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Content of Supervised Learning
• Introduction to Machine Learning

• Linear Models

• Support Vector Machines

• Neural Networks

• Tree Models

• Ensemble Methods



Content of This Lecture

• Tree Models

• Ensemble Methods



ML Task: Function Approximation
• Problem setting

• Instance feature space
• Instance label space
• Unknown underlying function (target)
• Set of function hypothesis

• Input: training data generated from the unknown

• Output: a hypothesis           that best approximates
• Optimize in functional space, not just parameter 

space
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Optimize in Functional Space
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Continuous data example
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Optimize in Functional Space
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Discrete/categorical data example

Outlook
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Decision Tree Learning
• Problem setting

• Instance feature space
• Instance label space
• Unknown underlying function (target)
• Set of function hypothesis

• Input: training data generated from the unknown

• Output: a hypothesis           that best approximates
• Here each hypothesis     is a decision tree

XX
YY

f : X 7! Yf : X 7! Y
H = fhjh : X 7! YgH = fhjh : X 7! Yg

f(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))gf(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))g
h 2 Hh 2 H ff
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Decision Tree – Decision Boundary

• Decision trees divide the feature space into axis-
parallel (hyper-)rectangles

• Each rectangular region is labeled with one label
• or a probabilistic distribution over labels

Slide credit: Eric Eaton



History of Decision-Tree Research
• Hunt and colleagues used exhaustive search decision-tree 

methods (CLS) to model human concept learning in the 
1960’s.

• In the late 70’s, Quinlan developed ID3 with the information 
gain heuristic to learn expert systems from examples.

• Simultaneously, Breiman and Friedman and colleagues 
developed CART (Classification and Regression Trees), 
similar to ID3.

• In the 1980’s a variety of improvements were introduced to 
handle noise, continuous features, missing features, and 
improved splitting criteria. Various expert-system 
development tools results.

• Quinlan’s updated decision-tree package (C4.5) released in 
1993.

• Sklearn (python)Weka (Java) now include ID3 and C4.5

Slide credit: Raymond J. Mooney



Decision Trees
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Key questions for decision trees
• How to select node splitting conditions?
• How to make prediction?
• How to decide the tree structure?



Node Splitting
• Which node splitting condition to choose?

• Choose the features with higher classification 
capacity

• Quantitatively, with higher information gain

Outlook
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Fundamentals of Information Theory

• Entropy (more specifically, Shannon entropy) is the 
expected value (average) of the information contained in 
each message.

• Suppose X is a random variable with n discrete values

• then its entropy  H(X) is

H(X) = ¡
nX

i=1

pi log piH(X) = ¡
nX

i=1

pi log pi

P (X = xi) = piP (X = xi) = pi

• It is easy to verify

H(X) = ¡
nX

i=1

pi log pi · ¡
nX

i=1

1

n
log

1

n
= log nH(X) = ¡

nX
i=1

pi log pi · ¡
nX

i=1

1

n
log

1

n
= log n



Illustration of Entropy

• Entropy of binary distribution
H(X) = ¡p1 log p1 ¡ (1¡ p1) log(1¡ p1)H(X) = ¡p1 log p1 ¡ (1¡ p1) log(1¡ p1)



Cross Entropy
• Cross entropy is used to measure the difference 

between two random variable distributions

H(X; Y ) = ¡
nX

i=1

P (X = i) log P (Y = i)H(X; Y ) = ¡
nX

i=1

P (X = i) log P (Y = i)

• Continuous formulation

H(p; q) = ¡
Z

p(x) log q(x)dxH(p; q) = ¡
Z

p(x) log q(x)dx

• Compared to KL divergence

DKL(pkq) =

Z
p(x) log

p(x)

q(x)
dx = H(p; q)¡H(p)DKL(pkq) =

Z
p(x) log

p(x)

q(x)
dx = H(p; q)¡H(p)



