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Areas of Mathematics Essential to
Machine Learning
• Machine learning is part of both statistics and 

computer science
• Probability
• Statistical inference
• Validation
• Estimates of error, confidence intervals

• Linear Algebra
• Hugely useful for compact representation of linear

transformations on data
• Dimensionally reduction techniques

• Optimization theory



Notations
• set membership: a is member of set A
• cardinality: number of items in set B
• norm: length of vector v
• summation
• integral
• vector (bold, lower case)
• matrix (bold, upper case)
• function: assigns unique value in range of y

to each value in domain of x
• function on multiple variables



Probability Spaces
• A probability space models a random process or 

experiment with three components:
• Ω, the set of possible outcomes O

• number of possible outcomes = |Ω|
• Discrete space |Ω| is finite
• Continuous space |Ω| is infinite

• F, the set of possible events E
• number of possible events = |F|

• P, the probability distribution
• function mapping each outcome and event to real number 

between 0 and 1 (the probability of O or E)
• probability of an event is sum of probabilities of possible 

outcomes in event



Axioms of Probability
• Non-negativity:

• for any event

• All possible outcomes:
• p(Ω) = 1

• Additivity of disjoint events:
• For all events where ,



Example of Discrete Probability Space

• Three consecutive flips of a coin
• 8 possible outcomes: O = HHH, HHT, HTH, HTT, THH, THT, 

TTH, TTT
• 28=256 possible events

• example: E = ( O ∈ { HHT, HTH, THH } ), i.e. exactly two 
flips are heads

• example: E = ( O ∈ { THT, TTT } ), i.e. the first and third 
flips are tails

• If coin is fair, then probabilities of outcomes are equal
• p( HHH ) = p( HHT ) = p( HTH ) = p( HTT ) = p( THH ) = p( THT)

= p( TTH ) = p( TTT ) = 1/8
• example: probability of event E = ( exactly two heads ) is

p( HHT ) + p( HTH ) + p( THH ) = 3/8



Example of Continuous Probability Space

• Height of a randomly chosen American male
• Infinite number of possible outcomes: O has some has 

some single value in range 2 feet to 8 feet
• example: E = ( O | O < 5.5 feet ), i.e. individual chosen is less 

than 5.5 feet tall
• Infinite number of possible events
• Probabilities of outcomes are not equal, and are 

described by a continuous function, p( O )

O

p(O)



Probability Distributions
• Discrete: probability mass function (pmf)

• Continuous: probability density function (pdf)

example: 
sum of two fair dice

example: waiting time
between eruptions of 
Old Faithful (minutes)



Random Variables
• A random variable X is a function that associates a 

number x with each outcome O of a process
• Common notation: X(O) = x, or just X = x

• Basically a way to redefine a probability space to a new 
probability space
• X must obey axioms of probability
• X can be discrete or continuous

• Example: X = number of heads in three flips of a coin
• Possible values of X are 0, 1, 2, 3
• p( X = 0 ) = p( X = 3 ) = 1 / 8, p( X = 1 ) = p( X = 2 ) = 3 / 8
• Size of space (number of “outcomes”) reduced from 8 to 4

• Example: X = average height of five randomly chosen 
American men 
• Size of space unchanged, but pdf of X different than that for 

single man 



Multivariate Probability Distributions

• Scenario
• Several random processes occur (doesn’t matter 

whether in parallel or in sequence)
• Want to know probabilities for each possible 

combination of outcomes
• Can describe as joint probability of several random 

variables
• Example: two processes whose outcomes are 

represented by random variables X and Y. Probability 
that process X has outcome x and process Y has 
outcome y is denoted as



Example of Multivariate Distribution

joint probability: p( X = minivan, Y = European ) = 0.1481



Multivariate Probability Distributions

• Marginal probability
• Probability distribution of a single variable in a joint 

distribution
• Example: two random variables X and Y:

• Conditional probability
• Probability distribution of one variable given that 

another variable takes a certain value 
• Example: two random variables X and Y :



