2019 CS420 Machine Learning, Lecture 1A

(Home Reading Materials)

Mathematics for Machine Learning

Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Areas of Mathematics Essential to Machine Learning

- Machine learning is part of both statistics and computer science
 - Probability
 - Statistical inference
 - Validation
 - Estimates of error, confidence intervals
- Linear Algebra
 - Hugely useful for compact representation of linear transformations on data
 - Dimensionally reduction techniques
- Optimization theory

Notations

- $a \in A$ set membership: a is member of set A
- |B| cardinality: number of items in set **B**
- $\|\mathbf{v}\|$ norm: length of vector \mathbf{v}
- \sum summation
- \int integral
- $\mathbf{x}, \mathbf{y}, \mathbf{z}$ vector (bold, lower case)
- A, B matrix (bold, upper case)
- y = f(x) function: assigns unique value in range of y to each value in domain of x
- $y = f(\mathbf{x})$ function on multiple variables

Probability Spaces

- A probability space models a *random process or experiment* with three components:
 - Ω , the set of possible outcomes O
 - number of possible outcomes = $|\Omega|$
 - Discrete space $|\Omega|$ is finite
 - Continuous space $|\Omega|$ is infinite
 - F, the set of possible events E
 - number of possible events = |*F*|
 - *P*, the probability distribution
 - function mapping each outcome and event to real number between 0 and 1 (the probability of O or E)
 - probability of an event is sum of probabilities of possible outcomes in event

Axioms of Probability

- Non-negativity:
 - for any event $E \in F, p(E) \ge 0$
- All possible outcomes:
 - $p(\Omega) = 1$
- Additivity of disjoint events:
 - For all events $E, E' \in F$ where $E \cap E' = \emptyset$,

 $p(E \cup E') = p(E) + p(E')$

Example of Discrete Probability Space

- Three consecutive flips of a coin
 - 8 possible outcomes: *O* = HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
- 2⁸=256 possible events
 - example: E = (O ∈ { HHT, HTH, THH }), i.e. exactly two flips are heads
 - example: E = (O ∈ { THT, TTT }), i.e. the first and third flips are tails
- If coin is fair, then probabilities of outcomes are equal
 - p(HHH) = p(HHT) = p(HTH) = p(HTT) = p(THH) = p(THT)= p(TTH) = p(TTT) = 1/8
 - example: probability of event E = (exactly two heads) is p(HHT) + p(HTH) + p(THH) = 3/8

Example of Continuous Probability Space

- Height of a randomly chosen American male
 - Infinite number of possible outcomes: *O* has some has some single value in range 2 feet to 8 feet
 - example: E = (O | O < 5.5 feet), i.e. individual chosen is less than 5.5 feet tall
 - Infinite number of possible events
 - Probabilities of outcomes are not equal, and are described by a continuous function, p(O)

Probability Distributions

• Discrete: probability mass function (pmf)

example: sum of two fair dice

• Continuous: probability density function (pdf)

example: waiting time between eruptions of Old Faithful (minutes)

Random Variables

- A random variable X is a function that associates a number x with each outcome O of a process
 - Common notation: X(O) = x, or just X = x
- Basically a way to redefine a probability space to a new probability space
 - X must obey axioms of probability
 - X can be discrete or continuous
- Example: X = number of heads in three flips of a coin
 - Possible values of *X* are 0, 1, 2, 3
 - p(X=0) = p(X=3) = 1 / 8, p(X=1) = p(X=2) = 3 / 8
 - Size of space (number of "outcomes") reduced from 8 to 4
- Example: X = average height of five randomly chosen American men
 - Size of space unchanged, but pdf of X different than that for single man

Multivariate Probability Distributions

- Scenario
 - Several random processes occur (doesn't matter whether in parallel or in sequence)
 - Want to know probabilities for each possible combination of outcomes
- Can describe as joint probability of several random variables
 - Example: two processes whose outcomes are represented by random variables *X* and *Y*. Probability that process *X* has outcome *x* and process *Y* has outcome *y* is denoted as

$$p(X = x, Y = y)$$

Example of Multivariate Distribution

joint probability: p(X = minivan, Y = European) = 0.1481

Multivariate Probability Distributions

- Marginal probability
 - Probability distribution of a single variable in a joint distribution
 - Example: two random variables X and Y:

$$p(X = x) = \sum_{b = \text{all values of } Y} p(X = x, Y = b)$$

- Conditional probability
 - Probability distribution of one variable given that another variable takes a certain value
 - Example: two random variables X and Y :

$$p(X = x | Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)}$$

Example of Marginal Probability

Marginal probability: p(X = minivan) = 0.0741 + 0.1111 + 0.1481 = 0.3333

Example of Conditional Probability

Conditional probability: p(Y = European | X = minivan) = 0.1481 / (0.0741 + 0.1111 + 0.1481) = 0.4433

