Mathematics for Machine Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html
Areas of Mathematics Essential to Machine Learning

- Machine learning is part of both *statistics* and computer science
 - Probability
 - Statistical inference
 - Validation
 - Estimates of error, confidence intervals

- **Linear Algebra**
 - Hugely useful for compact representation of linear transformations on data
 - Dimensionally reduction techniques

- **Optimization** theory
Notations

• $a \in A$ set membership: a is member of set A
• $|B|$ cardinality: number of items in set B
• $|\mathbf{v}|$ norm: length of vector \mathbf{v}
• \sum summation
• \int integral
• $\mathbf{x}, \mathbf{y}, \mathbf{z}$ vector (bold, lower case)
• \mathbf{A}, \mathbf{B} matrix (bold, upper case)
• $y = f(x)$ function: assigns unique value in range of y to each value in domain of x
• $y = f(\mathbf{x})$ function on multiple variables
Probability Spaces

• A probability space models a *random process or experiment* with three components:
 • Ω, the set of possible outcomes O
 • number of possible outcomes $= |\Omega|$
 • Discrete space $|\Omega|$ is finite
 • Continuous space $|\Omega|$ is infinite
 • F, the set of possible events E
 • number of possible events $= |F|$
 • P, the probability distribution
 • function mapping each outcome and event to real number between 0 and 1 (the probability of O or E)
 • probability of an event is sum of probabilities of possible outcomes in event
Axioms of Probability

• Non-negativity:
 • for any event $E \in F$, $p(E) \geq 0$

• All possible outcomes:
 • $p(\Omega) = 1$

• Additivity of disjoint events:
 • For all events $E, E' \in F$ where $E \cap E' = \emptyset$,
 $$p(E \cup E') = p(E) + p(E')$$
Example of Discrete Probability Space

• Three consecutive flips of a coin
 • 8 possible outcomes: \(O = \text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \)

• \(2^8 = 256 \) possible events
 • example: \(E = (O \in \{ \text{HHT, HTH, THH} \}) \), i.e. exactly two flips are heads
 • example: \(E = (O \in \{ \text{THT, TTT} \}) \), i.e. the first and third flips are tails

• If coin is fair, then probabilities of outcomes are equal
 • \(p(\text{HHH}) = p(\text{HHT}) = p(\text{HTH}) = p(\text{HTT}) = p(\text{THH}) = p(\text{THT}) = p(\text{TTH}) = p(\text{TTT}) = 1/8 \)
 • example: probability of event \(E = (\text{exactly two heads}) \) is \(p(\text{HHT}) + p(\text{HTH}) + p(\text{THH}) = 3/8 \)
Example of Continuous Probability Space

• Height of a randomly chosen American male
 • Infinite number of possible outcomes: \(O \) has some single value in range 2 feet to 8 feet
 • example: \(E = (O \mid O < 5.5 \text{ feet}) \), i.e. individual chosen is less than 5.5 feet tall
 • Infinite number of possible events
 • Probabilities of outcomes are not equal, and are described by a continuous function, \(p(O) \)
Probability Distributions

• Discrete: probability mass function (pmf)

 example: sum of two fair dice

• Continuous: probability density function (pdf)

 example: waiting time between eruptions of Old Faithful (minutes)
Random Variables

• A random variable X is a function that associates a number x with each outcome O of a process
 • Common notation: $X(O) = x$, or just $X = x$

• Basically a way to redefine a probability space to a new probability space
 • X must obey axioms of probability
 • X can be discrete or continuous

• Example: $X =$ number of heads in three flips of a coin
 • Possible values of X are 0, 1, 2, 3
 • $p(X = 0) = p(X = 3) = 1 / 8$, $p(X = 1) = p(X = 2) = 3 / 8$
 • Size of space (number of “outcomes”) reduced from 8 to 4

• Example: $X =$ average height of five randomly chosen American men
 • Size of space unchanged, but pdf of X different than that for single man
Multivariate Probability Distributions

• Scenario
 • Several random processes occur (doesn’t matter whether in parallel or in sequence)
 • Want to know probabilities for each possible combination of outcomes

• Can describe as joint probability of several random variables
 • Example: two processes whose outcomes are represented by random variables X and Y. Probability that process X has outcome x and process Y has outcome y is denoted as

$$p(X = x, Y = y)$$
Example of Multivariate Distribution

joint probability: $p(X = \text{minivan}, Y = \text{European}) = 0.1481$
Multivariate Probability Distributions

• Marginal probability
 • Probability distribution of a single variable in a joint distribution
 • Example: two random variables X and Y:

$$p(X = x) = \sum_{b=\text{all values of } Y} p(X = x, Y = b)$$

• Conditional probability
 • Probability distribution of one variable given that another variable takes a certain value
 • Example: two random variables X and Y:

$$p(X = x | Y = y) = \frac{p(X=x, Y=y)}{p(Y=y)}$$
Example of Marginal Probability

