2019 EE448, Big Data Mining, Lecture 10

Recommender Systems

Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net

http://wnzhang.net/teaching/ee448/index.html

Content of This Course

- Overview of personalized recommendation
- Collaborative filtering
- Rating prediction
- Top-N ranking

A Data Mining Application: Recommendation

Overview

Collaborative Filtering

Rating prediction

Top-N ranking

Sincerely thank Prof. Jun Wang

Book Recommendation

See this image

Deep Learning (Adaptive Computation and Machine Learning series) Hardcover – November 18, 2016

by Ian Goodfellow

(Author), Yoshua Bengio
(Author), Aaron Courville
(Author)

★★★★★ 46 customer reviews

#1 Best Seller (in Artificial Intelligence & Semantics

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge Read more

Customers Who Bought This Item Also Bought

Fundamentals of Machine Learning for Predictive Data Analytics:... > John D. Kelleher 22 Hardcover \$76.00 *Prime*

Python Machine Learning > Sebastian Raschka ★★★★☆ 98 #1 Best Seller (in Paperback

Computer Neural Networks \$40,49 *Prime*

Pattern Recognition and Machine Learning (Information Science and... Christopher M. Bishop Hardcover \$63.68 *Prime*

The Elements of Statistical Learning: Data Mining. Inference, and... Trevor Hastie ★★★★☆☆ 92 #1 Best Seller (in Bioinformatics Hardcover

\$73.18 **/***Prime*

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques... › Aurélien Géron Paperback \$28.56 *Prime*

News Feed Recommendation

Huge numbers of candidate articles daily

Quality articles selected for news feed to end users

Personalized Recommendation

Personalization framework

Build user profile from her history

- Ratings [amazon.com]
 - Explicit, but time-consuming
- Visits [newsfeed]
 - Implicit

Personalization Methodologies

- Given the user's previous liked movies, how to recommend more movies she would like?
 - Method 1: recommend the movies that share the actors/actresses/director/genre with those the user likes
 - Method 2: recommend the movies that the users with similar interest to her like

Information Filtering

- Information filtering deals with the delivery of information that the user is likely to find interesting or useful
 - Recommender system: information filtering in the form of suggestions
 - Two approaches for information filtering
 - Content-based filtering
 - recommend the movies that share the actors/actresses/director/genre with those the user likes
 - Collaborative filtering (the focus of this lecture)
 - recommend the movies that the users with similar interest to her like

http://recommender-systems.org/information-filtering/

A (small) Rating Matrix

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	***	****	****			*****		
Dave		****	****	****				******
Will					****	****	***	****
George	****	****	****	****				****

The Users

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	****	****	****			*****		
Dave		****	****	****				******
Will					****	****		
George	****	****	****	****				**

The Items

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diarv	Love Actually
Boris	****	★★★★ ★	****					
Dave		****	****	****				******
Will					****	****		
George	****	****	xokoko k⊂	****				**

A User-Item Rating

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	***	*****	****			*****		
Dave 🗲		*****	****	****				******
Will					****	****		****
George	****	****	****	****				*****

A User Profile

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	***	****	****					
Dave 🗲		*****	*****	*****				*******
Will					****	****	***	****
George	****	****	****	****				***

An Item Profile

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	****	*****	****			*****		
Dave		****	****	****				******
Will					****	****		
George	****	****	****	★★★★ ★				

A Null Rating Entry

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris 🔶								
Bons	AAAAA	AAAAA				Annan		
Dave		****	****	****				****
Will					****	****		****
George	****	****	****	****				

- Recommendation on explicit data
 - Predict the null ratings

If I watched *Love* Actually, how would I rate it?

K Nearest Neighbor Algorithm (KNN)

- A non-parametric method used for classification and regression
 - for each input instance x, find k closest training instances N_k(x) in the feature space
 - the prediction of x is based on the average of labels of the k instances

$$\hat{y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

• For classification problem, it is the majority voting among neighbors

kNN Example

kNN Example

Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie. "The Elements of Statistical Learning". Springer 2009.

