
Supervised Learning
(Part III)
Weinan Zhang

Shanghai Jiao Tong University
http://wnzhang.net

2019 EE448, Big Data Mining, Lecture 6

http://wnzhang.net/teaching/ee448/index.html

Content of Supervised Learning
• Introduction to Machine Learning

• Linear Models

• Support Vector Machines

• Neural Networks

• Tree Models

• Ensemble Methods

Content of This Lecture

• Tree Models

• Ensemble Methods

ML Task: Function Approximation
• Problem setting

• Instance feature space
• Instance label space
• Unknown underlying function (target)
• Set of function hypothesis

• Input: training data generated from the unknown

• Output: a hypothesis that best approximates
• Optimize in functional space, not just parameter

space

XX
YY

f : X 7! Yf : X 7! Y
H = fhjh : X 7! YgH = fhjh : X 7! Yg

f(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))gf(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))g
h 2 Hh 2 H ff

Optimize in Functional Space
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Continuous data example

x1 < a1

x2 < a2 x2 < a3

Yes No

Yes No Yes No

Intermediate
Node

Leaf
Node

Root Node

y = -1 y = 1 y = 1 y = -1x1x1

x2x2

a1a1

a2a2

Class 1

Class 2

a3a3

Class 1

Class 2

Optimize in Functional Space
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Discrete/categorical data example

Outlook

Humidity Wind

Sunny Rain

High Normal Strong Weak

Intermediate
Node

Leaf
Node

Root Node

y = -1 y = 1 y = -1 y = 1

y = 1

Overcast

Leaf
Node

Decision Tree Learning
• Problem setting

• Instance feature space
• Instance label space
• Unknown underlying function (target)
• Set of function hypothesis

• Input: training data generated from the unknown

• Output: a hypothesis that best approximates
• Here each hypothesis is a decision tree

XX
YY

f : X 7! Yf : X 7! Y
H = fhjh : X 7! YgH = fhjh : X 7! Yg

f(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))gf(x(i); y(i))g = f(x(1); y(1)); : : : ; (x(n); y(n))g
h 2 Hh 2 H ff

hh

Decision Tree – Decision Boundary

• Decision trees divide the feature space into axis-
parallel (hyper-)rectangles

• Each rectangular region is labeled with one label
• or a probabilistic distribution over labels

Slide credit: Eric Eaton

History of Decision-Tree Research
• Hunt and colleagues used exhaustive search decision-tree

methods (CLS) to model human concept learning in the
1960’s.

• In the late 70’s, Quinlan developed ID3 with the information
gain heuristic to learn expert systems from examples.

• Simultaneously, Breiman and Friedman and colleagues
developed CART (Classification and Regression Trees),
similar to ID3.

• In the 1980’s a variety of improvements were introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

• Quinlan’s updated decision-tree package (C4.5) released in
1993.

• Sklearn (python)Weka (Java) now include ID3 and C4.5

Slide credit: Raymond J. Mooney

Decision Trees
• Tree models

• Intermediate node for splitting data
• Leaf node for label prediction

• Key questions for decision trees
• How to select node splitting conditions?
• How to make prediction?
• How to decide the tree structure?

Node Splitting
• Which node splitting condition to choose?

• Choose the features with higher classification
capacity

• Quantitatively, with higher information gain

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Fundamentals of Information Theory

• Entropy (more specifically, Shannon entropy) is the
expected value (average) of the information contained in
each message.

• Suppose X is a random variable with n discrete values

• then its entropy H(X) is

H(X) = ¡
nX

i=1

pi log piH(X) = ¡
nX

i=1

pi log pi

P (X = xi) = piP (X = xi) = pi

• It is easy to verify

H(X) = ¡
nX

i=1

pi log pi · ¡
nX

i=1

1

n
log

1

n
= log nH(X) = ¡

nX
i=1

pi log pi · ¡
nX

i=1

1

n
log

1

n
= log n

Illustration of Entropy

• Entropy of binary distribution
H(X) = ¡p1 log p1 ¡ (1¡ p1) log(1¡ p1)H(X) = ¡p1 log p1 ¡ (1¡ p1) log(1¡ p1)