Continuous Multivariate Distribution

• Example: three-component Gaussian mixture in two dimensions

Complement Rule

• Given: event A, which can occur or not

$$p(\text{not } A) = 1 - p(A)$$

Product Rule

• Given: events A and B, which can co-occur (or not)

$$A (A, B) B (not A, not B)$$

$$(A, not B) (not A, B)$$

$$p(A,B) = p(A|B) \cdot p(B)$$

Rule of Total Probability

• Given: events A and B, which can co-occur (or not)

$$p(A) = p(A, B) + p(A, \text{not } B)$$
$$= p(A|B) \cdot p(B) + p(A|\text{not } B) \cdot p(\text{not } B)$$

Independence

• Given: events A and B, which can co-occur (or not)

Example of Independence/Dependence

- Independence:
 - Outcomes on multiple flips of a coin
 - Height of two unrelated individuals
 - Probability of getting a king on successive draws from a deck, if card from each draw is *replaced*
- Dependence:
 - Height of two related individuals
 - Probability of getting a king on successive draws from a deck, if card from each draw is *not replaced*

Bayes Rule

 A way to find conditional probabilities for one variable when conditional probabilities for another variable are known.

Bayes Rule

$p(B|A) \propto p(A|B) \cdot p(B)$

posterior probability \propto likelihood \times prior probability

Example of Bayes Rule

- In recent years, it has rained only 5 days each year in a desert. The weatherman is forecasting rain for tomorrow. When it actually rains, the weatherman has forecast rain 90% of the time. When it doesn't rain, he has forecast rain 10% of the time. What is the probability it will rain tomorrow?
- Event A: The weatherman has forecast rain.
- Event B: It rains.
- We know:
 - *P*(B) = 5/365 = 0.0137 [It rains 5 days out of the year.]
 - *P*(not B) = 1-0.0137 = 0.9863
 - P(A|B) = 0.9 [When it rains, the weatherman has forecast rain 90% of the time.
 - P(A|not B)=0.1 [When it does not rain the weatherman has forecast rain 10% of the time.]

Example of Bayes Rule, cont'd

 We want to know P(B|A), the probability it will rain tomorrow, given a forecast for rain by the weatherman. The answer can be determined from Bayes rule:

 $p(B|A) = p(A|B) \cdot p(B)/p(A)$ $p(A) = p(A|B) \cdot p(B) + p(A|\text{not } B) \cdot p(\text{not } B)$ $= 0.9 \times 0.0137 + 0.1 \times 0.9863 = 0.1110$ $p(B|A) = 0.9 \times 0.0137/0.1110 = 0.1111$

• The result seems unintuitive but is correct. Even when the weatherman predicts rain, it only rains only about 11% of the time, which is much higher than average.

Expected Value

- Given:
 - A discrete random variable X, with possible values $X = x_1, x_2, \dots, x_n$
 - Probabilities $p(X = x_i)$ that X takes on the takes on the various values of x_i
 - A function $y_i = f(x_i)$ defined on X
- The expected value of f is the probability-weighted "average" value of $f(x_i)$:

$$\mathbb{E}(f) = \sum_{i} p(x_i) f(x_i)$$

Example of Expected Value

- Process: game where one card is drawn from the deck
 - If face card, the dealer pays you \$10
 - If not a face card, you pay dealer \$4
- Random variable X = {face card, not face card}
 - *P*(face card) = 3/13
 - *P*(not face card) = 10/13
- Function *f*(*X*) is payout to you
 - *f*(face card) = 10
 - *f* (not face card) = -4
- Expected value of payout is

 $\mathbb{E}(f) = \sum_{i} p(x_i) f(x_i) = 3/13 \cdot 10 + 10/13 \cdot -4 = -0.77$

Expected Value in Continuous Spaces

Common Forms of Expected Value (1)

• Mean μ

$$f(x_i) = x_i \implies \mu = \mathbb{E}(f) = \sum_i p(x_i)x_i$$

- Average value of $X = x_i$, taking into account probability of the various x_i
- Most common measure of "center" of a distribution
- Estimate mean from actual samples

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Common Forms of Expected Value (2)

• Variance σ^2

$$f(x_i) = (x_i - \mu) \implies \sigma^2 = \sum_i p(x_i) \cdot (x_i - \mu)^2$$

- Average value of squared deviation of $X = x_i$ from mean μ , taking into account probability of the various x_i
- Most common measure of "spread" of a distribution
- σ is the standard deviation
- Estimate variance from actual samples:

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

https://www.zhihu.com/question/20099757

Common Forms of Expected Value (3)

Covariance

$$f(x_i) = (x_i - \mu_x), \quad g(y_i) = (y_i - \mu_y)$$

$$cov(x, y) = \sum p(x_i, y_i) \cdot (x_i - \mu_x) \cdot (y_i - \mu_y)$$

 Measures tendency for x and y to deviate from their means in same (or opposite) directions at same time

• Estimate covariance from actual samples

$$cov(x,y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$$

Correlation

 Pearson's correlation coefficient is covariance normalized by the standard deviations of the two variables

$$corr(x,y) = rac{cov(x,y)}{\sigma_x \sigma_y}$$

- Always lies in range -1 to 1
- Only reflects *linear dependence* between variables

Linear dependence with noise

Linear dependence without noise

Various nonlinear dependencies

Estimation of Parameters

- Suppose we have random variables X₁, . . . , X_n and corresponding observations x₁, . . . , x_n.
- We prescribe a parametric model and fit the parameters of the model to the data.
- How do we choose the values of the parameters?

Maximum Likelihood Estimation(MLE)

• The basic idea of MLE is to maximize the probability of the data we have seen.

 $\hat{\theta}_{MLE} = \arg\max_{\theta} \mathcal{L}(\theta)$

• where L is the likelihood function

$$\mathcal{L}(\theta) = p(x_1, \dots, x_n; \theta)$$

• Assume that X_1, \ldots, X_n are i.i.d, then we have

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} p(x_i; \theta)$$

• Take log on both sides, we get log-likelihood

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$

Example

• X_i are independent Bernoulli random variables with unknown parameter ϑ .

$$f(x_i;\theta) = \theta^{x_i} (1-\theta)^{1-x_i}$$

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}$$

$$\log \mathcal{L}(\theta) = \left(\sum x_i\right) \log \theta + \left(n - \sum x_i\right) \log(1 - \theta)$$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta} = 0 \Rightarrow \hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Maximum A Posteriori Estimation (MAP)

- We assume that the parameters are a random variable, and we specify a prior distribution $p(\theta)$.
- Employ Bayes' rule to compute the posterior distribution

$$p(\theta|x_1,\ldots,x_n) \propto p(\theta)p(x_1,\ldots,x_n|\theta)$$

• Estimate parameter θ by maximizing the posterior

$$\hat{\theta}_{MAP} = \arg\max_{\theta} p(\theta) p(x_1, \dots, x_n | \theta)$$
$$\hat{\theta}_{MAP} = \arg\max_{\theta} \log p(\theta) + \sum_{i=1}^n \log(x_i | \theta)$$

Example

- X_i are independent Bernoulli random variables with unknown parameter ϑ . Assume that ϑ satisfies normal distribution.
- Normal distribution:

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Maximize:

$$\arg\max_{\theta} -\frac{(\theta-\mu)^2}{2\sigma^2} + (\sum x_i)\log\theta + (n-\sum x_i)\log(1-\theta)$$
Comparison between MLE and MAP

- MLE: For which ϑ is X_1, \ldots, X_n most likely?
- MAP: Which ϑ maximizes $p(\vartheta | X_1, \ldots, X_n)$ with prior $p(\vartheta)$?
- The prior can be regard as regularization to reduce the overfitting.

Example

• Flip a unfair coin 10 times. The result is HHTTHHHHHT

$$f(x_i;\theta) = \theta^{x_i} (1-\theta)^{1-x_i}$$

- $x_i = 1$ if the result is head.
- MLE estimates $\vartheta = 0.7$
- Assume the prior of ϑ is N(0.5,0.01), MAP estimates ϑ =0.558

What happens if we have more data?

- Flip the unfair coins 100 times, the result is 70 heads and 30 tails.
 - The result of MLE does not change, $\vartheta = 0.7$
 - The estimation of MAP becomes ϑ = 0.663
- Flip the unfair coins 1000 times, the result is 700 heads and 300 tails.
 - The result of MLE does not change, $\vartheta = 0.7$
 - The estimation of MAP becomes ϑ = 0.696

Unbiased Estimators

- An estimator of a parameter is unbiased if the expected value of the estimate is the same as the true value of the parameters.
- Assume X_i is a random variable with mean μ and variance σ^2

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\mathbb{E}(\bar{X}) = \mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}(X_i) = \frac{1}{n}n\mu = \mu$$

