2019 CS420 Machine Learning, Lecture 4

Neural Networks

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Breaking News of Al in 2016

Rank Hame + % Flag Elo
1 Ke Tie T gl 3628

* AlphaGo wins Lee Sedol (4-1) ? Slaaa S s

3 Park Tunghwan T @, 358L
4 Tuo Jiaxi T il 3535
5 Mi Yuting Tl 3534
6 Ivama Yuta T e 3526
7 Shi Tue T il 35ee
2 Lee Sedol T @ 3521
9 Zhou Ruiyang T il 3517
10 5Shin Jinseo T ‘@ 3503
11 Chen Yaove Tl 3495
12 Lian ¥iao T il 3493
13 Tan ¥iao T Bl 34z
14 Eim Jiseok T ‘e 354389
15 Choi Cheolhan T @ 3482
16 Park Yeonszhun T @ 3432
17 Gu Zihao Tl z468
18 Fan Yunruo T il 3468
19 Huangz Funsong T il 3267
20 Li Qinchenz T [l 3465
21 Tang Weixins Tl 3461
22 Lee Donghoon T @ 3460
23 Lee Yeongkvu T ‘e 3459
24 Fan Tingyu T il 3459
25 Tong Menscheng T il 3447
26 Eang Dongvun T @ 3442
. 27 Yang X¥i T 3430
https://deepmind.com/research/alphago/ 28 Veon Seonsiin 3 i.. 3439
29 Yang Dingxin Tl 3429
30 Gu li Tl 3436

https://www.goratings.org/

Machine Learning in AlphaGo

Policy network Value network
* Policy Network
. SuperV|s§d Learr.nng - als) v, ()
* Predict what is the best ®

next human move
* Reinforcement Learning

. w
* Learning to select the L o
next move to maximize i
the winning rate

e Value Network ®

* Expectation of winning
given the board state

* Implemented by (deep)
neural networks

Neural Networks

* Neural networks are the basis of deep learning

Inputs <

(1: Feature Maps
INBUT 6i@28x28

32x32

T

Convolutions

Perceptron
(3 Lmaps 54: Lmaps
T6@10x10 16@5%5

52:T.maps

G@14x14

A=

Subsampling

"-._!_120__“_ M

Output
.\‘

Hard
limiter

5 Layer pg. | ayer
OUTPUT 10

Convolutions

I T Gaussian
Connections
Subsampling Full

Full Connection
Connection

Convolutional Neural Network

Output Layer

Hidden Layer

Input Layer

0

O 0 =1 0 TH

vl v v v
Ty =) —>0->0->0"
Unfold T w w T w
U U U U
x x x xr+

Recurrent Neural Network

Real Neurons

e Cell structures
* Cell body

* Dendrites — ~ !

* Axon e

* Synaptic terminals\ |

Slides credit: Ray Mooney

Neural Communication

* Electrical potential across cell membrane exhibits spikes
called action potentials.

* Spike originates in cell body, travels down ‘

clion
potential

axon, and causes synaptic terminals to
release neurotransmitters.

e Chemical diffuses across synapse to
dendrites of other neurons.

* Neurotransmitters can be excitatory or

] | 2 3 4

inhibitory. | e

* If net input of neurotransmitters to a neuron from other
neurons is excitatory and exceeds some threshold, it fires an
action potential.

Slides credit: Ray Mooney

Real Neural Learning

* Synapses change size and strength with experience.

* Hebbian learning: When two connected neurons
are firing at the same time, the strength of the
synapse between them increases.

* “Neurons that fire together, wire together.”

* These motivate the research of artificial neural nets

Slides credit: Ray Mooney

Brief History of Artificial Neural Nets

 The First wave

e 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron
model

* 1958 Rosenblatt introduced the simple single layer networks now
called Perceptrons.

* 1969 Minsky and Papert’s book Perceptrons demonstrated the
limitation of single layer perceptrons, and almost the whole field
went into hibernation.

* The Second wave

* 1986 The Back-Propagation learning algorithm for Multi-Layer
Perceptrons was rediscovered and the whole field took off again.

* The Third wave

e 2006 Deep (neural networks) Learning gains popularity and
* 2012 made significant break-through in many applications.

Slides credit: Jun Wang

Artificial Neuron Model

* Model network as a graph with cells as nodes and synaptic
connections as weighted edges from node / to node j, w;

* Model net input to cell as
netj = ijiOi
i
e Cell output is

0 if netj < Tj
0; =
7 1 if netj Z Tj

(7;is threshold for unit j)

McCulloch and Pitts [1943]

Tj netj

Slides credit: Ray Mooney

Perceptron Model

* Rosenblatt’s single layer perceptron [1958]

* Rosenblatt [1958] further
proposed the perceptron
as the first model for

v ¢() Output learning with a teacher
Inputs < —O : ‘ _ . .
Hard) (i.e., supervised learning)
limiter

* Focused on how to find
appropriate weights w,,
for two-class classification

o o ' task
e Prediction * Activation function .