Cross Entropy
• Cross entropy is used to measure the difference

between two random variable distributions

H(X; Y) = ¡
nX

i=1

P (X = i) log P (Y = i)H(X; Y) = ¡
nX

i=1

P (X = i) log P (Y = i)

• Continuous formulation

H(p; q) = ¡
Z

p(x) log q(x)dxH(p; q) = ¡
Z

p(x) log q(x)dx

• Compared to KL divergence

DKL(pkq) =

Z
p(x) log

p(x)

q(x)
dx = H(p; q)¡H(p)DKL(pkq) =

Z
p(x) log

p(x)

q(x)
dx = H(p; q)¡H(p)

Cross Entropy in Logistic Regression

• Logistic regression is a binary classification model

pμ(y = 1jx) = ¾(μ>x) =
1

1 + e¡μ>x
pμ(y = 1jx) = ¾(μ>x) =

1

1 + e¡μ>x

pμ(y = 0jx) =
e¡μ>x

1 + e¡μ>x
pμ(y = 0jx) =

e¡μ>x

1 + e¡μ>x

L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1 ¡ y) log(1¡ ¾(μ>x))L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1 ¡ y) log(1¡ ¾(μ>x))

@¾(z)

@z
= ¾(z)(1¡ ¾(z))

@¾(z)

@z
= ¾(z)(1¡ ¾(z))

@L(y; x; pμ)

@μ
= ¡y

1

¾(μ>x)
¾(z)(1¡ ¾(z))x¡ (1¡ y)

¡1

1¡ ¾(μ>x)
¾(z)(1¡ ¾(z))x

= (¾(μ>x)¡ y)x

μ Ã μ + (y ¡ ¾(μ>x))x

@L(y; x; pμ)

@μ
= ¡y

1

¾(μ>x)
¾(z)(1¡ ¾(z))x¡ (1¡ y)

¡1

1¡ ¾(μ>x)
¾(z)(1¡ ¾(z))x

= (¾(μ>x)¡ y)x

μ Ã μ + (y ¡ ¾(μ>x))x

• Cross entropy loss function

• Gradient

¾(x)¾(x)

xx

Review

Conditional Entropy
• Entropy H(X) = ¡

nX
i=1

P (X = i) log P (X = i)H(X) = ¡
nX

i=1

P (X = i) log P (X = i)

• Specific conditional entropy of X given Y = v

H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)

• Specific conditional entropy of X given Y

H(XjY) =
X

v2values(Y)

P (Y = v)H(XjY = v)H(XjY) =
X

v2values(Y)

P (Y = v)H(XjY = v)

• Information Gain or Mutual Information of X given Y

I(X;Y) =H(X)¡H(XjY) = H(Y)¡H(Y jX)

=H(X) + H(Y)¡H(X;Y)

I(X;Y) =H(X)¡H(XjY) = H(Y)¡H(Y jX)

=H(X) + H(Y)¡H(X;Y)

Information Gain
• Information Gain or Mutual Information of X given Y

I(X;Y) = H(X)¡H(XjY)

=¡
X

v

P (X = v) log P (X = v) +
X

u

P (Y = u)
X

v

P (X = vjY = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u)[log P (X = v; Y = u)¡ log P (Y = u)]

=¡
X

v

P (X = v) log P (X = v)¡
X

v

P (Y = v) log P (Y = v) +
X
u;v

P (X = v; Y = u) log P (X = v; Y = u)

=H(X) + H(Y)¡H(X;Y)

I(X;Y) = H(X)¡H(XjY)

=¡
X

v

P (X = v) log P (X = v) +
X

u

P (Y = u)
X

v

P (X = vjY = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u) log P (X = vjY = u)

=¡
X

v

P (X = v) log P (X = v) +
X

u

X
v

P (X = v; Y = u)[log P (X = v; Y = u)¡ log P (Y = u)]

=¡
X

v

P (X = v) log P (X = v)¡
X

v

P (Y = v) log P (Y = v) +
X
u;v

P (X = v; Y = u) log P (X = v; Y = u)

=H(X) + H(Y)¡H(X;Y)

Entropy of (X,Y) instead of cross entropy

Node Splitting
• Information gain

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)H(XjY = v) = ¡
nX

i=1

P (X = ijY = v) log P (X = ijY = v)

