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Content of Supervised Learning
• Introduction to Machine Learning

• Linear Models

• Support Vector Machines

• Neural Networks

• Tree Models

• Ensemble Methods



Content of This Lecture

• Introduction to Machine Learning

• Linear Models



What is Machine Learning
• Learning

“Learning is any process by 
which a system improves 
performance from 
experience.”

--- Herbert Simon
Turing Award (1975)

artificial intelligence, the psychology of human cognition

Nobel Prize in Economics (1978)
decision-making process within economic organizations



What is Machine Learning
A more mathematical definition by Tom Mitchell

• Machine learning is the study of algorithms that
• improvement their performance P
• at some task T
• based on experience E
• with non-explicit programming

• A well-defined learning task is given by <P, T, E>



Programming vs. Machine Learning

• Traditional Programming

Program

Input

Human
Programmer Output

Slide credit: Feifei Li

• Machine Learning

Program

Input

OutputLearning
AlgorithmData



When does ML Make Advantages

ML is used when
• Models are based on a huge amount of data

• Examples: Google web search, Facebook news feed
• Output must be customized

• Examples: News / item / ads recommendation
• Humans cannot explain the expertise

• Examples: Speech / face recognition, game of Go
• Human expertise does not exist

• Examples: Navigating on Mars



Machine Learning Categories
• Supervised Learning

• To perform the desired output given the data and labels

• Unsupervised Learning
• To analyze and make use of the underlying data 

patterns/structures

• Reinforcement Learning
• To learn a policy of taking actions in a dynamic 

environment and acquire rewards



Machine Learning Process

• Basic assumption: there exist the same patterns 
across training and test data

Training
Data

Data 
Formaliz-

ation

Model

Evaluation

Test
Data

Raw 
Data

Raw 
Data



Supervised Learning
• Given the training dataset of (data, label) pairs, 

let the machine learn a function from data to label

• Function set              is called hypothesis space
• Learning is referred to as updating the parameter
• How to learn?

• Update the parameter to make the prediction close to 
the corresponding label
• What is the learning objective?
• How to update the parameters?



Learning Objective
• Make the prediction close to the corresponding 

label

• Loss function                         measures the error 
between the label and prediction

• The definition of loss function depends on the data 
and task

• Most popular loss function: squared loss



Squared Loss

• Penalty much 
more on larger 
distances

• Accept small 
distance (error) 
• Observation 

noise etc.
• Generalization



Gradient Learning Methods



A Simple Example

• Observing the data                                 , we can use 
different models (hypothesis spaces) to learn
• First, model selection (linear or quadratic)
• Then, learn the parameters

An example from Andrew Ng



Learning Linear Model - Curve



Learning Linear Model - Weights



Learning Quadratic Model



Learning Cubic Model



Model Selection
• Which model is the best?

• Underfitting occurs when a statistical model or machine learning 
algorithm cannot capture the underlying trend of the data.

• Overfitting occurs when a statistical model describes random error or 
noise instead of the underlying relationship

Linear model: underfitting Quadratic model: well fitting 5th-order model: overfitting



Model Selection
• Which model is the best?

• Underfitting occurs when a statistical model or machine learning 
algorithm cannot capture the underlying trend of the data.

• Overfitting occurs when a statistical model describes random error or 
noise instead of the underlying relationship

Linear model: underfitting 4th-order model: well fitting 15th-order model: overfitting



Regularization
• Add a penalty term of the parameters to prevent 

the model from overfitting the data



Typical Regularization
• L2-Norm (Ridge)

• L1-Norm (LASSO)



More Normal-Form Regularization

• Contours of constant value of  

Ridge LASSO

• Sparse model learning with q not higher than 1
• Seldom use of q > 2
• Actually, 99% cases use q = 1 or 2



Principle of Occam's razor

Among competing hypotheses, the one with 
the fewest assumptions should be selected.

• Recall the function set              is called hypothesis 
space

Original loss Penalty on assumptions



Model Selection

• An ML solution has model parameters      and 
optimization hyperparameters

• Hyperparameters
• Define higher level concepts about the model such as 

complexity, or capacity to learn.
• Cannot be learned directly from the data in the standard 

model training process and need to be predefined.
• Can be decided by setting different values, training different 

models, and choosing the values that test better
• Model selection (or hyperparameter optimization) 

cares how to select the optimal hyperparameters.