K Nearest Neighbor Algorithm (KNN)

- Generalized version
 - Define similarity function s(x, x_i) between the input instance x and its neighbor x_i

• Then the prediction is based on the weighted average of the neighbor labels based on the similarities

$$\hat{y}(x) = \frac{\sum_{x_i \in N_k(x)} s(x, x_i) y_i}{\sum_{x_i \in N_k(x)} s(x, x_i)}$$

Non-Parametric kNN

- No parameter to learn
 - In fact, there are *N* parameters: each instance is a parameter
 - There are *N*/*k* effective parameters
 - Intuition: if the neighborhoods are non-overlapping, there would be N/k neighborhoods, each of which fits one parameter
- Hyperparameter k
 - We cannot use sum-of-squared error on the training set as a criterion for picking k, since k=1 is always the best
 - Tune k on validation set

A Null Rating Entry

- Recommendation on explicit data
 - Predict the null ratings

If I watched *Love Actually*, how would I rate it?

Collaborative Filtering Example

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually	
Boris		*****	*****					?	•
Dave		****	*****	*****					
Will					****	****	***	****	
George	***	****	****	****				******	

• What do you think the rating would be?

User-based kNN Solution

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually	
Boris	***	*****	****					?	┫
Dave		****	*****	****					
Will					****	****		****	
George	****	*****	****	****				******	

- Find similar users (neighbors) for Boris
 - Dave and George

Rating Prediction

- Average Dave's and George's rating on Love Actually
 - Prediction = (1+2)/2 = 1.5

Collaborative Filtering for Recommendation

- Basic user-based kNN algorithm
 - For each target user for recommendation
 - 1. Find similar users
 - 2. Based on similar users, recommend new items

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually	
Boris		****	****						
Dave		****	****	****				*****	
Will					****	****		****	
George	****	****	*****	****				7444 **	

Similarity between Users

 Each user's profile can be directly built as a vector based on her item ratings

Similarity between Users

Similarity between Users

Similarity Measures (Users)

- Similarity measures between two users a and b
 - Cosine (angle)

$$s_u^{\cos}(u_a, u_b) = \frac{u_a^{\top} u_b}{\|u_a\| \|u_b\|} = \frac{\sum_m x_{a,m} x_{b,m}}{\sqrt{\sum_m x_{a,m}^2 \sum_m x_{b,m}^2}}$$

Pearson Correlation

$$s_u^{\text{corr}}(u_a, u_b) = \frac{\sum_m (x_{a,m} - \bar{x}_a)(x_{b,m} - \bar{x}_b)}{\sqrt{\sum_m (x_{a,m} - \bar{x}_a)^2 \sum_m (x_{b,m} - \bar{x}_b)^2}}$$

User-based kNN Rating Prediction

• Predicting the rating from target user *t* to item *m*

Item-based kNN Solution

• Recommendation based on item similarity

Item-based kNN Solution

- For each unrated items *m* of the target user *t*
 - Find similar items {*a*}
 - Based on the set of similar items {*a*}
 - Predict the rating of the item *m*

Similarity Measures (Items)

- Similarity measures between two items a and b
 - Cosine (angle)

$$s_i^{\cos}(i_a, i_b) = \frac{i_a^{\top} i_b}{\|i_a\| \|i_b\|} = \frac{\sum_u x_{u,a} x_{u,b}}{\sqrt{\sum_u x_{u,a}^2 \sum_u x_{u,b}^2}}$$

• Adjusted Cosine

$$s_i^{\text{adcos}}(i_a, i_b) = \frac{\sum_u (x_{u,a} - \bar{x}_u)(x_{u,b} - \bar{x}_u)}{\sqrt{\sum_u (x_{u,a} - \bar{x}_u)^2 \sum_u (x_{u,b} - \bar{x}_u)^2}}$$

• Pearson Correlation

$$s_i^{\text{corr}}(i_a, i_b) = \frac{\sum_u (x_{u,a} - \bar{x}_a)(x_{u,b} - \bar{x}_b)}{\sqrt{\sum_u (x_{u,a} - \bar{x}_a)^2 \sum_u (x_{u,b} - \bar{x}_b)^2}}$$

