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Areas of Mathematics Essential to
Machine Learning

* Machine learning is part of both statistics and
computer science

* Probability

 Statistical inference

* Validation

e Estimates of error, confidence intervals

* Linear Algebra

* Hugely useful for compact representation of linear
transformations on data

 Dimensionally reduction techniques
* Optimization theory



Notations

*a € A set membership: a is member of set A
* |B| cardinality: number of items in set B

* |[v]| norm:length of vector v

> summation

[ integral

*X,y,z vector (bold, lower case)

A, B matrix (bold, upper case)

 y = f(x) function: assigns unique value in range of y
to each value in domain of x

*y = f(x) function on multiple variables



Probability Spaces

* A probability space models a random process or
experiment with three components:

* ), the set of possible outcomes O

* number of possible outcomes = | Q|

* Discrete space | Q] is finite

e Continuous space | Q] is infinite
* F, the set of possible events E

* number of possible events = | F|

* P, the probability distribution

* function mapping each outcome and event to real number
between 0 and 1 (the probability of O or E)

* probability of an event is sum of probabilities of possible
outcomes in event



Axioms of Probability

* Non-negativity:
« foranyevent £ € F, p(E) >0

* All possible outcomes:
* p(Q)=1

* Additivity of disjoint events:
e Forallevents £, E' € F where ENE' =),

p(EUE') =p(E)+ p(E")



Example of Discrete Probability Space

* Three consecutive flips of a coin

e 8 possible outcomes: O = HHH, HHT, HTH, HTT, THH, THT,
[TH, TTT

 23=256 possible events

e example: E=( 0O & { HHT, HTH, THH } ), i.e. exactly two
flips are heads

e example:E=( 0O & { THT, TTT } ), i.e. the first and third
flips are tails

* If coin is fair, then probabilities of outcomes are equal
e p(HHH ) =p(HHT )=p(HTH ) =p(HTT ) =p(THH ) = p( THT)
=p(TTH)=p(TTT)=1/8
e example: probability of event E = ( exactly two heads ) is
p(HHT )+ p(HTH) + p( THH ) = 3/8




Example of Continuous Probability Space

* Height of a randomly chosen American male
* Infinite number of possible outcomes: O has some has
some single value in range 2 feet to 8 feet

 example: E=(O | O<5.5feet), i.e. individual chosen is less
than 5.5 feet tall

* Infinite number of possible events
* Probabilities of outcomes are not equal, and are
described by a continuous function, p( O)
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Probability Distributions

* Discrete: probability mass function (pmf)

example:
sum of two fair dice

probability

2 3 4 5 6 7 8 9 10 11 12

e Continuous: probability density function (pdf)

|

example: waiting time
between eruptions of
Old Faithful (minutes)

|

probability
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Random Variables

* Arandom variable X is a function that associates a
number x with each outcome O of a process

« Common notation: X(O) = x, or just X = x
* Basically a way to redefine a probability space to a new
probability space
* X must obey axioms of probability
e X can be discrete or continuous

* Example: X = number of heads in three flips of a coin
* Possible valuesof Xare0, 1, 2, 3
e p(X=0)=p(X=3)=1/8,p(X=1)=p(X=2)=3/8
* Size of space (hnumber of “outcomes”) reduced from 8 to 4

* Example: X = average height of five randomly chosen
American men

 Size of space unchanged, but pdf of X different than that for
single man



Multivariate Probability Distributions

e Scenario

* Several random processes occur (doesn’t matter
whether in parallel or in sequence)

* Want to know probabilities for each possible
combination of outcomes

* Can describe as joint probability of several random

variables

* Example: two processes whose outcomes are
represented by random variables X and Y. Probability
that process X has outcome x and process Y has
outcome y is denoted as

p(X =2zY =vy)



