2019 CS420, Machine Learning, Lecture 9

Unsupervised Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

What is Data Science

* Physics

* Goal: discover the
underlying Principal of the
world

e Solution: build the model of
the world from observations

mimsa

F=cg2
7“2

e Data Science

* Goal: discover the
underlying Principal of the
data

)
S

e Solution: build the model of
the data from observations

o/ (@)
p(x) _ zwl ef(m/)

Data Science

* Mathematically

* Find joint data
distribution p(x)

e Then the conditional
distribution p(x2|z1)

e Gaussian distribution

e Multivariate

o5 (@—p) TS Ha—p)

A Simple Example in User Behavior Modelling

BBC Sports PubMed Bloomberg Spotify
Business

Finance Male
Sports Male 21 Yes No No Yes
Medicine Female 32 No Yes No No
Music Female 25 No No No Yes
Medicine Male 40 Yes Yes Yes No

e Joint data distribution

 Conditional data distribution

Problem Setting

* First build and learn p(x) and then infer the
conditional dependence p(x,|x;)

* Unsupervised learning
e Each dimension of x is equally treated

* Directly learn the conditional dependence p(x,|x))
* Supervised learning
* X, is the label to predict

Definition of Unsupervised Learning

* Given the training dataset
D ={x;}i=12,.. N
let the machine learn the data underlying patterns

e Latent variables
Z — X

e Probabilistic density function (p.d.f.) estimation
p()
* Good data representation (used for discrimination)

¢(z)

Uses of Unsupervised Learning

* Data structure discovery, data science
* Data compression
e Outlier detection

* Input to supervised/reinforcement algorithms (causes
may be more simply related to outputs or rewards)

» A theory of biological learning and perception

Slide credit: Maneesh Sahani

Content

* Fundamentals of Unsupervised Learning

* K-means clustering
* Principal component analysis

* Probabilistic Unsupervised Learning

* Mixture Gaussians
e EM Methods

* Deep Unsupervised Learning
 Auto-encoders
 Generative adversarial nets

Content

* Fundamentals of Unsupervised Learning
* K-means clustering
* Principal component analysis

K-Means Clustering

L ki
eu} EN 5
. .
* “of . M
.:.‘. - s o ’ . .:'\........:.
'o' . ’
o...;.'.o. " » 3 :\} .
.‘.{.; .
* - . ..“ .o'o‘.
. -‘....::"..
LTI T
.0\'.“‘.:'.. .o..
L

K-Means Clustering

K-Means Clustering

* Provide the number of desired clusters k

* Randomly choose k instances as seeds, one per
each cluster, i.e. the centroid for each cluster

* [terate

e Assign each instance to the cluster with the closest
centroid

e Re-estimate the centroid of each cluster

e Stop when clustering converges
* Or after a fixed number of iterations

Slide credit: Ray Mooney

K-Means Clustering: Centriod

e Assume instances are real-valued vectors
€T € R

* Clusters based on centroids, center of gravity, or
mean of points in a cluster C,

1
Mkzc—kzx

xeCl,

Slide credit: Ray Mooney

K-Means Clustering: Distance

» Distance to a centroid L(z, u*)

 Euclidian distance (L2 norm)

d
Lo(z, ") = ||z — p¥| = \ (2 — k)2

m=1

* Euclidian distance (L1 norm)

d
Ly(z, pF) = |o — 1| =) |as — pl|
m=1

* Cosine distance

Slide credit: Ray Moone

K-Means Example (k=2)

Pick seeds
Reassign clusters
Compute centroids
Re-assign clusters
Compute centroids

Reassign clusters

Converged!

Slide credit: Ray Mooney

K-Means Time Complexity

* Assume computing distance between two instances
is O(d) where d is the dimensionality of the vectors

* Reassigning clusters: O(knd) distance computations

* Computing centroids: Each instance vector gets
added once to some centroid: O(nd)

* Assume these two steps are each done once for /
iterations: O(/knd)

Slide credit: Ray Mooney

K-Means Clustering Objective

* The objective of K-means is to minimize the total
sum of the squared distance of every point to its
corresponding cluster centroid

K
min S:S:L(x—,uk) ,uk:CLka

k1K
I Hemn k=1 zeC} r€Ck

* Finding the global optimum is NP-hard.

* The K-means algorithm is guaranteed to converge
to a local optimum.