y = 1: class one
{1 if z>0 y=-1:classtwo

—1 otherwise

Training Perceptron

* Rosenblatt’s single layer perceptron [1958]

* Training
w; = w; + Ny — §)T;
v ¢(-) Output b=10+ U(y — y)
Inputs < O ‘
Hard)
limiter e Equivalent to rules:
e If output is correct, do
nothing
* If output is high, lower
Predicti Activation f , weights on active inputs
rediction ctivation function - If output is low, increase

1 it z>0 weights on active inputs

m
Y 90(; o #(2) {—1 otherwise

Properties of Perceptron

* Rosenblatt’s single layer perceptron [1958]

* Rosenblatt proved the
convergence of a learning
algorithm if two classes
said to be linearly
separable (i.e., patterns
that lie on opposite sides
of a hyperplane)

 Many people hoped that
such a machine could be
the basis for artificial
intelligence

Properties of Perceptron

* The XOR problem

Input x Output y
X4 Xa X1 XOR X5
0 0 0
0 1 1
1 0 1
1 1 0
X
A
1 {true false
false true >

0 ,/’ 1 Xz

XOR is non linearly separable: These two classes
(true and false) cannot be separated using a line.

However, Minsky and Papert
[1969] showed that some rather
elementary computations, such
as XOR problem, could not be
done by Rosenblatt’s one-layer
perceptron

However Rosenblatt believed the
limitations could be overcome if

more layers of units to be added,
but no learning algorithm known
to obtain the weights yet

Due to the lack of learning
algorithms people left the neural
network paradigm for almost 20
years

Hidden Layers and Backpropagation (1986~)

* Adding hidden layer(s) (internal presentation) allows
to learn a mapping that is not constrained by linearly

separable

class 1 N
e
class 2 / b

decision boundary: x,w, +x,w, +b=0

class 2 Each hidden
class 2 . Yy
node realizes
ass 1 one of.the lines ¥ /
class 2

convex region
class 2 ‘

X,

Hidden Layers and Backpropagation (1986™)

e But the solution is quite often not unique

Input x Output y
X X2 X1 XOR X
0 0 0
0 1 1
1 0 |
1 1 0

(0.1)
®

Two lines are necessary to divide

the sample space accordingly Sign activation function

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR148.pdf
http://recognize-speech.com/basics/introduction-to-artificial-neural-networks

Output

The number in the circle is a threshold

Hidden Layers and Backpropagation (1986™)

* Feedforward: massages move forward from the input nodes,
through the hidden nodes (if any), and to the output nodes.
There are no cycles or loops in the network

Input Layer Hidden Layer Output Layer

Two-layer feedforward neural network

Single / Multiple Layers of Calculation

 Single layer function

Q fo(z) = 0 + 012 + O

fg(:l?) — 0'(90 + 612 + 92332) Q O

* Multiple layer function

tanh(@o + 612 + 92332)
tanh(93 + 012 + 95332)
fo(h1(x), ha(x)) = o (0 + O7h1 + Ogho)

hl (ZE)
hg (ZE)
Jfo()

 With non-linear activation function

1 1 — 6—237
o) = o= tanh(e) =1

() folw)
hl(aJ)O th(a;)
O O

i LU2

Non-linear Activation Functions

* Sigmoid
1
o(2) = 14+ e %
* Tanh ;
tanh(z) = 1 _T_ Z_QZ

* Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z)

0
aaaaaaaaa

Universal Approximation Theorem

* A feed-forward network with a single hidden layer
containing a finite number of neurons (i.e., a
multilayer perceptron), can approximate
continuous functions

* on compact subsets of R"

e under mild assumptions on the activation function
e Such as Sigmoid, Tanh and RelLU

[Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal
approximators." Neural networks 2.5 (1989): 359-366.]

Universal Approximation

* Multi-layer perceptron approximate any continuous
functions on compact subset of R"

input layer y = sigmoid(W sls + b3)

T hidden layer 1 hidden layer 2
l, = tanh(Wlw + bl) I, = tanh(ngl + bg)

o(z) = 1t e tanh(x) =

Hidden Layers and Backpropagation (1986™)

* One of the efficient algorithms for multi-layer neural
networks is the Backpropagation algorithm

* |t was re-introduced in 1986 and Neural Networks regained
the popularity

Error backpropagation

ZError Caculation

Note: backpropagation appears to be found by Werbos [1974]; and then independently
rediscovered around 1985 by Rumelhart, Hinton, and Williams [1986] and by Parker [1985]

Learning NN by Back-Propagation

Compare outputs with correct Compare outputs with correct
answer to get error answer to get error derivatives

R
V= f(z)) / |
Output units & (1 : ’ Y
4= 2 Wi Yk dE _ dE oy,
ke H2 az, dy, 9z
oy wE
Y =1(z) W oot OE OFE 8z, OE
Hidden units H2 EI: P L oY
= : Wik 2k QWi 2k
i _ 2 Wik OE _E ay, ? 7
JeHl 9z, Yy 0Z aE _ aE
ay, &z,
_ ' k
Hidden units H1 yi =1(z) I keH2
. E v,
()Zj ()y]' (’Z‘,‘
i € Input

Input units

[LeCun, Bengio and Hinton. Deep Learning. Nature 2015.]