Cross Entropy in Logistic Regression

• Logistic regression is a binary classification model

pμ(y = 1jx) = ¾(μ>x) =
1

1 + e¡μ>x
pμ(y = 1jx) = ¾(μ>x) =

1

1 + e¡μ>x

pμ(y = 0jx) =
e¡μ>x

1 + e¡μ>x
pμ(y = 0jx) =

e¡μ>x

1 + e¡μ>x

L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1 ¡ y) log(1¡ ¾(μ>x))L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1 ¡ y) log(1¡ ¾(μ>x))

@¾(z)

@z
= ¾(z)(1¡ ¾(z))

@¾(z)

@z
= ¾(z)(1¡ ¾(z))

@L(y; x; pμ)

@μ
= ¡y

1

¾(μ>x)
¾(z)(1¡ ¾(z))x¡ (1¡ y)

¡1

1¡ ¾(μ>x)
¾(z)(1¡ ¾(z))x

= (¾(μ>x)¡ y)x

μ Ã μ + (y ¡ ¾(μ>x))x

@L(y; x; pμ)

@μ
= ¡y

1

¾(μ>x)
¾(z)(1¡ ¾(z))x¡ (1¡ y)

¡1

1¡ ¾(μ>x)
¾(z)(1¡ ¾(z))x

= (¾(μ>x)¡ y)x

μ Ã μ + (y ¡ ¾(μ>x))x

• Cross entropy loss function

• Gradient

¾(x)¾(x)

xx

Review



Conditional Entropy
• Entropy H(X) = ¡

nX
i=1

P (X = i) log P (X = i)H(X) = ¡
nX

i=1

P (X = i) log P (X = i)

• Specific conditional entropy of X given Y = v

H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)

• Specific conditional entropy of X given Y

H(XjY ) =
X

v2values(Y )

P (Y = v)H(XjY = v)H(XjY ) =
X

v2values(Y )

P (Y = v)H(XjY = v)

• Information Gain or Mutual Information of X given Y

I(X;Y ) =H(X)¡H(XjY ) = H(Y )¡H(Y jX)

=H(X) + H(Y )¡H(X;Y )

I(X;Y ) =H(X)¡H(XjY ) = H(Y )¡H(Y jX)

=H(X) + H(Y )¡H(X;Y )



Information Gain
• Information Gain or Mutual Information of X given Y

I(X;Y ) = H(X)¡H(XjY )

=¡
X

v

P (X = v) log P (X = v) +
X

u

P (Y = u)
X

v

P (X = vjY = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u)[log P (X = v; Y = u)¡ log P (Y = u)]

=¡
X

v

P (X = v) log P (X = v)¡
X

v

P (Y = v) log P (Y = v) +
X
u;v

P (X = v; Y = u) log P (X = v; Y = u)

=H(X) + H(Y )¡H(X;Y )

I(X;Y ) = H(X)¡H(XjY )

=¡
X

v

P (X = v) log P (X = v) +
X

u

P (Y = u)
X

v

P (X = vjY = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u)[log P (X = v; Y = u)¡ log P (Y = u)]

=¡
X

v

P (X = v) log P (X = v)¡
X

v

P (Y = v) log P (Y = v) +
X
u;v

P (X = v; Y = u) log P (X = v; Y = u)

=H(X) + H(Y )¡H(X;Y )

Entropy of (X,Y) instead of cross entropy



Node Splitting
• Information gain

Outlook
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Temperature

Hot CoolMild

H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)
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4
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4
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5
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1
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5
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4
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5
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P (Y = v)H(XjY = v)H(XjY ) =
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£ 0:9183 = 0:9111

I(X;Y ) = H(X)¡H(XjY ) = 1¡ 0:9111 = 0:0889



Information Gain Ratio
• The ratio between information gain and the entropy

IR(X;Y ) =
I(X;Y )

HY (X)
=

H(X)¡H(XjY )

HY (X)
IR(X;Y ) =

I(X;Y )