Seed Choice

e Results can vary based on random seed selection.

* Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings.

* Select good seeds using a heuristic or the results of
another method.

Clustering Applications

* Text mining
* Cluster documents for related search
* Cluster words for query suggestion

* Recommender systems and advertising
* Cluster users for item/ad recommendation
* Cluster items for related item suggestion

* Image search

e Cluster images for similar image search and duplication
detection

e Speech recognition or separation
e Cluster phonetical features

Principal Component Analysis (PCA)

* An example of 2-
dimensional data

* x,: the piloting skill

of pilot :E
* X,: how much he/she %
enjoys flying 5“’
o X
* Main components %
* uy:intrinsic piloting X X

“karma” of a person
* U,:some noise

X1 (Skl]l)

Example credit: Andrew Ng

Principal Component Analysis (PCA)

* PCA tries to identify the subspace in which the data
approximately lies

* PCA uses an orthogonal transformation to convert a
set of observations of possibly correlated variables
into a set of values of linearly uncorrelated
variables called principal components.

* The number of principal components is less than or
equal to the smaller of the number of original variables
or the number of observations.

RT o RF k< d

PCA Data Preprocessing

e Given the dataset
D = {x(i)}?ll

* Typically we first pre-process the data to normalize
its mean and variance

1. Move the central of the data setto 0
1 o~ . |
— (2) (4) (1) _
v - ;az T\ — T]
2. Unify the variance of each variable

1 ; . .
7= w2 @ e o

PCA Data Preprocessing

X1 (skill)

e Zero out the mean of the data

X2 (enjoyment

= . 5
O XX X X
= X X
3 % T
= X X ><>< X W ><>< X
Q@ X % X
Xy X :
<) L . N X4 (skill)
x X X X
x X 5 X

* Rescale each coordinate to have unit variance, which ensures that

different attributes are all treated on the same “scale”.

PCA Solution

* PCA finds the directions with the largest variable
variance

* which correspond to the eigenvectors of the matrix X'X
with the largest eigenvalues

PCA Solution: Data Projection

* The projection of each

point x!) to a directionu (||ul| = 1)

2@ 'y

e The variance of the
projection

%Z Zu"l' (i)

=T (E Z x(z’)x(i)T)u
1=1

=u'Yu

PCA Solution: Largest Eigenvalues

1 <
max u' Su Y= — Zzzz(z)az(z)T
U m
i=1
s.t. |u|| =1

* Find k principal components of the
data is to find the k principal
eigenvectors of 2

* i.e. the top-k eigenvectors with the .y
largest eigenvalues P

* Projected vector for x!) P
] ()] A

w20

y(i) = e RF

).

Eigendecomposition Revisit

* For a semi-positive square matrix 2 ;. 4

suppose u to be its eigenvector (||lul| =1)
with the scalar eigenvaluew Yu = wu

There are d eigenvectors-eigenvalue pairs (u;,, w))

These d eigenvectors are orthogonal, thus they form an
orthonormal basis d

Zuzu: =1

1=1

Thus any vector v can be written as

d d d
v = (Zuzuj)v = Z(ujv)uz = Zv(i)ui
i=1

U= [ul,u2,...,ud]
2 ., can be written as -
dxd w1 0
d d 0 wo
Z:Zuiu;Z:Zwiuiu;:UWUT W=1|. .
i=1 i=1 O O

Eigendecomposition Revisit
- T
1|_
+ Giventhe data x = | 2| and its covariance matrix ¥ = X T X
a:T (here we may drop m for simplicity)

* The variance in direction u; is
1 Xu||? = u) X' Xu; =) Suy =) wiu; = w

* The variance in any direction v is

d d
| Xv||* = HX(ZU(@')W) H2 = Zv(i)uiTEuiv(j) = Zva)wi
i=1 ij i=1

where v, is the projection length of v on u;

 Ifviv=1,then arg max 1 X0]1* = tgmax)
vil=1

The direction of greatest variance is the eigenvector with the largest eigenvalue

PCA Discussion

* PCA can also be derived by picking the basis that minimizes
the approximation error arising from projecting the data
onto the k-dimensional subspace spanned by them.

