Introduction to Deep Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html
Value and Policy Approximation

- What if we directly build these approximate function with deep neural networks?
Deep Reinforcement Learning is what allows RL algorithms to solve complex problems in an end-to-end manner.

Deep Reinforcement Learning

• Deep Reinforcement Learning
 • leverages deep neural networks for value functions and policies approximation
 • so as to allow RL algorithms to solve complex problems in an end-to-end manner.

Deep Reinforcement Learning Learning Trends

- Google search trends of the term ‘deep reinforcement learning’

- NIPS13

- AlphaGo wins Lee Sedol
Key Changes Brought from DRL

• What will happen when combining DL and RL?
 • Value functions and policies are now deep neural nets
 • Very high-dimensional parameter space
 • Hard to train stably
 • Easy to overfit
 • Need a large amount of data
 • Need high performance computing
 • Balance between CPUs (for collecting experience data) and GPUs (for training neural networks)
 • ...

• These new problems motivates novel algorithms for DRL
Deep Reinforcement Learning Categories

• Value-based methods
 • Deep Q-network and its extensions

• Stochastic policy-based methods
 • Policy gradients with NNs, natural policy gradient, trust-region policy optimization, proximal policy optimization, A3C

• Deterministic policy-based methods
 • Deterministic policy gradient, DDPG
Q-Learning

- For off-policy learning of action-value $Q(s,a)$
- The next action is chosen using behavior policy $a_{t+1} \sim \mu(\cdot|s_t)$
- But we consider alternative successor action $a \sim \pi(\cdot|s_t)$
- And update $Q(s_t,a_t)$ towards value of alternative action

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

action from π not μ
Off-Policy Control with Q-Learning

- Allow both behavior and target policies to improve
- The target policy π is greedy w.r.t. $Q(s,a)$

$$\pi(s_{t+1}) = \arg \max_{a'} Q(s_{t+1}, a')$$

- Q-learning update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$
Deep Q-Network (DQN)

DQN (NIPS 2013) is the beginning of the entire deep reinforcement learning sub-area.

Deep Q-Network (DQN)

- Implement Q function with deep neural network
 - Input a state, output Q values for all actions

Deep Q-Network (DQN)

- The loss function of Q-learning update at iteration i

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i))^2 \right]$$

- θ_i are the network parameters to be updated at iteration i
 - Updated with standard back-propagation algorithms
- θ_i^- are the target network parameters
 - Only updated with θ_i for every C steps
- $(s,a,r,s') \sim U(D)$: the samples are uniformly drawn from the experience pool D
 - Thus to avoid the overfitting to the recent experiences

Deep Q-Network (DQN)

• The loss function of Q-learning update at iteration i

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i))^2 \right]$$

- target Q value
- estimated Q value

• For each experience $(s,a,r,s') \sim U(D)$, the gradient is

$$\theta_{i+1} = \theta_i + \eta (r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)) \nabla_\theta Q(s, a; \theta_i)$$

backpropagation

DRL with Double Q-Learning

- DQN gradient is

\[\theta_{i+1} = \theta_i + \eta(y_i - Q(s, a; \theta_i)) \nabla \theta Q(s, a; \theta_i) \]

target Q value \(y_i = r + \gamma \max_{a'} Q(s', a'; \theta_i^-) \)

- The target Q value can be rewritten as

\[y_i = r + \gamma Q(s', \arg \max_{a'} Q(s, a'; \theta_i^-); \theta_i^-) \]

uses the same values both to select and to evaluate an action, which makes it more likely to select overestimated values, resulting in overoptimistic value estimates.

DRL with Double Q-Learning

• DQN gradient is

\[\theta_{i+1} = \theta_i + \eta(y_i - Q(s, a; \theta_i)) \nabla \theta Q(s, a; \theta_i) \]

\[y_i = r + \gamma \max_{a'} Q(s', a'; \theta_i^-) \]

target Q value

• The target Q value can be rewritten as

\[y_i = r + \gamma Q(s', \arg \max_{a'} Q(s, a'; \theta_i^-); \theta_i^-) \]

uses the same values both to select and to evaluate an action

• Double Q-learning generalizes using different parameters

\[y_i = r + \gamma Q(s', \arg \max_{a'} Q(s, a'; \theta_i); \theta_i') \]

Experiments of DQN vs. Double DQN

Deep Reinforcement Learning Categories

• Value-based methods
 • Deep Q-network and its extensions

• Stochastic policy-based methods
 • Policy gradients with NNs, natural policy gradient, trust-region policy optimization, proximal policy optimization, A3C

• Deterministic policy-based methods
 • Deterministic policy gradient, DDPG
The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs.