HY (X)
=

H(X)¡H(XjY )

HY (X)

HY (X) = ¡
X

v2values(Y )

jXy=vj
jXj log

jXy=vj
jXjHY (X) = ¡

X
v2values(Y )

jXy=vj
jXj log

jXy=vj
jXj

• where the entropy (of Y) is

• where             is the number of observations with the 
feature y=v

jXy=vjjXy=vj



Node Splitting
• Information gain ratio

Outlook
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I(X;Y ) = H(X)¡H(XjY ) = 1¡ 0:6046 = 0:3954
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Decision Tree Building: ID3 Algorithm

• Algorithm framework
• Start from the root node with all data

• For each node, calculate the information gain of all 
possible features

• Choose the feature with the highest information gain
• Split the data of the node according to the feature

• Do the above recursively for each leaf node, until 
• There is no information gain for the leaf node
• Or there is no feature to select



Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

• Each path only involves a feature at most once



Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Wind

Strong Weak

• How about this tree, yielding perfect partition?



Overfitting
• Tree model can approximate any finite data by just 

growing a leaf node for each instance

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Wind

Strong Weak



Decision Tree Training Objective
• Cost function of a tree T over training data

C(T ) =

jT jX
t=1

NtHt(T )C(T ) =

jT jX
t=1

NtHt(T )

where for the leaf node t
• Ht(T) is the empirical entropy
• Nt is the instance number, Ntk is the instance number of class k

Ht(T ) = ¡
X

k

Ntk

Nt
log

Ntk

Nt
Ht(T ) = ¡

X
k

Ntk

Nt
log

Ntk

Nt

• Training objective: find a tree to minimize the cost

min
T

C(T ) =

jT jX
t=1

NtHt(T )min
T

C(T ) =

jT jX
t=1

NtHt(T )



Decision Tree Regularization
• Cost function over training data

C(T ) =

jT jX
t=1

NtHt(T ) + ¸jT jC(T ) =

jT jX
t=1

NtHt(T ) + ¸jT j

where 
• |T| is the number of leaf nodes of the tree T
• λ is the hyperparameter of regularization



Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3
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• Calculate the cost function difference. C(T ) =

jT jX
t=1

NtHt(T ) + ¸jT jC(T ) =

jT jX
t=1

NtHt(T ) + ¸jT j

Whether 
to split 
this node? 



Summary of ID3
• A classic and straightforward algorithm of training 

decision trees
• Work on discrete/categorical data
• One branch for each value/category of the feature

• Algorithm C4.5 is similar and more advanced to ID3
• Splitting the node according to information gain ratio

• Splitting branch number depends on the number of 
different categorical values of the feature

• Might lead to very broad tree



CART Algorithm
• Classification and Regression Tree (CART)

• Proposed by Leo Breiman et al. in 1984
• Binary splitting (yes or no for the splitting condition)
• Can work on continuous/numeric features
• Can repeatedly use the same feature (with different 

splitting)

Condition 1

Yes No

Condition 2

Yes No

Prediction 1 Prediction 2

Prediction 3



CART Algorithm
• Classification Tree

• Output the predicted 
class

Age > 20

Yes No

Gender=Male

Yes No

4.8 4.1

2.8

• Regression Tree
• Output the predicted 

value

Age > 20

Yes No

Gender=Male

Yes No

like dislike

dislike

For example: predict the user’s 
rating to a movie

For example: predict whether the 
user like a move



Regression Tree
• Let the training dataset with continuous targets y

D = f(x1; y1); (x2; y2); : : : ; (xN ; yN )gD = f(x1; y1); (x2; y2); : : : ; (xN ; yN )g

• Suppose a regression tree has divided the space into M
regions R1, R2, …, RM, with cm as the prediction for region Rm

f(x) =
MX

m=1

cmI(x 2 Rm)f(x) =
MX

m=1

cmI(x 2 Rm)

• Loss function for (xi, yi)
1

2
(yi ¡ f(xi))

21

2
(yi ¡ f(xi))

2

• It is easy to see the optimal prediction for region m is

ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)



Regression Tree
• How to find the optimal splitting regions?
• How to find the optimal splitting conditions?