Xy (enjoyment)

X1 (Sklll)

PCA Visualization

original data set output from PCA
10+ o)
8- o
[]
2 |
6] % .
v 0O+ o © g g ®
“ °
,2 |
L
2 N
0 T T T T 1 -6 T T T I T 1
0 2 4 é 8 10 -4 2 0 2 4 6
X pcl
Y T &—8— @ 1 4 1] T @@ ® | L& 1
0 2 4 o) 8 10 aa 4 4 -2 0 2 4 6
y I T o —o & — 1 I I - T
0 2 4 & 8 10 -6 4 -2 0] 2 4 &

http://setosa.io/ev/principal-component-analysis/

PCA Visualization

ady

[L
VT
-10 -5 0 3 10
———
|
E__=
o

http://setosa.io/ev/principal-component-analysis/

Content

* Probabilistic Unsupervised Learning

* Mixture Gaussians
e EM Methods

Mixture Gaussian

. .;.&fid’.?ﬁo
oy prnd et
’ , '~- e
. .
.:}:'o... . ‘. ..o
~\ - : .- " .{‘.
R AT
.‘.{.;
* . . .“
. -‘.:'.::c
. s Y) A
-0\'.“":'.
ar .

Mixture Gaussian

Graphic Model for Mixture Gaussian

e Given a training set {z!), 23 ... z(m)
* Model the data by specifying a joint distribution
pla®,2) = p(a|z)p(=)

qb Parameters of latent variable distribution

2 ~ Multinomial(¢)

p(z(i) = j) = 5 Latent varialgle: the Gaussian cluster ID
Indicates which Gaussian each x comes from

X Observed data points

Data Likelihood

e We want to maximize

U1, 8) =) logp(a; ¢, 1, %)
1=1

m k
= log > pa®]0: 1, Dp(=;)

1=1 ~(1) =1
m k '

= log Y N(W|u;,%;)8;
i=1 =1

* No closed form solution by simply setting

o, %) _ O, %) _ o Ol p,)
)0 ou 0>

=0

Data Likelihood Maximization

* For each data point x!), latent variable z) indicates
which Gaussian it comes from

* If we knew z\) the data likelihood
U1, 5) = logp(z'; ¢, pu, 30)
1=1

= > logp(zV]2; p, Z)p(; 9)
1=1

=Y log N (2|10, S,0) + log p(27; ¢)
1=1

Data Likelihood Maximization

e Given z), maximize the data likelihood

max [(¢, 1, 2) = max > log N (2P|, X.5)) + log p(z¥;
%> (@41, %) cm,z; g N (@i, 2.0) +logp(2"; 9)

* It is easy to get the solution

m

6= = 31420 = j)

=1
o S 1{z(i) — j}x(i)
SR VIRTECEYY
iny {2 =} —) (@@ —)
D im 1{'2(2) =7J}

;=

Latent Variable Inference

e Given the parameters i, 2, @, it is not hard to infer the
posterior of the latent variable z') for each instance

? ((1) — 5 29 b, 11, %)
p(zt = Jlzt5 9, u, 1) = -
(|) p(z®; ¢, u, X)
_ oW 29 = g, S)p(z) = ji ¢)
Z >y P20 = I, £)p(z0) = 1; ¢)
[y 2
+ where
@ * The prior of z) is p(z@ :'j;(b)
e Thelikelihood is p(z®|z() = j; u, ¥)

* Then update the parameters u, 2, ¢ based on our guess of zl)’s

Expectation Maximization Methods

 E-step: infer the posterior distribution of the latent
variables given the model parameters

* M-step: tune parameters to maximize the data
likelihood given the latent variable distribution

e EM methods

* |teratively execute E-step and M-step until convergence

EM Methods for Mixture Gaussians

* Mixture Gaussian example

Repeat until convergence: {

(E-step) For each j, j, set ?
wf? = p() = jlo; 6,1,)
(M-step) Update the parameters
1 & G <
— E;w;')
S w0 fhy 2
Ky = ; -
s -
S @D —) (O —)T

¥ = :
> w!

General EM Methods

e Claims:

1. After each E-M step, the data likelihood will not
decrease

2. The EM algorithm finds a (local) maximum of a
latent variable model likelihood

* Now let’s discuss the general EM methods and
verify its effectiveness of improving data likelihood
and its convergence

Jensen’s Inequality

Theorem. Let f be a convex function, and let X be a
random variable.

Then:
E[f(X)] > f(E[X])

* Moreover, if f is strictly convex, then

Elf(X)] = F(E[X])
holds true if and only if
X = E[X]

with probability 1 (i.e., if X is a constant).