Item-based kNN Rating Prediction

• Get top-k neighbor items that the target user t rated

Rank position

$$V_i(u_t, i_a) = \{i_b | r_i(i_a, i_b) < K^*, x_{t,b} \neq 0\}$$

$$V_i(u_t, i_a) = \{i_b | r_i(i_a, i_b) < K^* \text{ such that } |N_i(u_t, i_a)| = k$$

• Predict ratings for item *a* that the target user *t* did not rate

$$\hat{x}_{t,a} = \frac{\sum_{i_b \in N_i(u_t, i_a)} s_i(i_a, i_b) x_{t,b}}{\sum_{i_b \in N_i(u_t, i_a)} s_i(i_a, i_b)}$$
Don't need to correct for users average rating since query user itself is used to do predictions

Empirical Study

- Movielens dataset from grouplens
 - http://www.grouplens.org/node/73
 - Users visit Movielens
 - rate and receive recommendations for movies
 - Dataset (ML-100k)
 - 100k ratings from 1 to 5
 - 943 users, 1682 movies (rated by at least one user)
 - Sparsity level

$$1 - \frac{\text{\#non-zero entries}}{\text{total entries}} = 1 - \frac{10^5}{943 \times 1682} = 93.69\%$$

Experiment Setup

- Split data in training (x%) and test set ((100-x)%)
 - Can be repeated *T* times and results averaged
- Evaluation metrics
 - Mean-Absolute Error (MAE)

$$MAE = \frac{1}{|D_{test}|} \sum_{(u,i,r)\in D_{test}} |r - \hat{r}_{u,i}|$$

• Root Mean Squared Error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{|D_{\text{test}}|} \sum_{(u,i,r)\in D_{\text{test}}} (r - \hat{r}_{u,i})^2}$$
Impact of Similarity Measures

Relative performance of different similarity measures

Sensitivity of Train/Test Ratio

Sensitivity of the parameter x

Sensitivity Neighborhood Size k

Sensitivity of the Neighborhood Size

Item-based vs. User-based

Item-item vs. User-user at Selected Neighborhood Sizes (at x=0.8)

• Item-item similarity is usually more stable and objective

kNN based Methods Summary

- Straightforward and highly explainable
- No parameter learning
 - Only one hyperparameter k to tune
 - Cannot get improved by learning
- Efficiency could be a serious problem
 - When the user/item numbers are large
 - When there are a huge number of user-item ratings
- We may need a parametric and learnable model

Matrix Factorization Techniques

	Die Hard	Mission: Impossible	GoldenEye	Casino Royale	Titanic	Notting Hill	Bridget Jones's Diary	Love Actually
Boris	****	****	*****			*****		
Dave		****	****	****				******
Will					*****	****	***	****
George	****	****	****	****				*****

 \sim

Matrix Factorization Techniques

$$\hat{r}_{u,i} = p_u^\top q_i$$

i Items

				_
	.1	4	.2	
u	5	.6	.5	
	2	.3	.5	
Users	1.1	2.1	.3	
	7	2.1	-2	
	-1	.7	.3	

٠

 \sim

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

Basic MF Model

• Prediction of user *u*'s rating on item *i*

• Loss function

$$\mathcal{L}(u, i, r_{u,i}) = \frac{1}{2} (r_{u,i} - p_u^\top q_i)^2$$

• Training objective

$$\min_{P,Q} \sum_{r_{u,i} \in D} \frac{1}{2} (r_{u,i} - p_u^\top q_i)^2 + \frac{\lambda}{2} (\|p_u\|^2 + \|q_i\|^2)$$

• Gradients

$$\frac{\partial \mathcal{L}(u, i, r_{u,i})}{\partial p_u} = (p_u^\top q_i - r_{u,i})q_i + \lambda p_u$$

$$\frac{\partial \mathcal{L}(u, i, r_{u,i})}{\partial q_i} = (p_u^\top q_i - r_{u,i})p_u + \lambda q_i$$

