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Reinforcement Learning

Agent
* Learning from interaction =
with the environment observation j action
—» —
ot | At
* The agent

* senses the observations
from environment

e takes actions to deliver to
the environment

e gets reward signal from
the environment

* Normally, the
environment is stationary

Environment



Multi-Agent Reinforcement Learning

* Learning from interaction
with the environment ChESRyatlan

* The environment contains
other agents that are
learning and updating

* Non-stationary
environment

Environment



Battle Game

Case 1
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Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



Case 2: Army Align

* Let an army of agents align a particular pattern

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



Case 3: Decentralized Game Al

* Designing multi-agent
communications and
co-learning algorithms
for elaborate collective
game intelligence

Marine (Agent)

RTS Games MOBA Games

Peng, Peng, et al. "Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games." NIPS workshop 2017.



Case 4: City Brain Simulation

w0 ]« Designing
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Case 5: Storage Sorting Robots
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Difficulty in Multi-Agent Learning

* MAL is fundamentally more difficult

* since agents not only interact with the environment but
also with each other

* If use single-agent Q learning by considering other
agents as a part of the environment

* Such a setting breaks the theoretical convergence
guarantees and makes the learning unstable

* i.e., the changes in strategy of one agent would affect
the strategies of other agents and vice versa



Sequential Decision Making

* 3 types of setting

* Markov decision processes
* one decision maker
* multiple states

MDPs
- Single Agent
- Multiple State

Stochastic Games
- Multiple Agent
- Multiple State

* Repeated games
* multiple decision makers
* one state (e.g., one normal form game)

» Stochastic games (Markov games)
* multiple decision makers
* multiple states (e.g., multiple normal form games)



Stochastic Games

* A stochastic game has multiple states and multiple agents
e Each state corresponds to a normal-form game
e After a round, the game randomly transits to another state

* Transition probabilities depend on state and joint actions taken by
all agents

* Typically rewards are discounted over time

0.2
Player 2 0.5 1’ 1 1’ 0 State 2
al | a2 010.0
a1| 2,210, 3 04
Player 1
a2[3,0(1,1 0.3
— — 1,00, 1
tate : State 3
State transition O, 1 1, 0
probabilities

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of sciences 39.10 (1953): 1095-1100.



Definition of Stochastic Games

e A stochastic game is defined by

(S7A17"'7AN77417°"7TN7p77>

* State space: S
* Action space of agentj: A/, j e {1,...,N}
e Reward function of agent 77 : Sx Al x---x AY - R

* Transition probability p:S x Al x ... x AN — Q(S)

The collection of probability
distributions over S

* Discount factor across time v € [0, 1)



Policies in Stochastic Games

* For agentj, the corresponding policy is

J . j The collection of probability
™S = QA distributions over A/
101 I i A1 N
* The joint policy of all agentsis =« =[x, ..., "]

 State value function of agentj

vl (s) = V7 (s; ) thEwp \30:8,71'].

e Action value function ofagentj Q7 :Sx Al x---x AV - R

Q‘zr(sv a) = Tj(sv a) + V]Es’wp[v';(sl)]



Independent Learning in SG

* For each agent j, assume the other agents’ policies
are stationary, thus the environment forj is
stationary to perform Q-learning

Q(s,d’,a™7) « Q(s,a?,a™7 )+
¥4

a(r + v max Qs d  a~?
ald

) o Q(Sv ajv a_j))

e Unfortunately, in SG with MARL, every agent is
learning and updating its policy, making the
environment non-stationary



Nash Equilibrium in SG

vl (s) = v (s;7) thEﬂp /|50 = $, 7]
e Optimizing v’ (s) for agent j depends on the joint policy it

* Nash equilibrium in SG is represented by a particular joint

policy

W*é[ﬁi,...,ﬂi\[]

such that nobody would like to change his policy given the
others’

v (s;my) = v (s;7d, i ?) > 07 (s Y

—7 A 11 —1 +1 N
A o /A AL (o



Nash Q-learning

* Given a Nash policy ., the Nash value function

0"(s) £ [o] (s),..., 0. ()]

* Nash Q-learning defines an iterative procedure

1. Solving the Nash equilibrium . of the current stage
defined by {Q,}

2. Improving the estimation of the Q-function with the
new Nash value yNash

* But Nash Q-learning suffers from
* Very high computational complexity
 May not work when other agents’ policy is unavailable



From Multi- to Many-Agent RL

 What will happen when agent number grows?

 Reward functionofagent 77 :Sx A' x--- x AN - R

* Transition probability p:S x Al x --- x AY — Q(S)

* Both reward function and state transition
probability get exponentially larger
* More difficult to model
* The environment is more dynamic and sensitive
* Need more exploration data
* More computational resources



|dea: Taking Other Agents as A Whole

T

=
.. Ty

* In some many-body systems, the interaction
between an agent and others can be approximated
as that between the agent and the “mean agent” of
others



Mean Field Multi-Agent RL

* Mean field approximation

* Approximate the joint
action value by factorizing

the Q-function into ////
pairwise interactions ™ [/O "/o)//
1 [ 7 { T{—Q/

J — J J K ?
Q(S7a’)_Nj Z.Q(Saa’va) | .—./ | ‘.//
kEN(J) N

O ‘ .;/
Neighboring agent set of j L J.

