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Content of Supervised Learning

* Introduction to Machine Learning
* Linear Models

* Support Vector Machines

* Neural Networks

* Tree Models

e Ensemble Methods



Content of This Lecture

* Introduction to Machine Learning

e Linear Models



What is Machine Learning

* Learning

“Learning is any process by
which a system improves
performance from
experience.”

--- Herbert Simon
Turing Award (1975)

artificial intelligence, the psychology of human cognition

Nobel Prize in Economics (1978)
decision-making process within economic organizations




What is Machine Learning

A more mathematical definition by Tom Mitchell

* Machine learning is the study of algorithms that
* improvement their performance P
e atsometask T
* based on experience E
* with non-explicit programming

* A well-defined learning task is given by <P, T, E>



Programming vs. Machine Learning

* Traditional Programming Input

Human O
Programmer .

Program Output

* Machine Learning

4
. Input

Learning

Data Program Output

Algorithm

Slide credit: Feifei Li



When does ML Make Advantages

ML is used when

* Models are based on a huge amount of data
* Examples: Google web search, Facebook news feed

e Qutput must be customized
* Examples: News / item / ads recommendation

* Humans cannot explain the expertise
* Examples: Speech / face recognition, game of Go

* Human expertise does not exist
* Examples: Navigating on Mars



Machine Learning Categories

e Supervised Learning
* To perform the desired output given the data and labels

* Unsupervised Learning

e To analyze and make use of the underlying data
patterns/structures

* Reinforcement Learning

e To learn a policy of taking actions in a dynamic
environment and acquire rewards



Machine Learning Process

Training
Data

Data

Formaliz-
ation

* Basic assumption: there exist the same patterns
across training and test data



Supervised Learning

* Given the training dataset of (data, label) pairs,
D ={(z;,yi) }i=12.. N
let the machine learn a function from data to label
yi ~ fo(x;)
* Function set {fy(:)} is called hypothesis space
* Learning is referred to as updating the parameter §

* How to learn?
* Update the parameter to make the prediction close to
the corresponding label

 What is the learning objective?
* How to update the parameters?



Learning Objective

* Make the prediction close to the corresponding
label

o
min - > L(yi, fo(:)
i1

* Loss function L(y;, fo(x;)) measures the error
between the label and prediction

* The definition of loss function depends on the data
and task

* Most popular loss function: squared loss

1

L(ys, fo(zi)) = Q(yi — fo(:))?



Squared Loss

L(ys, fo(xi)) = = (yi — fo(x:))?

1
2

* Penalty much
more on larger
distances

Loss

* Accept small
distance (error)

e Observation
noise etc.

* Generalization




Gradient Learning Methods
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A Simple Example
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f(x) =609+ 01x + 01>
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3 4 5 6 7

 Observing the data {(x;, ¥i) }i=1.2....~, we can use
different models (hypothesis spaces) to learn
* First, model selection (linear or quadratic)

* Then, learn the parameters

An example from Andrew Ng



Learning Linear Model - Curve




Learning Linear Model - Weights
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Learning Quadratic Model

f(x) = 6y + 013 + 0327



Learning Cubic Model

| ! ! ! ! !
0 1 2 3 4 D 6 7
X

f(z) =6y + 01 + 6222 + 632°



Model Selection

* Which model is the best?

Linear model: underfitting Quadratic model: well fitting 5th-order model: overfitting

* Underfitting occurs when a statistical model or machine learning
algorithm cannot capture the underlying trend of the data.

e Overfitting occurs when a statistical model describes random error or
noise instead of the underlying relationship



Model Selection

* Which model is the best?

Degree 1 Degree 4 Degree 15
— Model — Model — Model
—— True function —— True function — True function
e ® eee Samples o eee Samples eee Samples

Linear model: underfitting  4t-order model: well fitting  15t-order model: overfitting

Underfitting occurs when a statistical model or machine learning
algorithm cannot capture the underlying trend of the data.