Jensen’s Inequality

f(a)

E[f(X)]

f(b)
f(EX)

Figure credit: Andrew Ng

Jensen’s Inequality

log(ax; + (1 — a)x2)
alog(x1) + (1 — «) log(x2)

Xi aXi + (1 — C}i)Xg Xo

Figure credit: Maneesh Sahani

General EM Methods: Problem

* Given the training dataset
D ={x;}i=12.. N
let the machine learn the data underlying patterns

e Assume latent variables
Z — X

* We wish to fit the parameters of a model p(x,z) to the data,
where the log-likelihood is

N
1(0) = Z log p(z; 6)

N
=) log» p(z,20)
1=1 z

General EM Methods: Problems

* EM methods solve the problems where

e Explicitly find the maximum likelihood estimation (MLE)
is hard

= arg max Z log Z p(z®, 2.)

 But given z\) observed, the MLE is easy

N
* OIFOF
0" = arg meaxiz:; log p(z*/|2\"; 9)

* EM methods give an efficient solution for MLE, by
iteratively doing
e E-step: construct a (good) lower-bound of log-likelihood
* M-step: optimize that lower-bound

General EM Methods: Lower Bound

* For each instance j, let g; be some distribution of z
Zqz = (z) >0

* Thus the data log-likelihood

Zlogp OF ZlogZp (@) Z)Q

1=1 2 (%)

p(z®, 20)
__jzjlogZE::Qz p
1=1 (Z())
(%)

— Z() QZ

. (4). . 9)
E § (4) ol Lower bound
- %:(2 >1°g ((z)) of I(9)

Jensen’s inequality
-log(x) is a convex function

General EM Methods: Lower Bound

* Then what q,-(z) should we choose?

REVIEW

Jensen’s Inequality

Theorem. Let f be a convex function, and let X be a
random variable.

Then:
E[f(X)] > f(E[X])

* Moreover, if f is strictly convex, then

Elf(X)] = F(E[X])
holds true if and only if
X = E[X]

with probability 1 (i.e., if X is a constant).

General EM Methods: Lower Bound

* Then what q,-(z) should we choose?

* In order to make above inequality tight (to hold with
equality), it is sufficient that

p(z®, 29, 0) = ¢;(z¥) - ¢
 We can derive

(@, 20,0
p(x\W, 2\Y;
log p(x OF) logZp @) 5 long (Z C—Zq (Z log MEG))

* As such, g,(z) is written as the posterior distribution
() = ZE2 00 p@ D 200) _)0,
>0 p(a®,20) p(z®;0) |

General EM Methods

Repeat until convergence: {
(E-step) For each i, set
qi(z(i)) _ p(z(i)|x(i); 9)
(M-step) Update the parameters

0 iz (21 p(z®, 2; 0)
= arg max qi(2 og :

Convergence of EM

* Denote $) and 3+ as the parameters of two successive
iterations of EM, we prove that

l(e(t)) < l(e(i-kl))

which shows EM always monotonically improves the log-

likelihood, thus ensures EM will at least converge to a local
optimum.

Proof of EM Convergence

« Start from 9, we choose the posterior of latent variable
R N
q(=9) = p(z17[z1;60)
* This choice ensures the Jensen’s inequality holds with equality
(2@, 20, 90y X (2@, 20, (1))
(t) (t) () p L7, 2 (z) 33 WS
(0 Z log Z q; Z(t)() Z Z qi(2 log gt)(z(i))

z(Z = z(l)

* Then the parameters 3{*1) are then obtained by maximizing
the right hand side of above equation

(1) (9. g(t+1)
* Thus 1(p0+Y) >ZZq) log 2 plz®, =7 07)

[lower bound]

(3) q@(t) (2(9)
() 00). gt
>quz log p(z (t,)z -) [parameter optimization]
=1 (%) 4d; (Z(Z))

— 1(6®)

Remark of EM Convergence

 If we define

(2@, 2. ¢
(Z) ZC y &)
Z Z q" log Z.(Z(z))

1=1 (i)

Then we know
1(0) > J(q,0)