H(XjY = S) = ¡3

5
log

3

5
¡ 2

5
log

2

5
= 0:9710

H(XjY = O) = ¡4

4
log

4

4
= 0

H(XjY = R) = ¡4

5
log

4

5
¡ 1

5
log

1

5
= 0:7219

H(XjY) =
5

14
£ 0:9710 +

4

14
£ 0 +

5

14
£ 0:7219 = 0:6046

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:6046 = 0:3954

H(XjY = S) = ¡3

5
log

3

5
¡ 2

5
log

2

5
= 0:9710

H(XjY = O) = ¡4

4
log

4

4
= 0

H(XjY = R) = ¡4

5
log

4

5
¡ 1

5
log

1

5
= 0:7219

H(XjY) =
5

14
£ 0:9710 +

4

14
£ 0 +

5

14
£ 0:7219 = 0:6046

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:6046 = 0:3954

H(XjY) =
X

v2values(Y)

P (Y = v)H(XjY = v)H(XjY) =
X

v2values(Y)

P (Y = v)H(XjY = v)

H(XjY = H) = ¡2

4
log

2

4
¡ 2

4
log

2

4
= 1

H(XjY = M) = ¡1

4
log

1

4
¡ 3

4
log

3

4
= 0:8113

H(XjY = C) = ¡4

6
log

4

6
¡ 2

6
log

2

6
= 0:9183

H(XjY) =
4

14
£ 1 +

4

14
£ 0:8113 +

5

14
£ 0:9183 = 0:9111

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:9111 = 0:0889

H(XjY = H) = ¡2

4
log

2

4
¡ 2

4
log

2

4
= 1

H(XjY = M) = ¡1

4
log

1

4
¡ 3

4
log

3

4
= 0:8113

H(XjY = C) = ¡4

6
log

4

6
¡ 2

6
log

2

6
= 0:9183

H(XjY) =
4

14
£ 1 +

4

14
£ 0:8113 +

5

14
£ 0:9183 = 0:9111

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:9111 = 0:0889

Information Gain Ratio
• The ratio between information gain and the entropy

IR(X;Y) =
I(X;Y)

HY (X)
=

H(X)¡H(XjY)

HY (X)
IR(X;Y) =

I(X;Y)

HY (X)
=

H(X)¡H(XjY)

HY (X)

HY (X) = ¡
X

v2values(Y)

jXy=vj
jXj log

jXy=vj
jXjHY (X) = ¡

X
v2values(Y)

jXy=vj
jXj log

jXy=vj
jXj

• where the entropy (of Y) is

• where is the number of observations with the
feature y=v

jXy=vjjXy=vj

Node Splitting
• Information gain ratio

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:6046 = 0:3954

HY (X) = ¡ 4

14
log

4

14
¡ 5

14
log

5

14
¡ 5

14
log

5

14
= 1:5774

IR(X;Y) =
0:3954

1:5774
= 0:2507

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:6046 = 0:3954

HY (X) = ¡ 4

14
log

4

14
¡ 5

14
log

5

14
¡ 5

14
log

5

14
= 1:5774

IR(X;Y) =
0:3954

1:5774
= 0:2507

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:9111 = 0:0889

HY (X) = ¡ 4

14
log

4

14
¡ 4

14
log

4

14
¡ 6

14
log

6

14
= 1:5567

IR(X;Y) =
0:0889

1:5567
= 0:0571

I(X;Y) = H(X)¡H(XjY) = 1¡ 0:9111 = 0:0889

HY (X) = ¡ 4

14
log

4

14
¡ 4

14
log

4

14
¡ 6

14
log

6

14
= 1:5567

IR(X;Y) =
0:0889

1:5567
= 0:0571

IR(X;Y) =
I(X;Y)

HY (X)
=

H(X)¡H(XjY)

HY (X)
IR(X;Y) =

I(X;Y)

HY (X)
=

H(X)¡H(XjY)

HY (X)

Decision Tree Building: ID3 Algorithm

• Algorithm framework
• Start from the root node with all data

• For each node, calculate the information gain of all
possible features

• Choose the feature with the highest information gain
• Split the data of the node according to the feature

• Do the above recursively for each leaf node, until
• There is no information gain for the leaf node
• Or there is no feature to select

Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

• Each path only involves a feature at most once

Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Wind

Strong Weak

• How about this tree, yielding perfect partition?