Cross Validation for Model Selection

K-fold Cross Validation
1. Set hyperparameters
2. For K times repeat: 

• Randomly split the original training data into training and validation 
datasets

• Train the model on training data and evaluate it on validation data, 
leading to an evaluation score

3. Average the K evaluation scores as the model performance

Training
Data

Original 
Training 

Data

Model

Evaluation

Validation
Data

Random 
Split



Machine Learning Process

• After selecting ‘good’ hyperparameters, we train 
the model over the whole training data and the 
model can be used on test data.

Training
Data

Data 
Formaliz-

ation

Model

Evaluation
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Raw 
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Raw 
Data



Generalization Ability
• Generalization Ability is the model prediction 

capacity on unobserved data
• Can be evaluated by Generalization Error, defined by

• where                is the underlying (probably unknown) 
joint data distribution

• Empirical estimation of GA on a training dataset is



For any function            , with probability no less 
than           , it satisfies

where

• N: number of training instances
• d: number of functions in the hypothesis set

A Simple Case Study on Generalization Error

• Finite hypothesis set
• Theorem of generalization error bound:

Section 1.7 in Dr. Hang Li’s text book.



Content of This Lecture

• Introduction to Machine Learning

• Linear Models
• Linear regression, linear classification, applications



Linear Regression
Linear Models for Supervised Learning



Linear Discriminative Models
• Discriminative model

• modeling the dependence of unobserved variables on 
observed ones

• also called conditional models.
• Deterministic: 
• Probabilistic:

• Focus of this course
• Linear regression model
• Linear classification model



Linear Discriminative Models
• Discriminative model

• modeling the dependence of unobserved variables on 
observed ones

• also called conditional models.
• Deterministic: 
• Probabilistic:

• Linear regression model



Linear Regression
• One-dimensional linear & quadratic regression

Linear Regression Quadratic Regression
(A kind of generalized
linear model)



Linear Regression
• Two-dimensional linear regression



Learning Objective
• Make the prediction close to the corresponding 

label

• Loss function                         measures the error 
between the label and prediction

• The definition of loss function depends on the data 
and task

• Most popular loss function: squared loss



Squared Loss

• Penalty much 
more on larger 
distances

• Accept small 
distance (error) 
• Observation 

noise etc.
• Generalization



Least Square Linear Regression

• Objective function to minimize



Minimize the Objective Function
• Let N=1 for a simple case, for (x,y)=(2,1)



Gradient Learning Methods



Batch Gradient Descent

• Update                                          for the whole batch 



Learning Linear Model - Curve



Learning Linear Model - Weights



Stochastic Gradient Descent

• Update                                          for every single instance

• Compare with BGD
• Faster learning
• Uncertainty or fluctuation in learning



Linear Classification Model



Mini-Batch Gradient Descent
• A combination of batch GD and stochastic GD

• Split the whole dataset into K mini-batches

• Update                                           for each mini-batch 

• For each mini-batch k, perform one-step BGD 
toward minimizing



Mini-Batch Gradient Descent
• Good learning stability (BGD)
• Good convergence rate (SGD)

• Easy to be parallelized
• Parallelization within a mini-batch

Mini-
batch

Worker 1

Worker 2

Worker 3

ParallelizedMap Gradient Reduce Gradient 
Sum



Basic Search Procedure
• Choose an initial value for
• Update     iteratively with the data
• Until we research a minimum  

μμ

μμ



Basic Search Procedure
• Choose a new initial value for
• Update     iteratively with the data
• Until we research a minimum  

μμ

μμ



Unique Minimum for Convex Objective

• Different initial parameters and different learning algorithm lead to the 
same optimum



Convex Set
• A convex set S is a set of points such that, given any 

two points A, B in that set, the line AB joining them 
lies entirely within S.

A

B
A

B

tx1 + (1¡ t)x2 2 Stx1 + (1¡ t)x2 2 S

for all x1; x2 2 S; 0 · t · 1x1; x2 2 S; 0 · t · 1

Convex set Non-convex set

[Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.]



Convex Function

is convex if                 is a convex set andf : Rn ! Rf : Rn ! R
f(tx1 + (1¡ t)x2) · tf(x1) + (1¡ t)f(x2)f(tx1 + (1¡ t)x2) · tf(x1) + (1¡ t)f(x2)

for all 

dom fdom f

x1; x2 2 dom f; 0 · t · 1x1; x2 2 dom f; 0 · t · 1



Choosing Learning Rate

• To see if gradient descent is working, print out         for each or every 
several iterations. If         does not drop properly, adjust

too small
slow convergence

too large
Increasing value of

• May overshoot the minimum
• May fail to converge
• May even diverge

Slide credit Eric Eaton

• The initial point may be too far away 
from the optimal solution, which 
takes much time to converge