Marginal probability:
\[p(X = \text{minivan}) = 0.0741 + 0.1111 + 0.1481 = 0.3333 \]
Example of Conditional Probability

Conditional probability:
\[p(Y = \text{European} \mid X = \text{minivan}) = \frac{0.1481}{0.0741 + 0.1111 + 0.1481} = 0.4433 \]
Continuous Multivariate Distribution

• Example: three-component Gaussian mixture in two dimensions
Complement Rule

• Given: event A, which can occur or not

$$p(\text{not } A) = 1 - p(A)$$

areas represent relative probabilities
Product Rule

- Given: events A and B, which can co-occur (or not)

\[p(A, B) = p(A|B) \cdot p(B) \]

areas represent relative probabilities
Rule of Total Probability

• Given: events A and B, which can co-occur (or not)

$$p(A) = p(A, B) + p(A, \text{not } B)$$

$$= p(A|B) \cdot p(B) + p(A|\text{not } B) \cdot p(\text{not } B)$$

areas represent relative probabilities
Independence

• Given: events A and B, which can co-occur (or not)

$$p(A|B) = p(A) \quad \text{or} \quad p(A, B) = p(A) \cdot p(B)$$

Areas represent relative probabilities
Example of Independence/Dependence

• Independence:
 • Outcomes on multiple flips of a coin
 • Height of two unrelated individuals
 • Probability of getting a king on successive draws from a deck, if card from each draw is *replaced*

• Dependence:
 • Height of two related individuals
 • Probability of getting a king on successive draws from a deck, if card from each draw is *not replaced*
Bayes Rule

- A way to find conditional probabilities for one variable when conditional probabilities for another variable are known.

\[p(B|A) = \frac{p(A|B) \cdot p(B)}{p(A)} \]
Bayes Rule

\[p(B|A) \propto p(A|B) \cdot p(B) \]

posterior probability \(\propto \) likelihood \(\times \) prior probability
Example of Bayes Rule

• In recent years, it has rained only 5 days each year in a desert. The weatherman is forecasting rain for tomorrow. When it actually rains, the weatherman has forecast rain 90% of the time. When it doesn't rain, he has forecast rain 10% of the time. What is the probability it will rain tomorrow?
• Event A: The weatherman has forecast rain.
• Event B: It rains.
• We know:
 • \(P(B) = \frac{5}{365} = 0.0137 \) [It rains 5 days out of the year.]
 • \(P(\text{not } B) = 1 - 0.0137 = 0.9863 \)
 • \(P(A|B) = 0.9 \) [When it rains, the weatherman has forecast rain 90% of the time.]
 • \(P(A|\text{not } B) = 0.1 \) [When it does not rain the weatherman has forecast rain 10% of the time.]
Example of Bayes Rule, cont’d

• We want to know \(P(B \mid A) \), the probability it will rain tomorrow, given a forecast for rain by the weatherman. The answer can be determined from Bayes rule:

\[
p(B \mid A) = p(A \mid B) \cdot p(B) / p(A)
\]

\[
p(A) = p(A \mid B) \cdot p(B) + p(A \mid \text{not } B) \cdot p(\text{not } B)
\]

\[
= 0.9 \times 0.0137 + 0.1 \times 0.9863 = 0.1110
\]

\[
p(B \mid A) = 0.9 \times 0.0137 / 0.1110 = 0.1111
\]

• The result seems unintuitive but is correct. Even when the weatherman predicts rain, it only rains only about 11% of the time, which is much higher than average.
Expected Value

• Given:
 • A discrete random variable X, with possible values $X = x_1, x_2, \ldots, x_n$
 • Probabilities $p(X = x_i)$ that X takes on the various values of x_i
 • A function $y_i = f(x_i)$ defined on X

• The expected value of f is the probability-weighted “average” value of $f(x_i)$:

$$\mathbb{E}(f) = \sum_i p(x_i) f(x_i)$$
Example of Expected Value

• Process: game where one card is drawn from the deck
 • If face card, the dealer pays you $10
 • If not a face card, you pay dealer $4

• Random variable $X = \{\text{face card, not face card}\}$
 • $P(\text{face card}) = \frac{3}{13}$
 • $P(\text{not face card}) = \frac{10}{13}$

• Function $f(X)$ is payout to you
 • $f(\text{ face card }) = 10$
 • $f(\text{ not face card }) = -4$

• Expected value of payout is
 $$E(f) = \sum_{i} p(x_i) f(x_i) = \frac{3}{13} \cdot 10 + \frac{10}{13} \cdot -4 = -0.77$$
Expected Value in Continuous Spaces

$$
\mathbb{E}(f) = \int_{x=a}^{b} p(x) f(x)
$$
Common Forms of Expected Value (1)