Overfitting
• Tree model can approximate any finite data by just

growing a leaf node for each instance

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Wind

Strong Weak

Decision Tree Training Objective
• Cost function of a tree T over training data

C(T) =

jT jX
t=1

NtHt(T)C(T) =

jT jX
t=1

NtHt(T)

where for the leaf node t
• Ht(T) is the empirical entropy
• Nt is the instance number, Ntk is the instance number of class k

Ht(T) = ¡
X

k

Ntk

Nt
log

Ntk

Nt
Ht(T) = ¡

X
k

Ntk

Nt
log

Ntk

Nt

• Training objective: find a tree to minimize the cost

min
T

C(T) =

jT jX
t=1

NtHt(T)min
T

C(T) =

jT jX
t=1

NtHt(T)

Decision Tree Regularization
• Cost function over training data

C(T) =

jT jX
t=1

NtHt(T) + ¸jT jC(T) =

jT jX
t=1

NtHt(T) + ¸jT j

where
• |T| is the number of leaf nodes of the tree T
• λ is the hyperparameter of regularization

Decision Tree Building: ID3 Algorithm

• An example decision tree from ID3

Outlook

Sunny RainOvercast

Temperature

Hot CoolMild

Wind

Strong Weak

• Calculate the cost function difference. C(T) =

jT jX
t=1

NtHt(T) + ¸jT jC(T) =

jT jX
t=1

NtHt(T) + ¸jT j

Whether
to split
this node?

Summary of ID3
• A classic and straightforward algorithm of training

decision trees
• Work on discrete/categorical data
• One branch for each value/category of the feature

• Algorithm C4.5 is similar and more advanced to ID3
• Splitting the node according to information gain ratio

• Splitting branch number depends on the number of
different categorical values of the feature

• Might lead to very broad tree

CART Algorithm
• Classification and Regression Tree (CART)

• Proposed by Leo Breiman et al. in 1984
• Binary splitting (yes or no for the splitting condition)
• Can work on continuous/numeric features
• Can repeatedly use the same feature (with different

splitting)

Condition 1

Yes No

Condition 2

Yes No

Prediction 1 Prediction 2

Prediction 3

CART Algorithm
• Classification Tree

• Output the predicted
class

Age > 20

Yes No

Gender=Male

Yes No

4.8 4.1

2.8

• Regression Tree
• Output the predicted

value

Age > 20

Yes No

Gender=Male

Yes No

like dislike

dislike

For example: predict the user’s
rating to a movie

For example: predict whether the
user like a move

Regression Tree
• Let the training dataset with continuous targets y

D = f(x1; y1); (x2; y2); : : : ; (xN ; yN)gD = f(x1; y1); (x2; y2); : : : ; (xN ; yN)g

• Suppose a regression tree has divided the space into M
regions R1, R2, …, RM, with cm as the prediction for region Rm

f(x) =
MX

m=1

cmI(x 2 Rm)f(x) =
MX

m=1

cmI(x 2 Rm)

• Loss function for (xi, yi)
1

2
(yi ¡ f(xi))

21

2
(yi ¡ f(xi))

2

• It is easy to see the optimal prediction for region m is

ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)

Regression Tree
• How to find the optimal splitting regions?
• How to find the optimal splitting conditions?

• Defined by a threshold value s on variable j
• Lead to two regions

R1(j; s) = fxjx(j) · sgR1(j; s) = fxjx(j) · sg R2(j; s) = fxjx(j) > sgR2(j; s) = fxjx(j) > sg

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i• Training based on current splitting

ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)

Regression Tree Algorithm
• INPUT: training data D
• OUTPUT: regression tree f(x)
• Repeat until stop condition satisfied:

• Find the optimal splitting (j,s)
min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Calculate the prediction value of the new region R1, R2
ĉm = avg(yijxi 2 Rm)ĉm = avg(yijxi 2 Rm)

• Return the regression tree

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)

Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

Splitting threshold s
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

loss =

6X
i=1

(yi ¡ c1)
2 +

12X
i=7

(yi ¡ c2)
2

=

6X
i=1

y2
i ¡

1

6

³ 6X
i=1

yi

´2
+

12X
i=7

y2
i ¡

1

6

³ 12X
i=7

yi

´2
= ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C

loss =

6X
i=1

(yi ¡ c1)
2 +

12X
i=7

(yi ¡ c2)
2

=

6X
i=1

y2
i ¡

1

6

³ 6X
i=1

yi

´2
+

12X
i=7

y2
i ¡

1

6

³ 12X
i=7

yi

´2
= ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C

Online updated

Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Splitting threshold s

loss6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ Closs6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C

Regression Tree Algorithm
• How to efficiently find the optimal splitting (j,s)?