Overfitting occurs when a statistical model describes random error or
noise instead of the underlying relationship



Regularization

* Add a penalty term of the parameters to prevent
the model from overfitting the data

1 N
minN g L(ys, fo(x;)) + AQ(0)
i=1

6

(a) without regularization (b) with regularization



Typical Regularization

e L2-Norm (Ridge)

M
Q(0) = |6l = ) _ 62,
m=1

N
o1
min = >  L(ys, fo(x:)) + M|6]]3
i=1

e L1-Norm (LASSO)

M
Q0) =116]lL = ) _ [0l
m=1

N
|
min ; L(yi, fo(zi)) + Al|0]1




More Normal-Form Regularization

» Contours of constant value of » |6,/

e Sparse model learning with g not higher than 1
e Seldom use of g > 2
* Actually, 99% cases use g =1 or 2



Principle of Occam's razor

Among competing hypotheses, the one with
the fewest assumptions should be selected.

 Recall the function set {fo(:)} is called hypothesis
space

Original loss Penalty on assumptions



Model Selection

N
o1
min 7 > L fo(wi)) + A
* An ML solution has model parameters 6 and
optimization hyperparameters )\

* Hyperparameters

* Define higher level concepts about the model such as
complexity, or capacity to learn.

e Cannot be learned directly from the data in the standard
model training process and need to be predefined.

e Can be decided by setting different values, training different
models, and choosing the values that test better

* Model selection (or hyperparameter optimization)
cares how to select the optimal hyperparameters.



Cross Validation for Model Selection

Training
Data

Original Random

Training Evaluation

I
Data Split

Validation
Data

K-fold Cross Validation
1. Set hyperparameters

2. For Ktimes repeat:

* Randomly split the original training data into training and validation
datasets

* Train the model on training data and evaluate it on validation data,
leading to an evaluation score

3. Average the K evaluation scores as the model performance



Machine Learning Process

Training
Data

Data

Formaliz-
ation

 After selecting ‘good’ hyperparameters, we train
the model over the whole training data and the
model can be used on test data.



Generalization Ability

* Generalization Ability is the model prediction
capacity on unobserved data

* Can be evaluated by Generalization Error, defined by

R(f) = EIL(Y, f(X))] = / L(y, f(@))p(z, y)dedy

XxXY

* where p(x,y) is the underlying (probably unknown)
joint data distribution

* Empirical estimation of GA on a training dataset is

R(f) = % Zﬁ(yz‘, f(i))



A Simple Case Study on Generalization Error

* Finite hypothesis set F ={f1, fa,..., fa}
* Theorem of generalization error bound:

For any function f € F, with probability no less
than1 — ¢ , it satisfies

R(f) < R(f) + €(d, N, )
where

1 1

* N: number of training instances
* d: number of functions in the hypothesis set

Section 1.7 in Dr. Hang Li’s text book.



Content of This Lecture

* Introduction to Machine Learning

* Linear Models
* Linear regression, linear classification, applications



Linear Regression

Linear Models for Supervised Learning



Linear Discriminative Models

* Discriminative model

* modeling the dependence of unobserved variables on
observed ones

* also called conditional models.
* Deterministic: y = fy(x)
* Probabilistic:  pg(y|x)

* Focus of this course
* Linear regression model
e Linear classification model



Linear Discriminative Models

* Discriminative model

* modeling the dependence of unobserved variables on
observed ones

* also called conditional models.
* Deterministic: y = fy(x)
* Probabilistic:  pg(y|x)

* Linear regression model ]
y = fo(x) =60y + Zﬁjxj =0'x
j=1

r — (1,331,332,...,33d)



Linear Regression

* One-dimensional linear & quadratic regression

4.5

4

35F

K1S

Linear Regression Quadratic Regression
(A kind of generalized
linear model)



Linear Regression

Ion

* Two-dimensional linear regress
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Learning Objective

* Make the prediction close to the corresponding
label

o
min - > L(yi, fo(:)
i1

* Loss function L(y;, fo(x;)) measures the error
between the label and prediction

* The definition of loss function depends on the data
and task

* Most popular loss function: squared loss

L(ys, fo(xi)) = (i — fo(zs))



Squared Loss

L(ys, fo(xi)) = = (yi — fo(x:))?