Example of Marginal Probability
Marginal probability: 
p( X = minivan ) = 0.0741 + 0.1111 + 0.1481 = 0.3333



Example of Conditional Probability
Conditional probability: 
p( Y = European | X = minivan ) = 0.1481 / ( 0.0741 + 0.1111 
+ 0.1481 ) = 0.4433



Continuous Multivariate Distribution

• Example: three-component Gaussian mixture in 
two dimensions
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Complement Rule
• Given: event A, which can occur or not

areas represent relative probabilities



Product Rule
• Given: events A and B, which can co-occur (or not)

areas represent relative probabilities



Rule of Total Probability
• Given: events A and B, which can co-occur (or not)

areas represent relative probabilities



Independence
• Given: events A and B, which can co-occur (or not)

areas represent relative probabilities



Example of Independence/Dependence

• Independence:
• Outcomes on multiple flips of a coin
• Height of two unrelated individuals
• Probability of getting a king on successive draws from a 

deck, if card from each draw is replaced

• Dependence:
• Height of two related individuals
• Probability of getting a king on successive draws from a 

deck, if card from each draw is not replaced



Bayes Rule
• A way to find conditional probabilities for one 

variable when conditional probabilities for another 
variable are known.



Bayes Rule



Example of Bayes Rule
• In recent years, it has rained only 5 days each year in a desert.

The weatherman is forecasting rain for tomorrow. When it
actually rains, the weatherman has forecast rain 90% of the time.
When it doesn't rain, he has forecast rain 10% of the time. What
is the probability it will rain tomorrow?

• Event A: The weatherman has forecast rain.
• Event B: It rains.
• We know:

• P(B) = 5/365 = 0.0137 [It rains 5 days out of the year.]
• P(not B) = 1-0.0137 = 0.9863
• P(A|B) = 0.9 [When it rains, the weatherman has forecast rain 90%

of the time.
• P(A|not B)=0.1 [When it does not rain the weatherman has forecast

rain 10% of the time.]



Example of Bayes Rule, cont’d
• We want to know P(B|A), the probability it will rain 

tomorrow, given a forecast for rain by the weatherman. The 
answer can be determined from Bayes rule:

• The result seems unintuitive but is correct. Even when the 
weatherman predicts rain, it only rains only about 11% of 
the time, which is much higher than average. 



Expected Value
• Given:

• A discrete random variable X, with possible values

• Probabilities that X takes on the takes on the 
various values of 

• A function defined on X

• The expected value of f is the probability-weighted 
“average” value of :



Example of Expected Value
• Process: game where one card is drawn from the deck

• If face card, the dealer pays you $10
• If not a face card, you pay dealer $4

• Random variable X = {face card, not face card}
• P(face card) = 3/13
• P(not face card) = 10/13

• Function f(X) is payout to you
• f( face card ) = 10
• f (not face card) = -4

• Expected value of payout is



Expected Value in Continuous Spaces



Common Forms of Expected Value (1)

• Mean

• Average value of , taking into account 
probability of the various

• Most common measure of “center” of a distribution

• Estimate mean from actual samples



Common Forms of Expected Value (2)

• Variance

• Average value of squared deviation of from 
mean , taking into account probability of the various 

• Most common measure of “spread” of a distribution
• is the standard deviation

• Estimate variance from actual samples:

https://www.zhihu.com/question/20099757



Common Forms of Expected Value (3)

• Covariance

• Measures tendency for x and y to deviate from their 
means in same (or opposite) directions at same time

• Estimate covariance from actual samples



Correlation
• Pearson’s correlation coefficient is covariance normalized 

by the standard deviations of the two variables

• Always lies in range -1 to 1
• Only reflects linear dependence between variables

Linear dependence 
with noise

Linear dependence 
without noise

Various nonlinear 
dependencies



Estimation of Parameters
• Suppose we have random variables X1, . . . , Xn and 

corresponding observations x1, . . . , xn.

