2019 CS420, Machine Learning, Lecture 15

Transfer Learning

Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Transfer Learning Materials

Our course on TL is mainly based on the materials from Prof. Qiang Yang and his students

Prof. Qiang Yang

- Chair Professor, Department Head of CSE, HKUST
- http://www.cs.ust.hk/~qyang/
- SJ Pan, Q Yang. A survey on transfer learning. IEEE TKDE 2010.
- 4000+ citations on this survey paper

Machine Learning Process

 Assumption: training and test data has the same distribution

Practical Cases

 Data distributions p(x) change across different domains or vary over time

 $\mathcal{X}_S \neq \mathcal{X}_T$ or $p_S(x) \neq p_T(x)$

Real images

Cartoon images

Practical Cases

• Data dependencies p(y|x) could be also different

 $\mathcal{Y}_S \neq \mathcal{Y}_T$ or $p_S(y|x) \neq p_T(y|x)$

Apple recognition

Pear recognition

Transfer Learning

(a) Traditional Machine Learning

(b) Transfer Learning

Notation and Definition of TL

- Notation
 - A domain $\mathcal{D} = \{\mathcal{X}, p(x)\}$
 - Feature space \mathcal{X}
 - Data distribution p(x)
 - A task $\mathcal{T} = \{\mathcal{Y}, f(\cdot)\}$
 - Label space $\mathcal Y$
 - Objective predictive function $f(\cdot)$
- Definition
 - Given a source domain \mathcal{D}_S with corresponding learning task \mathcal{T}_S and a target domain \mathcal{D}_T with corresponding learning task \mathcal{T}_T
 - **transfer learning** is the process of improving the target predictive function $f_T(\cdot)$ by using the related information from \mathcal{D}_S and \mathcal{T}_S , where $\mathcal{D}_S \neq \mathcal{D}_T$ or $\mathcal{T}_S \neq \mathcal{T}_T$

Explanation

- $\mathcal{D}_S \neq \mathcal{D}_T$
 - $\mathcal{X}_S \neq \mathcal{X}_T$
 - Heterogeneous transfer learning
 - Two sets of documents are described in different languages
 - $P(X_S) \neq P(X_T)$
 - Domain adaptation
 - Two sets of documents focus on different topics
- $\mathcal{T}_S \neq \mathcal{T}_T$
 - $\mathcal{Y}_S \neq \mathcal{Y}_T$
 - Source has two classes: positive or negative; target adds one class: neutral
 - $P_S(y|x) \neq P_T(y|x)$
 - A word can have different meanings in two domains

Categorization of Transfer Learning

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2010): 1345-1359.

Transfer Learning Settings

• Homogeneous/heterogeneous transfer learning

Transfer Learning Methods

- Instance Transfer
 - Reweight instances of target data according to source
- Feature Transfer
 - Mapping features of source and target data in a common space
- Parameter Transfer
 - Learn target model parameters according to source model

Transfer Learning Methods

- Instance Transfer
 - Reweight instances of target data according to source
- Feature Transfer
 - Mapping features of source and target data in a common space
- Parameter Transfer
 - Learn target model parameters according to source model

Instance-based Transfer Learning

- General assumption
 - Source and target domains have a lot of overlapping features or even share the same feature spaces

 $\mathcal{X}_S \simeq \mathcal{X}_T$

• Label space should be the same

$$\mathcal{Y}_S \simeq \mathcal{Y}_T$$

- Example applications
 - Electronic medical record across different departments
 - Sentiment analysis over different topics

Instance TL Case 1: Domain Adaption

- Problem setting
 - Given source domain labeled data $D_S = \{x_{S_i}, y_{S_i}\}_{i=1}^{n_S}$ and target domain data $D_T = \{x_{T_i}\}_{i=1}^{n_T}$
 - learn f_T such that the loss on target data is small

$$\sum_{i} \mathcal{L}(f_T(x_{T_i}), y_{T_i})$$

- where y_{T_i} is unknown.
- Assumption
 - The same label space $\mathcal{Y}_S = \mathcal{Y}_T$
 - The same dependency $p(y_S|x_S) = p(y_T|x_T)$
 - (Almost) the same feature space $\mathcal{X}_S \simeq \mathcal{X}_T$
 - Different data distribution $p_S(x) \neq p_T(x)$