1
2

* Penalty much
more on larger
distances

Loss

* Accept small
distance (error)

e Observation
noise etc.

* Generalization




Least Square Linear Regression
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Minimize the Objective Function

* Let N=1 for a simple case, for (x,y)=(2,1)
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Gradient Learning Methods
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Batch Gradient Descent
N
JO) = g S~ fo(w)?  minJ(6)
DY 70)
0

e Update Onew < Oold — 1 for the whole batch

N .
o0 % Z<y ~ Jolwi)) afg(exZ)




Learning Linear Model - Curve




Learning Linear Model - Weights
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Stochastic Gradient Descent

. 1 1 .
D (p) = Z (0 — )2 T (2)
TOO) = 5y — fo(i)?  min ;J (6)
 Update O,ow = 0514 — nan;(e) for every single instance
0.J%(6) 0 fo(i)

= —(yi — fo(xi))m;
Hnew — 901d + 77(,% — f@(xz))xz

 Compare with BGD
* Faster learning
* Uncertainty or fluctuation in learning



Linear Classification Model

1 loss w.r.t. parameters round =0case =0
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Mini-Batch Gradient Descent

e A combination of batch GD and stochastic GD

 Split the whole dataset into K mini-batches
{1,2,3,..., K}

* For each mini-batch k, perform one-step BGD

toward minimizing
L

JHE)(9) = N, (yi — fo(z:))?
1=1
0.J k) (9)

5 for each mini-batch

¢ Update Hnew — ‘gold —n




Mini-Batch Gradient Descent

e Good learning stability (BGD)
* Good convergence rate (SGD)

* Easy to be parallelized
e Parallelization within a mini-batch

Map Parallelized Gradient Reduce Gradient

Sum
Workerlllllll
WorkerZIIIIII ’

Worker3IIIIII




Basic Search Procedure

e Choose an initial value for 6
e Update 0 iteratively with the data
e Until we research a minimum




Basic Search Procedure

e Choose a new initial value for 6
e Update 0 iteratively with the data
e Until we research a minimum




Unigue Minimum for Convex Objective

loss w.r.t. parameters
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* Different initial parameters and different learning algorithm lead to the
same optimum



Convex Set

* A convex set S is a set of points such that, given any
two points A, B in that set, the line AB joining them
lies entirely within S.

tr1+ (1 —t)zg €S
forall x1,29 € 5,0<t <1

[

Convex set Non-convex set

[Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.]



Convex Function

f(z2)

tf(z1) + (1 —t)f(22)

f(z1)

L1 tx; + (1 —t)zy T2

f:R"™ — R isconvexif dom f is a convex set and

flz1+ (1 —t)z2) <tf(z1) + (1 —1t)f(z2)
forall z1,z2 € dom f,0 <t <1



J(8)

Choosing Learning Rate

Hnew — eold -
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"""" ‘Increasing value of J(6) /|
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0

* The initial point may be too far away
from the optimal solution, which
takes much time to converge

* To see if gradient descent is working, print

-4 -2 0 2 4 6

* May overshoot the minimum
* May fail to converge
* May even diverge

out J(#) for each or every

several iterations. If J(6) does not drop properly, adjust 1

Slide credit Eric Eaton



Algebra Perspective

F()] xg? x%) x%) .. :c%) 01 1
 _ z(?) _ x(l) xg) a:g) a;c(i) o_ 62 Y — Y2
K (.n)_ _x{n) a:g:n) xz(;n) . :Uf;n)_ _éd_ | Yn |
- (097
(29