- Replaces instantaneous reward r_{sa} with long-term value $Q^{\pi_\theta}(s, a)$

Policy gradient theorem applies to

- Start state objective J_1, average reward objective J_{avR}, and average value objective J_{avV}

Theorem

- For any differentiable policy $\pi_\theta(a|s)$, for any of policy objective function $J = J_1, J_{avR}, J_{avV}$, the policy gradient is

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_\theta} \left[\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} Q^{\pi_\theta}(s, a) \right]$$
Policy Network Gradients

• For stochastic policy, typically the action probability is defined as a softmax

\[\pi_\theta(a|s) = \frac{e^{f_\theta(s,a)}}{\sum_{a'} e^{f_\theta(s,a')}} \]

• where \(f_\theta(s,a) \) is the score function of a state-action pair parametrized by \(\theta \), which can be implemented with a neural net

• The gradient of its log-form

\[
\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} = \frac{\partial f_\theta(s,a)}{\partial \theta} - \frac{1}{\sum_{a'} e^{f_\theta(s,a')}} \sum_{a''} e^{f_\theta(s,a'')} \frac{\partial f_\theta(s,a'')}{\partial \theta} \\
= \frac{\partial f_\theta(s,a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_\theta(a'|s)} \left[\frac{\partial f_\theta(s,a')}{\partial \theta} \right]
\]
Policy Network Gradients

• With the gradient form

\[
\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} = \frac{\partial f_\theta(s, a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_\theta(a'|s)} \left[\frac{\partial f_\theta(s, a')}{{\partial \theta}} \right]
\]

• The policy network gradient is

\[
\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_\theta} \left[\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} Q^{\pi_\theta}(s, a) \right]
\]

\[
= \mathbb{E}_{\pi_\theta} \left[\left(\frac{\partial f_\theta(s, a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_\theta(a'|s)} \left[\frac{\partial f_\theta(s, a')}{\partial \theta} \right] \right) Q^{\pi_\theta}(s, a) \right]
\]

backpropagation backpropagation
Looking into Policy Gradient

- Let $R(\pi)$ denote the expected return of π

\[
R(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a_t \sim \pi(\cdot|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]
\]

- We collect experience data with another policy π_{old}, and want to optimize some objective to get a new better policy π

- Note that a useful identity

\[
R(\pi) = R(\pi_{\text{old}}) + \mathbb{E}_{r \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\text{old}}}(s_t, a_t) \right]
\]

\[\uparrow\]
Trajectories sampled from π

- Advantage function

\[
A^{\pi_{\text{old}}}(s, a) = \mathbb{E}_{s' \sim \rho(s'|s, a)} [r(s) + \gamma V^{\pi_{\text{old}}}(s') - V^{\pi_{\text{old}}}(s)]
\]

Looking into Policy Gradient

• Advantage function

\[A^{\pi_{\text{old}}}(s, a) = \mathbb{E}_{s' \sim \rho(s'|s,a)}[r(s) + \gamma V^{\pi_{\text{old}}}(s') - V^{\pi_{\text{old}}}(s)] \]

• Note that a useful identity

\[R(\pi) = R(\pi_{\text{old}}) + \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\text{old}}}(s_t, a_t) \right] \]

• Proof:

\[
\mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\text{old}}}(s_t, a_t) \right] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t (r(s_t) + \gamma V^{\pi_{\text{old}}}(s_{t+1}) - V^{\pi_{\text{old}}}(s_t)) \right] \\
= \mathbb{E}_{\tau \sim \pi} \left[- V^{\pi_{\text{old}}}(s_0) + \sum_{t=0}^{\infty} \gamma^t r(s_t) \right] \\
= -\mathbb{E}_{s_0}[V^{\pi_{\text{old}}}(s_0)] + \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right] = -R(\pi_{\text{old}}) + R(\pi)
\]