• Mean μ

$$f(x_i) = x_i \implies \mu = \mathbb{E}(f) = \sum_{i} p(x_i)x_i$$

• Average value of $X = x_i$, taking into account probability of the various x_i

• Most common measure of “center” of a distribution

• Estimate mean from actual samples

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
Common Forms of Expected Value (2)

• Variance σ^2

\[f(x_i) = (x_i - \mu) \implies \sigma^2 = \sum_i p(x_i) \cdot (x_i - \mu)^2 \]

• Average value of squared deviation of $X = x_i$ from mean μ, taking into account probability of the various x_i

• Most common measure of “spread” of a distribution

• σ is the standard deviation

• Estimate variance from actual samples:

\[\sigma^2 = \frac{1}{N - 1} \sum_{i=1}^{n} (x_i - \mu)^2 \]

https://www.zhihu.com/question/20099757
Common Forms of Expected Value (3)

• Covariance

\[
f(x_i) = (x_i - \mu_x), \quad g(y_i) = (y_i - \mu_y)
\]

\[
cov(x, y) = \sum_i p(x_i, y_i) \cdot (x_i - \mu_x) \cdot (y_i - \mu_y)
\]

• Measures tendency for \(x\) and \(y\) to deviate from their means in same (or opposite) directions at same time

• Estimate covariance from actual samples

\[
cov(x, y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)
\]
Correlation

- Pearson’s correlation coefficient is covariance normalized by the standard deviations of the two variables

\[
\text{corr}(x, y) = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}
\]

- Always lies in range -1 to 1
- Only reflects *linear dependence* between variables

![Graphs showing linear dependence with and without noise, as well as various nonlinear dependencies.](image-url)
Estimation of Parameters

• Suppose we have random variables X_1, \ldots, X_n and corresponding observations x_1, \ldots, x_n.

• We prescribe a parametric model and fit the parameters of the model to the data.

• How do we choose the values of the parameters?
Maximum Likelihood Estimation (MLE)

- The basic idea of MLE is to maximize the probability of the data we have seen.

\[\hat{\theta}_{MLE} = \arg \max_{\theta} \mathcal{L}(\theta) \]

- where \(\mathcal{L} \) is the likelihood function

\[\mathcal{L}(\theta) = p(x_1, \ldots, x_n; \theta) \]

- Assume that \(X_1, \ldots, X_n \) are i.i.d, then we have

\[\mathcal{L}(\theta) = \prod_{i=1}^{n} p(x_i; \theta) \]

- Take log on both sides, we get log-likelihood

\[\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) \]
Example

• X_i are independent Bernoulli random variables with unknown parameter θ.

$$f(x_i; \theta) = \theta^{x_i} (1 - \theta)^{1-x_i}$$

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$$

$$\log \mathcal{L}(\theta) = (\sum x_i) \log \theta + (n - \sum x_i) \log(1 - \theta)$$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta} = 0 \Rightarrow \hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n}$$
Maximum A Posteriori Estimation (MAP)

- We assume that the parameters are a random variable, and we specify a prior distribution $p(\theta)$.

- Employ Bayes’ rule to compute the posterior distribution

 $$p(\theta|x_1, \ldots, x_n) \propto p(\theta)p(x_1, \ldots, x_n|\theta)$$

- Estimate parameter θ by maximizing the posterior

 $$\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta)p(x_1, \ldots, x_n|\theta)$$

 $$\hat{\theta}_{MAP} = \arg \max_{\theta} \log p(\theta) + \sum_{i=1}^{n} \log (x_i|\theta)$$
Example

• X_i are independent Bernoulli random variables with unknown parameter θ. Assume that θ satisfies normal distribution.

• Normal distribution:

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Maximize:

$$\arg\max_{\theta} -\frac{(\theta - \mu)^2}{2\sigma^2} + (\sum x_i) \log \theta + (n - \sum x_i) \log(1 - \theta)$$
Comparison between MLE and MAP

• MLE: For which θ is X_1, \ldots, X_n most likely?

• MAP: Which θ maximizes $p(\theta| X_1, \ldots, X_n)$ with prior $p(\theta)$?

• The prior can be regard as regularization - to reduce the overfitting.
Example

• Flip a unfair coin 10 times. The result is HHTTHHHHHT

\[f(x_i; \theta) = \theta^{x_i} (1 - \theta)^{1-x_i} \]

• \(x_i = 1 \) if the result is head.

• MLE estimates \(\theta = 0.7 \)

• Assume the prior of \(\theta \) is \(N(0.5,0.01) \), MAP estimates \(\theta=0.558 \)
What happens if we have more data?