• \bar{X} is unbiased estimation

Estimator of Variance

- Assume X_i is a random variable with mean μ and variance σ^2
- Is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ unbiased? $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ $= \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2X_i \bar{X} + \bar{X}^2)$ $=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-2\bar{X}\frac{1}{n}\sum_{i=1}^{n}X_{i}+\frac{1}{n}n\bar{X}^{2}$ $=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}$

Estimator of Variance

 \mathbb{E}

$$\begin{aligned} (\hat{\sigma}^2) = &\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2\right] \\ = &\frac{1}{n}\sum_{i=1}^n \mathbb{E}(X_i^2) - \mathbb{E}(\bar{X}^2) \\ = &\frac{1}{n}\sum_{i=1}^n (\sigma^2 + \mu^2) - (\sigma^2/n + \mu^2) \\ = &\sigma^2 - \sigma^2/n \\ = &\frac{(n-1)\sigma^2}{n} \neq \sigma^2 \end{aligned}$$

• where we use

 $var(X) = \sigma^2 = E(X^2) - \mu^2$, $var(\bar{X}) = \sigma^2/n = E(\bar{X}^2) - \mu^2$

Estimator of Variance

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

• $\hat{\sigma}^2$ is a unbiased estimation

Linear Algebra Applications

- Why vectors and matrices?
 - Most common form of data organization for machine vector organization for machine learning is a 2D array, where
 - rows represent samples
 - columns represent attributes
 - Natural to think of each sample as a vector of attributes, and whole array as a matrix

matrix

Vectors

- Definition: an *n*-tuple of values
 - *n* referred to as the *dimension* of the vector
- Can be written in column form or row form

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \begin{array}{c} x^\top = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \\ & & ^\top \text{ means "transpose"} \end{array}$$

- Can think of a vector as
 - a point in space or
 - a directed line segment with a magnitude and direction

Vector Arithmetic

- Addition of two vectors
 - add corresponding elements

$$\mathbf{z} = \mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 & \cdots & x_n + y_n \end{pmatrix}^{\top}$$

- Scalar multiplication of a vector
 - multiply each element by scalar

$$\mathbf{y} = a\mathbf{x} = \begin{pmatrix} ax_1 & \cdots & ax_n \end{pmatrix}^\top$$

- Dot product of two vectors
 - Multiply corresponding elements, then add products

$$a = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

• Result is a <u>scalar</u>

Vector Norms

- A norm is a function $\|\cdot\|$ that satisfies:
 - $\|\mathbf{x}\| \geq 0$ with equality if and only if $\, \mathbf{x} = 0$
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
 - $||a\mathbf{x}|| = |a|||\mathbf{x}||$
- 2-norm of vectors

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• Cauchy-Schwarz inequality

 $\mathbf{x} \cdot \mathbf{y} \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$

Matrices

- Definition: an $m \times n$ two-dimensional array of values
 - *m* rows
 - *n* columns
- Matrix referenced by two-element subscript
 - first element in subscript is row
 - Second element in subscript is column
 - example: \mathbf{A}_{24} or a_{24} is element in second row, fourth column of \mathbf{A}

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Matrices

- A vector can be regarded as special case of a matrix, where one of matrix dimensions is 1.
- Matrix transpose (denoted \top)
 - swap columns and rows
 - *m*×*n* matrix becomes n x m matrix
 - example:

$$\mathbf{A} = \begin{pmatrix} 2 & 7 & -1 & 0 & 3 \\ 4 & 6 & -3 & 1 & 8 \end{pmatrix} \qquad \mathbf{A}^{\top} = \begin{pmatrix} 7 & 6 \\ -1 & -3 \\ 0 & 1 \\ 3 & 8 \end{pmatrix}$$

 $\begin{pmatrix} 2 & 4 \end{pmatrix}$

Matrix Arithmetic

- Addition of two matrices
 - matrices must be same size
 - add corresponding elements:

$$c_{ij} = a_{ij} + b_{ij}$$

- result is a matrix of same size
- Scalar multiplication of a matrix
 - multiply each element by scalar:

$$b_{ij} = d \cdot a_{ij}$$

• result is a matrix of same size

$$\mathbf{C} = \mathbf{A} + \mathbf{B} =$$

$$\begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

$$\mathbf{B} = d \cdot \mathbf{A} = \begin{pmatrix} d \cdot a_{11} & \cdots & d \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ d \cdot a_{m1} & \cdots & d \cdot a_{mn} \end{pmatrix}$$

Matrix Arithmetic

- Matrix-matrix multiplication
 - the column dimension of the previous matrix must match the row dimension of the following matrix

m

$$\mathbf{C}_{p \times n} = \mathbf{A}_{p \times m} \mathbf{B}_{m \times n} \qquad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Multiplication is associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