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

min
j;s

h
min
c1

X
x2R1(j;s)

(yi ¡ c1)
2 + min

c2

X
x2R2(j;s)

(yi ¡ c2)
2
i

• Sort the data ascendingly according to feature j value

small j value large j value

Splitting threshold s
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

loss6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ Closs6;7 = ¡1

6

³ 6X
i=1

yi

´2 ¡ 1

6

³ 12X
i=7

yi

´2
+ C • Maintain and online update in O(1) Time

loss7;8 = ¡1

7

³ 7X
i=1

yi

´2 ¡ 1

5

³ 12X
i=8

yi

´2
+ Closs7;8 = ¡1

7

³ 7X
i=1

yi

´2 ¡ 1

5

³ 12X
i=8

yi

´2
+ C

Sum(R1) =
kX

i=1

yi Sum(R2) =
nX

i=k+1

yiSum(R1) =
kX

i=1

yi Sum(R2) =
nX

i=k+1

yi

• O(n) in total for checking one feature

Classification Tree
• The training dataset with categorical targets y

D = f(x1; y1); (x2; y2); : : : ; (xN ; yN)gD = f(x1; y1); (x2; y2); : : : ; (xN ; yN)g

• Suppose a regression tree has divided the space into M
regions R1, R2, …, RM, with cm as the prediction for region Rm

f(x) =
MX

m=1

cmI(x 2 Rm)f(x) =
MX

m=1

cmI(x 2 Rm)

• cm is solved by counting categories

P (ykjxi 2 Rm) =
Ck

m

Cm
P (ykjxi 2 Rm) =

Ck
m

Cm

• Here the leaf node prediction cm is the category distribution
ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K

instances in leaf m with cat k

instances in leaf m

Classification Tree
• How to find the optimal splitting regions?
• How to find the optimal splitting conditions?

• For continuous feature j, defined by a threshold value s
• Yield two regions

R1(j; s) = fxjx(j) · sgR1(j; s) = fxjx(j) · sg R2(j; s) = fxjx(j) > sgR2(j; s) = fxjx(j) > sg

• For categorical feature j, select a category a
• Yield two regions
R1(j; s) = fxjx(j) = agR1(j; s) = fxjx(j) = ag R2(j; s) = fxjx(j) 6= agR2(j; s) = fxjx(j) 6= ag

• How to select? Argmin Gini impurity.

Gini Impurity
• In classification problem

• suppose there are K classes
• let pk be the probability of an instance with the class k
• the Gini impurity index is

Gini(p) =

KX
k=1

pk(1¡ pk) = 1¡
KX

k=1

p2
kGini(p) =

KX
k=1

pk(1¡ pk) = 1¡
KX

k=1

p2
k

• Given the training dataset D, the Gini impurity is

Gini(D) = 1¡
KX

k=1

³ jDkj
jDj

´2
Gini(D) = 1¡

KX
k=1

³ jDkj
jDj

´2 # instances in D with cat k
instances in D

Gini Impurity
• For binary classification problem

• let p be the probability of an instance with the class 1
• Gini impurity is
• Entropy is

Gini(p) = 2p(1¡ p)Gini(p) = 2p(1¡ p)

Gini impurity and
entropy are quite
similar in
representing
classification
error rate.

