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Value and Policy Approximation

Vo(s) Qo(s,a) mo(als)
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State-value and action-value approx. Stochastic Deterministic
policy approx. policy approx.

 What if we directly build these approximate function with
deep neural networks?



End-to-End Reinforcement Learning
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Deep Reinforcement Learning is what allows RL algorithms to solve complex problems in

an end-to-end manner.
Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deepricourse/static/slides/lec-1.pdf



Deep Reinforcement Learning

* Deep Reinforcement Learning

* leverages deep neural networks for value functions and
policies approximation

* so as to allow RL algorithms to solve complex problems in
an end-to-end manner.

Fully connected

by
<
8
13
=3
I
Q
1
@
a

+ I+
oao

o-

+

ol LS
++1+1+
[©] (@] (&) (¢) (®)

2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



Deep Reinforcement Learning Trends

deep reinforcement learning: (Worldwide)

120

100

80

wins Lee

60

o
<

20

T/11/810¢
1/6/810¢
T/1/810¢
1/5/810¢
1/€/810¢
T/1/810¢
T/11/LT02
1/6/L10C
T/L/L10T
1/S/L10C
T/€/L10T
T/1/L10T
T/11/910¢
1/6/910¢
T/£/910¢
1/5/910¢
T/€/910¢
1/1/910¢
T/11/ST0¢
1/6/S10¢
1/L/S10C
1/5/S10¢
1/€/S10¢
T/1/S10¢
T/11/¥10¢
1/6/¥10T
T/L/¥10T
1/5/v10¢
1/€/¥10¢
T/1/¥10¢
T/T1/€T0C
1/6/€10¢
T/L/€10T
1/S/€10¢
1/€/€10C
T/T/€10¢

* Google search trends of the term ‘deep reinforcement

learning’



Key Changes Brought from DRL

 What will happen when combining DL and RL?
e Value functions and policies are now deep neural nets
Very high-dimensional parameter space
Hard to train stably
Easy to overfit
Need a large amount of data
Need high performance computing

Balance between CPUs (for collecting experience data)
and GPUs (for training neural networks)

* These new problems motivates novel algorithms
for DRL



Deep Reinforcement Learning Categories

* Value-based methods
* Deep Q-network and its extensions

* Stochastic policy-based methods

* Policy gradients with NNs, natural policy gradient, trust-
region policy optimization, proximal policy optimization,
A3C

* Deterministic policy-based methods
* Deterministic policy gradient, DDPG



REVIEW

Q-Learning

* For off-policy learning of action-value Q(s,a)

* The next action is chosen using behavior policy a; 1 ~ u(-|s¢)
* But we consider alternative successor action a ~ m(+|s;)

* And update Q(s,,a,) towards value of alternative action

Q(st,a¢) «— Q(st,at) + a(rer1 + YQ(se41, a’) — Q(s¢,a4))

action
from t
not u



REVIEW

Off-Policy Control with Q-Learning

* Allow both behavior and target policies to improve

* The target policy it is greedy w.r.t. Q(s,a)
m(se41) = argmax Q(se+1, a’)
* Q-learning update
Q(s1,a1) — Qs a) + alrpsr + ymax Q(se1,a') — Qse, ar))

At state s, take action a
Observe reward r

Transit to the next state s’

® O O Atstates), take action argmax Q(s’,a’)



Deep Q-Network (DQN

Video Pinball |
Boxing =
Breakout |
Star Gunner |
Robotank |
Atlantis ]
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault ]
Road Hunner:
Kangaroo |
James Bond
Tennis | SRR
Pong 7| S
Space Invaders | {EiE——
Beam Rider | F4RIE—
Tutankham | 412% [J—
Kung-Fu Master |
Freeway |wazn [
Time Pilot | {GSE.——
Enduro | jo7s
Fishing Derby | S
Up and Down | szsJll—
lce Hockey | 7as
Qbert |
HER.O. | il At human-level or above
Asterix_| eBI— Below human-level
Battle Zone | jersll—
Wizard of Wor | 6rlll——
Chopper Command | GilE—
Centipede | EERIE——
Bank Heist | [sril
River Raid | Sfll-
Zaxxon | sasll~
Amidar | {8l
Alien | 4888
Venture | 8l —
. . . Seaquest | [h2su
DQN (NIPS 2013) is the beginning of the Doutl D
g g Bowling | 4%
. . . Ms. Pac-Man | [} 13%
entire deep reinforcement learning sub- e
Frostbite | |he%
Gravitar | fis% m
a re a Private Eye: bz
* Montezuma's Revenge |[lo% i
f T T T T T T 10T 1
o 100 200 300 400 500 600 1,000 4,500%