• Multiplication is not commutative

$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$$

• Transposition rule

$$(\mathbf{A} \cdot \mathbf{B})^{\top} = \mathbf{B}^{\top} \cdot \mathbf{A}^{\top}$$

Orthogonal Vectors

• Alternative form of dot product:

 $\mathbf{x}^{\top}\mathbf{y} = \|\mathbf{x}\|\|\mathbf{y}\|\cos\theta$

• A pair of vector **x** and **y** are *orthogonal* if $\mathbf{x}^{\top}\mathbf{y} = 0$

́У

θ

Х

• A set of vectors S is orthogonal if its elements are pairwise orthogonal

for
$$\mathbf{x}, \mathbf{y} \in S, \mathbf{x} \neq \mathbf{y} \Rightarrow \mathbf{x}^\top \mathbf{y} = 0$$

• A set of vectors S is orthonormal if it is orthogonal and, every $\mathbf{x} \in S$ has $\|\mathbf{x}\| = 1$

Orthogonal Vectors

- Pythagorean theorem:
 - If x and y are orthogonal, then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$
 - Proof: we know $\mathbf{x}^{ op}\mathbf{y} = 0$, then

$$\begin{aligned} |\mathbf{x} + \mathbf{y}||^2 &= (\mathbf{x} + \mathbf{y})^\top (\mathbf{x} + \mathbf{y}) \\ &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + \mathbf{x}^\top \mathbf{y} + \mathbf{y}^\top \mathbf{x} \\ &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \end{aligned}$$

General case: a set of vectors is orthogonal

$$\|\sum_{i=1}^{n} \mathbf{x}_{i}\|^{2} = \sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2}$$

Orthogonal Matrices

• A square matrix $\mathbf{Q} \in \mathbb{R}^{n imes n}$ is orthogonal if

$$\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$$
 i.e., $\mathbf{Q}^{\top} = \mathbf{Q}^{-1}$

 In terms of the columns of Q, the product can be written as

$$\begin{pmatrix} \mathbf{q}_1^\top \\ \mathbf{q}_2^\top \\ \vdots \\ \mathbf{q}_n^\top \end{pmatrix} \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots \mathbf{q}_n \end{pmatrix} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

Orthogonal Matrices

$$\begin{pmatrix} \mathbf{q}_1^\top \\ \mathbf{q}_2^\top \\ \vdots \\ \mathbf{q}_n^\top \end{pmatrix} \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots \mathbf{q}_n \end{pmatrix} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

$$\mathbf{q}_i^{\top} \mathbf{q}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

• The columns of orthogonal matrix Q form an orthonormal basis

Orthogonal matrices

• The processes of multiplication by an orthogonal matrices preserves geometric structure

• Dot products are preserved

$$(\mathbf{Q}\mathbf{x}) \cdot (\mathbf{Q}\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

 $(\mathbf{Q}\mathbf{x})^{\top}(\mathbf{Q}\mathbf{y}) = \mathbf{x}^{\top}\mathbf{Q}^{\top}\mathbf{Q}\mathbf{y} = \mathbf{x}^{\top}\mathbf{y}$

• Lengths of vectors are preserved

 $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$

• Angles between vectors are preserved

$$\cos \theta = \frac{(\mathbf{Q}\mathbf{x})^{\top}(\mathbf{Q}\mathbf{y})}{\|\mathbf{Q}\mathbf{x}\|\|\mathbf{Q}\mathbf{y}\|} = \frac{\mathbf{x}^{\top}\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$$

Tall Matrices with Orthonormal Columns

- Suppose matrix $\mathbf{Q} \in \mathbb{R}^{m imes n}$ is tall (m>n) and has orthogonal columns
- Properties:

```
\mathbf{Q}^{	op}\mathbf{Q} = \mathbf{I}
```

```
\mathbf{Q}\mathbf{Q}^{	op} \neq \mathbf{I}
```

Matrix Norms

• Vector p-norms:

$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

• Matrix p-norms:

$$\|\mathbf{A}\|_p = \max_{\mathbf{x}\neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$$

- Example: 1-norm $\|\mathbf{A}\|_1 = \max_j \sum_{i=1}^{j} |a_{ij}|$
- Matrix norms which induced by vector norm are called operator norm.