* Prediction y = X6 =

_a: (n) 0—

+ Objective J(6) = - (y —9) (&) = 5(u — X0) (y — X6)



Matrix Form

* Objective .
J(0) = (y— X0)' (y— X6) minJ(6)
* Gradient
2J(0) ..
90 X (y—X0)

* Soluti
olution 0,2599):0 & XT(y— X6) =0

= X'y=X"X06
= 0=(X"TX)"'XTy

http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%20Files/ECE275A_Viewgraphs_5.pdf



Matrix Form V-

* Then the predicted values are L lly — X0|P

§=X(X"X)'XTy -

Second column

H: hat matrix -
* Geometrical Explanation First column

* The column vectors [x1,X2,--.,%q] form a subspace of R”
e His a least square projection

IR
X X X R Y2

X = [ 2 3 d = [x1,X2,...,Xq] Y=
_xgn) azgn) x:(gn) . xgn’)_ | Yn |

More details refer to Sec 3.2. Hastie et al. The elements of statistical learning.



X'X Might be Singular

* When some column vectors are not independent
* For example, X2 = 3X1

then X ' X is singular, thus 8 = (X" X)Xy
cannot be directly calculated.

 Solution: regularization

7(0) = 3y~ X0)  (y — X0) + 20| 3



Matrix Form with Regularization

* Objective \
1
J(0) = 5y~ X0)" (y — X0) + S1/61[3

 Gradient
0.J(0) T
Y - XT(y— X
50 (y 0) + \0
e Solution
62599—) =0 - —X'(y—X60)+ =0

— X'y=(X"X+\I6
- 0=(X"X+M\)"1XTy

mein J(0)



Linear Discriminative Models

* Discriminative model

* modeling the dependence of unobserved variables on
observed ones

* also called conditional models.
* Deterministic: y = fy(x)
* Probabilistic:  py(y|x)

* Linear regression with Gaussian noise model
d

y:fO(x)+€:90‘|‘29j$j—|—€:(9—|—56—|-€
j=1
e ~ N(0,02)

r = (1,561,582,...,$d)



Objective: Likelihood

~ \\
_,// \ 1 62

e Data likelihood

1 (=0 )2

p(y|x) — \/ﬁe 20




Learning

e Maximize the data Iikelihood

=0 ;)?
maX 202
H 1V 27T0
* Maximize the data log-likelihood
T2 N 1 (w07 )2
log 202 = log e 202

H Y 27m ; V2mo?

N
L HT 2
- _ z; (v 202:1: ) + const

1=

min E (yZ — HT:C?;)Q Equivalent to least square error learning



Linear Classification

Linear Models for Supervised Learning



Classification Problem

* Given:
e A description of an instance, z € X, where X is the
instance space.

* Afixed set of categories: C' = {c1,c2,...,cn}

e Determine:

* The category of x: f(x) € C', where f(x) isa
categorization function whose domain is X and whose
rangeis C

* If the category set binary, i.e. C = {0,1} ({false, true},
{negative, positive}) then it is called binary classification.



Binary Classification

non-linear

-«

» X

linear

Non-linearly inseparable

Linearly inseparable



Linear Discriminative Models

* Discriminative model

* modeling the dependence of unobserved
variables on observed ones

* also called conditional models.
* Deterministic:y = fg(x)
 Non-differentiable

* Probabilistic: pg(y|x)
e Differentiable

* For binary classification
po(y = 1|z)
pe(y = 0lz) =1 — py(y = 1|x)



Loss Function

* Cross entropy loss

Discrete case: Zp )log q(x

Continuous case: H(p,q) = — /p(a:) log q(x)dx

* For classification problem

Ground Truth 0 1 0 0 0
Prediction 0.1 0.6 0.05 0.05 0.2
L(y,z,py) Za k) log po(y = cilz)