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Deep Q-Network (DQN)

* Implement Q function with deep neural network
* Input a state, output Q values for all actions
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Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Deep Q-Network (DQN)

* The loss function of Q-learning update at iteration i

Lz(ez) — IE(s,a,r,s’)NU(D) [(T + ’YIIiLa/JXQ(SI, CL/; (91_) o Q(S7 a; 92))2]

I ' ' T
target Q value estimated Q value

* J;are the network parameters to be updated at iteration j
e Updated with standard back-propagation algorithms

* J; are the target network parameters
* Only updated with &, for every C steps

* (s,a,r,s)~U(D): the samples are uniformly drawn from the
experience pool D

* Thus to avoid the overfitting to the recent experiences

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



Deep Q-Network (DQN)

* The loss function of Q-learning update at iteration i

Lz(ez) — IE(s,a,r,s’)NU(D) [(T + ’YIIiLa/JXQ(SI, CL/; (91_) o Q(S7 a; 92))2]

I ' ' T
target Q value estimated Q value

* For each experience (s,a,r,s’)~U(D), the gradient is

Oit1 = 0; +n(r +ymaxQ(s',d’;0;7) — Q(s,a;0:)) VoQ(s, a; 0;)

|

backpropagation

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.



DRL with Double Q-Learning

* DQN gradient is
Oir1 = 0; +1(yi — Q(s,a;6;))VoQ(s, a; 6;)
target Qvalue yi =71+ 7 max Q(s',a';0;)
* The target Q value can be rewritten as
yi = +yQ(s',argmax Q(s,a’;0;); 0;)

uses the same values both to select and to evaluate an action,
which makes it more likely to select overestimated values,
resulting in overoptimistic value estimates.

Hasselt et al. Deep Reinforcement Learning with Double Q-learning. AAAI 2016.



DRL with Double Q-Learning

* DQN gradient is
Oir1=0; +1(yi — Q(s,a;6;)) VoQ(s, a; 6;)
target Qvalue yi =7 +ymaxQ(s', a’;6;)
* The target Q value can be rewritten as
yi =7 +7Q(s, argmax Q(s, a’; 6;7); 0;)
uses the same values both to select and to evaluate an action

* Double Q-learning generalizes using different
parameters

yi =7+ 7Q(s', argmax Q(s, a’; 6;); 6;)
a

Hasselt et al. Deep Reinforcement Learning with Double Q-learning. AAAI 2016.



Experiments of DQN vs. Double DQN
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Hasselt et al. Deep Reinforcement Learning with Double Q-learning. AAAI 2016.



Deep Reinforcement Learning Categories

* Value-based methods
* Deep Q-network and its extensions

* Stochastic policy-based methods

* Policy gradients with NNs, natural policy gradient, trust-
region policy optimization, proximal policy optimization,
A3C

* Deterministic policy-based methods
* Deterministic policy gradient, DDPG



REVIEW

Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs
* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to

* start state objective J,, average reward objective J, ., and average
value objective J,,,

e Theorem

e For any differentiable policy my(a|s), for any of policy objective
functionJ =14, J, s, 4, , the policy gradient is

8.J(6)
"o =l

0log mg(als)
00

Q™ (s,a)



Policy Network Gradients

* For stochastic policy, typically the action probability
is defined as a softmax

ef@(saa’)
mg(als) = Za’ efo(s,a’)