• Flip the unfair coins 100 times, the result is 70 heads and 30 tails.
 • The result of MLE does not change, $\theta = 0.7$
 • The estimation of MAP becomes $\theta = 0.663$

• Flip the unfair coins 1000 times, the result is 700 heads and 300 tails.
 • The result of MLE does not change, $\theta = 0.7$
 • The estimation of MAP becomes $\theta = 0.696$
Unbiased Estimators

• An estimator of a parameter is unbiased if the expected value of the estimate is the same as the true value of the parameters.

• Assume X_i is a random variable with mean μ and variance σ^2

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \frac{1}{n} n \mu = \mu$$

• \bar{X} is unbiased estimation
Estimator of Variance

• Assume X_i is a random variable with mean μ and variance σ^2

• Is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$ unbiased?

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \\
= \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2X_i \bar{X} + \bar{X}^2) \\
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2 \bar{X} \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n} \bar{X}^2 \\
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2
\]
Estimator of Variance

\[\mathbb{E}(\hat{\sigma}^2) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 \right] \]

\[= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i^2) - \mathbb{E}(\overline{X}^2) \]

\[= \frac{1}{n} \sum_{i=1}^{n} (\sigma^2 + \mu^2) - (\sigma^2 / n + \mu^2) \]

\[= \sigma^2 - \sigma^2 / n \]

\[= \frac{(n - 1)\sigma^2}{n} \neq \sigma^2 \]

• where we use

\[\text{var}(X) = \sigma^2 = E(X^2) - \mu^2, \quad \text{var}(\overline{X}) = \sigma^2 / n = E(\overline{X}^2) - \mu^2 \]
Estimator of Variance

\[\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

\[\mathbb{E}(\hat{\sigma}^2) = \sigma^2 \]

• \(\hat{\sigma}^2 \) is a unbiased estimation
Linear Algebra Applications

• Why vectors and matrices?
 • Most common form of data organization for machine learning is a 2D array, where
 • rows represent samples
 • columns represent attributes
 • Natural to think of each sample as a vector of attributes, and whole array as a matrix
Vectors

• Definition: an \(n \)-tuple of values
 • \(n \) referred to as the \textit{dimension} of the vector

• Can be written in column form or row form

\[
x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}
\]
\[
x^\top = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}
\]

\(^\top \) means “transpose”

• Can think of a vector as
 • a point in space \textit{or}
 • a directed line segment with a magnitude and direction
Vector Arithmetic

• Addition of two vectors
 • add corresponding elements
 \[z = x + y = (x_1 + y_1 \ldots x_n + y_n)^\top \]

• Scalar multiplication of a vector
 • multiply each element by scalar
 \[y = ax = (ax_1 \ldots ax_n)^\top \]

• Dot product of two vectors
 • Multiply corresponding elements, then add products
 \[a = x \cdot y = \sum_{i=1}^{n} x_i y_i \]
 • Result is a scalar
Vector Norms

• A norm is a function \(\| \cdot \| \) that satisfies:
 • \(\| x \| \geq 0 \) with equality if and only if \(x = 0 \)
 • \(\| x + y \| \leq \| x \| + \| y \| \)
 • \(\| ax \| = |a| \| x \| \)

• 2-norm of vectors

\[
\| x \|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}
\]

• Cauchy-Schwarz inequality

\[
x \cdot y \leq \| x \|_2 \| y \|_2
\]
Matrices

• Definition: an $m \times n$ two-dimensional array of values
 • m rows
 • n columns

• Matrix referenced by two-element subscript
 • first element in subscript is row
 • Second element in subscript is column
 • example: A_{24} or a_{24} is element in second row, fourth column of A

\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]
Matrices

• A vector can be regarded as special case of a matrix, where one of matrix dimensions is 1.

• Matrix transpose (denoted \mathbf{A}^\top)
 • swap columns and rows
 • $m \times n$ matrix becomes $n \times m$ matrix
 • example:

$$
\mathbf{A} = \begin{pmatrix}
2 & 7 & -1 & 0 & 3 \\
4 & 6 & -3 & 1 & 8 \\
\end{pmatrix}
\quad
\mathbf{A}^\top = \begin{pmatrix}
2 & 7 & -1 & 0 & 3 \\
4 & 6 & -3 & 1 & 8 \\
\end{pmatrix}
$$
Matrix Arithmetic

• Addition of two matrices
 • matrices must be same size
 • add corresponding elements:
 \[c_{ij} = a_{ij} + b_{ij} \]
 • result is a matrix of same size

\[
C = A + B = \begin{pmatrix}
 a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn}
\end{pmatrix}
\]

• Scalar multiplication of a matrix
 • multiply each element by scalar:
 \[b_{ij} = d \cdot a_{ij} \]
 • result is a matrix of same size

\[
B = d \cdot A = \begin{pmatrix}
 d \cdot a_{11} & \cdots & d \cdot a_{1n} \\
 \vdots & \ddots & \vdots \\
 d \cdot a_{m1} & \cdots & d \cdot a_{mn}
\end{pmatrix}
\]
Matrix Arithmetic