Algebra Perspective

• Prediction
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(y ¡ ŷ)>(y ¡ ŷ) =
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Matrix Form

• Gradient

J(μ) =
1

2
(y ¡Xμ)>(y ¡Xμ) min J(μ)J(μ) =

1

2
(y ¡Xμ)>(y ¡Xμ) min J(μ)

@J(μ)

@μ
= ¡X>(y ¡Xμ)

@J(μ)

@μ
= ¡X>(y ¡Xμ)

@J(μ)

@μ
= 0 ) X>(y ¡Xμ) = 0

) X>y = X>Xμ

) μ̂ = (X>X)¡1X>y

@J(μ)

@μ
= 0 ) X>(y ¡Xμ) = 0

) X>y = X>Xμ

) μ̂ = (X>X)¡1X>y

• Objective

• Solution

http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%20Files/ECE275A_Viewgraphs_5.pdf



First column

Second column

Matrix Form
• Then the predicted values are 

ŷ = X(X>X)¡1X>y

= Hy

ŷ = X(X>X)¡1X>y

= Hy

• Geometrical Explanation
• The column vectors                          form a subspace of  
• H is a least square projection

H: hat matrix
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Might be Singular
• When some column vectors are not independent

• For example,
then              is singular, thus
cannot be directly calculated.

• Solution: regularization  

X>XX>X

x2 = 3x1x2 = 3x1

X>XX>X μ̂ = (X>X)¡1X>yμ̂ = (X>X)¡1X>y

J(μ) =
1

2
(y ¡Xμ)>(y ¡Xμ) +

¸

2
jjμjj22J(μ) =

1

2
(y ¡Xμ)>(y ¡Xμ) +

¸

2
jjμjj22



Matrix Form with Regularization

• Gradient
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@J(μ)

@μ
= 0 ! ¡X>(y ¡Xμ) + ¸μ = 0

! X>y = (X>X + ¸I)μ

! μ̂ = (X>X + ¸I)¡1X>y

@J(μ)

@μ
= 0 ! ¡X>(y ¡Xμ) + ¸μ = 0

! X>y = (X>X + ¸I)μ

! μ̂ = (X>X + ¸I)¡1X>y

• Objective

• Solution



Linear Discriminative Models
• Discriminative model

• modeling the dependence of unobserved variables on 
observed ones

• also called conditional models.
• Deterministic: 
• Probabilistic:

• Linear regression with Gaussian noise model



Objective: Likelihood

• Data likelihood

p(²) =
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Learning
• Maximize the data likelihood
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Linear Classification
Linear Models for Supervised Learning



Classification Problem
• Given:

• A description of an instance,           , where     is the 
instance space.

• A fixed set of categories: 

• Determine:
• The category of    :                  , where           is a 

categorization function whose domain is     and whose 
range is

• If the category set binary, i.e.                       ({false, true}, 
{negative, positive}) then it is called binary classification.

x 2 Xx 2 X XX

C = fc1; c2; : : : ; cmgC = fc1; c2; : : : ; cmg

xx f(x) 2 Cf(x) 2 C f(x)f(x)
XX

CC

C = f0; 1gC = f0; 1g



Binary Classification

Linearly inseparable Non-linearly inseparable



Linear Discriminative Models
• Discriminative model

• modeling the dependence of unobserved 
variables on observed ones

• also called conditional models.
• Deterministic: 

• Non-differentiable
• Probabilistic:

• Differentiable

• For binary classification

y = fμ(x)y = fμ(x)

pμ(yjx)pμ(yjx)

pμ(y = 1jx)pμ(y = 1jx)

pμ(y = 0jx) = 1¡ pμ(y = 1jx)pμ(y = 0jx) = 1¡ pμ(y = 1jx)



Loss Function
• Cross entropy loss

0 1 0 0 0

0.1 0.6 0.05 0.05 0.2

Ground Truth

Prediction

L(y; x; pμ) = ¡
X

k

±(y = ck) log pμ(y = ckjx)L(y; x; pμ) = ¡
X

k

±(y = ck) log pμ(y = ckjx)

H(p; q) = ¡
X

x

p(x) log q(x)H(p; q) = ¡
X

x

p(x) log q(x)

H(p; q) = ¡
Z

x
p(x) log q(x)dxH(p; q) = ¡

Z
x
p(x) log q(x)dx

• For classification problem

±(z) =

(
1; z is true

0; otherwise
±(z) =

(
1; z is true

0; otherwise

Discrete case:

Continuous case:



Cross Entropy for Binary Classification

• Loss function

0 1

0.3 0.7

Ground Truth

Prediction

Class 1 Class 2

L(y; x; pμ) = ¡±(y = 1) log pμ(y = 1jx)¡ ±(y = 0) log pμ(y = 0jx)

= ¡y log pμ(y = 1jx)¡ (1¡ y) log(1¡ pμ(y = 1jx))

L(y; x; pμ) = ¡±(y = 1) log pμ(y = 1jx)¡ ±(y = 0) log pμ(y = 0jx)

= ¡y log pμ(y = 1jx)¡ (1¡ y) log(1¡ pμ(y = 1jx))



Logistic Regression
• Logistic regression is a binary classification model

pμ(y = 1jx) = ¾(μ>x) =
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• Cross entropy loss function

• Gradient

¾(x)¾(x)

xx



Label Decision
• Logistic regression provides the probability

• The final label of an instance is decided by setting a 
threshold

pμ(y = 1jx) = ¾(μ>x) =
1

1 + e¡μ>x
pμ(y = 1jx) = ¾(μ>x) =

1

1 + e¡μ>x

pμ(y = 0jx) =
e¡μ>x

1 + e¡μ>x
pμ(y = 0jx) =

e¡μ>x

1 + e¡μ>x

hh

ŷ =

(
1; pμ(y = 1jx) > h

0; otherwise
ŷ =

(
1; pμ(y = 1jx) > h

0; otherwise



Evaluation Measures

• True / False
• True: prediction = label
• False: prediction ≠ label

• Positive / Negative
• Positive: predict y = 1
• Negative: predict y = 0

1 0

1 True
Positive

False 
Negative

0 False 
Positive

True 
Negative

Label

Prediction

Class 1

Class 0

TP: if predicting 1
FN: if predicting 0

FP: if predicting 1
TN: if predicting 0



Evaluation Measures

• Accuracy: the ratio of cases when prediction = label 

1 0

1 True
Positive

False 
Negative

0 False 
Positive

True 
Negative

Label

Prediction

Acc =
TP + TN

TP + TN + FP + FN
Acc =

TP + TN

TP + TN + FP + FN



Evaluation Measures

• Precision: the ratio of true 
class 1 cases in those with 
prediction 1

1 0

1 True
Positive

False 
Negative

0 False 
Positive

True 
Negative

Label

Prediction

Prec =
TP

TP + FP
Prec =

TP

TP + FP

• Recall: the ratio of cases 
with prediction 1 in all true 
class 1 cases

1 0

1 True
Positive

False 
Negative

0 False 
Positive

True 
Negative

Label

Prediction

Rec =
TP

TP + FN
Rec =

TP

TP + FN



Evaluation Measures
• Precision-recall tradeoff

• Higher threshold, higher 
precision, lower recall
• Extreme case: threshold = 0.99

• Lower threshold, lower 
precision, higher recall
• Extreme case: threshold = 0

• F1 Measure

ŷ =

(
1; pμ(y = 1jx) > h

0; otherwise
ŷ =

(
1; pμ(y = 1jx) > h

0; otherwise

F1 =
2£ Prec£Recall

Prec + Rec
F1 =

2£ Prec£Recall

Prec + Rec



Evaluation Measures
• Ranking-based measure: Area Under ROC Curve (AUC)



Evaluation Measures
• Ranking-based measure: Area Under ROC Curve (AUC)

Perfect
Prediction

AUC = 1

Random
Prediction
AUC = 0.5



Evaluation Measures
• A simple example of Area Under ROC Curve (AUC)

False Positive Ratio

True
Positive

Ratio

Prediction Label
0.91 1
0.85 0
0.77 1
0.72 1
0.61 0
0.48 1
0.42 0
0.33 00.25 0.5 0.75 1.0

0.5

1.0

0.75

0.25

AUC = 0.75



Multi-Class Classification

• Still cross entropy loss 0 1 0

0.1 0.7 0.2

Ground Truth

Prediction

L(y; x; pμ) = ¡
X

k

±(y = ck) log pμ(y = ckjx)L(y; x; pμ) = ¡
X

k

±(y = ck) log pμ(y = ckjx) ±(z) =

(
1; z is true

0; otherwise
±(z) =

(
1; z is true

0; otherwise



• Softmax
• Parameters
• Can be normalized with m-1 groups of parameters

Multi-Class Logistic Regression
• Class set C = fc1; c2; : : : ; cmgC = fc1; c2; : : : ; cmg

pμ(y = cjjx) =
eμ
>
j xPm

k=1 eμ
>
k x

for j = 1; : : : ;mpμ(y = cjjx) =
eμ
>
j xPm

k=1 eμ
>
k x

for j = 1; : : : ;m

pμ(y = cjjx)pμ(y = cjjx)• Predicting the probability of 

μ = fμ1; μ2; : : : ; μmgμ = fμ1; μ2; : : : ; μmg



Multi-Class Logistic Regression
• Learning on one instance

• Maximize log-likelihood

@ log pμ(y = cjjx)