* where f4(s,a) is the score function of a state-action pair
parametrized by ¢, which can be implemented with a neural net

* The gradient of its log-form

alogﬂ@(ab) _ afg(s,a) o Z fo(s,a’”) af@( )
99 o0 S ,efe<sa 06
_ afg(S,CL) —E, / [8]‘9(8,@)}
BY: '~mg(a’|s) o0



Policy Network Gradients

* With the gradient form

0log mg(als) _8f9(s,a)_E/ / [8]‘9(8,&’)]
0 09 armola’ls) | pg

* The policy network gradient is

2J(0) _
00 Eor

-0 log mg(als)
71 06

=E,, :(3f0({§2’ “) _ Eo/ g (a']s) [8f9é2 al)])@”(s, a)]

) L
| |

Q™ (s, )]

backpropagation backpropagation



UC Berkeley DRL course: http://rll.berkeley.edu/deeprlcoursesp17/docs/lec5.pdf

Looking into Policy Gradient

Let R(rt) denote the expected return of it

R(ﬂ') = ESONPO,CLtNW(-|St) [Z fyt’rt]
t=0

We collect experience data with another policy it 4, and
want to optimize some objective to get a new better policy it

Note that a useful identity

(©.@)
R(m) = R(mo1d) + Eror [Z ,-YtATi'old (¢, at)]
t=0
Trajectories sampled from it
Advantage function

ATeld (87 CL) — IE‘j’s’r\qo(s’|s,a) [T(S) + /YVWOld (S,) — Vel (S)]

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. ICML. 2002.



UC Berkeley DRL course: http://rll.berkeley.edu/deeprlcoursesp17/docs/lec5.pdf

Looking into Policy Gradient

e Advantage function
ATeld (87 CL) — IE’s’r\»p(s’|s,a,) [T(S) T WVWOId (S/) — Vel (S)]

* Note that a useful identity

R(ﬂ‘) — R(ﬂ'old) + K or [i,ytAWold(St, at)]

* Proof: =0

v

00
]E’TNTF [Z ’VtAWOld (St7 at)} — ETNTF
t=0

Y (r(se) + YV (s141) — V7 (5,))]

~
|
o

=FE on| — V™ (s9) + Z ytr(st)]
i t=0

= By [V (50)] + Brr | S 5r(s0)] = —R(moa) + R(r)
t=0

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. ICML. 2002.



More for the Policy Expected Return

e Given the advantage function
ATeld (87 CL) — IEs’fvp(s’|s,a,) [T(S) T /VVWOld (S/) — Vel (S)]

* Want to manipulate R(rt) into an objective that can be
estimated from data

R(ﬂ') = R(T"old) +E or [i ,ytAﬂ-OId (St7 at)]

t=0
R(mo1q —I—ZZP s = s|m) Zﬂ' als)yt AT (s, a)
t=0 s
R(mo1q +ZZ¢P st = s|m) ZT&' als)A™ (s, a)
s t=0

R(moia) + Y px(s) > mw(als)A™ (s, a)
S a



Surrogate Loss Function

* With the importance sampling
R(m) = R(moq) + Z pr(8) Z m(als)A™M (s, a)

= R(mo1d) + Esmramn |[AT (8, a)]
m(als)
7T01d(a|8)
* Define a surrogate loss function based on sampled

data that ignores change in state distribution

= R(Trold) + ]E‘SNW,CLNTFOld [ ATeld (37 CL)]

m(als)
Wold(a\s)

L(m) = Esnroa,anmo [ AT, CL)]



Surrogate Loss Function

Target function R(7) = R(mo1d) + Esmr,amn [W(&\S)A”Old(s, a)}

Surrogate loss  L(7) = Egor. 1y a~vmo [

m(als)
7T01d(a|8)

ATold (g, a)]

* Matches to first order for parameterized policy

VQL(T('Q)

0.14 — IE::Sr\“ﬂ'old YA~ Told

= Esor old ;A~Told

— Eswwold,ar\zw@ [Ve log 7-‘-9(a|S>A7TOId (37 CI,)]

Vomg(als)
B 7T01d(a|8)
rmg(als) Vg log mg(als)

ATold (g, a)]

Oo1d

ATold (g, a)]

Told (a | S ) Oo1d

Oo1d



Trust-Region Policy Optimization

" Better for M must be
better for R(r1(9))

Lower for
R(rt(9))

Ot 9 0. éi

R(rt(9))

M is the lower bound M is not the lower bound

 |dea: by optimizing a lower bound function approximating
R(rt) locally, it guarantees policy improvement every time
and lead us to the optimal policy eventually.