General Matrix Norms

- A norm is a function $\|\cdot\|$ that satisfies:
 - $\|\mathbf{A}\| \geq 0$ with equality if and only if $\mathbf{A}=0$
 - $\bullet \left\| \mathbf{A} + \mathbf{B} \right\| \le \left\| \mathbf{A} \right\| + \left\| \mathbf{B} \right\|$
 - $\bullet \|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$
- Frobenius norm
 - The Frobenius norm of $\mathbf{A} \in \mathbb{R}^{m imes n}$ is:

$$\|\mathbf{A}\|_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{1/2}$$

Some Properties

- $\|\mathbf{A}\|_F^2 = trace(\mathbf{A}^\top \mathbf{A})$
- $\|\mathbf{AB}\|_F = \|\mathbf{A}\|_F \|\mathbf{B}\|_F$
- Invariance under orthogonal Multiplication $\|\mathbf{Q}\mathbf{A}\|_2 = \|\mathbf{A}\|_2 \qquad \|\mathbf{Q}\mathbf{A}\|_F = \|\mathbf{A}\|_F$
 - Q is an orthogonal matrix

Eigenvalue Decomposition

• For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we say that a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of A corresponding to eigenvalue λ if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

• An eigenvalue decomposition of a square matrix A is

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

- X is nonsingular and consists of eigenvectors of A
- ${}^{\bullet} \Lambda$ is a diagonal matrix with the eigenvalues of A on its diagonal.

Eigenvalue Decomposition

- Not all matrix has eigenvalue decomposition.
 - A matrix has eigenvalue decomposition if and only if it is diagonalizable.
- Real symmetric matrix has real eigenvalues.
- It's eigenvalue decomposition is the following form:

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{ op}$$

• Q is orthogonal matrix.

Singular Value Decomposition(SVD)

• every matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$ has an SVD as follows:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

- $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with the singular values of A on its diagonal.
- Suppose the rank of A is r, the singular values of A is

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge \sigma_{r+1} = \dots \sigma_{min(m,n)} = 0$$

Full SVD and Reduced SVD

- Assume that $m \ge n$
 - Full SVD: U is $m \times m$ matrix, Σ is $m \times n$ matrix.
 - Reduced SVD: U is $m \times n$ matrix, Σ is $n \times n$ matrix.

Properties via the SVD

 The nonzero singular values of A are the square roots of the nonzero eigenvalues of A^TA.

 $\mathbf{A}^\top \mathbf{A} = (\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\top)^\top (\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}) = \mathbf{V} \boldsymbol{\Sigma}^\top \mathbf{U}^\top \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\top = \mathbf{V} (\boldsymbol{\Sigma}^\top \boldsymbol{\Sigma}) \mathbf{V}^\top$

 If A=A^T, then the singular values of A are the absolute values of the eigenvalues of A.

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} = \mathbf{Q} |\mathbf{\Lambda}| sign(\mathbf{\Lambda}) \mathbf{Q}^{\top}$$

Properties via the SVD

•
$$\|\mathbf{A}\|_2 = \sigma_1$$

$$\|\mathbf{A}\|_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2}$$

• Denote
$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{pmatrix}$$

$$\mathbf{V} = egin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$$
 $\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^ op$

Low-rank Approximation

•
$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

- For any 0 < k < r, define $\mathbf{A}_k = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^\top$
- Eckart-Young Theorem:

$$\min_{\substack{\operatorname{rank}(\mathbf{B}) \leq k}} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$$
$$\min_{\operatorname{rank}(\mathbf{B}) \leq k} \|\mathbf{A} - \mathbf{B}\|_F = \|\mathbf{A} - \mathbf{A}_k\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$$

• A_k is the best rank-k approximation of A.

Example

• Image Compression

original (390*390)

k=10

k=50

k=20

Positive (semi-)definite matrices

- A symmetric matrix A is positive semi-definite(PSD) if for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0$
- A symmetric matrix A is positive definite(PD) if for all nonzero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0$
- Positive definiteness is a strictly stronger property than positive semi-definiteness.
- Notation: $\mathbf{A} \succeq 0$ if A is PSD, $\mathbf{A} \succ 0$ if A is PD

Properties of PSD matrices

- A symmetric matrix is PSD if and only if all of its eigenvalues are nonnegative.
 - Proof: let x be an eigenvector of A with eigenvalue λ .

$$0 \leq \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} (\lambda \mathbf{x}) = \lambda \mathbf{x}^{\top} \mathbf{x} = \lambda \| \mathbf{x} \|_{2}^{2}$$

 The eigenvalue decomposition of a symmetric PSD matrix is equivalent to its singular value decomposition.