Example of Multivariate Distribution

joint probability: p( X = minivan, Y = European ) = 0.1481

probability
o

American

_ sport
Asian SUV
European minivan
Y = manufacturer P

sedan X = model type



Multivariate Probability Distributions

* Marginal probability

* Probability distribution of a single variable in a joint
distribution

 Example: two random variables X and Y:

p(X — ':C) — Zb:all values of Yp(X — &, Y = b)

e Conditional probability

* Probability distribution of one variable given that
another variable takes a certain value

 Example: two random variables Xand Y :

_ _ .\ — p(X==z,Y=y)




Example of Marginal Probability

Marginal probability:
p( X = minivan ) =0.0741 + 0.1111 + 0.1481 = 0.3333

probability
o

American ~ .

) sport
Asian SUV
European minivan

Y = manufacturer X = model type

sedan



Example of Conditional Probability

Conditional probability:

p(Y = European | X=minivan)=0.1481/(0.0741 + 0.1111
+0.1481) =0.4433

0'1 N

probability

American !

_ ", sport
Asian SuV
European minivan
Y = manufacturer sedan X = model type



Continuous Multivariate Distribution

* Example: three-component Gaussian mixture in
two dimensions

probability




Complement Rule

e Given: event A, which can occur or not

p(not A) =1 —p(A)

/

areas represent relative probabilities



Product Rule

e Given: events A and B, which can co-occur (or not)
p(A, B) = p(A|B) - p(B)

- ~

(not A, not B)
A B

(A, not B)
. )

areas represent relative probabilities




Rule of Total Probability

e Given: events A and B, which can co-occur (or not)
p(A) =p(A, B) + p(A, not B)
=p(A|B) - p(B) + p(Anot B) - p(not B)

\

(not A, not B)

a

(P,

.

(A, not B)

areas represent relative probabilities



Independence

e Given: events A and B, which can co-occur (or not)

p(A|B) = p(A) or p(A,B)=p(A)-p(B)
0

(not A, not B)

(A, not B) A

areas represent relative probabilities



Example of Independence/Dependence

* Independence:
e Outcomes on multiple flips of a coin
e Height of two unrelated individuals

* Probability of getting a king on successive draws from a
deck, if card from each draw is replaced

* Dependence:
* Height of two related individuals

* Probability of getting a king on successive draws from a
deck, if card from each draw is not replaced



Bayes Rule

* A way to find conditional probabilities for one
variable when conditional probabilities for another

variable are known.
p(A|B) - p(B)
Bl|A) =
p(B|A) o(A)

\

(not A, not B)




Bayes Rule

p(B|A) o< p(A|B) - p(B)

posterior probability o likelihood X prior probability

- ™

(not A, not B)

;

(A, not B)




Example of Bayes Rule

* In recent years, it has rained only 5 days each year in a desert.
The weatherman is forecasting rain for tomorrow. When it
actually rains, the weatherman has forecast rain 90% of the time.
When it doesn't rain, he has forecast rain 10% of the time. What
is the probability it will rain tomorrow?

 Event A: The weatherman has forecast rain.
 Event B: It rains.

* We know:
* P(B) =5/365=0.0137 [It rains 5 days out of the year.]
* P(not B) =1-0.0137 =0.9863

 P(A|B) = 0.9 [When it rains, the weatherman has forecast rain 90%
of the time.

 P(A|not B)=0.1 [When it does not rain the weatherman has forecast
rain 10% of the time.]



Example of Bayes Rule, cont’d

 We want to know P(B|A), the probability it will rain
tomorrow, given a forecast for rain by the weatherman. The
answer can be determined from Bayes rule:

p(B|A) =p(A|B) - p(B)/p(A)
p(A) =p(A|B) - p(B) + p(Anot B) - p(not B)
—0.9 x 0.0137 + 0.1 x 0.9863 = 0.1110
p(B|A) =0.9 x 0.0137/0.1110 = 0.1111

* The result seems unintuitive but is correct. Even when the
weatherman predicts rain, it only rains only about 11% of
the time, which is much higher than average.