• We prescribe a parametric model and fit the 
parameters of the model to the data.

• How do we choose the values of the parameters?



Maximum Likelihood Estimation(MLE)
• The basic idea of MLE is to maximize the probability 

of the data we have seen.

• where L is the likelihood function

• Assume that X1, . . . , Xn are i.i.d, then we have

• Take log on both sides, we get log-likelihood



Example
• Xi are independent Bernoulli random variables with 

unknown parameter θ.



Maximum A Posteriori Estimation (MAP)

• We assume that the parameters are a random 
variable, and we specify a prior distribution p(θ).

• Employ Bayes’ rule to compute the posterior 
distribution

• Estimate parameter θ by maximizing the posterior



Example
• Xi are independent Bernoulli random variables with 

unknown parameter θ. Assume that θ satisfies
normal distribution.

• Normal distribution:

• Maximize:



Comparison between MLE and MAP

• MLE: For which θ is X1, . . . , Xn most likely?

• MAP: Which θ maximizes p(θ| X1, . . . , Xn) with
prior p(θ)?

• The prior can be regard as regularization - to reduce
the overfitting.



Example
• Flip a unfair coin 10 times. The result is

HHTTHHHHHT

• xi = 1 if the result is head.

• MLE estimates θ = 0.7

• Assume the prior of θ is N(0.5,0.01), MAP
estimates θ=0.558



What happens if we have more data?

• Flip the unfair coins 100 times, the result is 70
heads and 30 tails.
• The result of MLE does not change, θ = 0.7
• The estimation of MAP becomes θ = 0.663

• Flip the unfair coins 1000 times, the result is 700
heads and 300 tails.
• The result of MLE does not change, θ = 0.7
• The estimation of MAP becomes θ = 0.696



Unbiased Estimators
• An estimator of a parameter is unbiased if the 

expected value of the estimate is the same as the 
true value of the parameters.

• Assume Xi is a random variable with mean μ and 
variance σ2

• is unbiased estimation



Estimator of Variance
• Assume Xi is a random variable with mean μ and 

variance σ2

• Is unbiased?



Estimator of Variance

• where we use
,



Estimator of Variance

• is a unbiased estimation



Linear Algebra Applications
• Why vectors and matrices?

• Most common form of data 
organization for machine vector 
organization for machine 
learning is a 2D array, where
• rows represent samples 
• columns represent attributes

• Natural to think of each sample 
as a vector of attributes, and 
whole array as a matrix



Vectors
• Definition: an n-tuple of values

• n referred to as the dimension of the vector
• Can be written in column form or row form

means “transpose” 

• Can think of a vector as
• a point in space or
• a directed line segment with a 

magnitude and direction



Vector Arithmetic

• Addition of two vectors
• add corresponding elements 

• Scalar multiplication of a vector
• multiply each element by scalar

• Dot product of two vectors
• Multiply corresponding elements, then add products

• Result is a scalar 



Vector Norms
• A norm is a function that satisfies:

• with equality if and only if
•
•

• 2-norm of vectors

• Cauchy-Schwarz inequality



Matrices
• Definition: an m×n two-dimensional array of values

• m rows
• n columns

• Matrix referenced by two-element subscript
• first element in subscript is row
• Second element in subscript is column
• example: or is element in second row, fourth 

column of A



Matrices
• A vector can be regarded as special case of a 

matrix, where one of matrix dimensions is 1.
• Matrix transpose (denoted )

• swap columns and rows
• m×n matrix becomes n x m matrix
• example:



Matrix Arithmetic
• Addition of two matrices

• matrices must be same size
• add corresponding elements:

• result is a matrix of same size

• Scalar multiplication of a 
matrix
• multiply each element by 

scalar:

• result is a matrix of same size



Matrix Arithmetic
• Matrix-matrix multiplication

• the column dimension of the previous matrix must 
match the row dimension of the following matrix

• Multiplication is associative

• Multiplication is not commutative

• Transposition rule



Orthogonal Vectors
• Alternative form of dot product:

• A pair of vector x and y are orthogonal if

• A set of vectors S is orthogonal if its
elements are pairwise orthogonal
• for

• A set of vectors S is orthonormal if it is
orthogonal and, every has

x

y

θ



Orthogonal Vectors
• Pythagorean theorem:

• If x and y are orthogonal, then

• Proof: we know , then

• General case: a set of vectors is orthogonal

x

y

θ

x+y



Orthogonal Matrices
• A square matrix is orthogonal if

• In terms of the columns of Q, the product can be
written as



Orthogonal Matrices

• The columns of orthogonal matrix Q form an
orthonormal basis



Orthogonal matrices
• The processes of multiplication by an orthogonal

matrices preserves geometric structure
• Dot products are preserved

• Lengths of vectors are preserved

• Angles between vectors are preserved



Tall Matrices with Orthonormal 
Columns
• Suppose matrix is tall (m>n) and has

orthogonal columns

• Properties:



Matrix Norms
• Vector p-norms:

• Matrix p-norms:

• Example: 1-norm

• Matrix norms which induced by vector norm are
called operator norm.



General Matrix Norms
• A norm is a function that satisfies:

• with equality if and only if
•
•

• Frobenius norm
• The Frobenius norm of is:



Some Properties
•

•

• Invariance under orthogonal Multiplication

• Q is an orthogonal matrix



Eigenvalue Decomposition
• For a square matrix , we say that a 

nonzero vector is an eigenvector of A 
corresponding to eigenvalue λ if

• An eigenvalue decomposition of a square matrix A
is

• X is nonsingular and consists of eigenvectors of A
• is a diagonal matrix with the eigenvalues of A on 

its diagonal.



Eigenvalue Decomposition
• Not all matrix has eigenvalue decomposition.

• A matrix has eigenvalue decomposition if and only if it is
diagonalizable.

• Real symmetric matrix has real eigenvalues.
• It’s eigenvalue decomposition is the following form:

• Q is orthogonal matrix.



Singular Value Decomposition(SVD)

• every matrix has an SVD as follows:

• and are orthogonal 
matrices

• is a diagonal matrix with the singular 
values of A on its diagonal.

• Suppose the rank of A is r, the singular values of A is



Full SVD and Reduced SVD
• Assume that

• Full SVD: U is matrix, Σ is matrix.

• Reduced SVD: U is matrix, Σ is matrix.

• Assume that

• Full SVD: U is matrix, Σ is matrix.

• Reduced SVD: U is matrix, Σ is matrix.

A U Σ VT



Properties via the SVD
• The nonzero singular values of A are the square

roots of the nonzero eigenvalues of ATA.

• If A=AT, then the singular values of A are the
absolute values of the eigenvalues of A.



Properties via the SVD
•

• Denote



Low-rank Approximation
•

• For any 0 < k < r, define

• Eckart-Young Theorem:

• Ak is the best rank-k approximation of A.



Example
• Image Compression

k=10 k=20 k=50

original
(390*390)



Positive (semi-)definite matrices
• A symmetric matrix A is positive semi-definite(PSD)

if for all

• A symmetric matrix A is positive definite(PD) if for 
all nonzero

• Positive definiteness is a strictly stronger property 
than positive semi-definiteness.

• Notation: if A is PSD, if A is PD



Properties of PSD matrices
• A symmetric matrix is PSD if and only if all of its 

eigenvalues are nonnegative.
• Proof: let x be an eigenvector of A with eigenvalue λ.

• The eigenvalue decomposition of a symmetric PSD
matrix is equivalent to its singular value
decomposition.