• Matrix-matrix multiplication
 • the column dimension of the previous matrix must match the row dimension of the following matrix

\[C_{p \times n} = A_{p \times m} B_{m \times n} \quad c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \]

• Multiplication is associative

\[A \cdot (B \cdot C) = (A \cdot B) \cdot C \]

• Multiplication is not commutative

\[A \cdot B \neq B \cdot A \]

• Transposition rule

\[(A \cdot B)^\top = B^\top \cdot A^\top \]
Orthogonal Vectors

• Alternative form of dot product:
 \(\mathbf{x}^\top \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta \)

• A pair of vector \(\mathbf{x} \) and \(\mathbf{y} \) are orthogonally if
 \(\mathbf{x}^\top \mathbf{y} = 0 \)

• A set of vectors \(S \) is orthogonal if its elements are pairwise orthogonal
 • for \(\mathbf{x}, \mathbf{y} \in S, \mathbf{x} \neq \mathbf{y} \Rightarrow \mathbf{x}^\top \mathbf{y} = 0 \)

• A set of vectors \(S \) is orthonormal if it is orthogonal and, every \(\mathbf{x} \in S \) has \(\|\mathbf{x}\| = 1 \)
Orthogonal Vectors

• Pythagorean theorem:
 • If \(x \) and \(y \) are orthogonal, then
 \[
 \|x + y\|^2 = \|x\|^2 + \|y\|^2
 \]
 • Proof: we know \(x^\top y = 0 \), then
 \[
 \|x + y\|^2 = (x + y)^\top (x + y) = \|x\|^2 + \|y\|^2 + x^\top y + y^\top x = \|x\|^2 + \|y\|^2
 \]

• General case: a set of vectors is orthogonal
 \[
 \| \sum_{i=1}^{n} x_i \|^2 = \sum_{i=1}^{n} \|x_i\|^2
 \]
Orthogonal Matrices

• A square matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if
 \[Q^\top Q = I \quad \text{i.e.,} \quad Q^\top = Q^{-1} \]

• In terms of the columns of Q, the product can be written as
 \[
 \begin{pmatrix}
 q_1^\top \\
 q_2^\top \\
 \vdots \\
 q_n^\top
 \end{pmatrix}
 \begin{pmatrix}
 q_1 & q_2 & \cdots & q_n
 \end{pmatrix} =
 \begin{pmatrix}
 1 & & & \\
 & 1 & & \\
 & & \ddots & \\
 & & & 1
 \end{pmatrix}
 \]
Orthogonal Matrices

\[
\begin{pmatrix}
q_1^T \\
q_2 \\
\vdots \\
q_n^T
\end{pmatrix}
(q_1 \quad q_2 \quad \cdots \quad q_n) =
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1
\end{pmatrix}
\]

\[
q_i^T q_j = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

• The columns of orthogonal matrix \(Q \) form an orthonormal basis
Orthogonal matrices

- The processes of multiplication by an orthogonal matrices preserves geometric structure
 - Dot products are preserved
 \[(Qx) \cdot (Qy) = x \cdot y\]
 \[(Qx)^\top (Qy) = x^\top Q^\top Qy = x^\top y\]
 - Lengths of vectors are preserved
 \[\|Qx\| = \|x\|\]
 - Angles between vectors are preserved
 \[\cos \theta = \frac{(Qx)^\top (Qy)}{\|Qx\| \|Qy\|} = \frac{x^\top y}{\|x\| \|y\|}\]
Tall Matrices with Orthonormal Columns

• Suppose matrix $\mathbf{Q} \in \mathbb{R}^{m \times n}$ is tall ($m>n$) and has orthogonal columns

• Properties:

$$\mathbf{Q}^\top \mathbf{Q} = \mathbf{I}$$

$$\mathbf{Q} \mathbf{Q}^\top \neq \mathbf{I}$$
Matrix Norms

• Vector p-norms:

$$\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$$

• Matrix p-norms:

$$\|A\|_p = \max_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}$$

• Example: 1-norm $\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$

• Matrix norms which induced by vector norm are called operator norm.
General Matrix Norms

• A norm is a function \(\| \cdot \| \) that satisfies:
 • \(\| A \| \geq 0 \) with equality if and only if \(A = 0 \)
 • \(\| A + B \| \leq \| A \| + \| B \| \)
 • \(\| \alpha A \| = |\alpha| \| A \| \)

• Frobenius norm
 • The Frobenius norm of \(A \in \mathbb{R}^{m \times n} \) is:
 \[
 \| A \|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}
 \]
Some Properties

• \(\|A\|_F^2 = \text{trace}(A^\top A) \)

• \(\|AB\|_F = \|A\|_F \|B\|_F \)