Expected Value

* Given:
* A discrete random variable X, with possible values
X =x1,T9,...,Ty

* Probabilities p(X = x;) that X takes on the takes on the
various values of I;

e Afunction y; = f(x;)defined on X

* The expected value of f is the probability-weighted
“average” value of f(z;):

E(f) = Zp(iz)f(wz)



Example of Expected Value

* Process: game where one card is drawn from the deck
* |f face card, the dealer pays you $10
* |f not a face card, you pay dealer $4

« Random variable X = {face card, not face card}
* P(face card) =3/13
* P(not face card) = 10/13
* Function f(X) is payout to you
e f(face card) =10
e f(not face card) = -

. Expected value of payout is
Zp x;)f(z;) =3/13-10+10/13 - —4 = —0.77



Expected Value in Continuous Spaces

E(f) = Jomamp P(2)f(2)

02
015+
0.1+
005+
o+
005
01+
— p( X ]
015+ s f{( % )
m—px) f(x)
02r — = = Unweighted average value
of f( %)
025+ = = = Probability-weighted average | -
(expected) value of f( x )
03




Common Forms of Expected Value (1)

* Mean [t
flx;) =2, = p=E(f)= Zp(ﬂ%;)ﬂ?i

* Average value of X = x;, taking into account
probability of the various z;

e Most common measure of “center” of a distribution

* Estimate mean from actual samples

1N
K= NZ%
i=1



Common Forms of Expected Value (2)

e Variance 02

fla)=(z;—p) = o°= Zp(fl?z') Ay — p)?

* Average value of squared deviation of X = z; from
mean W, taking into account probability of the various I ;

* Most common measure of “spread” of a distribution
* 0 is the standard deviation

* Estimate variance from actual samples:

1 T
2 , 2
g = —17; 1(:132—,u)

https://www.zhihu.com/question/20099757



Common Forms of Expected Value (3)

* Covariance
f(mz) — ( ,u:v) g(y’L) — (yz — ,Uy)
COU T y Zp %,yz —M:c)‘(yi—:“y)

* Measures tendency for x and y to deviate from their
means in same (or opposite) directions at same time

no covariance
aduelleA0d
(eAmsod) ybiy

-2 -1 EI 1 2 3 < 5

. Estlmate covariance from actual samples
N
1
cov(z,y) = —— (@i — pa) (Yi — fy)

N —1
1=1



Correlation

e Pearson’s correlation coefficient is covariance normalized
by the standard deviations of the two variables
cov(x,y)

corr(x,y) = —
0y

e Always liesinrange-1to 1
* Only reflects linear dependence between variables

0.4 0 -0.4 -0.8 -1 .
Linear dependence

/ f . *: * g \ with noise

1 1. 1 -1 -1 -1 .
Linear dependence

” 4 e — o— —— S . .
A without noise
0 0 0 0 0 0 0 . .
N PN W Various nonlinear
s & X e .
3 o Rt RS dependencies



Estimation of Parameters

* Suppose we have random variables X;, ..., X, and

corresponding observations x,, . . ., x,.

* We prescribe a parametric model and fit the
parameters of the model to the data.

* How do we choose the values of the parameters?



Maximum Likelihood Estimation(MLE)

* The basic idea of MLE is to maximize the probability
of the data we have seen.

OrLE = arg max L(0)

e where L is the likelihood function
L(0) =p(x1,...,2,;0)

* Assume that X, ..., X, are i.i.d, then we have
£6) = ][ p(xi; 6)
1=1

* Take log on both sides, we get log-likelihood

log £(0) = ) _logp(s; 6)
1=1



Example

* X. are independent Bernoulli random variables with
unknown parameter 0.

fx;;0) = 0% (1 —0)
B ﬁ f(ai:0) = 0% (1 - )" ="

log L(6 sz log 6 + n—sz log(1 -6

0log L(6) 0= > T
00 n




Maximum A Posteriori Estimation (MAP)

* We assume that the parameters are a random
variable, and we specify a prior distribution p(0).