• Defined by a threshold value s on variable j
• Lead to two regions

R1(j; s) = fxjx(j) · sgR1(j; s) = fxjx(j) · sg R2(j; s) = fxjx(j) > sgR2(j; s) = fxjx(j) > sg

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i• Training based on current splitting

ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)



Regression Tree Algorithm
• INPUT: training data D
• OUTPUT: regression tree f(x)
• Repeat until stop condition satisfied:

• Find the optimal splitting (j,s)
min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Calculate the prediction value of the new region R1, R2
ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)

• Return the regression tree

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)



Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

Splitting threshold s
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

loss =

6X
i=1

(yi ¡ c1)
2 +

12X
i=7

(yi ¡ c2)
2

=

6X
i=1

y2
i ¡

1

6

³ 6X
i=1

yi

´2
+

12X
i=7

y2
i ¡

1

6

³ 12X
i=7

yi

´2
= ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C

loss =

6X
i=1

(yi ¡ c1)
2 +

12X
i=7

(yi ¡ c2)
2

=

6X
i=1

y2
i ¡

1

6

³ 6X
i=1

yi

´2
+

12X
i=7

y2
i ¡

1

6

³ 12X
i=7

yi

´2
= ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C

Online updated



Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Splitting threshold s

loss6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ Closs6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C



Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

Splitting threshold s
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

loss6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ Closs6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C • Maintain and online update in O(1) Time

loss7;8 = ¡1

7

³ 7X
i=1

yi

´2 ¡ 1

5

³ 12X
i=8

yi

´2
+ Closs7;8 = ¡1

7

³ 7X
i=1

yi

´2 ¡ 1

5

³ 12X
i=8

yi

´2
+ C

Sum(R1) =
kX

i=1

yi Sum(R2) =
nX

i=k+1

yiSum(R1) =
kX

i=1

yi Sum(R2) =
nX

i=k+1

yi

• O(n) in total for checking one feature



Classification Tree
• The training dataset with categorical targets y

D = f(x1; y1); (x2; y2); : : : ; (xN ; yN )gD = f(x1; y1); (x2; y2); : : : ; (xN ; yN )g

• Suppose a regression tree has divided the space into M
regions R1, R2, …, RM, with cm as the prediction for region Rm

f(x) =
MX

m=1

cmI(x 2 Rm)f(x) =
MX

m=1

cmI(x 2 Rm)

• cm is solved by counting categories

P (ykjxi 2 Rm) =
Ck

m

Cm
P (ykjxi 2 Rm) =

Ck
m

Cm

• Here the leaf node prediction cm is the category distribution
ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K

# instances in leaf m with cat k

# instances in leaf m



Classification Tree
• How to find the optimal splitting regions?
• How to find the optimal splitting conditions?

• For continuous feature j, defined by a threshold value s
• Yield two regions

R1(j; s) = fxjx(j) · sgR1(j; s) = fxjx(j) · sg R2(j; s) = fxjx(j) > sgR2(j; s) = fxjx(j) > sg

• For categorical feature j, select a category a
• Yield two regions
R1(j; s) = fxjx(j) = agR1(j; s) = fxjx(j) = ag R2(j; s) = fxjx(j) 6= agR2(j; s) = fxjx(j) 6= ag

• How to select? Argmin Gini impurity.