H(p) = ¡p log p¡ (1¡ p) log(1¡ p)H(p) = ¡p log p¡ (1¡ p) log(1¡ p)

Gini Impurity
• With a categorical feature j and one of its

categories a
• The two split regions R1, R2

R1(j; a) = fxjx(j) = agR1(j; a) = fxjx(j) = ag R2(j; a) = fxjx(j) 6= agR2(j; a) = fxjx(j) 6= ag

• The Gini impurity of feature j with the selected category
a

Gini(Dj ; j = a) =
jD1

j j
jDj jGini(D1

j) +
jD2

j j
jDj jGini(D2

j)Gini(Dj ; j = a) =
jD1

j j
jDj jGini(D1

j) +
jD2

j j
jDj jGini(D2

j)

D1
j = f(x; y)jx(j) = agD1
j = f(x; y)jx(j) = ag D2

j = f(x; y)jx(j) 6= agD2
j = f(x; y)jx(j) 6= ag

Classification Tree Algorithm
• INPUT: training data D
• OUTPUT: classification tree f(x)
• Repeat until stop condition satisfied:

• Find the optimal splitting (j,a)
min
j;a

Gini(Dj ; j = a)min
j;a

Gini(Dj ; j = a)

• Calculate the prediction distribution of the new region R1, R2

ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K

• Return the classification tree

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)

1. Node instance
number is small

2. Gini impurity is small
3. No more feature

Classification Tree Output
• Class label output

• Output the class with the highest conditional probability

f(x) =
MX

m=1

ĉmI(x 2 Rm)f(x) =
MX

m=1

ĉmI(x 2 Rm)

• Probabilistic distribution output

f(x) = arg max
yk

MX
m=1

I(x 2 Rm)P (ykjxi 2 Rm)f(x) = arg max
yk

MX
m=1

I(x 2 Rm)P (ykjxi 2 Rm)

ĉm = fP (ykjxi 2 Rm)gk=1:::Kĉm = fP (ykjxi 2 Rm)gk=1:::K

Converting a Tree to Rules

Age > 20

Yes No

Gender=Male

Yes No

4.8 4.1

2.8

For example: predict the
user’s rating to a movie

IF Age > 20:
IF Gender = Male:

return 4.8
ELSE:

return 4.1
ELSE:

return 2.8

Decision tree model is easy to be
visualized, explained and debugged.

Learning Model Comparison

[Table 10.3 from Hastie et al. Elements of Statistical Learning, 2nd Edition]

Content of This Lecture

• Tree Models

• Ensemble Methods

Ensemble Learning
Bagging
Random Forest

Ensemble Learning
• Consider a set of predictors f1, …, fL

• Different predictors have different performance across
data

• Idea: construct a predictor F(x) that combines the
individual decisions of f1, …, fL

• E.g., could have the member predictor vote
• E.g., could use different members for different region of

the data space
• Works well if the member each has low error rates

• Successful ensembles require diversity
• Predictors should make different mistakes
• Encourage to involve different types of predictors

Ensemble Learning

• Although complex, ensemble learning probably
offers the most sophisticated output and the best
empirical performance!

x

f1(x)

f2(x)

fL(x)

…

Ensemble F(x)
Data

Single model

Ensemble model
Output

Practical Application in Competitions

• Netflix Prize Competition
• Task: predict the user’s rating on a movie, given some

users’ ratings on some movies
• Called ‘collaborative filtering’ (we will have a lecture

about it later)

[Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. 2009.]

• Winner solution
• BellKor’s Pragmatic Chaos – an

ensemble of more than 800
predictors

Yehuda Koren

Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some
users’ ratings on some music

• With music information like album, artist, genre IDs

• Winner solution
• From A graduate course of National Taiwan University -

an ensemble of 221 predictors

Practical Application in Competitions
• KDD-Cup 2011 Yahoo! Music Recommendation

• Task: predict the user’s rating on a music, given some
users’ ratings on some music

• With music information like album, artist, genre IDs

• 3rd place solution
• SJTU-HKUST joint team, an ensemble of 16 predictors

Combining Predictor: Averaging

• Averaging for regression; voting for classification

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

1/L

1/L

1/L

F (x) =
1

L

LX
i=1

fi(x)F (x) =
1

L

LX
i=1

fi(x)

Combining Predictor: Weighted Avg

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

w1

w2

wL

F (x) =
LX

i=1

wifi(x)F (x) =
LX

i=1

wifi(x)

Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi = μ>i xgi = μ>i xE.g.,
Design different learnable gating functions

Combining Predictor: Gating

• Just like linear regression or classification
• Note: single model will not be updated when training ensemble model

x

f1(x)

f2(x)

fL(x)

