2019 EE448, Big Data Mining, Lecture 2

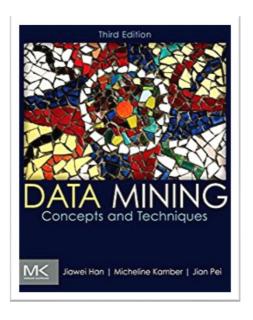
Fundamentals of Data Science Know Your Data

Weinan Zhang

Shanghai Jiao Tong University

http://wnzhang.net

References and Acknowledgement



- A large part of slides in this lecture are originally from Prof. Jiawei Han's book and lectures
 - http://hanj.cs.illinois.edu/bk3/bk3 slidesindex.htm
 - https://wiki.cites.illinois.edu/wiki/display/cs512/Lectures

Content

Data Instances, Attributes and Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Data Instances

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database
 - rows -> data objects; columns -> attributes.

Data Instances

- A data instance represents an entity
 - Also called data points, data object

A news article

A Facebook user profile

An image

A transcript of a student

A song

A trajectory of a car from SJTU to FDU

Data Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address

- Attribute Types
 - Nominal
 - Binary
 - Ordinal
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

Data Attributes

- A data attribute is a particular field of a data instance
 - Also called dimension, feature, variable in difference literatures

The frequency of 'USA' in a news article

The friend set of a Facebook user

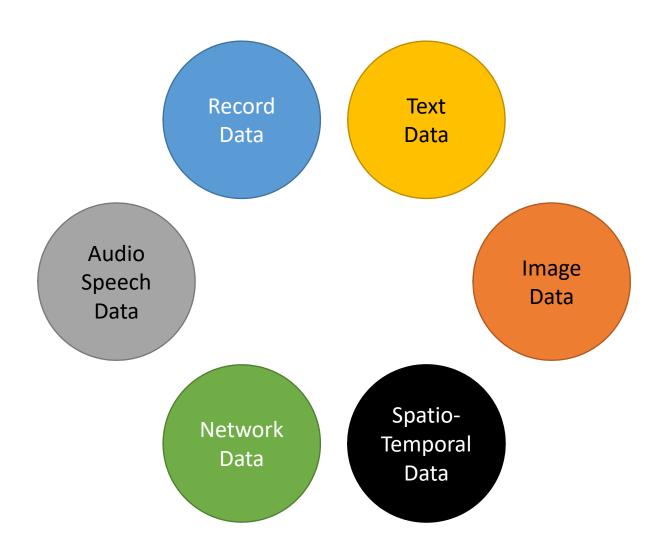
The upper left pixel RGB value of an image

The Algebra score of a student's transcript

The pitch of the 320th frame of a song

The time-location of the 3rd point of a trajectory

6 Major Data Types



Data Type 1: Record Data

- Very common in relational databases
 - Each row represents a data instance
 - Each column represents a data attribute

```
JSON Format:
WEEKDAY
           GENDER
                     AGE
                              CITY
TUESDAY
            MALE
                      28
                             LONDON
                                                   WEEKDAY: Monday;
                            New York
Monday
            FEMALE
                      24
                                                   GENDER: Female;
                           Hong Kong
TUESDAY
            FEMALE
                      36
                                                   AGE: 24;
            MALE
                              Токуо
THURSDAY
                      17
                                                   CITY: New York;
```

• Term 'KDD': Knowledge discovery in databases

Data Type 2: Text Data

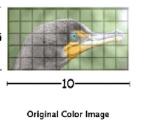
 A sequence of words/tokens that represents semantic meanings of human

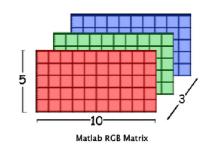
Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text.

```
Bag-of-Words Format:
   text: 4;
   mining: 2;
   also: 1;
   referred: 1;
   to: 2;
   as: 1;
   data: 1;
   roughly: 1;
   equivalent: 1;
   analytics: 1;
   is: 1;
   the: 1;
   process: 1;
   of: 1;
   deriving: 1;
   high-quality: 1;
   information: 1;
   from: 1;
```

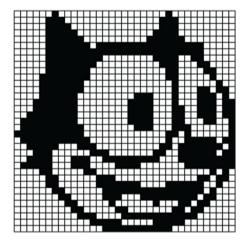
Data Type 3: Image Data

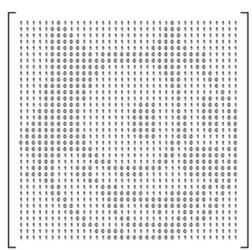
• A 3-layer matrix (3*height*width) of [0,255] real value





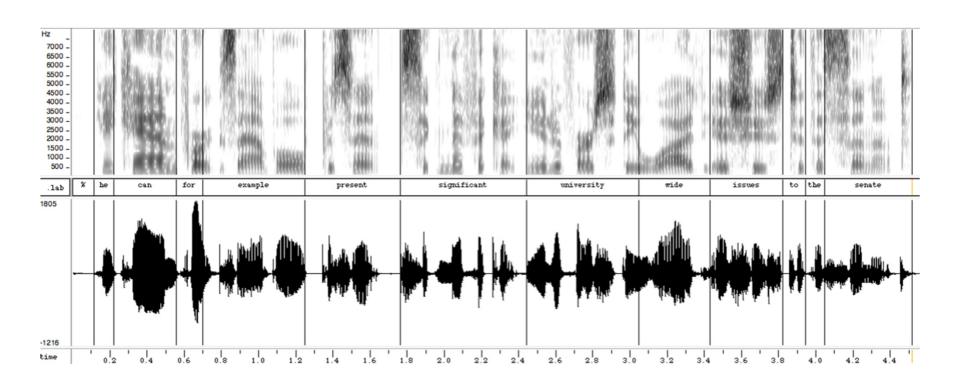
- A simple case: binary image
 - 1-layer matrix (height*width) of {0,1} binary value