More for the Policy Expected Return

- Given the advantage function

\[A^{\pi_{\text{old}}}(s, a) = \mathbb{E}_{s' \sim \rho(s'|s,a)}[r(s) + \gamma V^{\pi_{\text{old}}}(s') - V^{\pi_{\text{old}}}(s)] \]

- Want to manipulate \(R(\pi) \) into an objective that can be estimated from data

\[
R(\pi) = R(\pi_{\text{old}}) + \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\text{old}}}(s_t, a_t) \right]
\]

\[
= R(\pi_{\text{old}}) + \sum_{t=0}^{\infty} \sum_{s} P(s_t = s|\pi) \sum_{a} \pi(a|s) \gamma^t A^{\pi_{\text{old}}}(s, a)
\]

\[
= R(\pi_{\text{old}}) + \sum_{s} \sum_{t=0}^{\infty} \gamma^t P(s_t = s|\pi) \sum_{a} \pi(a|s) A^{\pi_{\text{old}}}(s, a)
\]

\[
= R(\pi_{\text{old}}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s) A^{\pi_{\text{old}}}(s, a)
\]
Surrogate Loss Function

• With the importance sampling

\[
R(\pi) = R(\pi_{\text{old}}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s)A^{\pi_{\text{old}}}(s, a)
\]

\[
= R(\pi_{\text{old}}) + \mathbb{E}_{s \sim \pi, a \sim \pi}[A^{\pi_{\text{old}}}(s, a)]
\]

\[
= R(\pi_{\text{old}}) + \mathbb{E}_{s \sim \pi, a \sim \pi_{\text{old}}} \left[\frac{\pi(a|s)}{\pi_{\text{old}}(a|s)} A^{\pi_{\text{old}}}(s, a) \right]
\]

• Define a \textit{surrogate} loss function based on sampled data that ignores change in state distribution

\[
L(\pi) = \mathbb{E}_{s \sim \pi_{\text{old}}, a \sim \pi_{\text{old}}} \left[\frac{\pi(a|s)}{\pi_{\text{old}}(a|s)} A^{\pi_{\text{old}}}(s, a) \right]
\]
Surrogate Loss Function

Target function \(R(\pi) = R(\pi_{\text{old}}) + \mathbb{E}_{s \sim \pi, a \sim \pi} \left[\pi(a|s)A^{\pi_{\text{old}}}(s, a) \right] \)

Surrogate loss \(L(\pi) = \mathbb{E}_{s \sim \pi_{\text{old}}, a \sim \pi_{\text{old}}} \left[\frac{\pi(a|s)}{\pi_{\text{old}}(a|s)}A^{\pi_{\text{old}}}(s, a) \right] \)

- Matches to first order for parameterized policy

\[
\nabla_\theta L(\pi_\theta) \bigg|_{\theta_{\text{old}}} = \mathbb{E}_{s \sim \pi_{\text{old}}, a \sim \pi_{\text{old}}} \left[\frac{\nabla_\theta \pi_\theta(a|s)}{\pi_{\text{old}}(a|s)}A^{\pi_{\text{old}}}(s, a) \right] \bigg|_{\theta_{\text{old}}}
\]

\[
= \mathbb{E}_{s \sim \pi_{\text{old}}, a \sim \pi_{\text{old}}} \left[\frac{\pi_\theta(a|s)\nabla_\theta \log \pi_\theta(a|s)}{\pi_{\text{old}}(a|s)}A^{\pi_{\text{old}}}(s, a) \right] \bigg|_{\theta_{\text{old}}}
\]

\[
= \mathbb{E}_{s \sim \pi_{\text{old}}, a \sim \pi_{\theta}} \left[\nabla_\theta \log \pi_\theta(a|s)A^{\pi_{\text{old}}}(s, a) \right] \bigg|_{\theta_{\text{old}}}
\]

\[
= \nabla_\theta R(\pi_\theta) \bigg|_{\theta_{\text{old}}}
\]
Trust-Region Policy Optimization

- Idea: by optimizing a lower bound function approximating $R(\pi(\theta))$ locally, it guarantees policy improvement every time and lead us to the optimal policy eventually.