Properties of PSD matrices

• For a symmetric PSD matrix *A*, there exists a unique symmetric PSD matrix *B* such that

$$\mathbf{B}^2 = \mathbf{A}$$

- Proof: We only show the existence of B
 - Suppose the eigenvalue decomposition is $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$
 - Then, we can get B:

 $\mathbf{B} = \mathbf{U} \mathbf{\Lambda}^{rac{1}{2}} \mathbf{U}^{ op}$

 $\mathbf{B}^2 = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{U}^\top \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{U}^\top = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{U}^\top = \mathbf{A}$

Convex Optimization
Gradient and Hessian

- The gradient of $f: \mathbb{R}^d \to \mathbb{R}$ is
- The Hessian of $f: \mathbb{R}^d \to \mathbb{R}$ is

$$\nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{pmatrix}$$

What is Optimization?

• Finding the minimizer of a function subject to constraints:

$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0, i = 1, 2, \dots, m$
 $h_j(x) = 0, j = 1, 2, \dots, n$

Why optimization?

- Optimization is the key of many machine learning algorithms
 - Linear regression:

$$\min_{w} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

• Logistic regression:

$$\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-\mathbf{y}_i \mathbf{x}_i^{\top} \mathbf{w}))$$

 $n_{\rm c}$

• Support vector machine:

$$\min \|\mathbf{w}\|^2 + C \sum_{i=1}^{\infty} \xi_i$$

s.t. $\xi_i \ge 1 - \mathbf{y}_i \mathbf{x}_i^\top \mathbf{w}$
 $\xi_i \ge 0$

Local Minima and Global Minima

- Local minima
 - a solution that is optimal within a neighboring set
- Global minima
 - the optimal solution among all possible solutions

Convex Set

• A set $C \subseteq \mathbb{R}^n$ is convex if for any $x, y \in C$, $tx + (1-t)y \in C$ for all $t \in [0,1]$

Example of Convex Sets

- Trivial: empty set, line, point, etc.
- Norm ball: $\{x: \|x\| \leq r\}$, for given radius r
- Affine space: $\{x : Ax = b\}$, given A, b
- Polyhedron: $\{x : Ax \le b\}$, where inequality \le is interpreted component-wise.

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Affine images: if f(x) = Ax + b and C is convex, then

$$f(C) = \{Ax + b : x \in C\}$$

is convex

Convex functions

• A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in domf$,

 $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$, for all $t \in [0,1]$

Strictly Convex and Strongly Convex

• Strictly convex:

•
$$f(tx + (1 - t)y) < tf(x) + (1 - t)f(y)$$

for $x \neq y$ and $0 < t < 1$

- Linear function is not strictly convex.
- Strongly convex:
 - For $m > 0: f(x) \frac{m}{2} \|x\|^2$ is convex
- Strong convexity \Rightarrow strict convexity \Rightarrow convexity

Example of Convex Functions

- Exponential function: e^{ax}
- logarithmic function log(x) is concave
- Affine function: $a^{\top}x + b$
- Quadratic function: $x^{\top}Qx + b^{\top}x + c$ is convex if Q is positive semidefinite (PSD)
- Least squares loss: $\|y Ax\|_2^2$
- Norm: ||x|| is convex for any norm

$$\|x\|_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \qquad \|x\|_{1} = \sum_{i=1}^{n} |x_{i}|$$

First order convexity conditions

- Theorem:
- Suppose f is differentiable. Then f is convex if and only if for all $x, y \in domf$

Second order convexity conditions

• Suppose f is twice differentiable. Then f is convex if and only if for all $x \in domf$

$$\nabla^2 f(x) \succeq 0$$

Properties of convex functions

- If x is a local minimizer of a convex function, it is a global minimizer.
- Suppose f is differentiable and convex. Then, x is a global minimizer of f(x) if and only if $\nabla f(x) = 0$
- Proof:
 - $\nabla f(x) = 0$. We have $f(y) \ge f(x) + \nabla f(x)^{\top}(y x) = f(x)$
 - $\nabla f(x) \neq 0$. There is a direction of descent.

Gradient Descent

- The simplest optimization method.
- Goal:

$$\min_{x} f(x)$$

• Iteration:

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

• η_t is step size.

How to choose step size

- If step size is too big, the value of function can diverge.
- If step size is too small, the convergence is very slow.
- Exact line search:

$$\eta_t = \arg\min_{\eta} f(x - \eta \nabla f(x))$$

• Usually impractical.

Backtracking Line Search

- Let $\alpha \in (0,1/2], \beta \in (0,1)$. Start with $\eta = 1\,$ and multiply $\eta = \beta \eta\,$ until

$$f(x - \eta \nabla f(x)) \le f(x) - \alpha \eta \|\nabla f(x)\|^2$$

• Work well in practice.