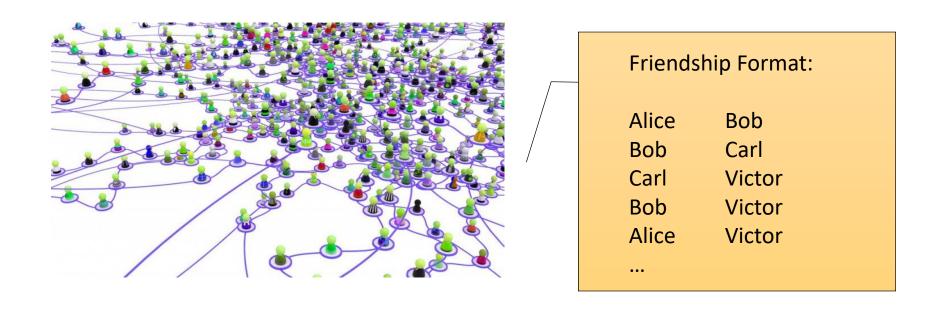
Data Type 4: Speech Data

- A sequence of multi-dimensional real vectors
 - Directly decoding from the audio/speech data



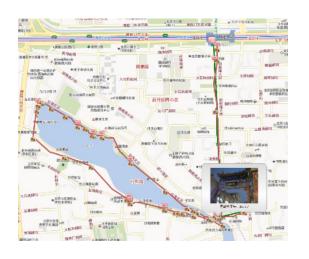
Data Type 5: Network Data

- A directed/undirected graph
 - Possibly with additional information for nodes and edges



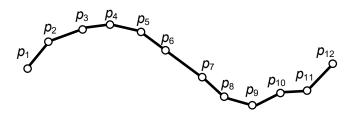
Data Type 6: Spatio-Temporal Data

A sequence of (time, location, info) tuples



A spatio-temporal trajectory

$$p_1 \to p_2 \to \cdots \to p_n$$
$$p_i = (t, x, y, a)$$



- Time series data is a special case of ST data
 - without location information $p_i = (t,a)$

Content

Data Instances, Attributes and Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - Median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population)

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Weighted arithmetic mean:

$$\mu = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Trimmed mean: chopping extreme values
- Median
 - Middle value if odd number of values, or average of the middle two values otherwise
- Example
 - Five data points {1.2, 1.4, 1.5, 1.8, 10.2}
 - Mean: 3.22 Median: 1.5

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula:

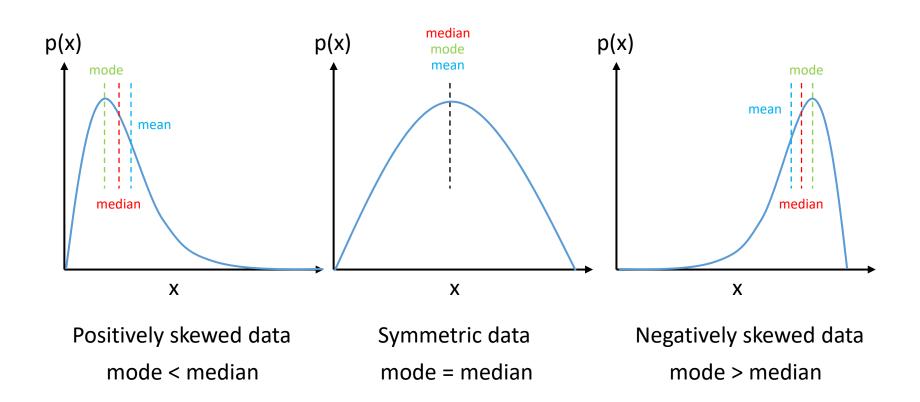
```
mean - mode \simeq 3 \times (mean - median)
```

Example

- Five data points {1, 1, 1, 1, 1, 2, 2, 2, 3, 3}
- Mean: 1.7 Median: 1.5 Mode: 1

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

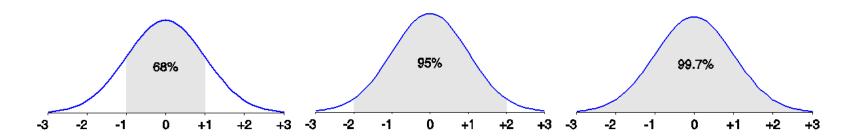


Measuring the Dispersion of Data

- Variance and standard deviation
 - Variance

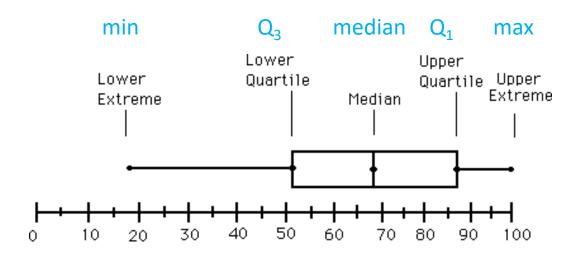
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \mathbb{E}[x] \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

- Standard deviation σ is the square root of variance σ^2
- The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it