MF with Biases

• Prediction of user *u*'s rating on item *i*

$$\hat{r}_{u,i} = \mu + b_u + b_i + p_u^\top q_i$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$
Global User Item User-item bias bias bias Interaction

• Training objective

$$\min_{P,Q} \sum_{r_{u,i} \in D} \frac{1}{2} \Big(r_{u,i} - (\mu + b_u + b_i + p_u^\top q_i) \Big)^2 + \frac{\lambda}{2} (\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2)$$

• Gradient update

$$egin{aligned} \delta &= r_{u,i} - (\mu + b_u + b_i + p_u^{ op} q_i \ \mu &\leftarrow \mu + \eta \delta \ b_u &\leftarrow (1 - \eta \lambda) b_u + \eta \delta \ b_i &\leftarrow (1 - \eta \lambda) b_i + \eta \delta \ p_u &\leftarrow (1 - \eta \lambda) p_u + \eta \delta q_i \ q_i &\leftarrow (1 - \eta \lambda) q_i + \eta \delta p_u \end{aligned}$$

Temporal Dynamics

• A sudden rise in the average movie rating begging around 1500 days (early 2004) into the dataset

Koren, Yehuda. "Collaborative filtering with temporal dynamics." KDD 2009.

Temporal Dynamics

• People tend to give higher ratings as movies become older

Koren, Yehuda. "Collaborative filtering with temporal dynamics." KDD 2009.

Multiple sources of temporal dynamics

- Item-side effects
 - Product perception and popularity are constantly changing
 - Seasonal patterns influence items' popularity
- User-side effects
 - Customers ever redefine their taste
 - Transient, short-term bias
 - Drifting rating scale
 - Change of rater within household

Addressing temporal dynamics

- Factor model conveniently allows separately treating different aspects
- We observe changes in:
 - Rating scale of individual users $b_u(t)$
 - Popularity of individual items $b_i(t)$
 - User preferences $p_u(t)$

$$r_{u,i}(t) = \mu + b_u(t) + b_i(t) + p_u(t)^{\top} q_i$$

- Design guidelines
 - Items show slower temporal changes
 - Users exhibit frequent and sudden changes
 - Factors $p_u(t)$ are expensive to model
 - Gain flexibility by heavily parameterizing the functions

Neighborhood (Similarity)-based MF

- Assumption: user's previous consumed items reflect her taste
- Derive unknown ratings from those of "similar" items (item-item variant)

Neighborhood based MF modeling: SVD++

- Each item has two latent vectors
 - The standard item vector q_i
 - The vector y_i when it is used for estimation the similarity between the candidate item and the target user

Koren, Yehuda. "Factorization meets the neighborhood: a multifaceted collaborative filtering model." KDD, 2008.

Netflix Prize

- An open competition for the best collaborative filtering algorithm for movies
 - Began on October 2, 2006.
 - A million-dollar challenge to improve the accuracy (RMSE) of the Netflix recommendation algorithm by 10%
- Netflix provided
 - Training data: 100,480,507 ratings:
 - 480,189 users x 17,770 movies.
 - Format: <user, movie, date, rating>
- Two popular approaches:
 - Matrix factorization
 - Neighborhood

	Global average: 1.1296	erroneous
Find better items	User average: 1.0651	
	Movie average: 1.0533	
Personalization ++++++++	Cinematch: 0.9514; baseline	
"Algorithmics" ↓↓↓↓↓↓↓↓↓	Static neighborhood: 0.9002	i
	Static factorization: 0.8911	
Time effects	Dynamic neighborhood: 0.8885	
++++++++	Dynamic factorization: 0.8794	accurate
	 Grand Prize: 0.8563; 10% improvement	

Temporal neighborhood model delivers same relative RMSE improvement (0.0117) as temporal factor model (!)