Backtracking Line Search

• Understanding backtracking Line Search

 $f(x - \eta \nabla f(x)) \le f(x) - \alpha \eta \|\nabla f(x)\|^2$

Convergence Analysis

- Assume that f convex and differentiable.
- Lipschitz continuous:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$$

- Theorem:
 - Gradient descent with fixed step size $\eta \leq 1/L$ satisfies

$$f(x_t) - f^* \le \frac{\|x_0 - x^*\|_2^2}{2t\eta}$$

- To get $f(x_t) f^* \leq \epsilon$, we need $O(1/\epsilon)$ iterations.
- Gradient descent with backtracking line search have the same order convergence rate.

Convergence Analysis under Strong Convexity

- Assume f is strongly convex with constant m.
- Theorem:
 - Gradient descent with fixed step size t ≤ 2/(m + L) or with backtracking line search satisfies

$$f(x_t) - f^* \le c^t \frac{L}{2} \|x_0 - x^*\|_2^2$$

- where 0 < *c* < 1.
- To get $f(x_t) f^* \leq \epsilon$, we need $O(\log(1/\epsilon))$ iterations.
- Called linear convergence.

Newton's Method

• Idea: minimize a second-order approximation

$$f(x+v) \approx f(x) + \nabla f(x)^{\top} v + \frac{1}{2} v^{\top} \nabla^2 f(x) v$$

• Choose v to minimize above

$$v = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

• Newton step:

$$x_{t+1} = x_t - [\nabla^2 f(x_t)]^{-1} \nabla f(x_t)$$

Newton step

Newton's Method

- f is strongly convex
- $\nabla f(x), \nabla^2 f(x)$ are Lipschitz continuous
- Quadratic convergence:
 - convergence rate is $O(\log \log(1/\epsilon))$
- Locally quadratic convergence: we are only guaranteed quadratic convergence after some number of steps k.
- Drawback: computing the inverse of Hessian is usually very expensive.
- Quasi-Newton, Approximate Newton...

Lagrangian

• Start with optimization problem:

$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0, i = 1, 2, ..., m$
 $h_j(x) = 0, j = 1, 2, ..., n$

• We define Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x)$$

• where $u_i \ge 0$

Property

• Lagrangian

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x)$$

• For any $u \ge 0$ and v, any feasible x,

$$L(x, u, v) \le f(x)$$

Lagrange Dual Function

Let C denote primal feasible set, f* denote primal optimal value. Minimizing L(x, u, v) over all x gives a lower bound on f* for any u ≥ 0 and v.

$$f^* \ge \min_{x \in C} L(x, u, v) \ge \min_x L(x, u, v) = g(u, v)$$

• Form dual function:

$$g(u,v) = \min_{x} L(x,u,v)$$

Lagrange Dual Problem

• Given primal problem

$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0, i = 1, 2, \dots, m$
 $h_j(x) = 0, j = 1, 2, \dots, n$

• The Lagrange dual problem is:

$$\max_{u,v} g(u,v)$$

s.t. $u \ge 0$

Property

• Weak duality:

$$f^* \ge g^*$$

• The dual problem is a convex optimization problem (even when primal problem is not convex)

$$g(u,v) = \min_{x} \{ f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{n} v_j h_j(x) \}$$

• g(u,v) is concave.

Strong duality

• In some problems we have observed that actually

$$f^* = g^*$$

which is called strong duality.

• Slater's condition: if the primal is a convex problem, and there exists at least one strictly feasible *x*, i.e,

 $g_1(x) < 0, \dots, g_m(x) < 0$ and $h_1(x) = \dots h_n(x) = 0$

then strong duality holds

Example

• Primal problem

$$\min_{x} x^{\top} x$$

s.t. $Ax \le b$

Dual function

$$g(u) = \min_{x} \{ x^{\top} x + u^{\top} (Ax - b) \}$$
$$= -\frac{1}{4} u^{\top} A A^{\top} u - b^{\top} u$$

- Dual problem $\max_{u} -\frac{1}{4}u^{\top}AA^{\top}u - b^{\top}u, s.t. \ u \ge 0$
- Slater's condition always holds.

References

- A majority part of this lecture is based on CSS 490 / 590 - Introduction to Machine Learning
 - <u>https://courses.washington.edu/css490/2012.Winter/lec</u> <u>ture slides/02 math essentials.pdf</u>
- The Matrix Cookbook Mathematics
 - <u>https://www.math.uwaterloo.ca/~hwolkowi/matrixcook</u> <u>book.pdf</u>
- E-book of Mathematics for Machine Learning
 - https://mml-book.github.io/

References

- Optimization for machine learning
 - <u>https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf</u>
- A convex optimization course
 - <u>http://www.stat.cmu.edu/~ryantibs/convexopt-F15/</u>