Importance sampling

$$\begin{aligned} \theta^* &= \arg\min_{\theta} \mathbb{E}_{(x,y)\sim p_T} [\mathcal{L}(y, f_{\theta}(x))] \\ &= \arg\min_{\theta} \int_{(x,y)} p_T(x) \mathcal{L}(y, f_{\theta}(x)) dx \\ &= \arg\min_{\theta} \int_{(x,y)} p_S(x) \frac{p_T(x)}{p_S(x)} \mathcal{L}(y, f_{\theta}(x)) dx \\ &= \arg\min_{\theta} \mathbb{E}_{(x,y)\sim p_S} \left[\frac{p_T(x)}{p_S(x)} \mathcal{L}(y, f_{\theta}(x)) \right] \end{aligned}$$

• Re-weight each instance by $\beta(x) = \frac{p_T(x)}{p_S(x)}$

• How to estimate
$$\beta(x) = \frac{p_T(x)}{p_S(x)}$$

- A simple solution would be to first estimate $p_S(x)$ and $p_T(x)$ respectively, and then calculate $\beta(x)$
 - May suffer from huge variance problem
- A more practical solution is to estimate $\frac{\mu}{r}$

$$rac{\partial_T(x)}{\partial_S(x)}$$
 directly

• Imagine a rejection sampling process, and view the target domain as samples from the source domain

• Probabilistic density function (p.d.f.) relationship

$$p_T(x) \propto p_S(x)p(s=1|x)$$

• And we estimate p(s=1|x) as a binary classification model

$$\beta(x) = \frac{p_T(x)}{p_S(x)} \propto p(s = 1|x)$$

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004

 Imagine a rejection sampling process, and view the target domain as samples from the source domain

- Estimate p(s=1|x) as a binary classification model
 - Label instance from the target domain as 1
 - Label instance from the source domain as 0

$$\beta(x) = \frac{p_T(x)}{p_S(x)} \propto p(s = 1|x)$$

Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004

• How to estimate
$$\beta(x) = \frac{p_T(x)}{p_S(x)}$$

• Build the estimator with a list of basis functions

$$\hat{\beta}(x) = \sum_{l=1}^{b} \alpha_l \psi_l(x)$$

- The estimated target p.d.f. $\hat{p}_T(x) = \hat{\beta}(x)p_S(x)$
- Minimize KL divergence

 $\min_{\{\alpha_l\}_{l=1}^b} \operatorname{KL}[p_T(x) \| \hat{p}_T(x)]$

Sugiyama *et al.*, Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation, NIPS 2007 • Minimize squared error

$$\min_{\{\alpha_l\}_{l=1}^b} \int_x \left(\hat{\beta}(x) - \beta(x)\right)^2 p_S(x) dx$$

Kanamori et al., A Least-squares Approach to Direct Importance Estimation, JMLR 2009

Unbiased Training in Display Advertising

• In display advertising, the label data is observed by an advertiser only when she wins the auction, thus it is biased.

Unbiased Learning Framework

Data observation process

Importance sampling

$$\min_{\boldsymbol{\beta}} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} [\mathcal{L}(y, f_{\boldsymbol{\beta}}(\boldsymbol{x}))] = \min_{\boldsymbol{\beta}} \mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})} \left[\frac{\mathcal{L}(y, f_{\boldsymbol{\beta}}(\boldsymbol{x}))}{w(b_{\boldsymbol{x}})} \right]$$

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16

Performance Comparison on Yahoo! DSP

• A/B Testing on Yahoo! United States

2.97% AUC lift

BIAS AUC.

63.78%

87.45%

69.73%

88.82%

69.71%

89.33%

77.76%

74.57%

71.04%

73.48%

Camp.