Learning NN by Back-Propagation

Error Back-propagation ‘

/ l Error Calculation

Parameters

X weights Parameters /7
! .y outputs
inputs
d =
— X, V1
X y 0

input layer hidden layer output layer

-i
. label = Face
. label = no face

Training instances...

Make a Prediction

inputs outputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:
h§-” = f (1)(”6?5-1)) = fyO_ wﬁl%x) yk = foy(netd) = f 20 w,ifj)-hﬁ-”)
j

m

x=(x1,...,Tm) > hgl) > Yk

where netg.l) = Z wj(-,l,)na?m ”6t1(<:2) - Z w,(fj) h.g'l)
m J

Make a Prediction

inputs outputs labels

input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

2 1 1
hY = faymets) = foy (S wlham) we = foy(nety?) = o (O wihi")
m J

x=(x1,...,Tm) > hgl) > Yk

where netg-l) = Z wj(-,l,)nflim ”etl(f) - Z w;(fj) h.g'l)
m J

Make a Prediction

inputs outputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:
h§-” = f(1)(n€t§-1)) = fyO_ wﬁl%x) yk = foy(net)) = fo O wﬁ}hf’)
j

m

x=(1,...,Tm) > hgl) > Yk

where) = Sl e = 2
m J

When Backprop/Learn Parameters

inputs Wi m 1 ™M (2) outputs labels
Wk,

kE— Yk
Ok = (dk — Yk) fl2) (net))
Input layer hidden layer output layer

Two-layer feedforward neural network

Notations: net{" =3 w{!) z,, nety) =3 wilh;
m j
Backprop to learn the parameters
Aw? = nErroryOutput; = nd b
2 2 2 k,j pIULpULy = 10k, 1
w/(w) = wl(g; + Awé,} « E(W) = 3 Z(yk — di)?
k
OE(W Oy Onet'®
Aw/(f; =1 W) _ ~n(yk — dip)—; = n(dr —) [y (net)h{Y = noph{Y

8wlfj). 8net](€2) 8w,§f}

When Backprop/Learn Parameters

inputs Wi m 1 ™M (2) outputs labels
Wk,

kE— Yk
Ok = (dk — Yk) fl2) (net))
Input layer hidden layer output layer

Two-layer feedforward neural network
Notations: net{" =3 w{!) z,, nety) =3 wilh;
m j

Backprop to learn the parameters

Aw,?). = nError;Output,, = no;x
J 7 m 74im 1
w‘glg? = w.gl?zz T ij(.,lg,b < E(W) =3 > (ye — di)?
k
OE(W oE(W) oh"
ij(.,lg,b =N ((1)) =N ((1)) il) =) (dp —yk)f (/2)(”6t1(<;2))w15;?;$mf (’1)("’66?55-1)) = 10 Tm

An example for Backprop

Inputs Hidden layer Outputs

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

An example for Backprop

1. Calculate errors of output neurons
dq = outy (1 - outy) (Target, - outy)
— _ ' (2)
0, =(d,=3,) ['(net,”) dp = outp (1 - outg) (Targetp - outp)

2. Change output layer weights

W+Aa= Wae + Ndg outp W+A[3= WAB+ 1]8[3 outa
Aw) = nError,Ouiput, = n6,h." W+ch = Wg, + N0y Outs W+Bﬁ = WBB + 1’]55 outg
| o — W'co= Weo + 18 oute W cg= Wep + 18 outc
i i i 3. Calculate (back-propagate) hidden layer errors
Consider sigmoid o 8= outa (1 — outy) (3aWae+ 55Wap)
activation function /s = l+e™ 5=1, '(nefﬁl))Z@c w? 3= outs (1 —outs) (3aWpo+ 85 Wep)
k Oc = outc (1 —outc) (06 Wco + SBWCB)

4. Change hidden layer weights

COO0C00000C0
Canwbuo~N®O—
— T T

7 WhHa=Wia+ndainy, W' aa=W'aa +ndaing
| AW = nError OQutput. =no.) .
Wi = TIEITOTUPUL, =TI0%n vy Y= Wis+ ndpiny, W' as= W' g + ndping
0 ° ° 0 W= Wic+ ndciny, W ac= W ac + ndcing

A 'Sigmoid (x)= fSigmoid (x)(1- fSigmoid (x))

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

Let us do some calculation

Consider the simple network below:

Input
A =035

Output

Input
B=0.9

Assume that the neurons have a Sigmoid activation function and
1. Perform a forward pass on the network

2. Perform a reverse pass (training) once (target = 0.5)

3. Perform a further forward pass and comment on the result

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

Let us do some calculation

Answer:

(i)

Input to top neuron = (0.35x0.1)+(0.9x0.8)=0.755. Out = 0.68.