5(z) = {1, z 18 true

0, otherwise



Cross Entropy for Binary Classification

Class1 Class 2

Ground Truth 0 1

Prediction 0.3 0.7

e Loss function

L(y,x,p9) = —0(y = 1)log pg(y = 1|z) — (y = 0) log pe(y = 0|x)
= —ylogpe(y = 1|z) — (1 — y) log(1 — pe(y = 1|x))



Logistic Regression

* Logistic regression is a binary classification model

1 ho—— o(x)
T
oty = 1lz) = o(67) = ——=_ /
e—HTx ";7
jpe(y N O|33) N 1+e 0 s _4‘1""-/:;2/“0 e Y

* Cross entropy loss function
L(y,z,pp) = —yloga(8'z) — (1 —y)log(l — o (6" x))

* Gradient

PN — o)1 0 — (L= ) o)1~ o()a
= (o(672) - )z
0 —60+nly—o'z)x 8(;(;) =o(2)(1 —o(2))




Label Decision

* Logistic regression provides the probability

1
T
po(y = 1lz) =0(0 ) = S
e—HTx
p9(y — 0‘33) — 1+ e_ng

* The final label of an instance is decided by setting a
threshold h

otherwise

A_{l, po(y = 1|z) > h
Y7o



Evaluation Measures

Prediction
1 0
True False
1 . .
Positive Negative
Label
0 False True
Positive Negative
y Class 1
¢ True / False A TP: if predicting 1

* True: prediction = label
* False: prediction # label

* Positive / Negative

* Positive: predicty =1
* Negative: predicty=0

4 FN:if predicting O

_I,_
+F T
+ 1/
+—|— + /- O
+%/ a B
g% a8 ClassO
d I:Dn Og FP: if predicting 1

TN: if predicting O

> X




Evaluation Measures

Prediction

1 0
True False
Positive Negative
False True
Positive Negative

* Accuracy: the ratio of cases when prediction = label

Label

TP + TN
TP + TN + FP + FN

Acc =



Evaluation Measures

Prediction Prediction

1 True False 1
Positive Negative
Label Label —
0 False True 0 False True
Positive Negative Positive Negative

* Precision: the ratio of true * Recall: the ratio of cases
class 1 cases in those with with prediction 1 in all true
prediction 1 class 1 cases

TP TP
Prec = Rec =

TP +FP TP +FN



Evaluation Measures

e Precision-recall tradeoff

- 1, po(y =1lz) > h = D
0, otherwise 5
* Higher threshold, higher
precision, lower recall precision

e Extreme case: threshold = 0.99

e Lower threshold, lower
precision, higher recall

 Extreme case: threshold =0

* F1 Measure
Pl — 2 X Prec x Recall
- Prec + Rec




Evaluation Measures

e Ranking-based measure: Area Under ROC Curve (AUC)

Receiver operating characteristic example

1.0

-
0.8} =

o
(o))

T
hY

e

'S

\
\

True Positive Rate
N

0.2} -

—  ROC curve (AUC = 0.79)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate



Evaluation Measures

e Ranking-based measure: Area Under ROC Curve (AUC)

Receiver operating characteristic example

Perfect
Prediction
AUC=1
Random
Prediction
AUC=0.5

True Positive Rate

— ROC curve (AUC = 0.79)

0. -
%.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate




Evaluation Measures

* A simple example of Area Under ROC Curve (AUC)

“

1.0 0.91 1
0.85 0
0.75
True 0.77 1
P05|t.|ve os F 0.72 1
Ratio
0.61 0
0.25
| 0.48 1
. R 0.42 0
0.25 0.5 0.75 1.0 0.33 0

False Positive Ratio

AUC=0.75



Multi-Class Classification

Binary classification: Multi-class classification:
X X PA| x X
o o \X | SO Tx X
o O ] X
O O DD
X1 X1

e Still cross entropy loss  Ground Truth | © 1 0

Prediction 0.1 0.7 0.2

1, is t
L(yvajvp@) = — Zé(g = Ck) lngg(y — C]g|£l§') 5(2) _ { Z 1S true

k 0, otherwise



Multi-Class Logistic Regression

e Classset C ={ci,co,...,Cm?}

* Predicting the probability of ps(y = cj|z)

