Self Introduction – Weinan Zhang

• Position
 • Assistant Professor at CS Dept. of SJTU 2016-now
 • Apex Data and Knowledge Management Lab
 • John Hopcroft Research Center for Computer Science
 • Research on machine learning and data mining topics

• Education
 • Ph.D. on Computer Science from University College London (UCL), United Kingdom, 2012-2016
 • B.Eng. on Computer Science from ACM Class 07 of Shanghai Jiao Tong University, China, 2007-2011
Course Administration

• No official text book for this course, some recommended books are

 • Jiawei Han, Micheline Kamber, Jian Pei. “Data Mining: Concepts and Techniques, 3rd Edition”. Morgan Kaufmann Series, 2011.
 • 范明，孟小峰 译《数据挖掘 概念与技术》机械工业出版社，2012.
 • 俞勇等 译《Web数据挖掘》清华大学出版社，2012.
 • 李航《统计学习方法》清华大学出版社，2012.
 • 周志华《机器学习》清华大学出版社，2016.
Course Administration

• A hands-on big data mining course
 • No assignment, no final exam

 • Two course works (80%)
 • Text Classification (40%)
 • Recommendation (40%)

 • Poster session (10%)

 • Attending (10%)
 • Could be evaluated by quiz
Teaching Assistants

- Haiwen Wang (王海文)
 - Email: wanghaiwencn[A.T.]foxmail.com
 - 2018 Ph.D student at IIoT
 - Research on data mining, graph deep learning

- Zhaorun Han (撖朝润)
 - Email: hanzhaorun [A.T.] sjtu.edu.cn
 - 2018 M.S. student at IIoT
 - Research on big data analysis
TA Administration

• Join the mail list
 • Please send your
 • Chinese name
 • Student number
 • Email address
to wangh aiwencn [A.T.] foxmail.com
with email title “Check in EE448 2019”

• Office hour
 • Every Monday 7-8pm, 1-432 SEIEE Building
 • TAs will be there for QA
Goals of This Course

• Know about the big picture of data science

• Get familiar with popular data mining methodologies
 • Data representations
 • Problem formulation
 • Machine learning & data mining algorithms
 • Experimental methodologies

• Get some first-hand DM developing experiences

• Present your own DM solutions to real-world problems
Why we focus on hands-on DM

- Get familiar with various data mining applications.
- Play with the data and get your hands dirty!
Course Landscape

1. Data Mining Intro
2. Fundamentals of Data
3. Basic DM Algorithms
4. Supervised Learning 1
5. Supervised Learning 2
6. Supervised Learning 3
7. Unsupervised Learning
8. Text Mining
9. Search Engines
10. Ranking Information Items
11. Recommender Systems
12. Computational Ads
13. Behavioral Targeting
14. Knowledge Graphs
15. Social Networks
16. Poster Session
Introduction to Big Data Mining

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/ee448/index.html
Content of This Lecture

• An example as an intro of data mining

• Concepts of data mining

• Real-world examples of data mining
Display Advertising

• A display ad example

How likely the user is going to click the ad?

大陆

河南省公安厅彻查“封丘36人入警35人身份不合规”

• 上海至成都沿江高铁提上日程 串联长江沿线22城市
• 2016号歼-20原型机曝光 已滑行测试(图)
• 日媒：中国或派万吨海警舰巡航钓鱼岛 打消耗战
• 外媒：中国开始研制隐身武装直升机 预计2020年交付
• 习近平关于中美关系的十个判断
• 住建部黑臭水体整治工作指南：9成百姓满意才能达标
• 陕西：职校“校长”让女生陪酒 学校被撤除
• 摄影“团团伙伙”的武器残骸和落马高管

国际

巴塞罗那200万人游行 呼吁加泰罗尼亚独立(图)

• 李总理：收税是不公平的吗？
• 许宏新：超级大国没有纯粹内政
• 刘晓明：国外政党联系群众的路径研究

时局观

民革中央副主席：中共从未否定国民党抗战作用

• 施芝鸿：文革基础上搞改革致一个时期市场黑场乱象
• 朱维群回应争议：尊重民族差异而不同化
• 伊协副会长：穆斯林不应因宗教功修忽视社会责任

领袖圈

奥巴马54岁啦，当7年总统人苍老了头发也白了一点

精彩视频

菲媒曝菲律宾军演针对中国 直指南海生命线
Display Advertising

- Advertiser targets a segment of users
 - E.g. by age, gender, occupation, interest tags etc.

