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Information Retrieval
• Information retrieval (IR) is the activity of obtaining 

information items relevant to an information need 
from a collection of information items.



Web Search is the Typical Scenario of IR

Information need: query

Information item:
Webpage (or document)



Other IR Scenarios
• Library Book Retrieval System

• Information need: a book title, or an author name etc.
• Information item: the book to seek for

• Recommender Systems
• Information need: a user in a certain context (without 

query)
• Information item: a move (music, product etc.) she 

would likes
• Search Advertising

• Information need: a user with query keywords
• Information item: a text ad she would click



Prof. Stephen Robertson

• Emeritus professor of 
University College London 
and City University London

• The pioneer of information 
retrieval

• The proposer of
• Probabilistic Ranking 

Principle (1977)
• BM25 (1980s)
• Worked in Chengdu 

National Library in 1976!



We Focus on Web Search Engines

Information need: query

Information item:
Webpage (or document)

Two fundamental 
problems for IR
• How to get the 

candidate 
documents?

• How to calculate 
relevance 
between a query 
and a document?
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Overall Indexing Pipeline

Token stream. Friends Romans Countrymen

Modified tokens. friend roman countryman

Inverted index.

Documents to
be indexed.

“Friends, Romans, countrymen, 
lend me your ears.”

Indexer

Linguistic modules

Tokenizer

friend 2 4

roman 1 2

countryman 13 16

12



Tokenization
• Tokenization is the task of chopping a character 

sequence into the smallest units, called tokens
• It seems very easy: - Chop on whilespace and ignore 

punctuation characters
• Input: Friends, Romans, countrymen. So let . . .
• Output: Friends Romans countrymen So let . . .

• But, there are many tricky cases
• Example O’Neill → neill, oneill, or O neill
• How about aren’t , co-education, the While House

• Need to do the exact same tokenization of document 
and query terms 

• Guarantee that a sequence of characters in a text will match 
the same sequence typed in a query

• Tokenization of other languages
• E.g., Chinese (word segmentation)



Normalization with Linguistic Models

• Normalize terms in indexed text and query terms 
into the same form

• Words can appear in different forms
• Need some way to recognize common concept 

• Examples: 
how to match U.S.A and USA → remove punctuaƟon 
walking vs. walks → stemming 
Retrieval vs. retrieval → case folding



Normalization: Case Folding
• Reduce all letters to lower case 

• Retrieval → retrieval 
• ETHICS → ethics 
• MIT → mit

• Possible exceptions: capitalized words in mid-
sentence

• It is often best to lowercase everything since users 
will use lowercase regardless of correct 
capitalization



Normalization: Stemming
• Stemming is a technique to reduce morphological 

variants of search terms
• Stem: portion of a word which is left after the 

removal of its affixes 
• walk ← walked, walker, walking, walks 
• be ← am, are, is
• cut ← cuƫng 
• destroy ← destrucƟon

• Significantly reduce the number of the index terms
• Increase recall while harming precision



Porter Algorithm for Stemming
• One of the most common stemming algorithms in 

English 
• Conventions plus five phases of reductions 
• Phases are applied sequentially
• Each phase consists of a set of commands 

• A few rules in phase 1 (apply sequentially)

https://tartarus.org/martin/PorterStemmer/

Rule Example
SSES → SS caresses → caress
IES → Ponies → poni
SS→SS caress → caress
S→ cats→ cat



Normalization: Stop Words
• Drop some extremely common words from the 

vocabulary because they are of little value in helping 
selecting documents 

• examples: “the”, “a”, “by”, “will” ...
• Take the most frequent terms (by collection frequency) 

to construct the stop word list 
• e.g., remove word that appears in more than 5% of 

documents
• Perhaps remove numbers and dates. However, these 

might be very useful
• Produce a considerable reduction of the index terms. 