…

+ F(x)
Data

Single model

Ensemble model
Output

g1

g2

gL

Gating Fn. g(x)

F (x) =
LX

i=1

gifi(x)F (x) =
LX

i=1

gifi(x)

gi =
exp(w>

i x)PL
j=1 exp(w>

i x)
gi =

exp(w>
i x)PL

j=1 exp(w>
i x)

E.g.,

Design different learnable gating functions

Combining Predictor: Stacking

• This is the general formulation of an ensemble

x

f1(x)

f2(x)

fL(x)

…

g(f1, f2,… fL) F(x)
Data

Single model

Ensemble model
Output

F (x) = g(f1(x); f2(x); : : : ; fL(x))F (x) = g(f1(x); f2(x); : : : ; fL(x))

Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model

x

f1(x)

f2(x)

fL(x)

…

Layer
1 F(x)

Data

Single model

Ensemble model

Output
Layer

2

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1f + b1)

F (x) = ¾(W2h + b2)

Combining Predictor: Multi-Layer

• Use neural networks as the ensemble model
• Incorporate x into the first hidden layer (as gating)

x

f1(x)

f2(x)

fL(x)

…

Layer
1 F(x)

Data

Single model

Ensemble model

Output
Layer

2

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)

h = tanh(W1[f; x] + b1)

F (x) = ¾(W2h + b2)

f1(x) < a1

f2(x) < a2 x2 < a3

Yes No

Yes No Yes No

Intermediate
Node

Leaf
Node

Root Node

y = -1 y = 1 y = 1 y = -1

Combining Predictor: Tree Models

• Use decision trees as the ensemble model
• Splitting according to the value of f ’s and x

x

f1(x)

f2(x)

fL(x)

…

F(x)

Data

Single model
Ensemble model

Output

Diversity for Ensemble Input
• Successful ensembles require diversity

• Predictors may make different mistakes
• Encourage to

• involve different types of predictors
• vary the training sets
• vary the feature sets

[Based on slide by Leon Bottou]

Cause of the Mistake Diversification Strategy
Pattern was difficult Try different models
Overfitting Vary the training sets
Some features are noisy Vary the set of input features

Bagging
Random Forest

Ensemble Learning

Manipulating the Training Data
• Bootstrap replication

• Given n training samples Z, construct a new training set
Z* by sampling n instances with replacement

• Excludes about 37% of the training instances

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• Bagging (Bootstrap Aggregating)
• Create bootstrap replicates of training set
• Train a predictor for each replicate
• Validate the predictor using out-of-bootstrap data
• Average output of all predictors

Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, variance

V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2V̂ar[S(Z)] =
1

B ¡ 1

BX
b=1

(S(Z¤b)¡ ¹S¤)2

Bootstrap

• Basic idea
• Randomly draw datasets with replacement from the training data
• Each replicate with the same size as the training set
• Evaluate any statistics S() over the replicates

• For example, model error

Êrrboot =
1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))

Bootstrap for Model Evaluation
• If we directly evaluate the model using the whole training

data
Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))Êrrboot =

1

B

1

N

BX
b=1

NX
i=1

L(yi; f̂
¤b(xi))

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

Pfobservation i 2 bootstrap samplesg = 1¡
³
1¡ 1

N

´N

' 1¡ e¡1 = 0:632

• As the probability of a data instance in the bootstrap
samples is

• If validate on training data, it is much likely to overfit
• For example in a binary classification problem where y is indeed

independent with x
• Correct error rate: 0.5
• Above bootstrap error rate: 0.632*0 + (1-0.632)*0.5=0.184

Leave-One-Out Bootstrap
• Build a bootstrap replicate with one instance i out,

then evaluate the model using instance i

Êrr
(1)

=
1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))Êrr

(1)
=

1

N

NX
i=1

1

jC¡ij
X

b2C¡i

L(yi; f̂
¤b(xi))

• C-i is the set of indices of the bootstrap samples b that
do not contain the instance i

• For some instance i, the set C-i could be null set, just
ignore such cases

• We shall come back to the model evaluation and
select in later lectures.

Bootstrap for Model Parameters
• Sec 8.4 of Hastie et al. The elements of statistical

learning.

• Bootstrap mean is approximately a posterior
average.

