and dates. However, these

might be very useful
• Produce a considerable reduction of the index terms.

Results: smaller index files and faster search
• Most web search engines index stop words

Overall Indexing Pipeline

Token stream. Friends Romans Countrymen

Modified tokens. friend roman countryman

Inverted index.

Documents to
be indexed.

“Friends, Romans, countrymen,
lend me your ears.”

Indexer

Linguistic modules

Tokenizer

friend 2 4

roman 1 2

countryman 13 16

12

Indexing the Documents
• Key Problem: given a query, how to obtain the

candidates from the massive number of documents
• Solution: indexing the documents for IR
• The difficulties in IR

• Indexing “titles”, “abstract”, etc. only does not support
content-based retrieval; document contents are, in most
case, unstructured.

• Cannot predict the terms that people will use in queries
- every word in a document is a potential search term

• A solution: index all terms in the documents
• Full text indexing

Data Access
• Scan the entire document collection

• Typically used in early retrieval systems
• Still popular today, e.g., grep command in Linux - “slow”;

need real-time process
• Practical for “small” collections

• Index (query) terms for direct access
• An index associates each of the keys (normally terms)

with one or more documents
• “Fast”; practical for “large” collection

• Hybrid approaches - Use small index and then scan
a subset of collection

Inverted Index
• Inverted index is the most common indexing

technique
• Collection organized by terms (words). One record

per term, listing locations (doc. IDs) where term
occurs. May have more information.

• During retrieval, traverse lists for each query term

friend 2 4

roman 1 2

countryman 13 16

12

Term List of Document IDs containing the term

Called posting list

Inverted Index
• Different terms have vastly different sizes of posting

lists
• E.g. on Google, ‘information’ has 2,990M documents, while

‘bayesian’ has 17M
• We need variable-size postings lists

• On disk, a continuous run of postings is normal and best
• In memory, can use linked lists or variable length arrays

• Some tradeoffs in size/ease of insertion

friend 2 4

roman 1 2

countryman 13 16

12

Term List of Document IDs containing the term

Called posting list, sorted by IDs (why?)

Steps of Building Inverted Index

• Step 1: extract the sequence of
(modified term, document ID) pairs.

Term docID
I 1

did 1
enact 1
julius 1

caesar 1
I 1

was 1
killed 1

i' 1
the 1

capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2

be 2
with 2

caesar 2
the 2

noble 2
brutus 2
hath 2
told 2
you 2

caesar 2
was 2

ambitious 2

Document 1

I did enact Julius
Caesar I was

killed
i' the Capitol;

Brutus killed me.

Document 2

So let it be with
Caesar. The noble

Brutus hath told
you Caesar was

ambitious.

Steps of Building Inverted Index

• Step 1: extract the sequence of
(modified term, document ID) pairs.

• Step 2: sort by terms and then docID
• Core indexing step

Term docID
I 1

did 1
enact 1
julius 1

caesar 1
I 1

was 1
killed 1

i' 1
the 1

capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2

be 2
with 2

caesar 2
the 2

noble 2
brutus 2
hath 2
told 2
you 2

caesar 2
was 2

ambitious 2

Document 1

I did enact Julius
Caesar I was

killed
i' the Capitol;

Brutus killed me.

Document 2

So let it be with
Caesar. The noble

Brutus hath told
you Caesar was

ambitious.

Term docID
ambitious 2

be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2

did 1
enact 1
hath 1

I 1
I 1
i' 1
it 2

julius 1
killed 1
killed 1

let 2
me 1

noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Steps of Building Inverted Index
• Multiple term entries

in a single document
are merged.

• Split into Dictionary
and Postings

• Document frequency
information is added.

Term docID
ambitious 2

be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2

did 1
enact 1
hath 1

I 1
I 1
i' 1
it 2

julius 1
killed 1
killed 1

let 2
me 1

noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2 Pointers

Lists of
docIDs

Query Processing: AND

• Consider processing the query:
‘Information’ AND ‘Retrieval’
• Locate ‘Information’ in the dictionary;

• Retrieve its postings.
• Locate ‘Retrieval’ in the dictionary;

• Retrieve its postings.
• “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21
Information

Retrieval

Merging the Posting Lists

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21
Information

Retrieval
2 8

• If list lengths are x and y, merge takes O(x+y) operations.
• Crucial: postings sorted by docID.