 How to choose a proper lower bound M?



Trust-Region Policy Optimization

R(m) = Euy oo apmon(lon [i ]

t=0
= R(moi) + Y _ pr(s) Y m(a|s)A™(s,a)

m(als)
7T01d(a|8)

ATl (g, a)]

L7T01d (ﬂ-) — IE4:5’\"7"'oldaa"\"r‘-old |:

* The appendix A of the TRPO paper provides a 2-page proof
that establishes the following boundary

|R(7) = (R(mo1a) + Ly (7))] < C\/Esw [Dir(Towa(:]s)][7(-[5)))]

Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.



Trust-Region Policy Optimization

max R(7m) = max R(7) — R(mo1q)

T T

|R(7) = (R(Tola) + Lay, (m))] < C\/]Eswﬂ DT (-[s)[|7(:]5)))]

e With some twitting, this is our final lower bound M.

R(7) — R(Tola) 2 Loy () = C\/Esw [DrL(Towa(-]s)[|7(-]5)))]

Better for M must be
better for R(rt(8))

max Ly . (m)— C’\/Eswmr [Dr(moia(|s)||7(-]s)))]

RUT(9)) | |
éi+1 éi

Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.



Trust-Region Policy Optimization

* In fact, with the Lagrangian methods, our objective is
mathematically the same as the following using a trust
region constraint

max Ly . (m)— C\/Eswpﬁ D r(moia(:[s)|I7(-[s)))]
Better for M must be
I better for R(r1(3))
max L, (m)
s

5.8 Banp, [Drr(moa(-]s)[|7(-[5)))] <0

T

Trust region R(rt(9))

To guarantee the follow inequality to make M a valid lower bound 0.1 6;
|R(m) = (R(o1a) + Ly (m))| < C \/ Eswpr [DrcL(mota (-] s)[|m(-[5)))]

Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.




Trust-Region Policy Optimization

Line search Optimization in Trust Region
(like gradient ascent)

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-abeeO4eeeee9



A3C: Actor Critic Methods

e A3C stands for Asynchronous Advantage Actor
Critic
* Asynchronous: because the algorithm involves executing
a set of environments in parallel

* Advantage: because the policy gradient updates are
done using the advantage function

e Actor Critic: because this is an actor-critic method which
involves a policy that updates with the help of learned
state-value functions.

Vo log mw(ag|st; 0') A(se, ag; 6, 0,)

k—1
A(Sta ag; 0, 9’0) — Z ’Yirt—ki + kaV(Sthk; 91}) - V(St; ‘91))
1=0

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12



Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 6 and 6., and global shared counter T' = 0
// Assume thread-specific parameter vectors 0’ and 0,
Initialize thread step counter £ < 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters 8’ = 6 and 0., = 0,

tsta'r't =ik
Get state s;
repeat

Perform a; according to policy 7 (a:|s:; 6")
Receive reward r; and new state s;4;

t+—t+1
T<~T+1
until terminal s; or t — tstart == tmas
R— { 0 for terminal s;
1 Vs, 0,) for non-terminal s;// Bootstrap from last state
for: € {t — ]_1 v ,tstart} do
R+ r; + ’)’R

Accumulate gradients wrt 0": df < df + Vg log w(ai|si;0")(R — V(s;;0s,))
Accumulate gradients wrt 8,: df, < df, + & (R — V (s:;0.,))> /90,
end for
Perform asynchronous update of # using df and of 6,, using df,,.
until 7' > T}02