C1

C2

C3

C4

C5

C6

C7

C8

C9

all

Weinan Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 16

Instance TL Case 2: Labels in 2 Domains

- Problem setting
 - Given source domain labeled data $D_S = \{x_{S_i}, y_{S_i}\}_{i=1}^{n_S}$
 - and very limited target domain data $D_T = \{x_{T_i}, y_{T_i}\}_{i=1}^{n_T}$
 - learn f_T such that the loss on target data is small

$$\sum_{i} \mathcal{L}(f_T(x_{T_i}), y_{T_i})$$

- Assumption
 - The same label space $\mathcal{Y}_S = \mathcal{Y}_T$
 - Different dependency $p(y_S|x_S) \neq p(y_T|x_T)$
 - (Almost) the same feature space $\mathcal{X}_S \simeq \mathcal{X}_T$
 - Different data distribution $p_S(x) \neq p_T(x)$

Transfer Learning Methods

- Instance Transfer
 - Reweight instances of target data according to source
- Feature Transfer
 - Mapping features of source and target data in a common space
- Parameter Transfer
 - Learn target model parameters according to source model

Feature-based Transfer Learning

- When source and target domains only have some overlapping features
 - Lots of features only have support in either the source or the target domain
- Possible solutions
 - Encode applicationspecific knowledge
 - General approaches to learn the transformation φ

General Feature-Based TL Approach

- Learning new data representations by minimizing the distance between two domain distributions
- Learning new data representations by multi-task learning
- Learning new data representations by self-taught learning

Principle Component Analysis (PCA)

 PCA uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Principle Component Analysis (PCA)

 PCA uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Motivation

• Minimize the distance between domain distributions by projecting data onto the learned transfer components

Pan, Sinno Jialin, et al. "Domain adaptation via transfer component analysis." IEEE Transactions on Neural Networks 22.2 (2011): 199-210.

- Main idea
 - Learn φ to map the source and target domain data to the latent space spanned by the factors which can reduce domain difference and preserve original data structure

$$\min_{\varphi} \quad \text{Dist}(\varphi(\mathbf{X}_S), \varphi(\mathbf{X}_T)) + \lambda \Omega(\varphi)$$

s.t. constraints on $\varphi(\mathbf{X}_S)$ and $\varphi(\mathbf{X}_T)$

- Maximum Mean Discrepancy (MMD)
 - Given the source and target domain data

$$\mathbf{X}_{S} = \{x_{S_{i}}\}_{i=1}^{n_{S}} \qquad \mathbf{X}_{T} = \{x_{T_{i}}\}_{i=1}^{n_{T}}$$

drawn from $P_{S}(x)$ and $P_{T}(s)$ respectively

$$Dist(\varphi(\mathbf{X}_{S}), \varphi(\mathbf{X}_{T})) = \left\| \frac{1}{n_{S}} \sum_{i=1}^{n_{S}} \Phi(\varphi(x_{S_{i}})) - \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \Phi(\varphi(x_{T_{i}})) \right\|_{\mathcal{H}}$$

$$Mapping \qquad \text{Kernel function}$$

• An illustrative example Latent features learned by PCA and TCA

Transfer Learning Methods

- Instance Transfer
 - Reweight instances of target data according to source
- Feature Transfer
 - Mapping features of source and target data in a common space
- Parameter Transfer
 - Learn target model parameters according to source model

Parameter based Transfer Learning

• The ϑ -parameterized function $f_{\vartheta}(x)$ learned on two domains

$$\theta_{S}^{*} = \arg\min_{\theta} \sum_{i=1}^{n_{S}} \mathcal{L}(y_{S_{i}}, f_{\theta}(x_{S_{i}})) + \lambda \Omega(\theta)$$
$$\theta_{T}^{*} = \arg\min_{\theta} \sum_{i=1}^{n_{T}} \mathcal{L}(y_{T_{i}}, f_{\theta}(x_{T_{i}})) + \lambda \Omega(\theta)$$

- Motivation
 - A well-trained model $f_{\theta^*_S}(x)$ has learned a lot of structure on the source domain.
 - If two tasks are related, this structure can be transferred to learn the model $f_{\theta^*_T}(x)$ on the target domain

Multi-Task or Collective Learning

 Minimize the joint loss on two tasks and the model parameters distance

$$\min_{\theta_S, \theta_T} \alpha \frac{1}{N_S} \sum_{i=1}^{N_S} \mathcal{L}(y_i, f_{\theta_S}(x_i)) + (1-\alpha) \frac{1}{N_T} \sum_{j=1}^{N_T} \mathcal{L}(y_j, f_{\theta_T}(x_j)) + \lambda \Omega(\theta_S, \theta_T)$$

Source task loss

Target task loss

Parameter distance

• Different parameter distance definitions

$$\Omega(\theta_S, \theta_T) = \|\theta_S - \theta_T\|^2$$
$$\Omega(\theta_S, \theta_T) = \sum_{t \in \{S, T\}} \|\theta_t - \frac{1}{2} \sum_{s \in \{S, T\}} \theta_s\|^2$$