IX

AMOUNT ONE MILLION Read Hastings

20.19) Asymmetric Factor MOU

The Netflix Prize

68. mst 0.940

X

2009

DATE 09.21 09

Feature-based Matrix Factorization

$$\hat{y} = \mu + \left(\sum_{j} b_{j}^{(g)} \gamma_{j} + \sum_{j} b_{j}^{(u)} \alpha_{j} + \sum_{j} b_{j}^{(i)} \beta_{j}\right) + \left(\sum_{j} p_{j} \alpha_{j}\right)^{\top} \left(\sum_{j} q_{j} \beta_{j}\right)$$

- Regard all information as features
 - User id and item id
 - Time, item category, user demographics etc.
- User and item features are with latent factors

T. Chen et al. Feature-based matrix factorization. arXiv:1109.2271 <u>http://svdfeature.apexlab.org/wiki/images/7/76/APEX-TR-2011-07-11.pdf</u> Open source: <u>http://svdfeature.apexlab.org/wiki/Main_Page</u>

Factorization Machine

$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

- One-hot encoding for each discrete (categorical) field
- One real-value feature for each continuous field
- All features are with latent factors
- A more general regression model

Steffen Rendle. Factorization Machines. ICDM 2010 <u>http://www.ismll.uni-hildesheim.de/pub/pdfs/Rendle2010FM.pdf</u> Open source: <u>http://www.libfm.org/</u>

Beyond Rating Prediction

LambdaRank CF

Recommendation is always rendered by ranking

1 Best Seller (in Artificial Intelli	Jence & Semantics		
See all formats and editions			
Hardcover			
\$64.00			
11 Used from \$80.12			
15 New from \$64.00			
	College student?		
Prime student	FREE shipping and exclusive deals	Learn more .	

Deep Learning (Adaptive Computation and Machine Learning series) Hardcover - November 18, 2016

Elon Musk, cochair of OpenAl; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge Read more

Customers Who Bought This Item Also Bought

Fundamentals of Machine Learning for Predictive Data Analytics:.. > John D. Kelleher Hardcover \$76.00 *Prime*

Python Machine Learning > Sebastian Raschka **★★★★**☆ 98 #1 Best Seller (in Computer Neural Networks Hardcover Paperback \$40,49 *Prime* \$63.68 *Prime*

Pattern Recognition and Machine Learning (Information Science and.. Christopher M. Bishop ★★★★☆ 132

#1 Best Seller (in

\$73.18 *Prime*

The Elements of

Learning: Data Mining,

Inference, and ..

★★★★☆ 92

Trevor Hastie

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques. > Aurélien Géron Paperback \$28.56 *Prime*

Up How Lots Of Progressives Feel About Trudeau's Win 🛔 Ishmael N. Daro 💿 20 hours ago

Justin Trudeau Is Canada's New Prime Minister After A Stunning Majority Election Win A Paul McLeod () a day ago

See this image

Rating Prediction vs. Ranking

 Rating prediction may not be a good objective for top-N recommendation (i.e. item ranking)

Same RMSE/MAE might lead to different rankings

Learning to Rank in Collaborative Filtering

- Previous work on rating prediction can be regarded as pointwise approaches in CF
 - MF, FM, kNN, MF with temporal dynamics and neighborhood information etc.
- Pairwise approaches in CF
 - Bayesian personalized ranking (BPR)
- Listwise approaches in CF
 - LambdaRank CF, LambdaFM

Implicit Feedback Data

- No explicit preference, e.g. rating, shown in the user-item interaction
 - Only clicks, share, comments etc.

Bayesian Personalized Ranking (BPR)

• Basic latent factor model (MF) for scoring

$$\hat{r}_{u,i} = \mu + b_u + b_i + p_u^\top q_i$$

• The (implicit feedback) training data for each user *u*

Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." UAI, 2009.