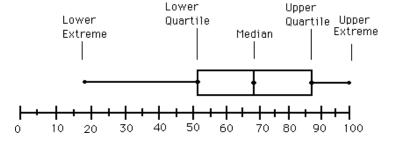
Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ − Q₁
 - Five number summary: min, Q₁, median, Q₃, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR

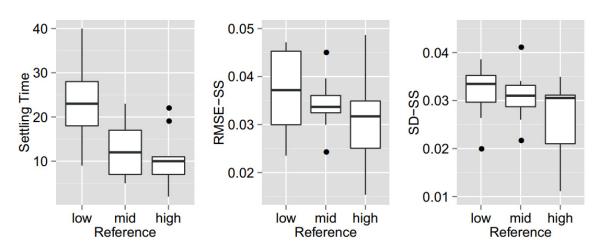


Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum
- Boxplot
 - Data is represented with a box



- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually



Content

Data Instances, Attributes and Types

Basic Statistical Descriptions of Data

Data Visualization

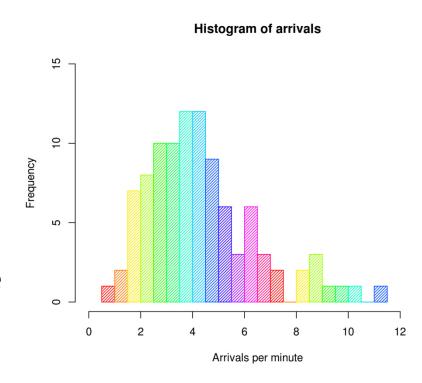
Measuring Data Similarity and Dissimilarity

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis represents frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

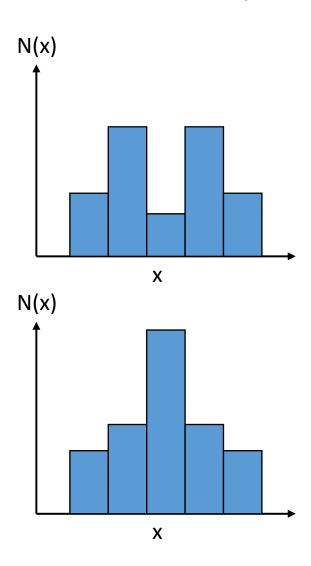
Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent



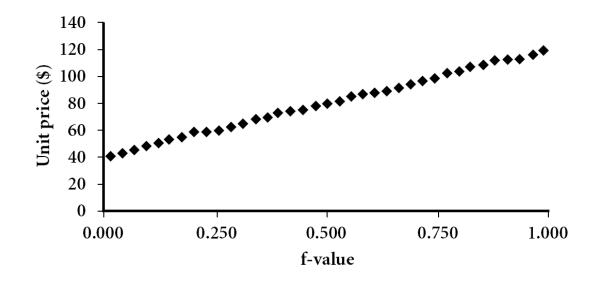
Histograms Often Tell More than Boxplots

- The two histograms shown on the right may have the same boxplot representation
- The same values for: min, Q₁, median, Q₃, max
- But they have rather different data distributions



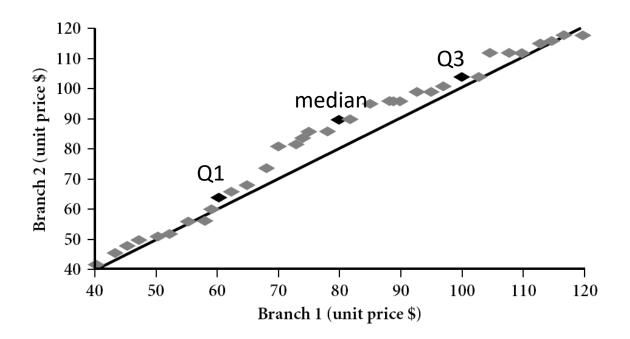
Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
- Each value x_i is paired with f_i indicating that approximately $100 f_i$ % of data $\leq x_i$



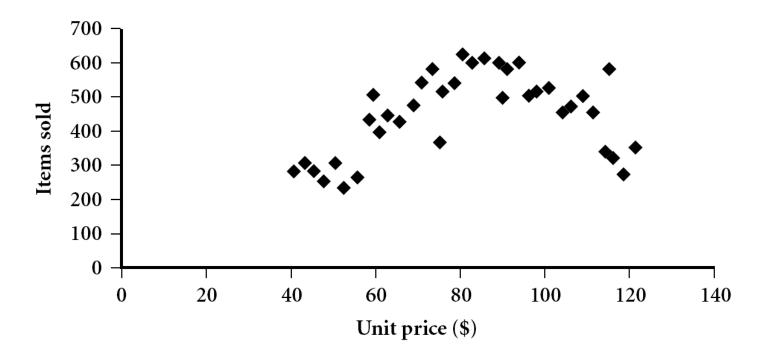
Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.