Deep Reinforcement Learning Categories

* Value-based methods
* Deep Q-network and its extensions

* Stochastic policy-based methods

* Policy gradients with NNs, natural policy gradient, trust-
region policy optimization, proximal policy optimization,
A3C

e Deterministic policy-based methods
* Deterministic policy gradient, DDPG



Stochastic vs. Deterministic Policies

 Stochastic policy

exp{Qo(s,a)}
2 XP1Q0(s,0') }

for continuous actions m(als; 0) o« exp{(a — ,LLG(S))Z}

for discrete actions m(als; @) =

* Deterministic policy

for discrete actions  7m(s;60) = argmax Qy(s, a)
a
(non-differentiable)

for continuous actions a = 7'('9(8) (can be differentiable)



Deterministic Policy Gradient

e A critic module for state-action value estimation
Q" (s,a) = Q"(s,a)
L(w) = Esnpranmy [(Q"(s,a) — Q7 (s, a))?]

* With the differentiable critic, the deterministic
continuous-action actor can be updated as

* Deterministic policy gradient theorem
J(mg) = Esnpr|Q7 (5, 0)]
VHJ(T‘-Q) — ]Esw,o7T [VHT‘-H(S)VCLQW(& a)‘a:w@(s)]

On-policy Chain rule

D. Silver et al. Deterministic Policy Gradient Algorithms. ICML 2014.



DDPG: Deep Deterministic Policy Gradient

* For deterministic policy gradient
VHJ(T‘-Q) — ]E’SN,O7r [VQT‘-H(S)VQQW(S? CL) ‘azwe(s)]

* In practice, a naive application of this actor-critic
method with neural function approximators is
unstable for challenging problems

 DDPG solutions over DPG
* Experience replay (off-policy)
e Target network
e Batch normalization on Q network prior to the action
input
* Add noise on continuous

Lillicrap et al. Continuous control with deep reinforcement learning. NIPS 2015.



Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#®) and actor p(s|0*) with weights 69 and 6*.
Initialize target network @’ and 1/ with weights 09 « 69, g4 « g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration

Receive 1nitial observation state s; _ .
fort=1.Tdo Noise on action

Select actiona; = u(s¢|0") + Ny hccording to the current policy and exploration noise
Execute action a; and observe reward 7; and observe new state s; 1

Store transition (s, a;, 74, Sg+1) in R
Sample a random minibatch of NV transitions|(s;, a;, 7;, s;4+1) from R | Off-policy
Sety;, =r; +7Q’ (Sz—HHU/ (8i41/|0* )|9Q )
Update crltl;?i mini ing the loss: L = (g — Q(si,a4|09)%)  Update critic net
Update the actor policy using the sampled gradient:

Target critic network

1
s; ~ ﬁ ZVaQ(Saa’|9Q)‘szsi,azp(si)vf?“u(s‘gu) Si

Update actor net

Target actor network

Update the target networks:
0% «— 709 + (1 — 7)6¢
O 70" + (1 — 7)o"

end for
end for




Normalized Reward

(-]

DDPG Experiments

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balacing
0 i
Gripper Blockworld Puck Shooting Cheetah Moving Gripper

0 1 0 1 0 1 0 1
Million Steps

0

1

e Performance curves for a selection of domains using variants of DPG

* Light grey: original DPG algorithm with batch normalization
e Dark grey: with target network

* Green: with target networks and batch normalization

* Blue: with target networks from pixel-only inputs.

e Target networks are crucial.

Lillicrap et al. Continuous control with deep reinforcement learning. NIPS 2015.



Deep Reinforcement Learning Categories

* DRL=RL+ DL
* One of the most challenging problems in machine
learning with very fast develop during the recent 5 years

* Value-based methods
 Deep Q-network and its extensions

 Stochastic policy-based methods
* Policy gradients with NNs, natural policy gradient, trust-
region policy optimization, proximal policy optimization,
A3C
e Deterministic policy-based methods

* Deterministic policy gradient, DDPG