Gini Impurity
• In classification problem

• suppose there are K classes
• let pk be the probability of an instance with the class k
• the Gini impurity index is 

Gini(p) =

KX
k=1

pk(1¡ pk) = 1¡
KX

k=1

p2
kGini(p) =

KX
k=1

pk(1¡ pk) = 1¡
KX

k=1

p2
k

• Given the training dataset D, the Gini impurity is

Gini(D) = 1¡
KX

k=1

³ jDkj
jDj

´2
Gini(D) = 1¡

KX
k=1

³ jDkj
jDj

´2 # instances in D with cat k
# instances in D



Gini Impurity
• For binary classification problem

• let p be the probability of an instance with the class 1
• Gini impurity is
• Entropy is

Gini(p) = 2p(1¡ p)Gini(p) = 2p(1¡ p)

Gini impurity and 
entropy are quite 
similar in 
representing 
classification 
error rate.

H(p) = ¡p log p¡ (1¡ p) log(1¡ p)H(p) = ¡p log p¡ (1¡ p) log(1¡ p)



Gini Impurity
• With a categorical feature j and one of its 

categories a
• The two split regions R1, R2

R1(j; a) = fxjx(j) = agR1(j; a) = fxjx(j) = ag R2(j; a) = fxjx(j) 6= agR2(j; a) = fxjx(j) 6= ag

• The Gini impurity of feature j with the selected category 
a

Gini(Dj ; j = a) =
jD1

j j
jDj jGini(D1

j ) +
jD2

j j
jDj jGini(D2

j )Gini(Dj ; j = a) =
jD1

j j
jDj jGini(D1

j ) +
jD2

j j
jDj jGini(D2

j )

D1
j = f(x; y)jx(j) = agD1
j = f(x; y)jx(j) = ag D2

j = f(x; y)jx(j) 6= agD2
j = f(x; y)jx(j) 6= ag



Classification Tree Algorithm
• INPUT: training data D
• OUTPUT: classification tree f(x)
• Repeat until stop condition satisfied:

• Find the optimal splitting (j,a)
min
j;a

Gini(Dj ; j = a)min
j;a

Gini(Dj ; j = a)

• Calculate the prediction distribution of the new region R1, R2

ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K

• Return the classification tree

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)

1. Node instance 
number is small

2. Gini impurity is small
3. No more feature



Classification Tree Output
• Class label output

• Output the class with the highest conditional probability

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)

• Probabilistic distribution output

f(x) = arg max
yk

MX
m=1

I(x 2 Rm)P (ykjxi 2 Rm)f(x) = arg max
yk

MX
m=1

I(x 2 Rm)P (ykjxi 2 Rm)

ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K



Converting a Tree to Rules

Age > 20

Yes No

Gender=Male

Yes No

4.8 4.1

2.8

For example: predict the 
user’s rating to a movie

IF Age > 20:
IF Gender = Male:

return 4.8
ELSE:

return 4.1
ELSE:

return 2.8

Decision tree model is easy to be 
visualized, explained and debugged.



Learning Model Comparison

[Table 10.3 from Hastie et al. Elements of Statistical Learning, 2nd Edition]



Content of This Lecture

• Tree Models

• Ensemble Methods



Ensemble Learning
Bagging
Random Forest



Ensemble Learning
• Consider a set of predictors f1, …, fL

• Different predictors have different performance across 
data

• Idea: construct a predictor F(x) that combines the 
individual decisions of f1, …, fL

• E.g., could have the member predictor vote
• E.g., could use different members for different region of 

the data space
• Works well if the member each has low error rates

• Successful ensembles require diversity
• Predictors should make different mistakes
• Encourage to involve different types of predictors



Ensemble Learning

• Although complex, ensemble learning probably 
offers the most sophisticated output and the best 
empirical performance!

x

f1(x)

f2(x)

fL(x)

…

Ensemble F(x)
Data

Single model

Ensemble model
Output



Practical Application in Competitions

• Netflix Prize Competition
• Task: predict the user’s rating on a movie, given some 

users’ ratings on some movies
• Called ‘collaborative filtering’ (we will have a lecture 

about it later)

[Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. 2009.]