* Employ Bayes’ rule to compute the posterior
distribution

p(0)zy, ... xn) < p(O)p(r1,. .., 2n]0)

e Estimate parameter 6 by maximizing the posterior

Orrap = arg meaxp(ﬁ)p(:r;l, ., Ty |0)

Orfap = argmaxlogp —I—Zlog x;|0)



Example

* X. are independent Bernoulli random variables with
unknown parameter 0. Assume that J satisfies
normal distribution.

* Normal distribution:
1 (z—p)2

N(u,02) = e 202

Qmo?

* Maximize:

arg max — (02_0’5) + (Z r;)1log 6 + (n — sz) log(1 — 0)



Comparison between MLE and MAP

* MLE: For which 9is X, ..., X, most likely?

* MAP: Which & maximizes p(3| X, . . ., X,) with
prior p(0)?

* The prior can be regard as regularization - to reduce
the overfitting.



Example

* Flip a unfair coin 10 times. The result is
HHTTHHHHHT
flaiz0) = 6" (1—0) "

* x;=1 if the result is head.

* MILE estimates 0 =0.7

e Assume the prior of ¥is N(0.5,0.01), MAP
estimates U=0.558



What happens if we have more data?

* Flip the unfair coins 100 times, the result is 70
heads and 30 tails.
* The result of MLE does not change, 0 =0.7
* The estimation of MAP becomes U = 0.663

* Flip the unfair coins 1000 times, the result is 700
heads and 300 tails.
* The result of MLE does not change, 0 =0.7
* The estimation of MAP becomes ¥ = 0.696



Unbiased Estimators

* An estimator of a parameter is unbiased if the
expected value of the estimate is the same as the
true value of the parameters.

* Assume X is a random variable with mean u and

variance o° o
X == -
22X
1=1
_ 1 < 1 < 1
E(X) =E(~ Y X)) = - Y E(X;) = —nj =
1=1 1=1

e Xis unbiased estimation



Estimator of Variance

* Assume X; is a random variable with mean u and

variance ai

1 _ :
o|s 5% == E (X; — X)? unbiased?
n
1=1

52 =~ S(X, - X)?

n -
1=1

1 — _
== E (X7 —2X; X + X?)
n
=1

1 — Iy 1 -
:E;XE—ZXﬁ;XZ—+an2

1 .
:g;Xf—XQ



Estimator of Variance

1 n
E(6%) =E[= Y X2 — X?
(8%) B[ X2 - X

=~ 3 E(X?) - E(X?)

—o% —0?/n
_(n B 1)0-2 7& 0_2
n

* where we use
var(X) = o = E(X?) — p?, var(X) =0 /n=E(X?) — u°



Estimator of Variance

2

* 5° is a unbiased estimation



Linear Algebra Applications

vector

* Why vectors and matrices?

* Most common form of data
organization for machine vector
organization for machine
learning is a 2D array, where

®* rOws represent samples
e columns represent attributes

* Natural to think of each sample
as a vector of attributes, and
whole array as a matrix

U4

VAl Refund Marital

o T N ————————————————————

r =

Status

Single
Married

Married

Divorced
Married
Divorced
Single
Married

Single

-—— - iy,

Taxable
Income

125K
100K
70K

120K

95K
60K
220K
85K
75K
90K

matrix

T ———



Vectors

* Definition: an n-tuple of values
* nreferred to as the dimension of the vector

e Can be written in column form or row form

L1
xr = : xT — (Il Y Zlﬁn)
Ln T means “transpose”
e Can think of a vector as T |
* a point in space or . p=@D)

* adirected line segment with a !

magnitude and direction N s 0s)