Results: smaller index files and faster search
• Most web search engines index stop words



Overall Indexing Pipeline

Token stream. Friends Romans Countrymen
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Indexing the Documents
• Key Problem: given a query, how to obtain the 

candidates from the massive number of documents
• Solution: indexing the documents for IR
• The difficulties in IR 

• Indexing “titles”, “abstract”, etc. only does not support 
content-based retrieval; document contents are, in most 
case, unstructured. 

• Cannot predict the terms that people will use in queries 
- every word in a document is a potential search term

• A solution: index all terms in the documents 
• Full text indexing



Data Access
• Scan the entire document collection 

• Typically used in early retrieval systems 
• Still popular today, e.g., grep command in Linux - “slow”; 

need real-time process
• Practical for “small” collections

• Index (query) terms for direct access 
• An index associates each of the keys (normally terms) 

with one or more documents 
• “Fast”; practical for “large” collection

• Hybrid approaches - Use small index and then scan 
a subset of collection



Inverted Index
• Inverted index is the most common indexing 

technique
• Collection organized by terms (words). One record 

per term, listing locations (doc. IDs) where term 
occurs. May have more information.

• During retrieval, traverse lists for each query term

friend 2 4

roman 1 2

countryman 13 16

12

Term List of Document IDs containing the term

Called posting list



Inverted Index
• Different terms have vastly different sizes of posting 

lists
• E.g. on Google, ‘information’ has 2,990M documents, while 

‘bayesian’ has 17M
• We need variable-size postings lists

• On disk, a continuous run of postings is normal and best
• In memory, can use linked lists or variable length arrays

• Some tradeoffs in size/ease of insertion

friend 2 4

roman 1 2

countryman 13 16

12

Term List of Document IDs containing the term

Called posting list, sorted by IDs (why?)



Steps of Building Inverted Index

• Step 1: extract the sequence of 
(modified term, document ID) pairs.

Term docID
I 1

did 1
enact 1
julius 1

caesar 1
I 1

was 1
killed 1

i' 1
the 1

capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2

be 2
with 2

caesar 2
the 2

noble 2
brutus 2
hath 2
told 2
you 2

caesar 2
was 2

ambitious 2

Document 1

I did enact Julius
Caesar I was 

killed 
i' the Capitol; 

Brutus killed me.

Document 2

So let it be with
Caesar. The noble

Brutus hath told 
you Caesar was 

ambitious.



Steps of Building Inverted Index

• Step 1: extract the sequence of 
(modified term, document ID) pairs.

• Step 2: sort by terms and then docID
• Core indexing step

Term docID
I 1

did 1
enact 1
julius 1

caesar 1
I 1

was 1
killed 1

i' 1
the 1

capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2

be 2
with 2

caesar 2
the 2

noble 2
brutus 2
hath 2
told 2
you 2

caesar 2
was 2

ambitious 2

Document 1

I did enact Julius
Caesar I was 

killed 
i' the Capitol; 

Brutus killed me.

Document 2

So let it be with
Caesar. The noble

Brutus hath told 
you Caesar was 

ambitious.

Term docID
ambitious 2

be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2

did 1
enact 1
hath 1

I 1
I 1
i' 1
it 2

julius 1
killed 1
killed 1

let 2
me 1

noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2



Steps of Building Inverted Index
• Multiple term entries 

in a single document 
are merged.

• Split into Dictionary 
and Postings

• Document frequency 
information is added.

Term docID
ambitious 2

be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2

did 1
enact 1
hath 1

I 1
I 1
i' 1
it 2

julius 1
killed 1
killed 1

let 2
me 1

noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2 Pointers

Lists of 
docIDs



Query Processing: AND

• Consider processing the query:
‘Information’ AND ‘Retrieval’
• Locate ‘Information’ in the dictionary;

• Retrieve its postings.
• Locate ‘Retrieval’ in the dictionary;

• Retrieve its postings.
• “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21
Information

Retrieval



Merging the Posting Lists

• Walk through the two postings 
simultaneously, in time linear in the total 
number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21
Information

Retrieval
2 8

• If list lengths are x and y, merge takes O(x+y) operations.
• Crucial: postings sorted by docID.