- Intermediary matches users and ads by user information
Internet Advertising Frontier:
Real-Time Bidding (RTB) based Display Advertising

What is Real-Time Bidding?

• Every online ad view can be evaluated, bought, and sold, all individually, and all instantaneously.

• Instead of buying keywords or a bundle of ad views, advertisers are now buying users directly.

An RTB Example

• Weinan regularly reads articles on emarketer.com
An RTB Example

- Weinan recently checked the London hotels on booking.com
An RTB Example

- The day after, he found relevant ads on facebook.com
• A demand-side platform buys ads via real-time bidding (RTB) 10 billion per day
• A data management platform analyzes and maintains the information billions of Internet users
Data Technology as a Service

- The data service (or DaaS) is a cousin of software as a service (SaaS)
 - takes the input of high-quality data request based on raw data
 - returns the requested high-quality data for higher-level (intelligent) applications

A data service example in RTB ads
Content of This Lecture

• An example as an intro of data mining

• Concepts of data mining

• Real-world examples of data mining
The Underlying Data Science

• Data science is the subject concerned with the methodology of discovering the underlying principles and patterns from massive amount of data.

• Physics
 • **Goal**: discover the underlying principle of the world
 • **Solution**: build the model of the world

 \[F = G \frac{m_1 m_2}{r^2} \]

 Example: Newton’s gravity law

• Data Science
 • **Goal**: discover the underlying principle of the data
 • **Solution**: build the model of the data

 \[p(x) = \frac{e^f(x)}{\sum_{x'} e^f(x')} \]

 Example: Energy-based distribution

• In fact, data science could be a more general concept for natural science.
Evolution of Sciences

• Before 1600, empirical science

• 1600-1950s, theoretical science
 • Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding.

• 1950s-1990s, computational science
 • Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 • Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.

• 1990-now, data science
 • The flood of data from new scientific instruments and simulations
 • The ability to economically store and manage petabytes of data online
 • The Internet and computing Grid that makes all these archives universally accessible
 • Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!
Data Science

• A deterministic view
 • For a high-dimensional data \mathbf{x}
 • Find the underlying function
 $$\mathbf{x}_i = f(\mathbf{x}_{\neq i})$$
 for a certain target dimension data \mathbf{x}_i

• A probabilistic view
 • For a high-dimensional data \mathbf{x}
 • Find joint data distribution $p(\mathbf{x})$
 • Then the conditional distribution
 $$p(\mathbf{x}_i | \mathbf{x}_{\neq i})$$
 for a certain target dimension data \mathbf{x}_i
An Example in User Behavior Modeling

<table>
<thead>
<tr>
<th>Interest</th>
<th>Gender</th>
<th>Age</th>
<th>BBC Sports</th>
<th>PubMed</th>
<th>Bloomberg Business</th>
<th>Spotify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>Male</td>
<td>29</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sports</td>
<td>Male</td>
<td>21</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Medicine</td>
<td>Female</td>
<td>32</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Music</td>
<td>Female</td>
<td>25</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Medicine</td>
<td>Male</td>
<td>40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Expensive data

Cheap data

- **A 7-field record data**
 - **3 fields of data that are expensive to obtain**
 - Interest, gender, age collected by user registration information or questionnaires
 - **4 fields of data that are easy or cheap to obtain**
 - Raw data of whether the user has visited a particular website during the last two weeks, as recorded by the website log
An Example in User Behavior Modeling

<table>
<thead>
<tr>
<th>Interest</th>
<th>Gender</th>
<th>Age</th>
<th>BBC Sports</th>
<th>PubMed</th>
<th>Bloomberg Business</th>
<th>Spotify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>Male</td>
<td>29</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sports</td>
<td>Male</td>
<td>21</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Medicine</td>
<td>Female</td>
<td>32</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Medicine</td>
<td>Male</td>
<td>40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Music</td>
<td>Female</td>
<td>25</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Expensive data

Cheap data

- **Deterministic view**: fit a function
 \[\text{Age} = f(\text{Browsing}=\text{BBC Sports, Bloomberg Business}) \]

- **Probabilistic view**: fit a joint data distribution
 \[p(\text{Interest}=\text{Finance, Gender=Male, Age}=29, \text{Browsing}=\text{BBC Sports, Bloomberg Business}) \]

- Then build the conditional data distribution
 \[p(\text{Interest}=\text{Finance} \mid \text{Browsing}=\text{BBC Sports, Bloomberg Business}) \]
 \[p(\text{Gender}=\text{Male} \mid \text{Browsing}=\text{BBC Sports, Bloomberg Business}) \]
Data Technology as a Service

- The data service is just like a data processing factory that
 - collects raw and cheap data
 - supports the higher-level (intelligent) applications with quality data
Data Technology Everywhere

- The data itself is not valuable without the data service!