• Winner solution
• BellKor’s Pragmatic Chaos – an 

ensemble of more than 800 
predictors

Yehuda Koren



Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some 
users’ ratings on some music

• With music information like album, artist, genre IDs

• Winner solution
• From A graduate course of National Taiwan University -

an ensemble of 221 predictors



Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some 
users’ ratings on some music

• With music information like album, artist, genre IDs

• 3rd place solution
• SJTU-HKUST joint team, an ensemble of 16 predictors



Combining Predictor: Averaging

• Averaging for regression; voting for classification

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

1/L

1/L

1/L

F (x) =
1

L

LX
i=1

fi(x)F (x) =
1

L

LX
i=1

fi(x)



Combining Predictor: Weighted Avg

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

w1

w2

wL

F (x) =
LX

i=1

wifi(x)F (x) =
LX

i=1

wifi(x)



Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi = μ>i xgi = μ>i xE.g.,
Design different learnable gating functions



Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi =
exp(w>

i x)PL
j=1 exp(w>

i x)
gi =

exp(w>
i x)PL

j=1 exp(w>
i x)

E.g.,

Design different learnable gating functions



Combining Predictor: Stacking

• This is the general formulation of an ensemble

x

f1(x)

f2(x)

fL(x)

…

g(f1, f2,… fL) F(x)
Data

Single model

Ensemble model
Output

F (x) = g(f1(x); f2(x); : : : ; fL(x))F (x) = g(f1(x); f2(x); : : : ; fL(x))



Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model

x

f1(x)

f2(x)

fL(x)

…

Layer 
1 F(x)

Data

Single model

Ensemble model

Output
Layer 

2

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)



Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model
• Incorporate x into the first hidden layer (as gating)

x

f1(x)

f2(x)

fL(x)

…

Layer 
1 F(x)

Data

Single model

Ensemble model

Output
Layer 

2

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)



f1(x) < a1

f2(x) < a2 x2 < a3

Yes No

Yes No Yes No

Intermediate
Node

Leaf
Node

Root Node

y = -1 y = 1 y = 1 y = -1

Combining Predictor: Tree Models

• Use decision trees as the ensemble model
• Splitting according to the value of f ’s and x

x

f1(x)

f2(x)

fL(x)

…

F(x)

Data

Single model
Ensemble model

Output



Diversity for Ensemble Input
• Successful ensembles require diversity

• Predictors may make different mistakes
• Encourage to 

• involve different types of predictors
• vary the training sets
• vary the feature sets

[Based on slide by Leon Bottou]

Cause of the Mistake Diversification Strategy
Pattern was difficult Try different models
Overfitting Vary the training sets
Some features are noisy Vary the set of input features



Bagging
Random Forest

Ensemble Learning



Manipulating the Training Data
• Bootstrap replication

• Given n training samples Z, construct a new training set 
Z* by sampling n instances with replacement

• Excludes about 37% of the training instances

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• Bagging (Bootstrap Aggregating)
• Create bootstrap replicates of training set
• Train a predictor for each replicate
• Validate the predictor using out-of-bootstrap data
• Average output of all predictors



Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, variance

V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2



Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, model error

Êrrboot =
1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))



Bootstrap for Model Evaluation
• If we directly evaluate the model using the whole training 

data
Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• As the probability of a data instance in the bootstrap 
samples is

• If validate on training data, it is much likely to overfit
• For example in a binary classification problem where y is indeed 

independent with x
• Correct error rate: 0.5
• Above bootstrap error rate: 0.632*0 + (1-0.632)*0.5=0.184



Leave-One-Out Bootstrap
• Build a bootstrap replicate with one instance i out, 

then evaluate the model using instance i

Êrr
(1)

=
1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))Êrr

(1)
=

1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))

• C-i is the set of indices of the bootstrap samples b that 
do not contain the instance i

• For some instance i, the set C-i could be null set, just 
ignore such cases

• We shall come back to the model evaluation and 
select in later lectures.



Bootstrap for Model Parameters
• Sec 8.4 of Hastie et al. The elements of statistical 

learning.

• Bootstrap mean is approximately a posterior 
average.