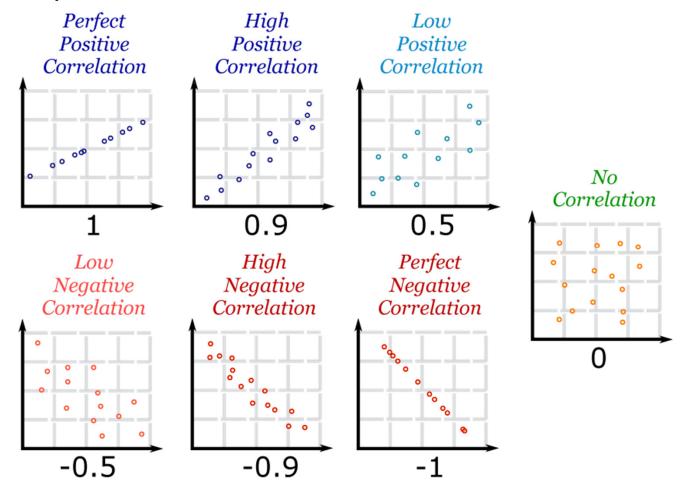
Scatter Plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane



Positively and Negatively Correlated Data

 One can also quickly check the correlation of the two variables by scatter data.



Data Visualization

- Why data visualization?
 - Gain insight into an information space by mapping data onto graphical primitives
 - Provide qualitative overview of large data sets
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help find interesting regions and suitable parameters for further quantitative analysis
 - Provide a visual proof of computer representations derived

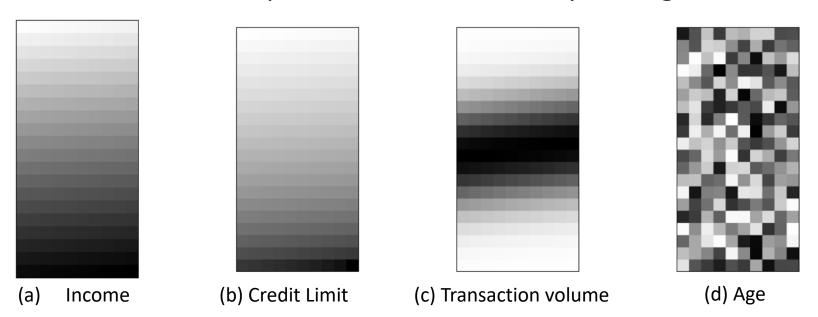
Data Visualization

- Different of visualization methods include
 - Pixel-oriented visualization techniques
 - Geometric projection visualization techniques
 - Icon-based visualization techniques
 - Hierarchical visualization techniques
 - Visualizing complex data and relations
 - Visualizing decision-making data

• ...

Pixel-Oriented Visualization Techniques

- For a data set of *m* dimensions, create *m* windows on the screen, one for each dimension
- The *m* dimension values of a record are mapped to *m* pixels at the corresponding positions in the windows
- The colors of the pixels reflect the corresponding values



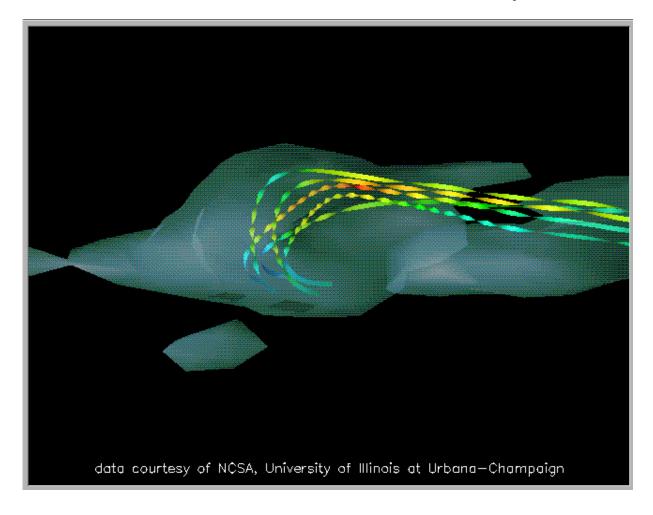
Note: here the m windows are arranged by income. We can check the correlations of other dimension data w.r.t. income.

Geometric Projection Visualization Techniques

- Visualization of geometric transformations and projections of the data
- Methods
 - Direct visualization
 - Scatterplot and scatterplot matrices
 - Landscapes
 - Projection pursuit technique: Help users find meaningful projections of multidimensional data
 - Prosection views
 - Hyperslice
 - Parallel coordinates

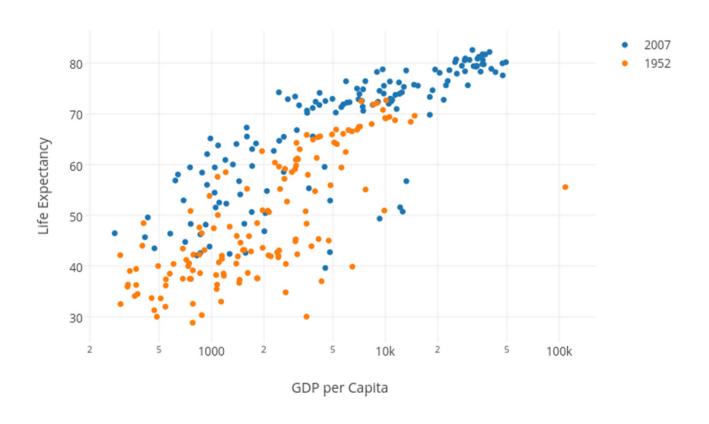
Direct Data Visualization

Ribbons with Twists Based on Vorticity



Scatter Plots

Scatter plot with category of data points in colors

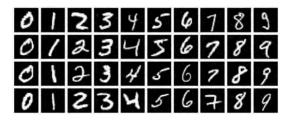


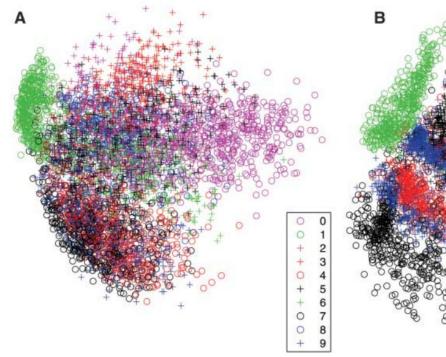
https://plot.ly/pandas/line-and-scatter/