• Invariance under orthogonal Multiplication

\[
\|QA\|_2 = \|A\|_2 \quad \|QA\|_F = \|A\|_F
\]

• Q is an orthogonal matrix
Eigenvalue Decomposition

• For a square matrix $A \in \mathbb{R}^{n \times n}$, we say that a nonzero vector $x \in \mathbb{R}^n$ is an eigenvector of A corresponding to eigenvalue λ if

$$Ax = \lambda x$$

• An eigenvalue decomposition of a square matrix A is

$$A = X\Lambda X^{-1}$$

• X is nonsingular and consists of eigenvectors of A

• Λ is a diagonal matrix with the eigenvalues of A on its diagonal.
Eigenvalue Decomposition

• Not all matrix has eigenvalue decomposition.
 • A matrix has eigenvalue decomposition if and only if it is diagonalizable.

• Real symmetric matrix has real eigenvalues.
• It’s eigenvalue decomposition is the following form:
 \[A = Q \Lambda Q^T \]
• Q is orthogonal matrix.
Singular Value Decomposition (SVD)

- every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has an SVD as follows:
 \[\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^\top \]
- $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with the singular values of \mathbf{A} on its diagonal.
- Suppose the rank of \mathbf{A} is r, the singular values of \mathbf{A} is
 \[\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq \sigma_{r+1} = \cdots \sigma_{\min(m,n)} = 0 \]
Full SVD and Reduced SVD

• Assume that \(m \geq n \)

• Full SVD: \(U \) is \(m \times m \) matrix, \(\Sigma \) is \(m \times n \) matrix.

• Reduced SVD: \(U \) is \(m \times n \) matrix, \(\Sigma \) is \(n \times n \) matrix.
Properties via the SVD

• The nonzero singular values of A are the square roots of the nonzero eigenvalues of $A^T A$.

$$A^T A = (U \Sigma V^T)^T (U \Sigma V) = V \Sigma^T U^T U \Sigma V^T = V (\Sigma^T \Sigma) V^T$$

• If $A=A^T$, then the singular values of A are the absolute values of the eigenvalues of A.

$$A = Q \Lambda Q^T = Q |\Lambda| \text{sign}(\Lambda) Q^T$$
Properties via the SVD

- $\| A \|_2 = \sigma_1$

$$\| A \|_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \cdots + \sigma_r^2}$$

- Denote $U = \begin{pmatrix} u_1 & u_2 & \cdots & u_m \end{pmatrix}$
 $V = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$
 $$A = \sum_{i=1}^{r} \sigma_i u_i v_i^\top$$
Low-rank Approximation

• \(\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top \)

• For any \(0 < k < r \), define \(\mathbf{A}_k = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top \)

• Eckart-Young Theorem:

\[
\min_{\text{rank}(\mathbf{B}) \leq k} \| \mathbf{A} - \mathbf{B} \|_2 = \| \mathbf{A} - \mathbf{A}_k \|_2 = \sigma_{k+1}
\]

\[
\min_{\text{rank}(\mathbf{B}) \leq k} \| \mathbf{A} - \mathbf{B} \|_F = \| \mathbf{A} - \mathbf{A}_k \|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_r^2}
\]

• \(\mathbf{A}_k \) is the best rank-\(k \) approximation of \(\mathbf{A} \).
Example

- Image Compression

Original (390*390)

k=10 k=20 k=50
Positive (semi-)definite matrices

• A symmetric matrix A is positive semi-definite (PSD) if for all $x \in \mathbb{R}^n$, $x^\top Ax \geq 0$

• A symmetric matrix A is positive definite (PD) if for all nonzero $x \in \mathbb{R}^n$, $x^\top Ax > 0$

• Positive definiteness is a strictly stronger property than positive semi-definiteness.

• Notation: $A \succeq 0$ if A is PSD, $A \succ 0$ if A is PD
Properties of PSD matrices

• A symmetric matrix is PSD if and only if all of its eigenvalues are nonnegative.
 • Proof: let \(x \) be an eigenvector of \(A \) with eigenvalue \(\lambda \).

\[
0 \leq x^\top Ax = x^\top (\lambda x) = \lambda x^\top x = \lambda \|x\|_2^2
\]

• The eigenvalue decomposition of a symmetric PSD matrix is equivalent to its singular value decomposition.
Properties of PSD matrices

• For a symmetric PSD matrix A, there exists a unique symmetric PSD matrix B such that

$$B^2 = A$$

• Proof: We only show the existence of B

 • Suppose the eigenvalue decomposition is

 $$A = U\Lambda U^\top$$

 • Then, we can get B:

 $$B = U\Lambda^{\frac{1}{2}} U^\top$$

 $$B^2 = U\Lambda^{\frac{1}{2}} U^\top U\Lambda^{\frac{1}{2}} U^\top = U\Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} U^\top = A$$
Convex Optimization
Gradient and Hessian

- The gradient of \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is

\[
\nabla f = \begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_d}
\end{pmatrix}
\]

- The Hessian of \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is

\[
\nabla^2 f = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2}
\end{pmatrix}
\]
What is Optimization?