9;_:10
(y = cj|x) = - for j=1,...,m
Do 9 2?21 eel;rx ) )
e Softmax

* Parameters 0 = {61,02,...,0,}
e Can be normalized with m-1 groups of parameters



Multi-Class Logistic Regression

* Learning on one instance (z,y = ¢;)
* Maximize log-likelihood

max log pp(y = ¢;j|x)

0
* Gradient
.

Ologpg(y = ¢jlx) _ ilog e’s *
00 00; 2?21 R
(9 ik QT

=T — a—ej lOgZ e’k T
k=1
el Ty




Application Case Study:
Click-Through Rate (CTR)
Estimation in Online
Advertising

Linear Models for Supervised Learning



Ad Click-Through Rate Estimation
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User response estimation problem

* Problem definition

One instance data

* Date: 20160320

* Hour: 14

* Weekday: 7

* [|P:119.163.222.*

* Region: England

* City: London

* Country: UK

* Ad Exchange: Google
* Domain: yahoo.co.uk

e URL: http://www.yahoo.co.uk/abc/xyz.html

* OS: Windows

* Browser: Chrome

* Ad size: 300*250

* AdID:a1890

* User occupation: Student

* User tags: Sports, Electronics

=)

Corresponding label

Click (1) or not (0)?

Predicted CTR (0.15)



One-Hot Binary Encoding

* A standard feature engineering paradigm

/

x=[0,0,0,0,1,0,0 0,1 ]

x=[Weekday=Friday, Gender=Male,

Sparse representation: x=[5:1 9:1 ]

* High dimensional sparse binary feature vector
* Usually higher than 1M dimensions, even 1B dimensions
* Extremely sparse



Training/Validation/Test Data

* Examples (in LibSVM format)

15:19:112:145:1154:1509:14089:145314:1988576:1
02:17:118:134:1176:1510:13879:171310:1 818034:1

* Training/Validation/Test data split
* Sort data by time
* Train:validation:test = 8:1:1
e Shuffle training data



Training Logistic Regression

 Logistic regression is a binary classification model

1
] +e b’z

poy = 1]x) = o(8'z) =
* Cross entropy loss function with L2 regularization
A
L(y,2,ps) = —ylogo(8'z) — (1 —y)log(l — (8 x)) + §||9||§
* Parameter learning

0 — (1—XAn)d+n(y— J(HTx)):E

* Only update non-zero entries



Experimental Results

* Datasets

* Criteo Terabyte Dataset
* 13 numerical fields, 26 categorical fields

e 7 consecutive days out of 24 days in total (about 300 GB)
during 2014

e 79.4M impressions, 1.6M clicks after negative down sampling

* iPinYou Dataset
* 65 categorical fields
* 10 consecutive days during 2013

e 19.5M impressions, 937.7K clicks without negative down
sampling



Performance

AUC Log Loss
Model Linearity
Criteo iPinYou Criteo iPinYou
Logisti
Re;i'i'izn linear | 71.48% | 73.43% | 01334 | 558le-3
reconiaton | pifinear  72.20% | 75.52% | 01324 | 5.504e3
D -
E‘Z‘t’v\'r‘;rll‘(;a' I'i\r']‘:;r 75.66% | 76.19% 0.1283 | 5.443e-3

 Compared with non-linear models, linear models

* Pros: standardized, easily understood and implemented, efficient
and scalable

e Cons: modeling limit (feature independent assumption), cannot
explore feature interactions

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016.]



For more machine learning materials, you can check out
my machine learning course at Zhiyuan College

CS420 Machine Learning

Weinan Zhang

Course webpage:

http://wnzhang.net/teaching/cs420/index.html