Vector Arithmetic

* Addition of two vectors
* add corresponding elements

-
Z=X+Yy= (x1+y1 xn+yn)
 Scalar multiplication of a vector
* multiply each element by scalar
y=ax=(azy - az,)
* Dot product of two vectors
* Multiply corresponding elements, then add products

1=1

e Result is a scalar



Vector Norms

* A norm is a function || - | that satisfies:
* ||x|| > 0 with equality if and only if x =0
* x+yl < x|+ [yl

* [Jax]| = |al|[x]|

e 2-norm of vectors

il =y 3t

e Cauchy-Schwarz inequality

Xy < [Ix[l2[lyll2



Matrices

e Definition: an mxn two-dimensional array of values
* M rows
* n columns

* Matrix referenced by two-element subscript
* first element in subscript is row
* Second element in subscript is column
* example: Ay, 0r ayy is element in second row, fourth
column of A

aip - Aln



Matrices

* A vector can be regarded as special case of a
matrix, where one of matrix dimensions is 1.

* Matrix transpose (denoted ')
* swap columns and rows
* mxn matrix becomes n x m matrix

e example: /
2 4
2 7 1 0 3 ! 6
_ - T _ ] _ _
A = (4 6 —3 1 8> A= 01 13

\3 8



Matrix Arithmetic

e Addition of two matrices C=A+B-=

* matrices must be same size a1 +by1 -+ ain, + b1,
e add corresponding elements:

Cij = Gij + bij
e resultis a matrix of same size \@m1 +0m1 -+ Qmn + by

e Scalar multiplication of a

matrix B=d A=
 multiply each element by d-ay; -+ d-ain
scalar:
bij = d - ajj
* result is a matrix of same size d-mi - d-Qmn



Matrix Arithmetic

* Matrix-matrix multiplication

* the column dimension of the previous matrix must
match the row dimension of the following matrix

m
Can — ApXmBan Cij — E aikbkj
k=1

* Multiplication is associative
A-(B-C)=(A-B)-C
* Multiplication is not commutative
A-B£B-A
* Transposition rule
(A-B)' =B'-A'



Orthogonal Vectors

* Alternative form of dot product:
x'y = [Ix/[ly]l cos 8

* A pair of vector x and y are orthogonal if

x'y =0

* A set of vectors S is orthogonal if its ~\°

elements are pairwise orthogonal
cforx,yeS,x4y=x"'y=0

e A set of vectors S is orthonormal if it is
orthogonal and, every x € S has ||x|| =1



Orthogonal Vectors

* Pythagorean theorem:
* If xandy are orthogonal, then

Ix +ylI* =[] y lyl*
* Proof: we know x'y = 0, then

Ix+y* =(x+y) (x+y)
=[x[* +lyl* +x"y +y'x
=" + [yl

* General case: a set of vectors is orthogonal

n n
1D xill? =) Il
1=1 1=1

X+y




Orthogonal Matrices

* A square matrix Q € R™*"is orthogonal if

Q'Q=1 ie. Q' =Q7!

* In terms of the columns of Q, the product can be
written as

fa] /1 \
- (Q1 q2 "'Qn):

\al/ Y




Orthogonal Matrices

(a1 ) 1
e ((h q2 "°Qn):

=y \

1 /I::.
T, _ J
QiQJ_{O Z#]

* The columns of orthogonal matrix Q form an
orthonormal basis




Orthogonal matrices

* The processes of multiplication by an orthogonal
matrices preserves geometric structure

* Dot products are preserved
(Qx) - (Qy)=x"y
(Qx)' (Qy)=x'Q'Qy=x"y
* Lengths of vectors are preserved
1Qx|[ = ||x]]

* Angles between vectors are preserved

(Qx)"(Qy) x'y

cos b = =

lQx(llQyll x|




Tall Matrices with Orthonormal
Columns

* Suppose matrix Q € R™”*" is tall (m>n) and has
orthogonal columns

* Properties:

Q'Q=I
QQ' #1I



Matrix Norms

* Vector p-norms:

Ixllp = (1P + |zof? + - + [aa[P) /P

* Matrix p-normes:
|Ax][,

HXHp

A, = max

* Example: 1-norm ||A|, = maXZ\az]\
1=1

* Matrix norms which induced by vector norm are
called operator norm.