Scatter Plots

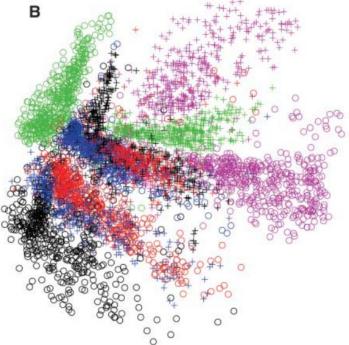
MNIST data of hand written numbers

- 60,000 training images
- 28×28 pixels for each image





(A) The two-dimensional codes for 500 digits of each class produced by taking the first two principal components

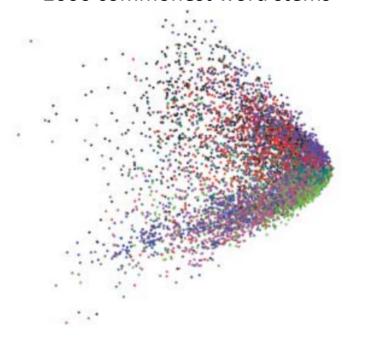


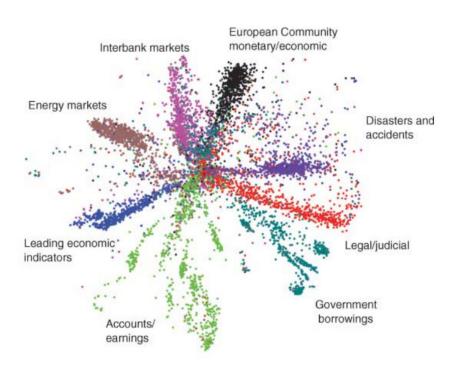
(B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder (a deep learning model).

Scatter Plots

The Reuter Corpus Volume 2

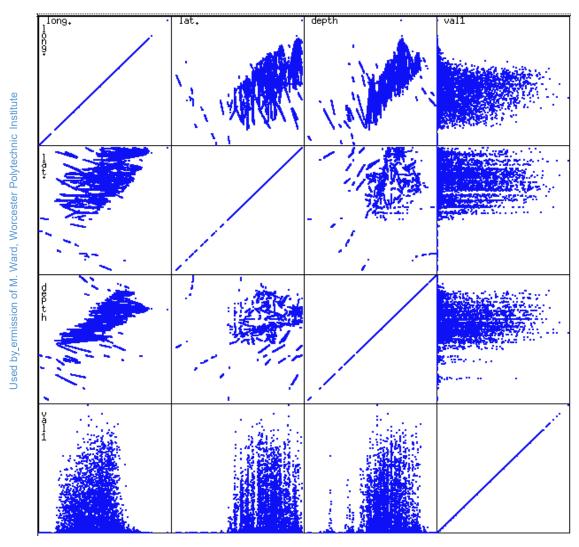
- 804,414 newswire stories
- 2000 commonest word stems





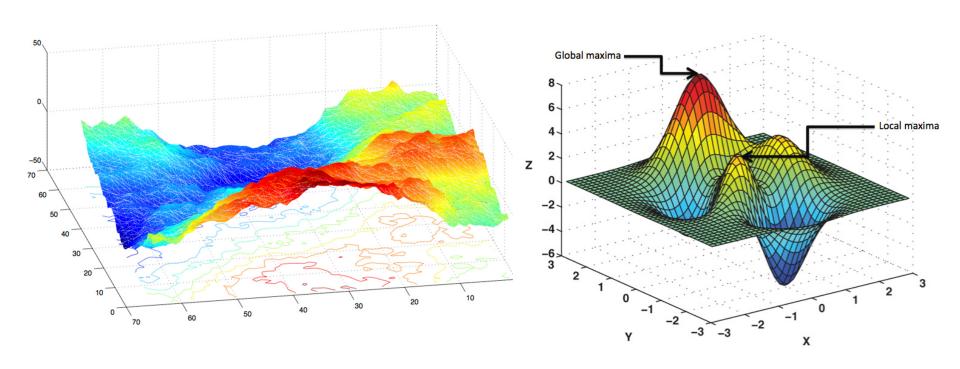
- (A) The codes produced by twodimensional latent semantic analysis (LSA).
- (B) The codes produced by a 2000-500-250-125-2 autoencoder. (a deep learning model).