Input to bottom neuron = (0.9x0.6)+(0.35x0.4) = 0.68. Out = 0.6637.
Input to final neuron = (0.3x0.68)+(0.9x0.6637) = 0.80133. Out = 0.69.

(i)
Output error d=(t-0)(1-0)o = (0.5-0.69)(1-0.69)0.69 = -0.0406.

New weights for output layer
w1l =wI+(8 x input) = 0.3 + (-0.0406x0.68) = 0.272392.
w2 = w2+(5 x input) = 0.9 + (-0.0406x0.6637) = 0.87305.

Errors for hidden layers:
81 =8 x wl =-0.0406 x 0.272392 x (1-0)o = -2.406x107
82=38 x w2 = -0.0406 x 0.87305 x (1-0)o =-7.916x10~

Input
New hidden layer weights: Azuo.ss
w3=0.1 + (-2.406 x 10 x 0.35) = 0.09916.
w4 =08+ (-2.406 x 10” x 0.9) = 0.7978. Output
w5 =0.4+(-7.916 x 107 x 0.35) = 0.3972.
w6 =0.6+(-7.916 x 10~ x 0.9) = 0.5928. I];lju(t) A

(iii)

Old error was -0.19. New error is -0.18205. Therefore error has reduced.

https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

A demo from Google

FEATURES + — 4 HIDDEN LAYERS OUTPUT
Which properties do Test loss 0.057
ou want to feed in? o
y M & b & oy — & Training loss 0.012
6 neurons 4 neurons 3 neurons 2 neurons
x1

OGO
O U

2
X1
X 2 ' The outputs are
- mixed with
varying weights,
shown by the
X1X2 thickness of the

lines.

Colors shows

data, neuron and ! |

\ This is the output

sin(X,) . 3 !
2 from one weight values.
neuron. Hover to
see it larger. [Showtestdata [] Discretize output

http://playground.tensorflow.org/

Non-linear Activation Functions

* Sigmoid
1
o(2) = 14+ e %
* Tanh ;
tanh(z) = 1 _T_ Z_QZ

* Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z)

0
aaaaaaaaa

Active functions

Some Common Activation Functions Activation Function Derivatives

..

0.5 """""""""

-0.5 oo ----------------- Jinear(¥) C S e (X) """""
| | fS‘igmoid(x) —f'Sigmoid ('x) :
_1 , , T tanh(x) : _f'tanh(x)

4 2 0 2 4 4 2 0 2 4
X X

https://theclevermachine.wordpress.com/tag/tanh-function/

Activation functions

* Logistic Sigmoid:

Its derivative:

fSigmoid (x) —

|
1+e™ A 'Sigmoid (x)= fsz'gmoid (x)(1- fSingid (x))

e Output range [0,1]
 Motivated by biological neurons and can
be interpreted as the probability of an

o artificial neuron “firing” given its inputs
o « However, saturated neurons make
gradients vanished (why?)

Activation functions

 Tanh function
Its gradient:

fta,nh(x) =1- fta,nh(x)2

sinh(x) e —e
cosh(x) e +e

Jiann (X) =

; / e Output range [-1,1]
" e Thus strongly negative inputs to the tanh
__________ E . will map to negative outputs.
I * Only zero-valued inputs are mapped to
—opf near-zero outputs
h * These properties make the network less
likely to get “stuck” during training

https://theclevermachine.wordpress.com/tag/tanh-function/

Active Functions

* ReLU (rectified linear unit) + The derivative:

I (2) 1 ifx>0
ReLU\TL) — .
fReLU(x) = max(O, CI?) © 0 ifx<O
* Another version is
X Noise RelU:
—Softplus fNoisyReLU (ZE) = maX(O, x + N(O, 5(33)))
ot — Rectifier |
* RelLU can be approximated by
=1 softplus function

/ fSoftplus (ZE) — 10g(1 + ew)
0

* RelU gradient doesn't vanish as we

| | | |] increase x

-3 2 0 I 2 3 * |t can be used to model positive number
* |tisfast as no need for computing the

exponential function

http://static.googleusercontent.com/media/research. e It eliminates the necessity to have a
google.com/en//pubs/archive/40811.pdf

“pretraining” phase

Active Functions

* The only non-linearity comes from

* RelLU (rectified linear unit) the path selection with individual
neurons being active or not
fReLU ([L‘) — maX(O, 33) * It allows sparse representations:
e for agiven input only a subset
ReLU can be approximated by softplus function of neurons are active

fSoftplus (58) — log(l T ex)

3 | Output
—Softplus
ot [Rectifier |
1 : Hidden layer 2
[
/ Hidden layer 1
0

Input

Additional active functions: Sparse propagation of activations and gradients
Leaky RELU, Exponential LU, Maxout etc http://www.jmlr.org/proceedings/papers/v15/glorotlla/glorotlla.pdf