- How to perform proper and effective mining for the principles, patterns and knowledge from massive amount of data is what we focus in this course.
What is Data Mining?

- Data mining is about the extraction of non-trivial, implicit, previously unknown and potentially useful principles, patterns or knowledge from massive amount of data.

- Data Science is the subject concerned with the scientific methodology to properly, effectively and efficiently perform data mining
 - an interdisciplinary field about scientific methods, processes, and systems
A Typical Data Mining Process

- Data mining plays a key role of enabling and improving the various data services in the world
- Note that the (improved) data services would then change the world data, which would in turn change the data to mine
A Multi-Dimensional View of Data Mining

• Data to be mined
 • Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

• Knowledge to be mined (or data mining functions)
 • Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
 • Descriptive vs. predictive data mining
 • Multiple/integrated functions and mining at multiple levels

• Techniques utilized
 • Data warehouse, machine learning, statistics, pattern recognition, visualization, distributed computing, high-performance, etc.

• Applications adapted
 • Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

More application examples will be provided.
Data Mining Techniques

• Application level
 • Intelligent systems & applications with further feedbacks

• Methodology level
 • Machine learning & statistics techniques based on large amount of formatted data

• System level
 • Scalable systems & architectures for hosting, retrieving and computing big data
Data Mining and Machine Learning

• What is the difference between data mining and machine learning?

• Data mining is about the extraction of non-trivial, implicit, previously unknown and potentially useful principles, patterns or knowledge from massive amount of data.

• Machine learning is the study of algorithms that improves a particular quantitative performance at some task based on data with non-explicit programming.
Programming vs. Machine Learning

• Traditional Programming

 Human Programmer

 Program → Output

• Machine Learning

 Data → Learning Algorithm → Program → Output

Slide credit: Feifei Li
Data Mining and Machine Learning

• What is the difference between data mining and machine learning?
 • They are solving similar tasks with different focuses
 • Data mining focuses on solving the problems
 • Solving a DM problem could involve different methods including ML
 • Machine learning focuses on modeling based on the data
 • An ML model could be applied to various DM tasks
A Brief History of Data Mining Society

• 1989 IJCAI Workshop on Knowledge Discovery in Databases
 • Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
• 1991-1994 Workshops on Knowledge Discovery in Databases
 • Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
• 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)
 • Journal of Data Mining and Knowledge Discovery (1997)
• ACM SIGKDD conferences since 1998 and SIGKDD Explorations
• More conferences on data mining
 • PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
• ACM Transactions on KDD starting in 2007
Conferences and Journals on Data Mining

- **KDD Conferences**
 - ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (**KDD**)
 - SIAM Data Mining Conf. (**SDM**)
 - (IEEE) Int. Conf. on Data Mining (**ICDM**)
 - Int. Conf. on Web Search and Data Mining (**WSDM**)
 - European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (**ECML-PKDD**)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (**PAKDD**)

- **Other related conferences**
 - DB conferences: ACM SIGMOD, VLDB, ICDE, EDBT, ICDT, ...
 - Web and IR conferences: WWW, SIGIR, CIKM
 - ML conferences: ICML, NIPS
 - PR conferences: CVPR

- **Journals**
 - IEEE Trans. On Knowledge and Data Eng. (**TKDE**)
 - KDD Explorations
 - ACM Trans. on KDD (**TKDD**)

Slide credit: Jiawei Han
Content of This Lecture

• An example as an intro of data mining

• Concepts of data mining

• Real-world examples of data mining
DM Use Case 1: Frequent Item Set Mining

Some intuitive patterns:
{milk, bread, butter}
{onion, potatoes, beef}

Some non-intuitive ones:
{diaper, beer}

DM Use Case 1: Association Rule Mining

Some intuitive patterns:

\{milk, bread\} \Rightarrow \{butter\}
\{onion, potatoes\} \Rightarrow \{burger\}

Some non-intuitive ones:

\{diaper\} \Rightarrow \{beer\}

DM Use Case 2: Web Search

- Query suggestion
- Page ranking
DM Use Case 3: News Recommendation

• Predict whether a user will like a news given its reading context
DM Use Case 4: Sponsored Search

- Whether the user likes the ads
- How advertisers set bid price
DM Use Case 5: Displayed Advertising

- Whether the user likes the ads
- How advertisers set bid price

https://github.com/wnzhang/rtb-papers
DM Use Case 6: Information Extraction

Kinect - Fastest Selling Electronic Product in History

Posted on: 3/10/2011 1:09:45 PM by David Lewis

Microsoft's Kinect sensor system has been officially recognised as the fastest selling electrical device in history.