Scatterplot Matrices



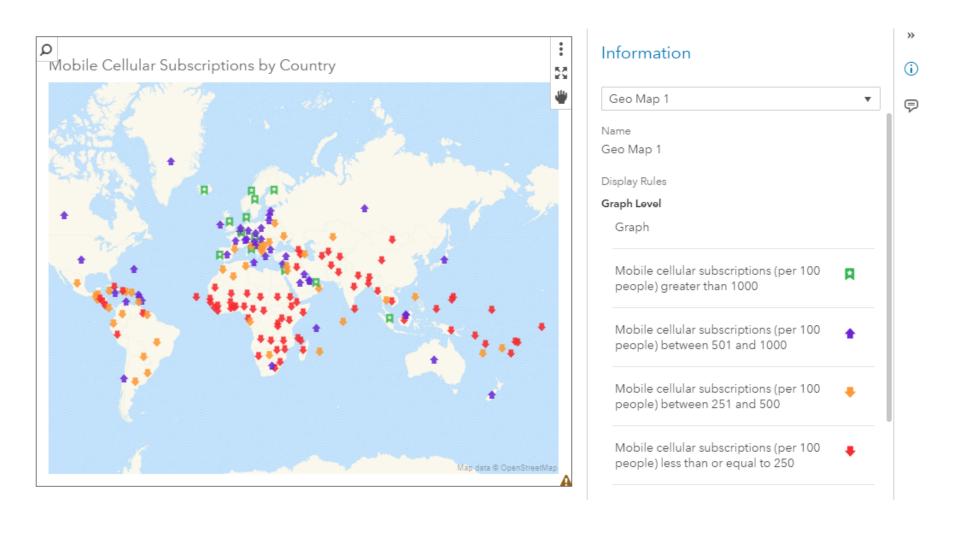
Matrix of scatterplots (x-y-diagrams) of the k-dimensional data

Landscapes



- Visualization of the data as perspective landscape
- The data needs to be transformed into a (possibly artificial) 2D spatial representation which preserves the characteristics of the data

Icon based Visualization



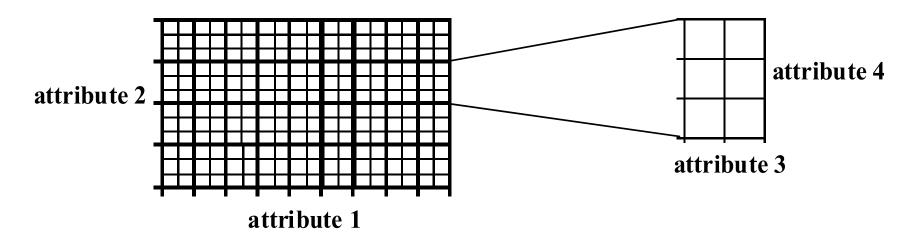
Hierarchical Visualization Techniques

Visualization of the data using a hierarchical partitioning into subspaces

Methods

- Dimensional Stacking
- Worlds-within-Worlds
- Tree-Map
- Cone Trees
- InfoCube

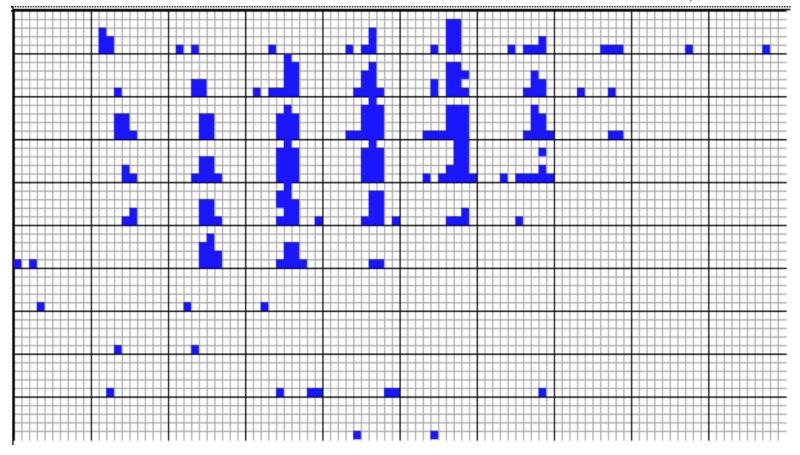
Dimensional Stacking



- Partitioning of the *n*-dimensional attribute space in 2-D subspaces, which are 'stacked' into each other
- Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.
- Adequate for data with ordinal attributes of low cardinality
- But, difficult to display more than nine dimensions
- Important to map dimensions appropriately

Dimensional Stacking

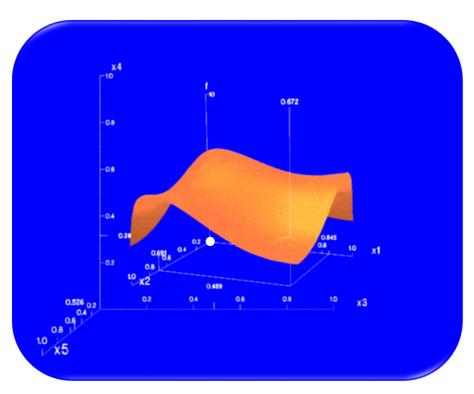
M. Ward, Worcester Polytechnic Institute



• Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Worlds-within-Worlds Visualization

- Assign the function and two most important parameters to innermost world
- Fix all other parameters at constant values draw other (1 or 2 or 3 dimensional worlds choosing these as the axes)
- Software that uses this paradigm
 - N-vision: Dynamic interaction through data glove and stereo displays, including rotation, scaling (inner) and translation (inner/outer)
 - Auto Visual: Static interaction by means of queries

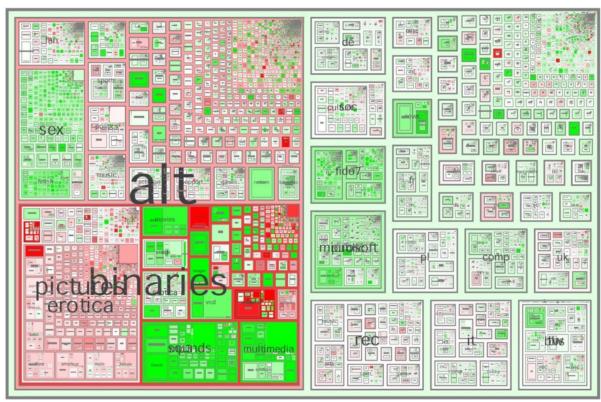


Tree-Map

http://www.cs.umd.edu/hcil/treemap-history/

- Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values
- The x- and y-dimension of the screen are partitioned alternately according to the attribute values (classes)