Error/Loss function

* Recall stochastic gradient descent

* Update from a randomly picked example (but in practice do a
batch update)
0L (w)

ow
e Squared error loss for one binary output:

w=w-—n

BN

N

‘.
R . S ‘_(output
7 TN\ . output layer

input layer
hidden layer 1 hidden layer 2

i
o‘o}o

X

Error/Loss function

* Softmax (cross-entropy loss) for multiple classes

(Class labels follow multinomial distribution)

L(w) == (dilogy + (1 — dy)log(L — yi))

k OXp (2 w,(f; hg'l))

where ¢ =

2) , (1
> s €xp (ZJ w,g,?jh§)>

w](,lgl netgl) hgl)

(2) outputs labels

hidden layer output layer One hot encoded class labels

Advanced Topic of this Lecture

Deep Learning

As a prologue of the DL Course in the next semester

What is Deep Learning

* Deep learning methods are representation-learning
methods with multiple levels of representation,
obtained by composing simple but non-linear
modules that each transform the representation at
one level (starting with the raw input) into a
representation at a higher, slightly more abstract
level.

* Mostly implemented via neural networks

[LeCun, Bengio and Hinton. Deep Learning. Nature 2015.]

Deep Neural Network (DNN)

ﬁ‘ﬁ;{r;‘:

L, T

i L b e

Ln

' . e ."' “'-]
19878
AN

T o=V

LAAIE

E I FREE0K

P L "E!I‘f'—l

. Output layer

Input la}fcr*-

Hidden layer

* Multi-layer perceptron with many hidden layers

Difficulty of Training Deep Nets

Lack of big data
* Now we have a lot of big data

Lack of computational resources
* Now we have GPUs and HPCs

Easy to get into a (bad) local minimum
* Now we use pre-training techniques & various optimization algorithms

Gradient vanishing
* Now we use RelLU

Regularization
* Now we use Dropout

Dropout

* Dropout randomly ‘drops’ units from a layer on each training step,
creating ‘sub-architectures’ within the model.

* It can be viewed as a type of sampling of a smaller network within a
larger network

* Prevent neural networks from overfitting

a) Standard Neural Net (b) After applying dropout.

Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The
Journal of Machine Learning Research 15.1 (2014): 1929-1958.

Convolutional neural networks: Receptive field

* Receptive field: Neurons in the
retina respond to light stimulus in
restricted regions of the visual field

“On” Center Field

Light On

* Animal experiments on receptive
fields of two retinal ganglion cells

* Fields are circular areas of the retina

* The cell (upper part) responds when
the center is illuminated and the
surround is darkened.

* The cell (lower part) responds when
the center is darkened and the
surround is illuminated.

* Both cells give on- and off-
responses when both center and
surround are illuminated, but
neither response is as strong as
when only center or surround is
illuminated

Contributed by Hubel and Wiesel for the studies
of the visual system of a cat Hubel D.H. : The Visual Cortex of the Brain Sci Amer 209:54-62, 1963

Convolutional neural networks

* Sparse connectivity by local 2-d case (subscripts are weights)
correlation
* Filter: the input of a hidden unitin 113,010
layer m are from a subset of units 0,1,)1/1]0 4
in layer m-1 that have spatially 0,)041/1]1
connected receptive fields o|{0f1(1(0
e Shared weights AR LR .
)] _ one filter
« each filter is replicated across the m-1 layer at m layer

entire visual field. These replicated
units share the same weights and
form a feature map. 1-d case

m layer

m-1 layer

edges that have the same color have the same weight http://deeplearning.net/tutorial/lenet.html

Convolutional Neural Network (CNN)

input image feature maps feature maps feature maps feature maps

256x256 128x128 128x128 64x64 output
(256x256) (256x256) | () () (category
1] fh -::,'::-:‘:50
to "/
-] o
convolution subsampling convolution subsampling fully
| layer | layer | layer I layer | connected |

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11) 1998]

Convolution Layer

Example: a 10x10 input image with a 3x3 filter result in an 8x8 output image

Input image 10x10 8x8

[1
C3:f. maps 16@10x10
INPUT C1: feature maps 84: f. maps 16@5x5
32x32 S@268 82: f. maps C5:I;
i clayer gg-
6@14x14 20 ';‘Z' layer %’TPUT
aussian connec tions
Convolutions ions Subsampling Full connection

Convolution Layer

* Example: a 10x10 input image with a 3x3 filter result in an 8x8 output image

» 3 different filters (weights are different) lead to 3 8x8 out images

Input image 10x10 kernel 3x3

Activation
function

c/
| —
e/
|
/ L]
O

C3: f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
32x32 S2:f. maps C5:layer g jayer OUTPUT
120 84 10

6@14x14

Convolutions

|
| Full ConAection ‘ Gaussian connections
ubsampling Convolutions ~ Subsampling Full connection

Feature map

8x8

Y

Pooling Subsampling Layer

* Pooling: partitions the input image into a set of non-overlapping rectangles
and, for each such sub-region, outputs the maximum or average value.