* EM can also be viewed as a coordinate ascent on J

* E-step maximizes it w.r.t. g
* M-step maximizes it w.r.t. 0

Coordinate Ascent in EM

WL o A
L1 7741 L
T (L EE L

0.9 I 101 14 A
WL
e

.
0.8 il
Wit iAo
1117
Ea
i
U7 it
wiiee
o
I
0.6 yret
Awis
q
\)
0.5 4
i

¢ (20 = p(z0|z; 00 ¢

7

0.3

0.1

-
0.1 0.2 0.3 0.4 0.5 0.6 0.

g 0.9

o1 N 001 p(x(i)7z(i)’0)
—argmélxzz:qi (') log '

Figure credit: Maneesh Sahani 1=1 (4)

Content

* Deep Unsupervised Learning
 Auto-encoders
 Generative adversarial nets

Neural Nets for Unsupervised Learning

e Basic idea: use neural networks to recover the data

e Restricted Boltzmann Machine

Hidden units

Visible units

Restricted Boltzmann Machine

* An RBM is an a generative stochastic artificial
neural network that can learn a probability
distribution over its set of inputs

Hidden units

Visible units

* Undirected graphical model

* Restricted: Visible (hidden)
units are not connected to
each other

* Energy function
E(?}, h) = — EZ: b@'?}i — Zj: bjhj — sz:?)@"wi,jhj h 0

L _ v
p(v,h) = —e o)

Deep Belief Networks

| 2000 |
500 | We,
1 1rw3 i H | 10?“ I
P 1000 | RBM! i wg W3ieq
.. i Em:l i EM:I
o0] b [30] Codelayer: | [30]
.Wz ' Wy ! Wytey
' [500 |
F 3
Wiytey
| 1000 |
F
W+,
| 2000 |

Pretraining Unrolling Fine-tuning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." science 313.5786 (2006): 504-507.

Performance of Latent Factor Analysis

Latent semantic analysis
based on PCA

European Community
Interbank markets monetary/economic

Disasters and
accidents

.

-’

. i T D R « s Bl 5 pis
Leading economic® *? 2 ’ﬁ T --;-:h Legal/judicial
indicators . ‘? & o LR ’% ;

- . F o0
R L 4
2.7 %o Government
<o :
Accounts/ . % e borrowings
eamings -.f

A 2000- 500-250-125-2 autoencoder
Trained by DBN

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural

networks." science 313.5786 (2006): 504-507.

Auto-encoder

* An auto-encoder is an artificial neural net used
for unsupervised learning of efficient codings

* |earn a representation (encoding) for a set of data,

typically for the purpose of dimensionality reduction Twie,

z IO'(leU—I—bl) < =1
T = O(WQZ —+ bz) — Wateq

X A —

z is regarded as the low :

dimensional latent
factor representation
of x

Fine-tuning

Learning Auto-encoder

* Objective: squared difference between x and &

J(W1,b1, Wa,by) = Y (30 — 2(9)?2

=1
m

=) (W2 4 by —)’
1=1
= i (WQU(W1$(i) +b1) + ba — x(z))2

1=1

* Auto-encoder is an unsupervised learning model trained in a
supervised fashion

6’<—9—n%

Denoising Auto-encoder
L(x,T)

[OOO]\\
/ _ ”/’V %

ROXROOle—(OO0000) (OOO0O0)

x qdD x X

e Clean input x is partially destroyed, yielding corrupted input

T ~ qD(j'; ZL‘) e.g. Gaussian noise
* The corrupted input Z is mapped to hidden representation
Z = f@(ff?)

* From z reconstruct the data

T = ggf(z)

Stacked Auto-encoder

* Layer-by-layer training =3 [O Qj
1. Train the first layer to use z, to "
reconstruct x f

2. Train the second layer to use z, [}
<
to reconstruct z, ? O Q

3. Train the third layer to use z; to (@ T

reconstruct z,
J(elele)

]

(e]e]elele)

ing AE Examples

Some Denois

Reconstructed

Corrupted

Original

Generative Adversarial
Networks (GANS)

[Goodfellow, I., et al. 2014. Generative adversarial nets. In
NIPS 2014.]