Properties of PSD matrices
• For a symmetric PSD matrix A, there exists a unique

symmetric PSD matrix B such that

• Proof: We only show the existence of B
• Suppose the eigenvalue decomposition is

• Then, we can get B:



Convex Optimization



Gradient and Hessian
• The gradient of is

• The Hessian of is



What is Optimization?
• Finding the minimizer of a function subject to 

constraints:



Why optimization?
• Optimization is the key of many machine learning 

algorithms
• Linear regression:

• Logistic regression:

• Support vector machine:



Local Minima and Global Minima
• Local minima

• a solution that is optimal within a neighboring set
• Global minima

• the optimal solution among all possible solutions

global minima
local minima



Convex Set
• A set is convex if for any ,



Example of Convex Sets
• Trivial: empty set, line, point, etc.

• Norm ball: , for given radius r

• Affine space: , given A, b

• Polyhedron: , where inequality ≤ is 
interpreted component-wise.



Operations preserving convexity
• Intersection: the intersection of convex sets is 

convex

• Affine images: if and C is convex,
then

is convex



Convex functions
• A function is convex if for ,



Strictly Convex and Strongly Convex

• Strictly convex:
•

• Linear function is not strictly convex.

• Strongly convex:
• For is convex

• Strong convexity strict convexity convexity



Example of Convex Functions
• Exponential function:
• logarithmic function log(x) is concave
• Affine function:
• Quadratic function: is convex if Q

is positive semidefinite (PSD)
• Least squares loss:
• Norm: is convex for any norm



First order convexity conditions
• Theorem:
• Suppose f is differentiable. Then f is convex if and 

only if for all



Second order convexity conditions

• Suppose f is twice differentiable. Then f is convex if 
and only if for all



Properties of convex functions
• If x is a local minimizer of a convex function, it is a 

global minimizer.

• Suppose f is differentiable and convex. Then, x is a
global minimizer of f(x) if and only if

• Proof:
• . We have

• . There is a direction of descent.



Gradient Descent
• The simplest optimization method.

• Goal:

• Iteration:

• is step size.



How to choose step size
• If step size is too big, the value of function can

diverge.
• If step size is too small, the convergence is very

slow.
• Exact line search:

• Usually impractical.



Backtracking Line Search
• Let . Start with and

multiply until

• Work well in practice.



Backtracking Line Search
• Understanding backtracking Line Search



Convergence Analysis
• Assume that f convex and differentiable.
• Lipschitz continuous:

• Theorem: 
• Gradient descent with fixed step size η ≤ 1/L satisfies

• To get , we need O(1/𝜖) iterations.
• Gradient descent with backtracking line search have the

same order convergence rate.



Convergence Analysis under Strong 
Convexity
• Assume f is strongly convex with constant m.
• Theorem:

• Gradient descent with fixed step size t ≤ 2/(m + L) or 
with backtracking line search satisfies

• where 0 < c < 1.
• To get , we need O(log(1/𝜖)) iterations.
• Called linear convergence.



Newton’s Method
• Idea: minimize a second-order approximation

• Choose v to minimize above

• Newton step:



Newton step



Newton’s Method
• f is strongly convex
• are Lipschitz continuous
• Quadratic convergence:

• convergence rate is O(log log(1/𝜖))
• Locally quadratic convergence: we are only 

guaranteed quadratic convergence after some 
number of steps k.

• Drawback: computing the inverse of Hessian is
usually very expensive.

• Quasi-Newton, Approximate Newton...



Lagrangian
• Start with optimization problem:

• We define Lagrangian as

• where



Property
• Lagrangian

• For any u ≥ 0 and v, any feasible x,



Lagrange Dual Function
• Let C denote primal feasible set, f* denote primal 

optimal value. Minimizing L(x, u, v) over all x gives a
lower bound on f* for any u ≥ 0 and v.

• Form dual function:



Lagrange Dual Problem
• Given primal problem

• The Lagrange dual problem is:



Property
• Weak duality:

• The dual problem is a convex optimization problem
(even when primal problem is not convex)

• g(u,v) is concave.



Strong duality
• In some problems we have observed that actually

which is called strong duality.

• Slater’s condition: if the primal is a convex problem,
and there exists at least one strictly feasible x, i.e,

then strong duality holds



Example
• Primal problem

• Dual function

• Dual problem

• Slater’s condition always holds.
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