Bayesian Personalized Ranking (BPR)

• Loss function on the ranking prediction of <*i*,*j*>_{*u*}

$$\mathcal{L}(\langle i,j\rangle_u) = z_u \cdot \frac{1}{1 + \exp(\hat{r}_{u,i} - \hat{r}_{u,j})}$$

$$\uparrow \qquad \uparrow$$
Normalizer Inverse logistic loss

Gradient

$$\frac{\partial \mathcal{L}(\langle i,j \rangle_{u})}{\partial \theta} = \frac{\partial \mathcal{L}(\langle i,j \rangle_{u})}{\partial (\hat{r}_{u,i} - \hat{r}_{u,j})} \frac{\partial (\hat{r}_{u,i} - \hat{r}_{u,j})}{\partial \theta}$$
$$\equiv \lambda_{i,j} \left(\frac{\partial \hat{r}_{u,i}}{\partial \theta} - \frac{\partial \hat{r}_{u,j}}{\partial \theta} \right)$$

Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." UAI, 2009.

LambdaRank CF

• Use the idea of LambdaRank to optimize ranking performance in recommendation tasks

Recommendation vs. Web Search

- Difference between them
 - Recommender system should rank all the items
 - Usually more than 10k
 - Search engine only ranks a small subset of retrieved documents
 - Usually fewer than 1k
- For each training iteration, LambdaRank needs the model to rank all the items to get ΔNDCG_{i,j}, super large complexity

LambdaRank CF Solution

 Idea: to generate the item pairs with the probability proportional to their lambda

$$\frac{\partial \mathcal{L}(\langle i, j \rangle_u)}{\partial \theta} = f(\lambda_{i,j}, \zeta_u) \left(\frac{\partial \hat{r}_{u,i}}{\partial \theta} - \frac{\partial \hat{r}_{u,j}}{\partial \theta} \right)$$
$$f(\lambda_{i,j}, \zeta_u) \equiv \lambda_{i,j} \Delta NDCG_{i,j}$$
$$p_j \propto f(\lambda_{i,j}, \zeta_u) / \lambda_{i,j}$$

- $x_i \in [0,1]$ is the relative ranking position
 - 0 means ranking at top, 1 means ranking at tail

Different Sampling Methods

• For each positive item, find 2 candidate items, then choose the one with higher prediction score as the negative item.

Zhang, Weinan, et al. "Optimizing top-n collaborative filtering via dynamic negative item sampling." SIGIR, 2013.

Different Sampling Methods

• For each positive item, find **3** candidate items, then choose the one with the **highest** prediction score as the negative item.

Zhang, Weinan, et al. "Optimizing top-n collaborative filtering via dynamic negative item sampling." SIGIR, 2013.

Different Sampling Methods

 For each positive item, find k candidate items, then choose the one with the highest prediction score as the negative item.

Experiments on Top-N Recommendation

• Top-N recommendation on 3 datasets

Dataset	Netflix	Yahoo! Music	Last.fm
Users	480,189	1,000,990	992
Items	17,770	$624,\!961$	$961,\!417$
Ratings	$100,\!480,\!507$	$262,\!810,\!175$	$19,\!150,\!868$

• **Performance** (DNS is our LambdaCF algorithm)

Netflix								
	P@5	P@10	NDCG@5	NDCG@10	MAP			
BPR	0.3826	0.3272	0.2052	0.2017	0.1403			
DNS	0.4708	0.4012	0.2906	0.2887	0.2036			
Impv.	$23.1\%^{*}$	$22.6\%^{*}$	$41.6\%^*$	$43.1\%^{*}$	$45.1\%^{*}$			
	Yahoo! Music							
	P@5	P@10	NDCG@5	NDCG@10	MAP			
BPR	0.1588	0.1359	0.1683	0.1481	0.0615			
DNS	0.4243	0.3671	0.4458	0.3981	0.1644			
Impv.	$167.2\%^{*}$	$170.1\%^*$	$164.9\%^{*}$	$168.8\%^{*}$	$167.3\%^{*}$			
ак		I	Last.fm					
	P@5	P@10	NDCG@5	NDCG@10	MAP			
BPR	0.1231	0.1168	0.1270	0.1207	0.0221			
DNS	0.1323	0.1202	0.1355	0.1250	0.0223			
Impv.	$7.5\%^{*}$	2.9%	$6.7\%^{*}$	3.6%	0.9%			

More Empirical Results

 NDCG performance against polynomial degrees on Yahoo! Music and Last.fm datasets

More Empirical Results

Performance convergence against training time on Netflix.