Max pooling Average pooling

Max pooling

* reduces computation and

* is a way of taking the most
responsive node of the given
interest region,

* but may result in loss of

accurate spatial information Max in a 2x2 Average in a
filter 2x2 filter

C3:f. maps 16@10x10
C1: feature maps S4: . maps 16@5x5
INPUT
6@28x28
32x32 S2: f. maps

6@14x14

|
Full contection | Gaussian connections

Sampling) Convolutions ~ Subsampling Full connection

Convolutions

Use Case: Face Recognition

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 4: The computer
Layer 2: The learns which shapes
computer learns to
identify edges and

simple shapes.

and objects can be used
to define a human face,

lon

Digits Recogni

Use Case

* MNIST (handwritten digits) Dataset:

§ 2 v > ¥ O 72 7 ? %

9->4 8->0

->8 2->8 3->5 6->5 7

->3 4

1 5 # 2 3 & 1

4

S

4->6 3->5 8->2 2->1 5

A4

http://yann.lecun.com/exdb/mnist/

60k training and 10k test examples

* Test error rate 0.95%

7
K
e

2, Y
5 %
r

i
w
8->7 4->2 8->4 3->5 8->4 6->5 8->5 3->8 3->8 9->8
2
i/

o

2

Lelel sl
(0 FE R N
NS, JEENGAY " T NAN
Ll sl Alal ol -
A, L A\

m«.ﬂw_ n

M

—~

¢
’
o

1->5 9->8 6->3 0->2 6->5 9->5 (0->7 1->6 4->9 2->1

4 ~# = 1

7->8 5->3 8->7 0->6

8
4
a.

9->4 2->0 6->1 3->5 3

H

g

Total only 82 errors from LeNet-5. correct
answer left and right is the machine answer.

2 = §

8->2 5->3 4->8 3
2->8 8->5 4->9 7->2 T7->2 6->5 9->7 6->1 5->6 5->0

4
J

4->6 T7->3 9->4 4->6 2

-2

cv'o_, mmmui 5 ﬁ @.@Wﬁ.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998

More General Image Recogmtlon

* ImageNet
* Over 15M labeled high
resolution images
* Roughly 22K categories
* Collected from web and

labeled by Amazon
Mechanical Turk

 The Image/scene
classification challenge

* Image/scene
classification

* Metric: Hit@5 error rate -
make 5 guesses about
the image label

e me| a sque
boxer table lamp dia Itel ph radio telescope
Saint Bernard hamper pod steel arch bridge

http://cognitiveseo.com/blog/6511/will-google-read-rank-images-near-future/

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

Leadertable (ImageNet image classification)

2015 ResNet (ILSVRC’15) 3.57

Microsoft ResNet, a 152 layers network

Year Codename Error (percent) 99.9% Conf Int

2014 GoogLeNet 6.66 6.40 - 6.92 = GoogleNet, 22 layers network
2014 VGG 7.32 7.05 - 7.60

2014 MSRA 8.06 7.78 - 8.34

2014 AHoward 8.11 7.83 - 8.39

2014 DeeperVision 9.51 9.21 - 9.82

2013 Clarifaif 11.20 10.87 - 11.53

2014 CASIAWST 11.36 11.03 - 11.69

2014 Trimps® 11.46 11.13 - 11.80

2014 Adobel 11.58 11.25 - 11.91

2013 Clarifai 11.74 11.41 - 12.08

2013 NUS 12.95 12.60 - 13.30

2013 ZF 13.51 13.14 - 13.87

2013 AHoward 13.55 13.20 - 13.91

2013 OverFeat 14.18 13.83 - 14.54

2014 Orangef 14.80 14.43 - 15.17

2012 SuperVision' 15.32 14.94 - 15.69 ..
2012 SuI]);)erVision 16.42 16.04 - 16.80 Y- of Toronto, SuperVision, a 7 layers
2012 1ISI 26.17 25.71 - 26.65 | hetwork

2012 VGG 26.98 26.53 - 27.43

2012 XRCE 27.06 26.60 - 27.52

2012 UvA 29.58 29.09 - 30.04

Unofficial human error is around 5.1% on a subset

Why human error still? When labeling, human raters judged whether it belongs to a class (binary classification); the challenge is a 1000-class classification problem.

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/)
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

Use Case: Text Classification

Feature Map Max over Time
Pooling

Word Embedding

Concat. Multi-layer Perceptron

You Ll]
are —]
not T] — Logistic
listening I] | Output
to :]

a E : :D

word :]]

\ 4
\ 4

am :]

typing i —

* Word embedding: map each word to a k-dimensional dense vector

* CNN kernel: n x k matrix to explore the neighbor k words’ patterns

* Max-over-time pooling: find the most salient pattern from the text for
each kernel

* MLP: further feature interaction and distill high-level patterns

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

Recurrent Neural Network (RNN)

* To model sequential data
* Text
* Time series

* Trained by Back-Propagation Through Time (BPTT)