General Matrix Norms

A norm is a function || - | that satisfies:

A|| > 0 with equality if and only if A =0
A+ B < [A[+B]
aAl = |af[|A]

* Frobenius norm

e The Frobenius norm of A €

R™*™js:

[Alr =) lai;[*)'?

i=1 j=1



Some Properties

. HAH% — trace(ATA)
- [|[AB|r = ||Al7|B|#

* Invariance under orthogonal Multiplication
QA2 =[|Al2  |QAJF = |AlF

* Qis an orthogonal matrix



Eigenvalue Decomposition

 For a square matrix A € R"*", we say that a
nonzero vector x € R" is an eigenvector of A
corresponding to eigenvalue A if

Ax = A\x
* An eigenvalue decomposition of a square matrix A
IS
A =XAX™!

e X is nonsingular and consists of eigenvectors of A

* A is a diagonal matrix with the eigenvalues of A on
its diagonal.



Eigenvalue Decomposition

* Not all matrix has eigenvalue decomposition.

* A matrix has eigenvalue decomposition if and only if it is
diagonalizable.

* Real symmetric matrix has real eigenvalues.

* It’s eigenvalue decomposition is the following form:
A=QAQ'

* Q is orthogonal matrix.



Singular Value Decomposition(SVD)

e every matrix A € R™*"™ has an SVD as follows:
A=UxV'

*U € R™*™and V ¢ R™*™ are orthogonal
matrices

* Y € R™*™is a diagonal matrix with the singular
values of A on its diagonal.

e Suppose the rank of A is r, the singular values of A is

0-120-2Z"'ZUTZUT-I—l:-”O-min(m,n):O



Full SVD and Reduced SVD

e Assume that m > n
e Full SVD: Uis m X m matrix, 2 is m X n matrix.

e Reduced SVD: U is m X n matrix, 2 is n X n matrix.




Properties via the SVD

* The nonzero singular values of A are the square
roots of the nonzero eigenvalues of A'A.

A'A=UzvH'wuzv)=vz'v'uzv' =viE'2)v'

* If A=AT, then the singular values of A are the
absolute values of the eigenvalues of A.

A =QAQ" = Q|Asign(A)Q"



Properties via the SVD

|Afl2 = o1

|AllF = \/o? + 02 +--- +02

* Denote U= (u; uz ... uy)
V:(V1 Vo ... Vn)

T

-

A = E o;U;V,
1=1



Low-rank Approximation
¢ A:Zaiuw;
1=1

k
+ Forany 0 <k<r, defineA; =Y giu;v/
1=1

e Eckart-Young Theorem:

min A - Bl = A - Al = o1t
rank(B)<k

I A—-Bll-=A - A :\/ 2 5
mng?Bn)gk” lr = | k|7 02, + e+ 02

* A, is the best rank-k approximation of A.



Example

* Image Compression
original
(390*390)

k=10 k=20 k=50




Positive (semi-)definite matrices

* A symmetric matrix A is positive semi-definite(PSD)
if forall x e R", x' Ax > 0

* A symmetric matrix A is positive definite(PD) if for
all nonzerox e R*,x' Ax > 0

* Positive definiteness is a strictly stronger property
than positive semi-definiteness.

* Notation: A > Qif AisPSD, A -~ (0 ifAisPD



Properties of PSD matrices

* A symmetric matrix is PSD if and only if all of its
eigenvalues are nonnegative.

* Proof: let x be an eigenvector of A with eigenvalue A.