MSR Netscan Image



Visualizing Complex Data and Relations

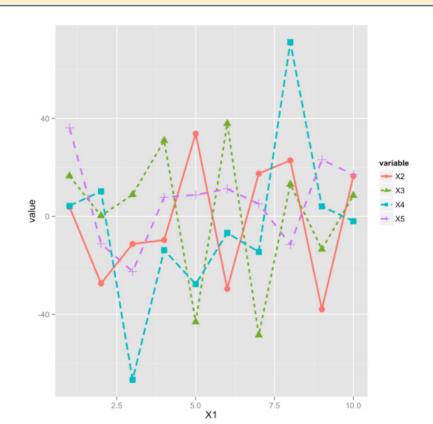
- Visualizing non-numerical data: text and social networks
- Tag cloud: visualizing user-generated tags

Google News output

- The importance of tag is represented by font size/color
- Besides text data, there are also methods to visualize relationships, such as visualizing social networks

ggplot2 Data Visualization Code

```
ggplot(data, aes(x=X1, y=value, color=variable)) +
  geom_line(aes(linetype=variable), size=1) +
  geom_point(aes(shape=variable, size=4))
```



When a data scientist draws a plot, she just needs to differ the lines (color, line type) and points (color, shape) by a certain categorical variable instead of specifying particular style to each line and point.

http://ggplot2.tidyverse.org/

Content

Data Instances, Attributes and Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes
 - Row: objects
 - Column: attributes

Dissimilarity matrix

- *n* data points, but registers only the distance
- A triangular matrix
- Single mode
- Similarity

$$sim(i,j) = 1 - d(i,j)$$

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots & \ddots \\ d(n,1) & d(n,2) & \cdots & \cdots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- Nominal attributes can take 2 or more states
 - e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

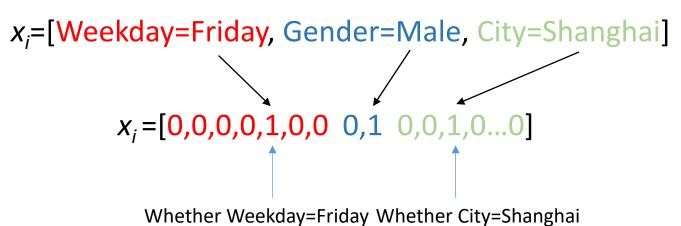
 x_1 =[Weekday=Friday, Gender=Male, City=Shanghai]

 x_2 =[Weekday=Friday, Gender=Female, City=Shanghai]

$$d(1,2) = \frac{3-2}{3} = \frac{1}{3}$$

One-Hot Encoding for Nominal Attributes

 One-hot encoding: creating a new binary attribute for each of the p nominal states



- As such, we transform the nominal data instances into binary vectors, which can be fed into various functions
 - High dimensional sparse binary feature vector
 - Usually higher than 1M dimensions, even 1B dimensions
 - Extremely sparse

Proximity Measure for Binary Attributes

 A contingency table for binary data

Object
$$i$$
 $egin{array}{c|cccc} & 1 & 0 & \mathrm{sum} \\ \hline 1 & q & r & q+r \\ 0 & s & t & s+t \\ \mathrm{sum} & q+s & r+t & p \\ \hline \end{array}$

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Object *i*

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

Note: Jaccard coefficient is the same as "coherence":

$$\operatorname{coherence}(i,j) = \frac{\sup(i,j)}{\sup(i) + \sup(j) - \sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Dissimilarity between Binary Variables

Example data

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	N	N
Mary	F	Υ	N	Р	N	Р	N
Jim	М	Υ	Р	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$d(\text{Jack}, \text{Mary}) = \frac{0+1}{2+0+1} = 0.33$$
 Object j
$$d(\text{Jack}, \text{Jim}) = \frac{1+1}{1+1+1} = 0.67$$
 Object i Object j
$$0 = \frac{1}{1} + \frac{1}{1+1} = 0.67$$
 Object i Object j
$$0 = \frac{1}{1} + \frac{1}{1+1} = 0.67$$
 Object j Object j

Standardizing Numeric Data

Numeric data examples

$$x_1$$
=[1.2, 3.5, 1.1, 2.7, 123.9]
 x_2 =[2.0, 1.5, 1.3, 3.1, 145.1]

This dimension may dominate the proximity calculation

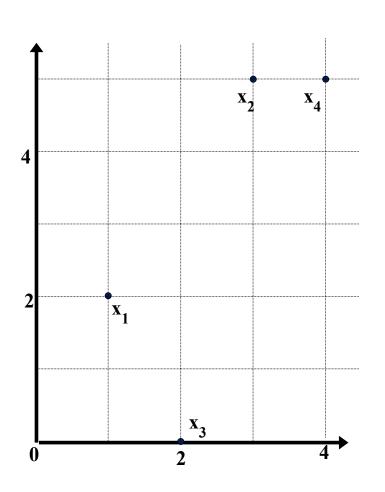
Z-score: perform normalization for each dimension

$$z = \frac{x - \mu}{\sigma}$$

- x: raw score to be standardized, μ : mean of the population, σ : standard deviation
- The distance between the raw score and the population mean in units of the standard deviation
- Negative when the raw score is below the mean, positive when above