@μj
=

@

@μj
log

eμ
>
j xPm

k=1 eμ
>
k x

= x¡ @

@μj
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>
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>
j xxPm

k=1 eμ
>
k x

@ log pμ(y = cjjx)

@μj
=

@

@μj
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eμ
>
j xPm

k=1 eμ
>
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= x¡ @

@μj
log

mX
k=1

eμ
>
k x

= x¡ eμ
>
j xxPm

k=1 eμ
>
k x

max
μ

log pμ(y = cjjx)max
μ

log pμ(y = cjjx)

(x; y = cj)(x; y = cj)

• Gradient



Application Case Study:
Click-Through Rate (CTR) 
Estimation in Online 
Advertising
Linear Models for Supervised Learning



[http://news.ifeng.com]

Click or not?

Ad Click-Through Rate Estimation



User response estimation problem

• Problem definition

• Date: 20160320
• Hour: 14
• Weekday: 7
• IP: 119.163.222.*
• Region: England
• City: London
• Country: UK
• Ad Exchange: Google
• Domain: yahoo.co.uk
• URL: http://www.yahoo.co.uk/abc/xyz.html
• OS: Windows
• Browser: Chrome
• Ad size: 300*250
• Ad ID: a1890
• User occupation: Student
• User tags: Sports, Electronics

Click (1) or not (0)?

Predicted CTR (0.15)

One instance data Corresponding label



One-Hot Binary Encoding

• High dimensional sparse binary feature vector
• Usually higher than 1M dimensions, even 1B dimensions
• Extremely sparse

x=[Weekday=Friday, Gender=Male, City=Shanghai]

x=[0,0,0,0,1,0,0 0,1 0,0,1,0…0]

• A standard feature engineering paradigm

Sparse representation: x=[5:1 9:1 12:1]



Training/Validation/Test Data
• Examples (in LibSVM format)

1 5:1 9:1 12:1 45:1 154:1 509:1 4089:1 45314:1 988576:1
0 2:1 7:1 18:1 34:1 176:1 510:1 3879:1 71310:1 818034:1

…

• Training/Validation/Test data split
• Sort data by time
• Train:validation:test = 8:1:1
• Shuffle training data



Training Logistic Regression
• Logistic regression is a binary classification model

pμ(y = 1jx) = ¾(μ>x) =
1

1 + e¡μ>x
pμ(y = 1jx) = ¾(μ>x) =

1

1 + e¡μ>x

L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1¡ y) log(1¡ ¾(μ>x)) +
¸

2
jjμjj22L(y; x; pμ) = ¡y log ¾(μ>x)¡ (1¡ y) log(1¡ ¾(μ>x)) +

¸

2
jjμjj22

μ Ã (1 ¡ ¸´)μ + ´(y ¡ ¾(μ>x))xμ Ã (1 ¡ ¸´)μ + ´(y ¡ ¾(μ>x))x

• Cross entropy loss function with L2 regularization

• Parameter learning

• Only update non-zero entries



Experimental Results
• Datasets

• Criteo Terabyte Dataset
• 13 numerical fields, 26 categorical fields
• 7 consecutive days out of 24 days in total (about 300 GB) 

during 2014
• 79.4M impressions, 1.6M clicks after negative down sampling

• iPinYou Dataset
• 65 categorical fields
• 10 consecutive days during 2013
• 19.5M impressions, 937.7K clicks without negative down 

sampling



Performance
Model Linearity

AUC Log Loss
Criteo iPinYou Criteo iPinYou

Logistic 
Regression Linear 71.48% 73.43% 0.1334 5.581e-3

Factorization 
Machine Bi-linear 72.20% 75.52% 0.1324 5.504e-3

Deep Neural
Networks

Non-
linear 75.66% 76.19% 0.1283 5.443e-3

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016.]

• Compared with non-linear models, linear models
• Pros: standardized, easily understood and implemented, efficient 

and scalable
• Cons: modeling limit (feature independent assumption), cannot 

explore feature interactions



CS420 Machine Learning

http://wnzhang.net/teaching/cs420/index.html

Course webpage:

Weinan Zhang

For more machine learning materials, you can check out 
my machine learning course at Zhiyuan College