0<x' Ax = XT()\X) —Ax'x = )\HXH%

* The eigenvalue decomposition of a symmetric PSD
matrix is equivalent to its singular value
decomposition.



Properties of PSD matrices

* For a symmetric PSD matrix A, there exists a unique
symmetric PSD matrix B such that

B’ =A

* Proof: We only show the existence of B
e Suppose the eigenvalue decomposition is
A =UAU"'
* Then, we can get B: 1
B=UAzU'

B2 = UAUTUA2UT = UAZAZUT = A



Convex Optimization



Gradient and Hessian

* The gradientof f:RY 5 R s

2\

* The Hessian of f : RY — R is

V2f =

ox

of

ox
V= ’

of

3$d/
o*f o° f

/ 8%% 8x18xd
0% f 0° f
Ox 4011 8x3




What is Optimization?

* Finding the minimizer of a function subject to
constraints:

min f(x)

sit.gi(x) <0,i=1,2,...,m
hi(x)=0,7=1,2,...,n



Why optimization?

e Optimization is the key of many machine learning
algorithms

* Linear regression:
: 2
min | Xw — y|
w
* Logistic regression:
n

min Z log(1 + exp(—y;x; W))
1=1
e Support vector machine:

min ||wl|? + CZSZ

st. & >1— yixi W
& >0



Local Minima and Global Minima

* Local minima
 a solution that is optimal within a neighboring set

* Global minima
* the optimal solution among all possible solutions

12 T T T T T T

10 R\

sF

. local minima
global minima -+~




Convex Set

* Aset C C R" isconvexif forany z,y € C,
tr+ (1 —t)y € C for all te|0,1]




Example of Convex Sets

* Trivial: empty set, line, point, etc.
e Norm ball: {x : ||z|| <}, for given radius r
* Affine space: {z : Az = b}, given A, b

* Polyhedron: {x : Az < b}, where inequality < is
interpreted component-wise.



Operations preserving convexity

* Intersection: the intersection of convex sets is
convex

* Affine images: if f(x) = Ax + b and Cis convex,
then
f(C)={Az+b:.:x € C}

IS convex



Convex functions

* Afunction f : R" — R is convexif for z,y € domf,
F(ta + (1 —t)y) < tf(x) + (1 - 1)f(y), for all ¢ € [0,1]

N



Strictly Convex and Strongly Convex

e Strictly convex:
© flr+ (1 =t)y) <tf(z)+ (1 -1)f(y)
forx Ayand 0 <t <1

* Linear function is not strictly convex.

e Strongly convex:
*Form>0: f(z) — %chw is convex

* Strong convexity = strict convexity = convexity



Example of Convex Functions

* Exponential function: ¢%*
* logarithmic function log(x) is concave
e Affine function: a' = + b

» Quadratic function: z' Qz +b' x + ¢ is convex if Q
is positive semidefinite (PSD)

» Least squares loss: [|ly — Az||3
* Norm: ||z||is convex for any norm
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First order convexity conditions

e Theorem:

e Suppose f is differentiable. Then f is convex if and
only if for all =,y € dom f

fy) = f(z) +Vf(z) (y - =)



Second order convexity conditions

» Suppose f is twice differentiable. Then f is convex if
and only if for all x € dom f

Vif(z) = 0



Properties of convex functions

 |If x is a local minimizer of a convex function, itis a
global minimizer.

e Suppose fis differentiable and convex. Then, x is a
global minimizer of f(x) if and only if

Vf(x)=0

* Proof:
« Vf(x)=0.We have

f(y) = f(z) + V(@) (y —z) = f(z)

« Vf(x) # 0.There is a direction of descent.



Gradient Descent

* The simplest optimization method.

e Goal:

min f(x)

X

* |teration:
Lt4+1 = Lt — Utvf(l’t)

* Tt is step size.



How to choose step size

* If step size is too big, the value of function can
diverge.

* |f step size is too small, the convergence is very
slow.