Phrase Queries
• Want to be able to answer queries such as

“Shanghai Jiao Tong University” – as a phrase
• Note that it is different from search Shanghai AND Jiao

AND Tong AND University (why?)
• Thus the sentence “I went to Xi’an Jiao Tong

University from Shanghai” is not a match.
• The concept of phrase queries has proven easily

understood by users
• Many more queries are implicit phrase queries

• For this purpose, it no longer suffices to store only
<term: docs> entries

Positional Indexes
• In the postings, store for each term the position(s)

in which tokens of it appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
…>

Positional Index Example

• For phrase queries, we use a merge algorithm
recursively at the document level

• But we now need to deal with more than just
equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Processing a Phrase Query
• Extract inverted index entries for each distinct term: to,

be, or, not.
• Merge their doc:position lists to enumerate all positions

with “to be or not to be”.
• to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

• be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; …

• Or:
• 3:34,71; 4:31,341,510; 8:31,420,551; …

Content of This Lecture
• Inverted Index for Search Engine

• Relevance Models

• Query Expansion and Relevance Feedback

Overview Diagram of Information Retrieval

Information Need Information Items

Representation Representation

Query Indexed ItemsRelevance?

Retrieved Items

Evaluating /
Relevance feedback

1. Inverted Index

2. Relevance Model

3. Query Expansion &
Relevance feedback model

4. Ranking document
(next lecture)

Relevance Model

• Estimate the relevance between a query and a document
• Relevance is the “correspondence” between information

needs (queries) and information items (documents,
webpages, images etc.)

• But, the exact meaning of relevance depends on applications:
= usefulness
= aboutness
= interestingness
= ?

• Predicting relevance is the central goal of IR

Query Indexed ItemsRelevance
Model

Relevance Score

Representation of Information Need/Items

• We consider textual queries and documents
• Boolean:

• “(information AND retrieval) OR (machine AND learning)”
• Free text: “movie matrix review”

• A bag-of-words representation
• the item (query or document) is the “bag”
• the bag contains word tokens
• word order is ignored

Bag-of-Words Representation for Text

• A sequence of words/tokens
that represents semantic
meanings of human

Bag-of-Words Format:
{

text: 4;
mining: 2;
also: 1;
referred: 1;
to: 2;
as: 1;
data: 1;
roughly: 1;
equivalent: 1;
analytics: 1;
is: 1;
the: 1;
process: 1;
of: 1;
deriving: 1;
high-quality: 1;
information: 1;
from: 1;

}

Text mining, also referred
to as text data mining,
roughly equivalent to text
analytics, is the process
of deriving high-quality
information from text.

REVIEW

Boolean Retrieval
• The simplest Exact Match model

• Retrieve documents iff they satisfy a Boolean expression
• Query specifies precise relevance criteria
• Documents returned in no particular order

• Document: A bag of words
• Query: A Boolean expression
• Operators:

• Logical operators: AND, OR, AND NOT
• Proximity operators: number of intervening words

between two query terms, etc.
• String matching operators: Wild-card

Boolean Retrieval
 Boolean logic:

Term 1

Term 2
Term 3

doc 1

doc 2

doc 6 doc 9

doc 3

doc 7

doc 1

doc 2

doc 5

doc 12
doc 10

doc 13

doc 4

doc 15

doc 16

doc 14

Query: term 1 AND term 2 AND NOT term 3
retrieve doc 5

Boolean Retrieval: Summary
• Advantages

• Works great if you know exactly what you want
• Structured queries
• Simple to program
• Complete expressiveness

• Disadvantages
• Artificial language – unintuitive, misunderstood
• Either too precise or too loose (the size of the output)
• Unordered output: have to examine all of the results

Vector Space Model
• Regarding queries and documents as vectors

• We have a |V|-dimensional vector space, where |V| is
the vocabulary size

• Terms are axes of the space
• Queries and documents are points or vectors in this

space
• Very high-dimensional: tens of millions of

dimensions when you apply this to a web search
engine

• These are very sparse vectors - most entries are
zero (as mentioned in inverted index part)

Formalizing Vector Space Proximity

• We need to come up with a distance between two
points

• (= distance between the end points of the two vectors)
• Euclidean distance?
• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors

of different lengths.