Problem Definition

 Given a dataset D = {z}, build a model gg(x) of
the data distribution that fits the true one p(z)

* Traditional objective: maximum likelihood estimation (MLE)

maX — Z log qe = maX Exwp(a:) [log QH()]
:UED

* Check whether a true data is with a high mass density of
the learned model

Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
true data is with a model-generated
high mass density data is considered as
of the learned true as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(= calculate p(x)

Generative Adversarial Nets (GANSs)

* What we really want

max By gy (z) [log p(2)]

* But we cannot directly calculate p(z)

* |dea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

Generative Adversarial Nets (GANSs)
Real World —N

! '—>© Discriminator
Generator Q—»: :

e Discriminator tries to correctly distinguish the true data and
the fake model-generated data

0000000
0000000
0000000

_—— e ———

* Generator tries to generate high-quality data to fool
discriminator

* G & D can be implemented via neural networks

* |deally, when D cannot distinguish the true and generated
data, G nicely fits the true underlying data distribution

Generator Network

r = G(z;0))

* Must be differentiable
* No invertibility requirement
* Trainable for any size of z

* Can make x conditionally Gaussian given
z but need not do so
e e.g. Variational Auto-Encoder

* Popular implementation: multi-layer
perceptron

O

Discriminator Network

P(reallz) = D(x;0P))

e Can be implemented by any neural networks with a
probabilistic prediction

* For example
* Multi-layer perceptron with logistic output
* AlexNet etc.

GAN: A Minimax Game

" b)
Real World ; é
Generator e—»:

min max J &) max J)
G D D

4
I
|
I
I
|
|
|
I
I
I
|
|
|

JO) B, o llog D(@)] + Eany s [log(1 — D(G(2)))]

Generator min max JD) Discriminator max JD)

Illustration of GANSs

Data
Discriminator :....... :,.,: ._A..
\“ e e Generator

L3
: ¥ L : ¥ R
' v R ‘ Y
r v ! v 1
'] LY.
ol L

7. 70

JO) = Eqpp (wyllog D(@)] + Eany.xllog(l — D(G(2)))

|deal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the true
and generated data //// \\\\

Training GANSs

for number of training iterations do Traini ng discriminator
for & steps do
e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for

Training GANSs

for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z W, (")} from noise prior p,(2).
e Sample minibatch of m examples {:13 :1:“”’ } from data generating distribution
pdala(m)*

e Update the discriminator by ascending its stochastic gradient:

Vo, Z log D (29) +10g (1- D (G (2)))] .

i=1

end for Training generator

e Sample minibatch of m noise samples {z'"/, ..., z\""} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, -3 log (1- 0 (G (=9))).

1=

end for

Optimal Strategy for Discriminator

e Optimal D(x) for any Dalta

PyatalX) and pg(x) is Discriminator &

always \ ¢

D(w) = —Pdata () AVAYEY
pdata(w) + pg(a?)

Generator

e

] 'y ¥
[oy
v B oae
W i LI |
', v

2

Reformulate the Minimax Game

G: minmaxJ®) D: maxJP
G D D

JO) Z By, wllog D(@)] + Eanp.isllog(l — D(G(2))
= Eanpgora(@) 108 D(@)] + Earpg (2)[log(l — D(x))]
pdata(w)]

=K. lo
TrPdata (T) [gpdata($)+pG($)

pc(x)]

pdata(w) + PG (m)

pdata;' PG) + KL (pG H pdata;' j4e)

t Ezpe () [log

— = 10g(4) + KL (pda,ta

m(in JP) is something between max Ezrpaas 108 Pa ()] and max Ez~pg 108 Pdata ()]

[Huszar, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]

GANSs for Continuous Data

1. Generation 4. Further gradient on generator

ox 060
2. Discrimination 3. Gradient on generated data
0J(G,D
P(real|x) = D(x; ¢) (8:1;)

* In order to take gradient on the generator parameter, x has
to be continuous

J(G, D) = Egropy(@)log D(@)] + Ezop, (2 [log(1 — D(G(2)))]

Generator ménmng(G,D) Discriminator mng(G, D)

Case Study of GANSs

g |
-
i

e The rightmost images in each row is the closest training data images to the neighbor
generated ones, which means GAN does not simply memorize training instances

High Resolution and Quality Images

* Progressive Growing of GANs

Two imaginary celebrities that were dreamed up by a random
number generator.

Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.

Single Image Super-Resolution

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

¥ l) > ——)
.r,-.':”l) -% : "

deep residual generative adversarial
[4 X upscaling] network optimized for a loss more
sensitive to human perception

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.

Image to Image Translation

Labels to Street Scene

output

output

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.

Grayscale Image Colorization

Ground Generated Colorization Ground Generated Colorization
Truth after Performing Grayscale Truth after Performing Grayscale

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.

High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.