X :input vector, o : output vector, W . State transition param. matrix
s : hidden state vector, 0 3
. o. =1,V
U : layer 1 param. matrix, O O i =154V 0, 0, 0
= 1

S0 =f(x,,U @

t
Add time-dependency V V VT V
S)

V :layer 2 param. matrix,
J: tanh or Re LU VT

w

_ of the hidden state s W S
O—f(SV) SO - O:) Lr: W OFI >ot)OHI

Two-layer feedforward network

+
t+1

s=f(xU) Unfold w 4 44
UT U U U U
xt X

X X -1 X

[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

>

Different RNNs

one to one one to many many to one many to many
1 tt 1t _ ottt
= B B = = = - =

1 ! tott t ot ot
Vanilla NN Image captioning Text classification Machine translation

Text generation Sentiment analysis Dialogue system

e Different architecture for various tasks

* Strongly recommend Andrej Karpathy’s blog

many to many

Stock price estimation
Video frame classification

 http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Use Case: Language Model

* Word-level or even character-level language model
* Given previous words/characters, predict the next

target chars: ‘e’ o apr “o”
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
tput |
output layer 30 o . o
4.1 12 -1.1 2.2
S I B L2
0.3 1.0 0.1 |w hhl-0-3
hidden layer | -0.1 » 03 > 05— 09
0.9 0.1 -0.3 047
T T T TW_xh
1 0 0 0
' 0 1 0 0
input layer 0 - : 1
0 0 0 0
input chars: “h” tean “p @

[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]

Use Case: Machine Translation

* Encode/decode RNN

* First, encode the input sentence (into a vector e.g. h,)
* Then decode the vector into the sentence in another

language Awesome sauce
SR

:I.W @

| @ @

B h, | @ @

® ®

> . —

=
[oovoo]

B
o
3

(eo000| (0000
Echt dicke Kiste

|

[http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/]

Problem of RNN

* Problem: RNN cannot nicely Ieverage the early information

® @ ®
[le = l: =l A =l
6 L
® ® @19
1 I
Gap dependency A— A— AM— A— A
& & o
® ® & 6? €
Lt 1 [[
Long-term dependency | A | A — A A A A
b 6 & & o

[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Long Short-Term Memory (LSTM)

e N\ N R
—>—® @ > —>
Eanh>
l 9
o ol|[tanh| [O
- REEEE S N N
xl > 4 \I J
1 O — > I
Neural Network Pointwi Vect
[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
[Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

LSTM Cell

e An LSTM cell learn to decide which to remember/forget

?f o :sigmoid (control signal between 0 and 1); o: elementwise multiplication
An LSTM cell _ _
O‘(CIStUZ —+ St_ll/Vl) input gate
e
f ' f
¢, —® > . f o‘(ath + s, W) forget gate
I i ! 0 = O'(letU + 5, W°) output gate
o7 [[E g = tanh(:thg -+ St_lm/g) “candidate” hidden state:
Sy ql] —» 5 Ct = C-10 f + g o1 Cell internal memory
| s; = tanh(c;) o0 Hidden state
o
X, el
SRN cell 4
o :(w > S
t
(——5‘

| x

[http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
[Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.]

Use Case: Text Generation

Output I really love machinelearning <END>
LSTM

LSTM =Y)-(5

Input <START> really love machinelearning

* A demo on character-level text generation
* http://cs.stanford.edu/people/karpathy/recurrentjs/

Use Case: Named Entity Recognition

Word embedding

* From bag of words to word embedding

* Use a real- valued vector in R™ to represent a word (concept)

v("cat")=(0.2,-0.4, 0.7, ...)
v("mat")=(0.0, 0.6, -0.1, ...)
e Continuous bag of word (CBOW) model (word2vec)

* Input/output words x/y are one-hot encoded

* Hidden layer is shared for all input words N-dim Vector
representation
1 of a word
Hidden nodes: h = 5W- (x1 + X2 + -+ x0)
1
- 6 '@sz +"'+Vwc)
The cross-entropy loss: E = = *IOgP(wO’wI,h‘“ ,wz,c)
. ,
= _V'/LUOT -h + log Z exp(v;UjT -h)
Jj'=1
The gradient updates: w; (new) _ Vi, (old) _ . ¢;-h for j=1,2, V.
1 ok
q(x?ﬁj]):vg(?}i)_a'ﬁ'EH forc=1,2,---,C. 87%: 1
j:

Rong, Xin. "word2vec parameter learning explained." arXiv preprint arXiv:1411.2738 (2014).

=
=

[eXeXe]| [== O «=00Q0] [O =+« O ==00Q]

T O s

O]

14
8E 8Uj
Bu; By 2k

V: vocabulary size;

C: num. input words;

v: row vector of input matrix W;
Input layer \/. row vector of output matrix W’

Wy

CxV-dim

Continuous bag of word (CBOW) model

\%4

J=1

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

Remarkable properties from Word embedding

* Simple algebraic operations with the word vectors

Using X = v("biggest") - v("big") + v("small") as query and searching for the nearest word based on

cosine distance results in v("smallest")

v("woman")-v("man") = v("aunt")-v("uncle")

v("woman")-v("man") = v("queen")-v("king")

Word the relationship is defined by subtracting two word vectors, and the result is added to

another word. Thus for example, Paris - France + Italy = Rome.