Why Distance is a Bad Idea

• The Euclidean distance between q and d2 is large even
though the distribution of terms in the query q and the
distribution of terms in the document d2 are very similar.

Use Angle instead of Distance
• Thought experiment: take a document d and

append it to itself. Call this document d′.
• “Semantically” d and d′ have the same content
• The Euclidean distance between the two

documents can be quite large
• The angle between the two documents is 0,

corresponding to maximal similarity
• Key idea: Rank documents according to angle with

query.

Cosine Similarity
• The following two notions are equivalent.

• Rank documents in increasing order of the angle between query
and document

• Rank documents in decreasing order of cosine (query, document)

• Cosine is a monotonically decreasing function for the
interval [0o, 180o]

x (o)

cos(x)

Cosine(query, document)
• qi is the weight of term i in the query
• di is the weight of term i in the document

• cos(q,d) is the cosine similarity of q and d … or,
• equivalently, the cosine of the angle between q and d.

cos(q; d) =
q

kqk ¢ d

kdk =
q ¢ d

kqk ¢ kdk =

PjV j
i qidiqPjV j

i q2
i

qPjV j
i d2

i

cos(q; d) =
q

kqk ¢ d

kdk =
q ¢ d

kqk ¢ kdk =

PjV j
i qidiqPjV j

i q2
i

qPjV j
i d2

i

Unit Vectors

Cosine Similarity Illustrated

TF·IDF Term Weighting
• qi and di are can be beyond just binary values nor

term frequency values
• TF·IDF term weighting

• TFi,d : term frequency of term i in the document
• IDFi : inverse document frequency of term i in the

document set
IDFi = log10

N

ni
IDFi = log10

N

ni
TFIDFi;d = TFi;d log10

N

ni
TFIDFi;d = TFi;d log10

N

ni

• TF·IDF term weighting has many variants
• TF: 1+log10(TF), bool etc.
• IDF: log10[(N-ni+0.5)/(ni+0.5)]

score(q; d) =
X

i2q\d

TFIDFi;dscore(q; d) =
X

i2q\d

TFIDFi;d

Okapi BM25 Term Weighting
• Consider document length in words |d|
• BM (Best Match) 25 Term weighting

• TFi,d : term frequency of term i in the document
• IDFi : inverse document frequency of term i in the

document set
• : average document word length in the document set
• k1 and b: constant parameters

BM25i;d =
TFi;d ¢ (k1 + 1)

TFi;d + k1 ¢ ¡1 ¡ b + b ¢ jdj= ¹d
¢ ¢ IDFiBM25i;d =

TFi;d ¢ (k1 + 1)

TFi;d + k1 ¢ ¡1 ¡ b + b ¢ jdj= ¹d
¢ ¢ IDFi

score(q; d) =
X

i2q\d

BM25i;dscore(q; d) =
X

i2q\d

BM25i;d

¹d¹d

Content of This Lecture
• Inverted Index for Search Engine

• Relevance Models

• Query Expansion and Relevance Feedback

Relevance Feedback
• Relevance feedback: user feedback on relevance of

docs in initial set of results
• User issues a (short, simple) query
• The user marks some results as relevant or non-relevant.
• The system computes a better representation of the

information need based on feedback.
• Relevance feedback can go through one or more

iterations.
• Idea: it may be difficult to formulate a good query

when you don’t know the collection well, so
iterate

Ad hoc results for query canine

source: Fernando Diaz

Ad hoc results for query canine

source: Fernando Diaz

Ad hoc results for query canine

source: Fernando Diaz

Ad hoc results for query canine

source: Fernando Diaz

A Real (non-Image) Example
Initial query: [new space satellite applications]
Results for initial query:

User then marks relevant documents with “+”.

fb rank relevance document

+ 1 0.539 NASA Hasn’t Scrapped Imaging Spectrometer

+ 2 0.533 NASA Scratches Environment Gear From Satellite Plan

3 0.528 Science Panel Backs NASA Satellite Plan, But Urges Launches
of Smaller Probes