Phrase Queries
• Want to be able to answer queries such as 

“Shanghai Jiao Tong University” – as a phrase
• Note that it is different from search Shanghai AND Jiao 

AND Tong AND University (why?)
• Thus the sentence “I went to Xi’an Jiao Tong 

University from Shanghai” is not a match. 
• The concept of phrase queries has proven easily 

understood by users
• Many more queries are implicit phrase queries

• For this purpose, it no longer suffices to store only 
<term: docs> entries



Positional Indexes
• In the postings, store for each term the position(s) 

in which tokens of it appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
…>



Positional Index Example

• For phrase queries, we use a merge algorithm 
recursively at the document level

• But we now need to deal with more than just 
equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?



Processing a Phrase Query
• Extract inverted index entries for each distinct term: to, 

be, or, not.
• Merge their doc:position lists to enumerate all positions 

with “to be or not to be”.
• to: 

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

• be:  

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; …

• Or:
• 3:34,71; 4:31,341,510; 8:31,420,551; …
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Relevance Model

• Estimate the relevance between a query and a document
• Relevance is the “correspondence” between information 

needs (queries) and information items (documents, 
webpages, images etc.)

• But, the exact meaning of relevance depends on applications:
=  usefulness
=  aboutness
=  interestingness
= ?

• Predicting relevance is the central goal of IR

Query Indexed ItemsRelevance
Model

Relevance  Score



Representation of Information Need/Items

• We consider textual queries and documents
• Boolean:

• “(information AND retrieval) OR (machine AND learning)”
• Free text: “movie matrix review”  

• A bag-of-words representation
• the item (query or document) is the “bag”
• the bag contains word tokens
• word order is ignored



Bag-of-Words Representation for Text

• A sequence of words/tokens 
that represents semantic 
meanings of human

Bag-of-Words Format:
{

text: 4;
mining: 2;
also: 1;
referred: 1;
to: 2;
as: 1;
data: 1;
roughly: 1;
equivalent: 1;
analytics: 1;
is: 1;
the: 1;
process: 1;
of: 1;
deriving: 1;
high-quality: 1;
information: 1;
from: 1;

}

Text mining, also referred 
to as text data mining, 
roughly equivalent to text 
analytics, is the process 
of deriving high-quality 
information from text. 

REVIEW



Boolean Retrieval
• The simplest Exact Match model 

• Retrieve documents iff they satisfy a Boolean expression 
• Query specifies precise relevance criteria 
• Documents returned in no particular order 

• Document: A bag of words 
• Query: A Boolean expression 
• Operators: 

• Logical operators:  AND, OR, AND NOT 
• Proximity  operators:  number of intervening words 

between two query terms, etc.
• String matching operators:  Wild-card 



Boolean Retrieval
 Boolean logic:

Term 1

Term 2
Term 3

doc 1

doc 2  

doc 6   doc 9

doc 3

doc 7  

doc 1

doc 2  

doc 5

doc 12  
doc 10

doc 13

doc 4  

doc 15 

doc 16

doc 14  

Query: term 1 AND term 2 AND NOT term 3 
retrieve doc 5



Boolean Retrieval: Summary 
• Advantages

• Works great if you know exactly what you want
• Structured queries
• Simple to program
• Complete expressiveness

• Disadvantages
• Artificial language – unintuitive, misunderstood
• Either too precise or too loose (the size of the output)
• Unordered output: have to examine all of the results



Vector Space Model
• Regarding queries and documents as vectors

• We have a |V|-dimensional vector space, where |V| is 
the vocabulary size

• Terms are axes of the space
• Queries and documents are points or vectors in this 

space
• Very high-dimensional: tens of millions of 

dimensions when you apply this to a web search 
engine

• These are very sparse vectors - most entries are 
zero (as mentioned in inverted index part)



Formalizing Vector Space Proximity

• We need to come up with a distance between two 
points

• ( = distance between the end points of the two vectors)
• Euclidean distance?
• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors 

of different lengths.