Example:

Data Matrix and Dissimilarity Matrix



Data Matrix

point	attribute 1	attribute 2
$\overline{x_1}$	1	2
x_2	3	5
x_3	2	0
x_4	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	x_1	x_2	x_3	x_4
x_1	0			
x_2	3.61	0		
x_3	0 3.61 2.24 4.24	5.1	0	
x_4	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$x_{i} = (x_{i1}, x_{i2}, \dots, x_{ip})$$

$$x_{j} = (x_{j1}, x_{j2}, \dots, x_{jp})$$

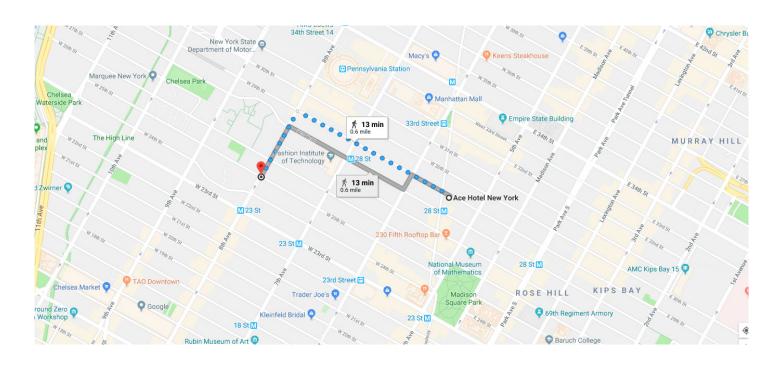
$$d(i, j) = (|x_{i1} - x_{j1}|^{h} + |x_{i2} - x_{j2}|^{h} + \dots + |x_{ip} - x_{jp}|^{h})^{\frac{1}{h}}$$

- h is the order (the distance so defined is also called L-h norm)
- Properties
 - Positive definiteness: d(i, j) > 0 if $i \neq j$, and d(i, i) = 0
 - Symmetry: d(i, j) = d(j, i)
 - Triangle Inequality: $d(i, j) \le d(i, k) + d(k, j)$
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L_1 norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$



Special Cases of Minkowski Distance

• h = 2: Euclidean (L₂ norm) distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2}$$

- $h \rightarrow \infty$: Supremum (L_{max} norm) distance
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

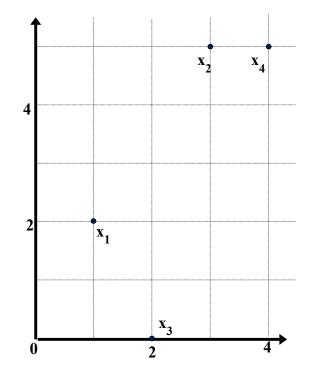
Example:

Minkowski Distances

Data Matrix

Dissimilarity Matrices

point	attribute 1	attribute 2			$\mid x_1 \mid$	x_2	x_3	x_4
$\overline{x_1}$	1	$\overline{2}$		$\overline{x_1}$	0			
x_2	3	5	Mahantan (L₁)	x_2	5	0		
x_3	2	0	\ 1 /	x_3	3	6	0	
x_4	4	5		x_4	6	1	7	0



Euclidean (L₂)

	x_1	x_2	x_3	x_4
x_1	0			
x_2	3.61	0		
x_3	2.24	5.1	0	
x_4	$egin{array}{c} 0 \\ 3.61 \\ 2.24 \\ 4.24 \\ \end{array}$	1	5.39	0

Supremum (L_{max})

	$\mid x_1 \mid$	x_2	x_3	x_4
$\overline{x_1}$	0			
x_2	3	0		
x_3	2	5	0	
$x_3 \ x_4$	3	1	5	0

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	Loss	Season
d1	5	0	3	0	2	0	0	2	0	0
d2	3	0	2	0	1	1	0	1	0	1
d3	0	7	0	2	1	0	0	3	0	0
d4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$\cos(d_1, d_2) = (d_1 \cdot d_2) / (\|d_1\| \cdot \|d_2\|)$$

where \cdot indicates vector dot product, $\|d\|$ is the length of vector d

Example: Cosine Similarity

Document	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	Loss	Season
d1	5	0	3	0	2	0	0	2	0	0
d2	3	0	2	0	1	1	0	1	0	1
d3	0	7	0	2	1	0	0	3	0	0
d4	0	1	0	0	1	2	2	0	3	0

$$\cos(d_1, d_2) = (d_1 \cdot d_2) / (\|d_1\| \cdot \|d_2\|)$$

• Ex: Find the similarity between documents 1 and 2.

$$d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_1 \cdot d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

$$||d_1|| = (5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0)^{0.5} = 42^{0.5} = 6.48$$

$$||d_2|| = (3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1)^{0.5} = 17^{0.5} = 4.12$$

$$\cos(d_1, d_2) = 0.94$$

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace \mathbf{x}_{if} by their rank $r_{if} \in \{1, \dots, M_f\}$
 - map the range of each variable onto [0, 1] by replacing
 i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- compute the dissimilarity using methods for intervalscaled variables
- Note: this is just a trivial solution

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
 - Different fields may bring different level of importance
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal
 - $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise
- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Summary

- Data attribute types: nominal, binary, ordinal, intervalscaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.