• Finding the minimizer of a function subject to constraints:

\[
\min_x f(x) \\
\text{s.t. } g_i(x) \leq 0, \ i = 1, 2, \ldots, m \\
h_j(x) = 0, \ j = 1, 2, \ldots, n
\]
Why optimization?

• Optimization is the key of many machine learning algorithms
 • Linear regression:
 \[
 \min_w \|Xw - y\|^2
 \]
 • Logistic regression:
 \[
 \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^\top w))
 \]
 • Support vector machine:
 \[
 \min \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
 s.t. \xi_i \geq 1 - y_i x_i^\top w \\
 \xi_i \geq 0
 \]
Local Minima and Global Minima

• Local minima
 • a solution that is optimal within a neighboring set

• Global minima
 • the optimal solution among all possible solutions
Convex Set

• A set $C \subseteq \mathbb{R}^n$ is convex if for any $x, y \in C$, $tx + (1 - t)y \in C$ for all $t \in [0, 1]$.
Example of Convex Sets

• Trivial: empty set, line, point, etc.

• Norm ball: \(\{ x : \| x \| \leq r \} \), for given radius \(r \)

• Affine space: \(\{ x : A x = b \} \), given \(A, b \)

• Polyhedron: \(\{ x : A x \leq b \} \), where inequality \(\leq \) is interpreted component-wise.
Operations preserving convexity

• Intersection: the intersection of convex sets is convex

• Affine images: if $f(x) = Ax + b$ and C is convex, then

$$f(C) = \{Ax + b : x \in C\}$$

is convex
Convex functions

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if for $x, y \in \text{dom} f$,

 $$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y), \text{ for all } t \in [0, 1]$$
Strictly Convex and Strongly Convex

• Strictly convex:
 - \[f(tx + (1 - t)y) < tf(x) + (1 - t)f(y) \]
 for \(x \neq y \) and \(0 < t < 1 \)
 - Linear function is not strictly convex.

• Strongly convex:
 - For \(m > 0 : f(x) - \frac{m}{2} \|x\|^2 \) is convex

• Strong convexity \(\Rightarrow \) strict convexity \(\Rightarrow \) convexity
Example of Convex Functions

• Exponential function: \(e^{ax} \)

• Logarithmic function \(\log(x) \) is concave

• Affine function: \(a^\top x + b \)

• Quadratic function: \(x^\top Q x + b^\top x + c \) is convex if \(Q \) is positive semidefinite (PSD)

• Least squares loss: \(\|y - Ax\|^2_2 \)

• Norm: \(\|x\| \) is convex for any norm

\[
\|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} \quad \|x\|_1 = \sum_{i=1}^{n} |x_i|
\]
First order convexity conditions

• Theorem:

• Suppose f is differentiable. Then f is convex if and only if for all $x, y \in \text{dom} f$

$$f(y) \geq f(x) + \nabla f(x)^{\top} (y - x)$$
Second order convexity conditions

• Suppose f is twice differentiable. Then f is convex if and only if for all $x \in \text{dom } f$

$$\nabla^2 f(x) \geq 0$$
Properties of convex functions

• If x is a local minimizer of a convex function, it is a global minimizer.

• Suppose f is differentiable and convex. Then, x is a global minimizer of $f(x)$ if and only if

$$\nabla f(x) = 0$$

• Proof:
 • $\nabla f(x) = 0$. We have
 $$f(y) \geq f(x) + \nabla f(x)^\top (y - x) = f(x)$$
 • $\nabla f(x) \neq 0$. There is a direction of descent.
Gradient Descent

• The simplest optimization method.

• Goal:

\[
\min_x f(x)
\]

• Iteration:

\[
x_{t+1} = x_t - \eta_t \nabla f(x_t)
\]

• \(\eta_t\) is step size.
How to choose step size

• If step size is too big, the value of function can diverge.

• If step size is too small, the convergence is very slow.