Why Distance is a Bad Idea

• The Euclidean distance between q and d2 is large even 
though the distribution of terms in the query q and the 
distribution of terms in the document d2 are very similar.



Use Angle instead of Distance
• Thought experiment: take a document d and 

append it to itself. Call this document d′.
• “Semantically” d and d′ have the same content
• The Euclidean distance between the two 

documents can be quite large
• The angle between the two documents is 0, 

corresponding to maximal similarity
• Key idea: Rank documents according to angle with 

query.



Cosine Similarity
• The following two notions are equivalent.

• Rank documents in increasing order of the angle between query 
and document

• Rank documents in decreasing order of cosine (query, document)

• Cosine is a monotonically decreasing function for the 
interval [0o, 180o]

x (o)

cos(x)



Cosine(query, document)
• qi is the weight of term i in the query
• di is the weight of term i in the document

• cos(q,d) is the cosine similarity of q and d … or,
• equivalently, the cosine of the angle between q and d.

cos(q; d) =
q

kqk ¢ d

kdk =
q ¢ d

kqk ¢ kdk =

PjV j
i qidiqPjV j

i q2
i

qPjV j
i d2

i

cos(q; d) =
q

kqk ¢ d

kdk =
q ¢ d

kqk ¢ kdk =

PjV j
i qidiqPjV j

i q2
i

qPjV j
i d2

i

Unit Vectors



Cosine Similarity Illustrated



TF·IDF Term Weighting
• qi and di are can be beyond just binary values nor 

term frequency values
• TF·IDF term weighting

• TFi,d : term frequency of term i in the document
• IDFi : inverse document frequency of term i in the 

document set
IDFi = log10

N

ni
IDFi = log10

N

ni
TFIDFi;d = TFi;d log10

N

ni
TFIDFi;d = TFi;d log10

N

ni

• TF·IDF term weighting has many variants
• TF: 1+log10(TF), bool etc.
• IDF: log10[(N-ni+0.5)/(ni+0.5)]

score(q; d) =
X

i2q\d

TFIDFi;dscore(q; d) =
X

i2q\d

TFIDFi;d



Okapi BM25 Term Weighting
• Consider document length in words |d|
• BM (Best Match) 25 Term weighting

• TFi,d : term frequency of term i in the document
• IDFi : inverse document frequency of term i in the 

document set
• : average document word length in the document set
• k1 and b: constant parameters

BM25i;d =
TFi;d ¢ (k1 + 1)

TFi;d + k1 ¢ ¡1 ¡ b + b ¢ jdj= ¹d
¢ ¢ IDFiBM25i;d =

TFi;d ¢ (k1 + 1)

TFi;d + k1 ¢ ¡1 ¡ b + b ¢ jdj= ¹d
¢ ¢ IDFi

score(q; d) =
X

i2q\d

BM25i;dscore(q; d) =
X

i2q\d

BM25i;d

¹d¹d
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Relevance Feedback
• Relevance feedback: user feedback on relevance of 

docs in initial set of results
• User issues a (short, simple) query
• The user marks some results as relevant or non-relevant.
• The system computes a better representation of the 

information need based on feedback.
• Relevance feedback can go through one or more 

iterations.
• Idea: it may be difficult to formulate a good query 

when you don’t know the collection well, so 
iterate



Ad hoc results for query canine

source: Fernando Diaz
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Ad hoc results for query canine

source: Fernando Diaz



A Real (non-Image) Example
Initial query: [new space satellite applications] 
Results for initial query:

User then marks relevant documents with “+”.

fb rank relevance document

+ 1 0.539 NASA Hasn’t Scrapped Imaging Spectrometer

+ 2 0.533 NASA Scratches Environment Gear From Satellite Plan

3 0.528 Science Panel Backs NASA Satellite Plan, But Urges Launches 
of Smaller Probes

4 0.526 A NASA Satellite Project Accomplishes Incredible Feat: 
Staying within Budget

5 0.525 Scientist Who Exposed Global Warming Proposes Satellites 
for Climate Research