- How to choose a proper lower bound M?
Trust-Region Policy Optimization

\[R(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a_t \sim \pi(\cdot|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] \]

\[= R(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s) A^{\pi_{old}}(s, a) \]

\[L_{\pi_{old}}(\pi) = \mathbb{E}_{s \sim \pi_{old}, a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} A^{\pi_{old}}(s, a) \right] \]

- The appendix A of the TRPO paper provides a 2-page proof that establishes the following boundary

\[\left| R(\pi) - (R(\pi_{old}) + L_{\pi_{old}}(\pi)) \right| \leq C \sqrt{\mathbb{E}_{s \sim \rho_{\pi}} \left[D_{KL}(\pi_{old}(.|s) || \pi(.|s)) \right]} \]

Trust-Region Policy Optimization

\[
\max_{\pi} R(\pi) = \max_{\pi} R(\pi) - R(\pi_{\text{old}})
\]

\[
\left| R(\pi) - (R(\pi_{\text{old}}) + L_{\pi_{\text{old}}}(\pi)) \right| \leq C \sqrt{\mathbb{E}_{s \sim \rho_{\pi}} [D_{KL}(\pi_{\text{old}}(\cdot | s) \| \pi(\cdot | s))]}
\]

• With some twitting, this is our final lower bound \(M \).

\[
R(\pi) - R(\pi_{\text{old}}) \geq \max_{\pi} L_{\pi_{\text{old}}}(\pi) - C \sqrt{\mathbb{E}_{s \sim \rho_{\pi}} [D_{KL}(\pi_{\text{old}}(\cdot | s) \| \pi(\cdot | s))]}
\]

Trust-Region Policy Optimization

• In fact, with the Lagrangian methods, our objective is mathematically the same as the following using a trust region constraint

\[
\max_{\pi} L_{\pi_{\text{old}}} (\pi) - C \sqrt{\mathbb{E}_{s \sim \rho_{\pi}} [D_{KL} (\pi_{\text{old}} (\cdot | s) \| \pi (\cdot | s))]}
\]

\[
\max_{\pi} L_{\pi_{\text{old}}} (\pi)
\]

s.t. \[
\mathbb{E}_{s \sim \rho_{\pi}} [D_{KL} (\pi_{\text{old}} (\cdot | s) \| \pi (\cdot | s))] \leq \delta
\]

To guarantee the follow inequality to make \(M \) a valid lower bound

\[
| R(\pi) - (R(\pi_{\text{old}}) + L_{\pi_{\text{old}}} (\pi)) | \leq C \sqrt{\mathbb{E}_{s \sim \rho_{\pi}} [D_{KL} (\pi_{\text{old}} (\cdot | s) \| \pi (\cdot | s))]}
\]

Trust-Region Policy Optimization

Line search
(like gradient ascent)

Optimization in Trust Region

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
A3C: Actor Critic Methods

• A3C stands for Asynchronous Advantage Actor Critic
 • Asynchronous: because the algorithm involves executing a set of environments in parallel
 • Advantage: because the policy gradient updates are done using the advantage function
 • Actor Critic: because this is an actor-critic method which involves a policy that updates with the help of learned state-value functions.

\[
\nabla_\theta \log \pi(a_t | s_t; \theta') A(s_t, a_t; \theta, \theta_v) = \sum_{i=0}^{k-1} \gamma^i r_{t+i} + \gamma^k V(s_{t+k}; \theta_v) - V(s_t; \theta_v)
\]

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors θ and θ_v and global shared counter $T = 0$
// Assume thread-specific parameter vectors θ' and θ'_v
Initialize thread step counter $t \leftarrow 1$

repeat
 Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$.
 Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$
 $t_{start} = t$
 Get state s_t
 repeat
 Perform a_t according to policy $\pi(a_t|s_t; \theta')$
 Receive reward r_t and new state s_{t+1}
 $t \leftarrow t + 1$
 $T \leftarrow T + 1$
 until terminal s_t or $t - t_{start} = t_{max}$
 $R = \begin{cases}
 0 & \text{for terminal } s_t \\
 V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state}
 \end{cases}$

 for $i \in \{t - 1, \ldots, t_{start}\}$ do
 $R \leftarrow r_i + \gamma R$
 Accumulate gradients wrt θ': $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta')(R - V(s_i; \theta'_v))$
 Accumulate gradients wrt θ'_v: $d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v$
 end for

 Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$.

until $T > T_{max}$
Deep Reinforcement Learning Categories

• Value-based methods
 • Deep Q-network and its extensions

• Stochastic policy-based methods
 • Policy gradients with NNs, natural policy gradient, trust-region policy optimization, proximal policy optimization, A3C

• Deterministic policy-based methods
 • Deterministic policy gradient, DDPG
Stochastic vs. Deterministic Policies

• Stochastic policy

 for discrete actions \(\pi(a|s; \theta) = \frac{\exp\{Q_\theta(s, a)\}}{\sum_{a'} \exp\{Q_\theta(s, a')\}} \)

 for continuous actions \(\pi(a|s; \theta) \propto \exp\{(a - \mu_\theta(s))^2\} \)

• Deterministic policy

 for discrete actions \(\pi(s; \theta) = \arg \max_a Q_\theta(s, a) \) (non-differentiable)

 for continuous actions \(a = \pi_\theta(s) \) (can be differentiable)
Deterministic Policy Gradient

• A critic module for state-action value estimation

\[
Q^w(s, a) \simeq Q^\pi(s, a)
\]

\[
L(w) = \mathbb{E}_{s \sim \rho^\pi, a \sim \pi_\theta} [(Q^w(s, a) - Q^\pi(s, a))^2]
\]

• With the differentiable critic, the deterministic continuous-action actor can be updated as
 • Deterministic policy gradient theorem

\[
J(\pi_\theta) = \mathbb{E}_{s \sim \rho^\pi} [Q^\pi(s, a)]
\]

\[
\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim \rho^\pi} [\nabla_\theta \pi_\theta(s) \nabla_a Q^\pi(s, a)|_{a=\pi_\theta(s)}]
\]

On-policy \hspace{1cm} Chain rule

DDPG: Deep Deterministic Policy Gradient

- For deterministic policy gradient
 \[\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim \rho^\pi} [\nabla_\theta \pi_\theta(s) \nabla_a Q^\pi(s, a)|_{a=\pi_\theta(s)}] \]

- In practice, a naive application of this actor-critic method with neural function approximators is unstable for challenging problems

- DDPG solutions over DPG
 - Experience replay (off-policy)
 - Target network
 - Batch normalization on Q network prior to the action input
 - Add noise on continuous

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ.
Initialize target network Q' and μ' with weights $\theta^Q' \leftarrow \theta^Q$, $\theta^\mu' \leftarrow \theta^\mu$
Initialize replay buffer R

for episode = 1, M do
 Initialize a random process N for action exploration
 Receive initial observation state s_1
 for $t = 1, T$ do
 Select action $a_t = \mu(s_t|\theta^\mu) + N_t$ according to the current policy and exploration noise
 Execute action a_t and observe reward r_t and observe new state s_{t+1}
 Store transition (s_t, a_t, r_t, s_{t+1}) in R
 Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R
 Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^\mu')|\theta^Q')$
 Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$
 Update the actor policy using the sampled gradient:
 Target critic network
 \[\nabla_{\theta^\mu} \mu |_{s_i} \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^Q) |_{s=s_i, a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu) |_{s_i} \]
 Target actor network
 Update the target networks:
 \[\theta^Q' \leftarrow \tau \theta^Q + (1 - \tau) \theta^Q' \]
 \[\theta^\mu' \leftarrow \tau \theta^\mu + (1 - \tau) \theta^\mu' \]
 end for
end for
DDPG Experiments

• Performance curves for a selection of domains using variants of DPG
 • Light grey: original DPG algorithm with batch normalization
 • Dark grey: with target network
 • Green: with target networks and batch normalization
 • Blue: with target networks from pixel-only inputs.

• Target networks are crucial.

Deep Reinforcement Learning Categories

• DRL = RL + DL
 • One of the most challenging problems in machine learning with very fast develop during the recent 5 years

• Value-based methods
 • Deep Q-network and its extensions

• Stochastic policy-based methods
 • Policy gradients with NNs, natural policy gradient, trust-region policy optimization, proximal policy optimization, A3C

• Deterministic policy-based methods
 • Deterministic policy gradient, DDPG