* Exact line search:

m = argmin f(z — 1V f(z)

e Usually impractical.



Backtracking Line Search

e Leta € (0,1/2],8 € (0,1). Start withn = 1 and
multiply n = Gn until

flz =0V f(x) < f(x) = an||V ()|

* Work well in practice.



Backtracking Line Search

* Understanding backtracking Line Search

f(z - nVf(z))

TN f(@) - el V()2

\ F(@) = V(@)
. | 5
ne =0 Mo

flx —nVf(x) < f(@) —anl|VF()|?




Convergence Analysis

 Assume that f convex and differentiable.
* Lipschitz continuous:

IVf(z) = VI)ll2 < Lz -yl

* Theorem:
* Gradient descent with fixed step size n < 1/L satisfies

v o Nlwo —2"I3
_ <

* Toget f(xy) — f* < €, we need O(1/e) iterations.

* Gradient descent with backtracking line search have the
same order convergence rate.




Convergence Analysis under Strong
Convexity

e Assume f is strongly convex with constant m.

e Theorem:

* Gradient descent with fixed step size t<2/(m + L) or
with backtracking line search satisfies

* L *
flae) = 7 < 2 flag — 27

e whereO<c<1.
* Toget f(x;) — f* < €, we need O(log(1/¢)) iterations.
e Called linear convergence.



Newton’s Method

* |[dea: minimize a second-order approximation
1

fla+v) = flx) + Vf(x) v+ §UTV2f(fL‘)U

e Choose v to minimize above

v=—[V'f(2)]"'Vf(z)

* Newton step:
Top1 = — [V f(20)] TV f (24)



Newton step




Newton’s Method

* fis strongly convex
«Vf(x), sz(a?) are Lipschitz continuous

* Quadratic convergence:
* convergence rate is O(log log(1/¢))

* Locally quadratic convergence: we are only
guaranteed quadratic convergence after some
number of steps k.

* Drawback: computing the inverse of Hessian is
usually very expensive.

* Quasi-Newton, Approximate Newton...



Lagrangian

e Start with optimization problem:
mwin f(x)
sit. gi(x) <0,0=1,2,...,m
hi(x)=0,7=1,2,...,n

* We define Lagrangian as

L(z,u,v) ) + Zuzgz + Zvjhj(:zz)
j=1

* where u; > 0



Property

* Lagrangian

L(z,u,v) ) + Zuzg@ — Zvjhj(x)
j=1

* Forany u =0 and v, any feasible x,

L(x,u,v) < f(x)



Lagrange Dual Function

 Let C denote primal feasible set, f* denote primal
optimal value. Minimizing L(x, u, v) over all x gives a
lower bound on f* for any u >0 and v.

f* > min L(x, u,v) > min L(z,u,v) = g(u, v)
xe(C L

* Form dual function:

g(u,v) = min L(x, u,v)



Lagrange Dual Problem

* Given primal problem
min f(x)
st.gi(x) <0,i=1,2,....,m
hi(z)=0,j=1,2,...,n

* The Lagrange dual problem is:

max g(u,v)
u,v

st.u>0



Property

* Weak duality:
7 =9

* The dual problem is a convex optimization problem
(even when primal problem is not convex)

g(u,v) = min{f( +Zuzgz )+ vihy (@)}

* g(u,v) is concave.



Strong duality

* In some problems we have observed that actually
fF=9
which is called strong duality.

* Slater’s condition: if the primal is a convex problem,
and there exists at least one strictly feasible x, i.e,

g1(x) <0,...,9m(x) <0and hi(z) =...h,(x) =0
then strong duality holds



Example

* Primal problem

min ¢ '

T

st. Ax < b
e Dual function

g(u) = m:gn{a:T:z: +u' (Az —b)}

1
= — ZUTAATU — b

e Dual problem |
max —ZuTAATu — b u, st u>0

u

e Slater’s condition always holds.
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