Bagging: Bootstrap Aggregating
• Bootstrap replication

• Given n training samples Z = {(x1,y1), (x2,y2),…,(xn,yn)},
construct a new training set Z* by sampling n instances
with replacement

• Construct B bootstrap samples Z*b , b = 1,2,…,B
• Train a set of predictors

• Bagging average the predictions

f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)f̂bag(x) =
1

B

BX
b=1

f̂¤b(x)

f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)f̂¤1(x); f̂¤2(x); : : : ; f̂¤B(x)

B-spline smooth of data B-spline smooth plus and minus 1.96×
standard error bands

Ten bootstrap replicates of
the B-spline smooth.

B-spline smooth with 95% standard error bands
computed from the bootstrap distributionFig 8.2 of Hastie et al. The

elements of statistical learning.

Fig 8.9 of Hastie et al. The
elements of statistical learning.

Bagging trees on simulated dataset. The top left panel shows the original tree. 5 trees
grown on bootstrap samples are shown. For each tree, the top split is annotated.

Fig 8.10 of Hastie et al. The
elements of statistical learning.

For classification bagging, consensus vote vs. class probability averaging

Why Bagging Works
• Bias-Variance Decomposition

• Assume where
• Then the expected prediction error at an input point x0

Y = f(X) + ²Y = f(X) + ² E[²] = 0 Var[²] = ¾2
²E[²] = 0 Var[²] = ¾2
²

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

Err(x0) = E[(Y ¡ f̂(x0))
2jX = x0]

= ¾2
² + [E[f̂(x0)]¡ f(x0)]

2 + E[f̂(x0)¡ E[f̂(x0)]]
2

= ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially well based on low-bias and high-
variance prediction models

Random Forest

Ensemble Learning
Bagging

The Problem of Bagging

• If the variables (with variance σ2) are i.d. (identically
distributed but not necessarily independent) with positive
correlation ρ, the variance of the average is

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially based on low-bias and high-variance
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2

• Which reduces to ρσ2, even if the bootstrap sample size
goes to infinity

The Problem of Bagging

• Problem: the models trained from bootstrap
samples are probably positively correlated

• Bagging works by reducing the variance with the
same bias as the original model (trained over the
whole data)

• Works especially based on low-bias and high-variance
prediction models

½¾2 +
1¡ ½

B
¾2½¾2 +

1¡ ½

B
¾2

Random Forest
• Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 532.

• Random forest is a substantial modification of bagging that
builds a large collection of de-correlated trees, and then
average them.

Image credit: https://i.ytimg.com/vi/-bYrLRMT3vY/maxresdefault.jpg

Tree De-correlation in Random Forest

• Before each tree node split, select m ≤ p variables
at random as candidates of splitting

• Typically values or even low as 1 m =
p

pm =
p

p

p variables in total

Random Forest Algorithm
• For b = 1 to B:

a) Draw a bootstrap sample Z* of size n from training data
b) Grow a random-forest tree Tb to the bootstrap data, by

recursively repeating the following steps for each leaf node of the
tree, until the minimum node size is reached
I. Select m variables at random from the p variables
II. Pick the best variable & split-point among the m
III. Split the node into two child nodes

• Output the ensemble of trees {Tb}b=1…B

• To make a prediction at a new point x

Algorithm 15.1 of Hastie et al. The
elements of statistical learning.

f̂B
rf (x) =

1

B

BX
b=1

Tb(x)f̂B
rf (x) =

1

B

BX
b=1

Tb(x)

Classification: majority voting

Regression: prediction average

ĈB
rf (x) = majority vote fĈb(x)gB

1ĈB
rf (x) = majority vote fĈb(x)gB

1

Performance Comparison

Fig. 15.1 of Hastie et al. The
elements of statistical learning.

1536 test data instances

Performance Comparison

• RF-m: m means the randomly selected variables for each splitting
Fig. 15.2 of Hastie et al. The
elements of statistical learning.

Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
Y =

(
1 if

P10
j=1 X2

j > 9:34

¡ 1 otherwise
• Nest spheres data

CS420 Machine Learning

http://wnzhang.net/teaching/cs420/index.html

Course webpage:

Weinan Zhang

For more machine learning details, you can check out my
machine learning course at Zhiyuan College