Bagging: Bootstrap Aggregating
• Bootstrap replication

• Given n training samples Z = {(x1,y1), (x2,y2),…,(xn,yn)}, 
construct a new training set Z* by sampling n instances 
with replacement

• Construct B bootstrap samples Z*b , b = 1,2,…,B
• Train a set of predictors

• Bagging average the predictions

f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)

f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)



B-spline smooth of data B-spline smooth plus and minus 1.96×
standard error bands

Ten bootstrap replicates of 
the B-spline smooth.

B-spline smooth with 95% standard error bands 
computed from the bootstrap distributionFig 8.2 of Hastie et al. The 

elements of statistical learning.



Fig 8.9 of Hastie et al. The 
elements of statistical learning.

Bagging trees on simulated dataset. The top left panel shows the original tree. 5 trees 
grown on bootstrap samples are shown. For each tree, the top split is annotated.



Fig 8.10 of Hastie et al. The 
elements of statistical learning.

For classification bagging, consensus vote vs. class probability averaging



Why Bagging Works
• Bias-Variance Decomposition

• Assume                             where
• Then the expected prediction error at an input point x0

Y = f(X) + ²Y = f(X) + ² E[²] = 0 Var[²] = ¾2
²E[²] = 0 Var[²] = ¾2
²

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

• Bagging works by reducing the variance with the 
same bias as the original model (trained over the 
whole data)

• Works especially well based on low-bias and high-
variance prediction models



Random Forest

Ensemble Learning
Bagging



The Problem of Bagging

• If the variables (with variance σ2) are i.d. (identically 
distributed but not necessarily independent) with positive 
correlation ρ, the variance of the average is

• Bagging works by reducing the variance with the 
same bias as the original model (trained over the 
whole data)

• Works especially based on low-bias and high-variance 
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2

• Which reduces to ρσ2, even if the bootstrap sample size 
goes to infinity



The Problem of Bagging

• Problem: the models trained from bootstrap 
samples are probably positively correlated

• Bagging works by reducing the variance with the 
same bias as the original model (trained over the 
whole data)

• Works especially based on low-bias and high-variance 
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2



Random Forest
• Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 532.

• Random forest is a substantial modification of bagging that 
builds a large collection of de-correlated trees, and then 
average them.

Image credit: https://i.ytimg.com/vi/-bYrLRMT3vY/maxresdefault.jpg



Tree De-correlation in Random Forest

• Before each tree node split, select m ≤ p variables 
at random as candidates of splitting

• Typically values                     or even low as 1 m =
p

pm =
p

p

p variables in total



Random Forest Algorithm
• For b = 1 to B:

a) Draw a bootstrap sample Z* of size n from training data
b) Grow a random-forest tree Tb to the bootstrap data, by 

recursively repeating the following steps for each leaf node of the 
tree, until the minimum node size is reached
I. Select m variables at random from the p variables
II. Pick the best variable & split-point among the m
III. Split the node into two child nodes

• Output the ensemble of trees {Tb}b=1…B

• To make a prediction at a new point x

Algorithm 15.1 of Hastie et al. The 
elements of statistical learning.

f̂B
rf (x) =

1

B

BX
b=1

Tb(x)f̂B
rf (x) =

1

B

BX
b=1

Tb(x)

Classification: majority voting

Regression: prediction average

ĈB
rf (x) = majority vote fĈb(x)gB

1ĈB
rf (x) = majority vote fĈb(x)gB

1



Performance Comparison

Fig. 15.1 of Hastie et al. The 
elements of statistical learning.

1536 test data instances



Performance Comparison

• RF-m: m means the randomly selected variables for each splitting
Fig. 15.2 of Hastie et al. The 
elements of statistical learning.

Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
• Nest spheres data



CS420 Machine Learning

http://wnzhang.net/teaching/cs420/index.html

Course webpage:

Weinan Zhang

For more machine learning details, you can check out my 
machine learning course at Zhiyuan College