 Significantly reduces the global interactions among agents
* Still preserves global interactions of any agent pair

Yaodong Yang, Weinan Zhang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.



Action Representation

. 1 . o
Q](S,CL) — ﬁ Z Q](S,CL],CL )
keN (5)
e Consider discrete action space
* Action ¢ of agentjis one-hot encoded as

(ﬂ:é[a{...,aiJ Only one element is 1
 The mean action based on the neighborhood of j is
: 1
= 2
a’ = — a
NI
k
* Thus the action a* of each neighbor k can be represented as
. . 1 :
k:_] .77k —Za,]’kzo
a a’ + oa N
k
mean residual Residual sumis 0

action



Mean Field Approximation

* A 2-order Taylor expansion on Q-function

Q(5,0) = 7 2 Qo0 af =@ + oo’
k
1 . o . o . 1 . o .
- ﬁ [QJ(S7 a’Ja aj) + v&ij(Sa aja dj) ) 5a]’k + § 5aj’k ) v?lj,ij(87 aja &J,k) ) 5aj’k
k
= Q'(s,a’,a’) + V;Q’(s,a?, ) Z(Saﬂk 2N Z(Saj’ V2 QY (s, ,aF) - gal®

Qj(s, aj’ aJ QNJ Z RS a]

~ Qi(s,d?,a) External random signal for agent j
Q-function model R‘;aj(ak) 2 5a* - V2, ,.QY (s, al ,@*) - §al*
the interaction

between the ik = g7 + ek §alk

agent’s action and
the mean action



Mean Field Q-Learning

* A softmax MF-Q policy S
exp (ﬂQ‘g (s, aJ,ELJ))
Zaﬂ"eAﬂ' exp (BQ](s,a’’, 7))
* Given an experience (s, a,r,s’,a) sampled from
replay buffer

e Sample the next action a’_ from Q4

Wg(aj]s,&j) —

*Set y =1 +7Q (s, al,a)
e Update Q function with the loss function

L) = (1 — Qu(s),d?,a))



MFE-Q Convergence

 Theorem: In a finite-state stochastic game, the Q
values computed by the update rule of MF-Q
converges to the Nash Q-value

* under certain assumptions of reward function, policy
form and game equilibrium



Experiment: Ising Model (IM)

* Each spinis an agent to
decide up or down (action)

* Measure: order parameter

_ [Ny = N
N

§

* The closer OPisto 1, the
more orderly the system is.




Experiment Performance [M

R T = MCMC e Ground truth: MCMC
_g_g ® MFQ . .
aE>0-8 3 simulation
D 06 \ e Goal: MF-Q learns
o4 n . with the similar
()] Y .
o2 e behavior as MCMC,
=g af ] .
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Experiment Performance [M

tT<tc:t=0.9 T~1c:1=1.2 T>1c:1=2.0
0
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Battle

Experiment
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Grid World

e
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wall

group1

group1’s hp
group1’s minimap
group2

group2’s hp
group2’s minimap

Observation Space

| Last action/reward | Relative pos |

ID Embedding

by Geek.AI

Supported by MAgent

Action Space

turn] [

attack
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>
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Lianmin Zheng, Weinan Zhang et al. "MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence." NIPS 2017.



Experiment Performance Battle

400

1.4 s L B vs MF-AC 350 e s L B vs MF-AC
1.2 . vs MF-Q pm vs AC s vs MF-Q mm vs AC
300
-~
8 1.0 = 250
£ 0.8 &
g & 200
= 0.6 g 150
0.2 50
00 - - 0 AC IL MF-Q MF-AC

(a) Average wining rate. (b) Average total reward.

* For 64 vs 64 battle, MF-Q works the best among all
compared models

* MF-AC may not work that well particularly when
the agent number is large



Experiment Performance Battle

—400
—600
500 =3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

* MF-Q has a fast convergence property
* MF-AC has a phase changing point



Case Study
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Blue: MF-Q
Red: IL

MF-Q presents a
go-around-and-
besiege strategy

MF-Q agents are
more consistent
with neighbors



Summary of MARL

* Main difficulties for many-agent RL
 Computational complexity
 Complicated agent interactions
* Highly dynamic neighborhood

* Possible solutions
* Mean field approximation
* MAgent platform



Summa 'Y from Machine Learning Perspective

* Traditional machine
learning is to build
* aloss function
 alikelihood estimation
e an expectation of value

from a machine and the
training data and to
optimize the objective

®e o

 Two-agent machine
learning is to build
* aloss function
* a likelihood estimation
* an expectation of value

from the two machines and
the training data and to
optimize the objective

‘\\ O OO O
O

| b . AR O O
) Jectlve,s/,v @ OOO

model | «° data



Summa 'Y Machine Learning Paradigm Extension

Towards a more

decentralized service This area gets more and more attention!

Many-agent “ Crowding sourcing loT Al / City Al / Market Al
Multi-agent Ensemble GANs/CoT MARL
Single-agent LR/SVM Language model Atari Al
Prediction Generation Decision I\/Iakinrg
& detection

Give more access to machines