Hierarchical Bayesian Network

 Idea: source domain parameters, regarded as random variables, act as the prior of the target domain parameters

Case Study: from web browsing to ad click

- Source task
 - Data: user browsed webpage ids
 - Task: predict whether a user likes a webpage
- Target task
 - Data: user browsed webpage ids
 - Task: predict whether a user likes to click an ad

$$\min_{\theta_S, \theta_T} \alpha \frac{1}{N_S} \sum_{i=1}^{N_S} \mathcal{L}(y_i, f_{\theta_S}(x_i)) + (1 - \alpha) \frac{1}{N_T} \sum_{j=1}^{N_T} \mathcal{L}(y_j, f_{\theta_T}(x_j)) + \lambda \|\theta_S - \theta_T\|^2$$

$$\text{Logistic regression}$$

$$\text{Logistic regression}$$

[Perlich, Claudia, et al. "Machine learning for targeted display advertising: Transfer learning in action." *Machine learning* 95.1 (2014): 103-127.]

Case Study: from web browsing to ad click

• Illustrated in a hierarchical Bayesian graphical model

Heterogeneous TL

- Different feature space
- Examples
 - Cross-language document classification
 - Cross-system recommendation
- Approaches
 - Symmetric transformation mapping
 - Asymmetric transformation mapping

Fig. 1 a The symmetric transformation mapping (T_s and T_T) of the source (X_s) and target (X_T) domains into a common latent feature space. **b** The asymmetric transformation (T_T) of the source domain (X_s) to the target domain (X_T)

Cross-system Recommendation

Tell No One Because you enjoyed: Memento Syriana Children of Men

FOREIGN SUGGESTIONS (about 104) See all >

Let the Right Seven Samurai This is Spinal Tap The Big Lebowski SOID Add ****

I've Loved You So Long Because you enjoyed: The Queen Syriana Good Night, and Good Luck

Because you enjoyed: Das Boot The Killing Fields Seven Semural

Downfall

Your Recently Viewed Items and Featured Recommendations

Best Sellers

S Not Interested

ansfer

American Sniper. The Chris Kyle ARAAR (5,648) Kindle Edition \$8.13

All the Light We Cannot See A Novel Anthony Doerr ARRAY: (6.075) Kindle Edition \$10.99

The Pact Karina Halle ANT WAY (348) Kindle Edition

Gone Girl: A Novel Gillian Flynn RAAR (34.699) Kindle Edition \$6.99

Transfer Learning via CodeBook

Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction." *IJCAI*. Vol. 9. 2009.

Transfer Learning via CodeBook

Table 1: MAE on MovieLens (average over 10 splits

Training Set	Method	Given5	Given10	Given15
	PCC	0.930	0.883	0.873
	CBS	0.874	0.845	0.839
ML100	WLR	0.915	0.875	0.890
	CBT	0.840	0.802	0.786
	PCC	0.905	0.878	0.878
	CBS	0.871	0.833	0.828
ML200	WLR	0.941	0.903	0.883
	CBT	0.839	0.800	0.784
	PCC	0.897	0.882	0.885
	CBS	0.870	0.834	0.819
ML300	WLR	1.018	0.962	0.938
	CBT	0.840	0.801	0.785

Table 2: MAE on Book-Crossing (average over 10 splits)

Training Set	Method	Given5	Given10	Given15
	PCC	0.677	0.710	0.693
	CBS	0.664	0.655	0.641
BX100	WLR	1.170	1.182	1.174
	CBT	0.614	0.611	0.593
	PCC	0.687	0.719	0.695
	CBS	0.661	0.644	0.630
BX200	WLR	0.965	1.024	0.991
	CBT	0.614	0.600	0.581
	PCC	0.688	0.712	0.682
	CBS	0.659	0.655	0.633
BX300	WLR	0.842	0.837	0.829
	СВТ	0.605	0.592	0.574

Li, Bin, Qiang Yang, and Xiangyang Xue. "Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction." *IJCAI*. Vol. 9. 2009.

Cross-Language Text Classification

- A large number of labeled English webpages
- A small number of labeled Chinese webpages
- Solution: information bottleneck