• Exact line search:

\[\eta_t = \arg \min_{\eta} f(x - \eta \nabla f(x)) \]

• Usually impractical.
Backtracking Line Search

• Let $\alpha \in (0, 1/2], \beta \in (0, 1)$. Start with $\eta = 1$ and multiply $\eta = \beta \eta$ until

$$f(x - \eta \nabla f(x)) \leq f(x) - \alpha \eta \|\nabla f(x)\|^2$$

• Work well in practice.
Backtracking Line Search

• Understanding backtracking Line Search

\[
f(x - \eta \nabla f(x)) \leq f(x) - \alpha \eta \| \nabla f(x) \|^2
\]
Convergence Analysis

• Assume that f convex and differentiable.
• Lipschitz continuous:
 \[\| \nabla f(x) - \nabla f(y) \|_2 \leq L \| x - y \|_2 \]
• Theorem:
 • Gradient descent with fixed step size $\eta \leq 1/L$ satisfies
 \[f(x_t) - f^* \leq \frac{\| x_0 - x^* \|_2^2}{2t\eta} \]
 • To get $f(x_t) - f^* \leq \epsilon$, we need $O(1/\epsilon)$ iterations.
 • Gradient descent with backtracking line search have the same order convergence rate.
Convergence Analysis under Strong Convexity

• Assume f is strongly convex with constant m.

• Theorem:
 • Gradient descent with fixed step size $t \leq 2/(m + L)$ or with backtracking line search satisfies

 $$f(x_t) - f^* \leq c^t \frac{L}{2} \|x_0 - x^*\|^2$$

 • where $0 < c < 1$.
 • To get $f(x_t) - f^* \leq \epsilon$, we need $O(\log(1/\epsilon))$ iterations.
 • Called linear convergence.
Newton’s Method

• Idea: minimize a second-order approximation

\[f(x + v) \approx f(x) + \nabla f(x)^\top v + \frac{1}{2} v^\top \nabla^2 f(x) v \]

• Choose \(v \) to minimize above

\[v = -[\nabla^2 f(x)]^{-1} \nabla f(x) \]

• Newton step:

\[x_{t+1} = x_t - [\nabla^2 f(x_t)]^{-1} \nabla f(x_t) \]
Newton step
Newton’s Method

• f is strongly convex
• $\nabla f(x), \nabla^2 f(x)$ are Lipschitz continuous
• Quadratic convergence:
 • convergence rate is $O(\log \log (1/\epsilon))$
• Locally quadratic convergence: we are only guaranteed quadratic convergence after some number of steps k.

• Drawback: computing the inverse of Hessian is usually very expensive.
• Quasi-Newton, Approximate Newton...
Lagrangian

• Start with optimization problem:

\[
\min_x f(x)
\]

\[
s.t. \ g_i(x) \leq 0, \ i = 1, 2, \ldots, m
\]
\[
h_j(x) = 0, \ j = 1, 2, \ldots, n
\]

• We define Lagrangian as

\[
L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x)
\]

• where \(u_i \geq 0 \)
Property

• Lagrangian

\[L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x) \]

• For any \(u \geq 0 \) and \(v \), any feasible \(x \),

\[L(x, u, v) \leq f(x) \]
Lagrange Dual Function

• Let C denote primal feasible set, f^* denote primal optimal value. Minimizing $L(x, u, v)$ over all x gives a lower bound on f^* for any $u \geq 0$ and v.

$$f^* \geq \min_{x \in C} L(x, u, v) \geq \min_x L(x, u, v) = g(u, v)$$

• Form dual function:

$$g(u, v) = \min_x L(x, u, v)$$
Lagrange Dual Problem

• Given primal problem

$$\min_x f(x)$$

$$s.t. \ g_i(x) \leq 0, \ i = 1, 2, \ldots, m$$

$$h_j(x) = 0, \ j = 1, 2, \ldots, n$$

• The Lagrange dual problem is:

$$\max_{u,v} g(u, v)$$

$$s.t. \ u \geq 0$$
Property

• Weak duality:

\[f^* \geq g^* \]

• The dual problem is a convex optimization problem (even when primal problem is not convex)

\[g(u, v) = \min_x \{ f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x) \} \]

• \(g(u, v) \) is concave.
Strong duality

• In some problems we have observed that actually

\[f^* = g^* \]

which is called strong duality.

• Slater’s condition: if the primal is a convex problem, and there exists at least one strictly feasible \(x \), i.e.,

\[g_1(x) < 0, \ldots, g_m(x) < 0 \text{ and } h_1(x) = \ldots h_n(x) = 0 \]

then strong duality holds.
Example

• Primal problem

\[
\min_x x^\top x
\]
\[\text{s.t. } Ax \leq b\]

• Dual function

\[
g(u) = \min_x \{x^\top x + u^\top (Ax - b)\}
\]
\[= -\frac{1}{4} u^\top AA^\top u - b^\top u\]

• Dual problem

\[
\max_u -\frac{1}{4} u^\top AA^\top u - b^\top u, \text{s.t. } u \geq 0
\]

• Slater’s condition always holds.
References

• A majority part of this lecture is based on CSS 490 / 590 - Introduction to Machine Learning

• The Matrix Cookbook – Mathematics
 • https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• E-book of Mathematics for Machine Learning
 • https://mml-book.github.io/
References

• Optimization for machine learning
 • https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf

• A convex optimization course