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy

France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

WOMAN

MAN
UNCLE

AUNT

QUEEN

KING

Vector offsets for

gender relation
“ELEZI T Tdevelop | puild

strengthen -

o rovi
] enloyg L
&

share "

continued bined

QUEENS

N\

QUEEN

KINGS

N\

KING

The singular/plural relation for

juarantee pCape

.

“attacks = stop| |pass,

-
eM e

two words
moving
ﬂau_sus;, . |due o
AUSE st
g ixabled
e 'mi ppcaed
initiate
spread
ibigsina

&mup ok rose |rise
-sia'nd

peak
L :
pass through m"ﬁ“’r

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in Continuous Space Word Representations." HLT-NAACL. 2013.
Zou, Will Y., et al. "Bilingual Word Embeddings for Phrase-Based Machine Translation." EMNLP. 2013.

Neural Language models

* n-gram model

* Construct conditional probabilities for
the next word, given combinations of
the last n-1 words (contexts)

A _ A _ ; i-th output = P(w, = i /context)
POwiwi™h) = P(wi|wi=,.1) where w) = (wi,wigr,- s wjo1,w;).
softmax
))
* Neural language model . o
most | computation here \
* associate with each word a distributed
word feature vector for word anh ‘-
. eeo)
embedding, /
* express the joint probability function of
) Clv) Clw)\ -7
word sequences using those vectors, sy . et
and Tble M C
. iﬁociuP shared parz:imeters
* |earn simultaneously the word feature m
index for wy_,+ 1 index for wy_» index for w,_,
vectors and the parameters of that
probability function.

Bengio, Yoshua, et al. "Neural probabilistic language models." Innovations in Machine Learning. Springer Berlin Heidelberg, 2006. 137-186.

RNN based Language models

* The limitation of the feedforward network approach:

* it has to fix the length context
e Recurrent network solves the issue

* by keeping a (hidden) context and updating over time

INPUT (t)
x(t) is the input vector:
— _ . CONTEXT (t)

It is formed by concatenating vector w(t) X(f) [W(t)a S(t 1)]
representing current word, and hidden
state s at time t - 1. w(t) is one hot | ,
encoder of a word
s(t) is state of the network (the hidden layer): Sj (t) — f E Xq (t)uj’b

1
output is denoted as y(t): Yk (t) =g (E Sj (t)’Uk;j>]

J

. . . 1 e*m L |

Sigmoid for hidden layer f(z) = 1+ e Softmax for output layer g(Zm) = Zk o CONTEXT

OUTPUT (t)

“ Elman’s RNN LM

Mikolov, Tomas, et al. "Recurrent neural network based language model." INTERSPEECH. Vol. 2. 2010.

Elman J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.

Learning to align visual and language data
e Regional CNN + Bi-directional RNN

— associates the two modalities through a common,
multimodal embedding space mage - sentence score Si

sum

1.31 dog 0.26 man
0.31 plays 0.31 playing RCNN max
0.45 catch 1.51 accordion S —
-0.02 with -0.07 among |'J?_:@é”‘ [— I
0.25 white -0.08 in F .1l

i Rry 162 ball Bl 0.42 public
-0.10 near 0.30 area

. -0.07 wooden

0.22 fence

OO

O~ OO0

8-O—~ OO

O~ O OO
O~ OO
8

=
(N
E
—
o
k
v
©
=
]
=
=
w
o
o
m-u

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Learning to generate image descriptions

* Trained CNN on images + RNN with sentence

— The RNN takes a word, the previous context and defines a
distribution over the next word

— The RNN is conditioned on the image information at the
first time step

— START and END are special tokens.

“straw” “hat” END

START “straw” “hat”
"two young girls are playing with

lego toy."

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

summary

* Universal Approximation: two-layer neural
networks can approximate any functions

* Backpropagation is the most important training
scheme for multi-layer neural networks so far

* Deep learning, i.e. deep architecture of NN trained
with big data, works incredibly well

* Neural works built with other machine learning
models achieve further success

Reference Materials

Prof. Geoffery Hinton’s Coursera course
* https://www.coursera.org/learn/neural-networks

Prof. Jun Wang’s DL tutorial in UCL (special thanks)
* http://www.slideshare.net/JunWang5/deep-learning-61493694

Prof. Fei-fei Li’'s CS231n in Stanford
* http://cs231n.stanford.edu/

Prof. Kai Yu’s DL Course in SITU
* http://speechlab.sjtu.edu.cn/~kyu/node/10

Michael Nielsen’s online DL book
* http://neuralnetworksanddeeplearning.com/

Research Blogs
* Andrej Karpathy: http://karpathy.github.io/
* Christopher Olah: http://colah.github.io/