4 0.526 A NASA Satellite Project Accomplishes Incredible Feat:
Staying within Budget

5 0.525 Scientist Who Exposed Global Warming Proposes Satellites
for Climate Research

6 0.524 Report Provides Support for the Critics Of Using Big Satellites
to Study Climate

7 0.516 Arianespace Receives Satellite Launch Pact From Telesat
Canada

+ 8 0.509 Telecommunications Tale of Two Companies

Query Expansion by Relevance Feedback

• Expanded query
2.074 new 15.106 space
30.816 satellite 5.660 application
5.991 nasa 5.196 eos
4.196 launch 3.972 aster
3.516 instrument 3.446 arianespace
3.004 bundespost 2.806 ss
2.790 rocket 2.053 scientist
2.003 broadcast 1.172 earth
0.836 oil 0.646 measure

Compared to the original query: [new space satellite applications]

Results for Expanded Query
Initial query: [new space satellite applications]
Results for expanded query:

Such “user feedback – query expansion – reranking” process can
iterate multiple times

fb rank relevance document

* 1 0.513 NASA Scratches Environment Gear From Satellite Plan

* 2 0.500 NASA Hasn’t Scrapped Imaging Spectrometer

3 0.493 When the Pentagon Launches a Secret Satellite, Space
Sleuths Do Some Spy Work of Their Own

4 0.493 NASA Uses ‘Warm’ Superconductors For Fast Circuit

* 5 0.492 Telecommunications Tale of Two Companies

6 0.491 Soviets May Adapt Parts of SS-20 Missile for Commercial Use

7 0.490 Gaping Gap: Pentagon Lags in Race To Match the Soviets In
Rocket Launchers

8 0.490 Rescue of Satellite By Space Agency To Cost $90 Million

Key Concept: Centroid
• The centroid is the center of mass of a set of points
• Suppose that we represent documents as points in

a high-dimensional space using terms
• Definition: Centroid

where C is a set of documents.

¹(C) =
1

jCj
X
d2C

d¹(C) =
1

jCj
X
d2C

d

Centroid: Example

Rocchio Algorithm
• The Rocchio algorithm uses the vector space to pick

a relevance feedback query
• Rocchio seeks the query qopt that maximizes the

similarity margin between the two clusters of docs

J. J. Rocchio, Relevance feedback in information retrieval In The SMART Retrieval System:
Experiments in Automatic Document Processing (1971)

qopt = arg max
q

n
cos(q; ¹(Cr)) ¡ cos(q; ¹(Cn))

o
qopt = arg max

q

n
cos(q; ¹(Cr)) ¡ cos(q; ¹(Cn))

o
• Implementation: try to separate docs marked

relevant and non-relevant
qopt = a ¢ q0 + b ¢ 1

jCrj
X
d2Cr

d ¡ c ¢ 1

jCnj
X

d2Cn

dqopt = a ¢ q0 + b ¢ 1

jCrj
X
d2Cr

d ¡ c ¢ 1

jCnj
X

d2Cn

d

Ricchio Example

x non-relevant documents
o relevant documents

Ricchio Example

μR cannot separate relevant/non-relevant documents

Ricchio Example

Ricchio Example

Ricchio Example

qopt = ¹R + ®(¹R ¡ ¹NR)qopt = ¹R + ®(¹R ¡ ¹NR)

Ricchio Example

qopt could separate relevant / nonrelevant perfectly.

The Theoretically Best Query

x

x

x
x

o
o

o

Optimal
query

x non-relevant documents
o relevant documents

o

o

o

x x

xx
x

x

x

x

x

x

x

x
x

x

Sec. 9.1.1

67

Further on Relevance Feedback
• Probabilistic relevance feedback

• There is a probability for each doc to be relevant to a
query P(r=1|q,d)

• Could be used to weight each document and search term
• Robertson and Spärck-Jones (RSJ) Model

• Pseudo relevance feedback
• There is no users’ rating on the relevance of retrieved

documents
• Regarding the top-N retrieved documents as relevant

ones to update the query

Prob. Ranking Principle: https://nlp.stanford.edu/IR-book/html/htmledition/the-probability-ranking-principle-1.html