6 0.524 Report Provides Support for the Critics Of Using Big Satellites 
to Study Climate

7 0.516 Arianespace Receives Satellite Launch Pact From Telesat
Canada

+ 8 0.509 Telecommunications Tale of Two Companies



Query Expansion by Relevance Feedback

• Expanded query
2.074 new 15.106 space
30.816 satellite 5.660 application
5.991 nasa 5.196 eos
4.196 launch 3.972 aster
3.516 instrument 3.446 arianespace
3.004 bundespost 2.806 ss
2.790 rocket 2.053 scientist
2.003 broadcast 1.172 earth
0.836 oil 0.646 measure

Compared to the original query: [new space satellite applications]



Results for Expanded Query
Initial query: [new space satellite applications] 
Results for expanded query:

Such “user feedback – query expansion – reranking” process can 
iterate multiple times

fb rank relevance document

* 1 0.513 NASA Scratches Environment Gear From Satellite Plan

* 2 0.500 NASA Hasn’t Scrapped Imaging Spectrometer

3 0.493 When the Pentagon Launches a Secret Satellite, Space 
Sleuths Do Some Spy Work of Their Own

4 0.493 NASA Uses ‘Warm’ Superconductors For Fast Circuit

* 5 0.492 Telecommunications Tale of Two Companies

6 0.491 Soviets May Adapt Parts of SS-20 Missile for Commercial Use

7 0.490 Gaping Gap: Pentagon Lags in Race To Match the Soviets In 
Rocket Launchers

8 0.490 Rescue of Satellite By Space Agency To Cost $90 Million



Key Concept: Centroid
• The centroid is the center of mass of a set of points
• Suppose that we represent documents as points in 

a high-dimensional space using terms
• Definition: Centroid

where C is a set of documents.

¹(C) =
1

jCj
X
d2C

d¹(C) =
1

jCj
X
d2C

d



Centroid: Example



Rocchio Algorithm
• The Rocchio algorithm uses the vector space to pick 

a relevance feedback query
• Rocchio seeks the query qopt that maximizes the

similarity margin between the two clusters of docs

J. J. Rocchio, Relevance feedback in information retrieval In The SMART Retrieval System: 
Experiments in Automatic Document Processing (1971)

qopt = arg max
q

n
cos(q; ¹(Cr)) ¡ cos(q; ¹(Cn))

o
qopt = arg max

q

n
cos(q; ¹(Cr)) ¡ cos(q; ¹(Cn))

o
• Implementation: try to separate docs marked 

relevant and non-relevant
qopt = a ¢ q0 + b ¢ 1

jCrj
X
d2Cr

d ¡ c ¢ 1

jCnj
X

d2Cn

dqopt = a ¢ q0 + b ¢ 1

jCrj
X
d2Cr

d ¡ c ¢ 1

jCnj
X

d2Cn

d



Ricchio Example

x  non-relevant documents
o  relevant documents



Ricchio Example

μR cannot separate relevant/non-relevant documents



Ricchio Example



Ricchio Example



Ricchio Example

qopt = ¹R + ®(¹R ¡ ¹NR)qopt = ¹R + ®(¹R ¡ ¹NR)



Ricchio Example

qopt could separate relevant / nonrelevant perfectly.



The Theoretically Best Query 

x

x

x
x

o
o

o

Optimal 
query

x  non-relevant documents
o  relevant documents

o

o

o

x x

xx
x

x

x

x

x

x

x

x
x

x

Sec. 9.1.1

67



Further on Relevance Feedback
• Probabilistic relevance feedback

• There is a probability for each doc to be relevant to a 
query P(r=1|q,d)

• Could be used to weight each document and search term
• Robertson and Spärck-Jones (RSJ) Model

• Pseudo relevance feedback
• There is no users’ rating on the relevance of retrieved 

documents
• Regarding the top-N retrieved documents as relevant 

ones to update the query

Prob. Ranking Principle: https://nlp.stanford.edu/IR-book/html/htmledition/the-probability-ranking-principle-1.html