Manufactured to give wireless interactivity with the company's Xbox game platform, the device has sold eight million units in its first two months, outstripping the sales of Apple's iPhone and iPad when they were launched.

The news comes as a welcome relief for Microsoft who have been trailing Apple in the technology stakes over the last few years with the Apple brand being seen as more cool and sexy than Microsoft.

The figures, which have been verified by the Guinness Book of World Records, represent sales of the camera add-on which uses infrared technology to track the movement of the participant and translate their movements to action in the game.

For some time Microsoft's Xbox was at a disadvantage to Nintendo's Wii system because of the lack of a motion detector but the Kinect addresses the issue well. Microsoft were keen on using a different technological base for their system to avoid being accused of copyright infringement and so the solution was built around infrared technology.

Microsoft says that sales of the Kinect reflect the popularity of the games platform in comparison with the Wii and hope that the availability of Kinect will also boost sales of the Xbox itself.

It notes that sales of games for the Xbox have also rocketed since the device became available with total sales now exceeding ten million.

In January Microsoft reported profits of $6.63bn (£4.1bn) for the last three months of 2010, down from $6.66bn a year earlier despite the excellent sales performance of Kinect.

Keywords
- Kinect
- Electronic Product
- Microsoft's Xbox
- Games
- Xbox Game Platform
DM Use Case 7: Information Extraction

- Structural information extraction and illustration

DM Use Case 7: Information Extraction

- Structural information extraction and illustration

DM Use Case 7: Information Extraction

- **Synyi.com** medical structural information extraction

DM Use Case 8: Medical Image Analysis

- Breast Cancer Diagnoses

DM Use Case 8: Clinic Medicine Data Mining

- Predict the patient’s health (e.g. diabetes) after 3 years given the current internal secretion test results

Clinic tests

- Explainable patterns are always desirable for clinic medicine to provide informative guidance to doctors

| Factors Associated With Patients’ Adherence To Anti-Diabetic Medications |
|-----------------------------|--------------------|
| I. Baseline characteristics: | |
| Age: | Gender: Male/Female | Education: Occupation: | Nationality: | Marital status: |
| II. Profile of Diabetes Mellitus | |
| 1. Duration of diabetes mellitus | 2. Age at onset: | 3. Family history of diabetes: Yes/No |
| III. Patient adherence to drug therapy | |
| 1. Do you take the anti-diabetic drugs as advised by your doctor? Yes/No | If No, please tick the options [] |
| Items | Yes | No | Items | Yes | No |
| Lack of finance | Side effects |
| Feeling drug is not effective | Feeling the dose given is high |
| Interferes with my meal plan | Complexity of drug regimen |
| Taking them since many years | Multiple medications |
| Forget | Poor family support |

Questionnaires
DM Use Case 9: Financial Data Prediction

- Predict the trend and volatility of financial time series data
DM Use Case 10: Social Networks

- Community detection / node classification
- Information diffusion modeling
- Friends/Tweets/Job Candidates suggestion
DM Use Case 11: Spatio-Temporal DM

- A spatio-temporal trajectory
 \[p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_n \]
 \[p_i = (x, y, t) \]

- Behavior modeling of humans and vehicles in the cities
- Prediction of human / vehicles / environment in a certain spatio-temporal point
- Optimization including car route scheduling, lane design, factory relocation

Slide credit: Yu Zheng
DM Use Case 12: New Material Discovery

- Driven by Materials Genome Initiative
- Mine the underlying patterns between the experiment conditions and the properties of the resulted material

DM Use Case 13: Interactive Recommendation

• Douban.fm music recommend and feedback
 • The machine needs to make decisions, not just prediction
Summary of This Lecture

• An example as an intro of data mining
• Concepts of data mining
• Real-world examples of data mining

• Data mining is about the extraction of non-trivial, implicit, previously unknown and potentially useful principles, patterns or knowledge from massive amount of data.