2019 CS420, Machine Learning, Lecture 12

Approximation Methods in
Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

Reinforcement Learning Materials

Our course on RL is mainly based on the materials from these masters.

Prof. Richard Sutton

* University of Alberta, Canada

* http://incompleteideas.net/sutton/index.html

* Reinforcement Learning: An Introduction (2" edition)

* http://incompleteideas.net/sutton/book/the-book-2nd.html
Dr. David Silver

* Google DeepMind and UCL, UK

* http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Home.html

* UCL Reinforcement Learning Course

* http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng

* Stanford University, US

* http://www.andrewng.org/

* Machine Learning (CS229) Lecture Notes 12: RL
* http://cs229.stanford.edu/materials.html

Last Lecture

* Model-based dynamic programming

* Value iteration v(s)=R(s)+ rgleajcvsé;gPsa(s’)V(s')
* Policy iteration «(s) = arg max :gPsa(s')V(S’)
s'e

* Model-free reinforcement learning
* On-policy MC V(sy) « V(s¢) + Gy — V(sp))
* On-policy TD V(st) « V(st) + alrer + YV (ser1) — V(st))
* On-policy TD SARSA
Q(st,at) «— Q(st,ar) + alreyr + vQ(Se41, apy1) — Q(s¢,a))
e Off-policy TD Q-learning
Q(st, ar) = Qlst, ar) + arer +ymax Q(ser1, ag1) — Q(se, ar))

Key Problem to Solve in This Lecture

* In all previous models, we have created a lookup
table to maintain a variable V(s) for each state or
Q(s,a) for each state-action

 What if we have a large MDP, i.e.
* the state or state-action space is too large
e or the state or action space is continuous
to maintain V(s) for each state or Q(s,a) for each
state-action?
* For example
* Game of Go (1079 states)
* Helicopter, autonomous car (continuous state space)

Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation

* Policy gradient

* Deep reinforcement learning and multi-agent RL

Content

 Solutions for large MDPs
* Discretize or bucketize states/actions
e Build parametric value function approximation

Discretization Continuous MDP

* For a continuous-state MDP, we can discretize the
state space

* For example, if we have

2D states (s,, s,), we can

use a grid to discretize

the state space S,

Val

 The discrete state s

* The discretized MDP:

(Sv A7 {PEa}7 Vs R)

* Then solve this MDP with
any previous solutions

Bucketize Large Discrete MDP

* For a large discrete-state
MDP, we can bucketize
the states to down
sample the states

 To use domain
knowledge to merge
similar discrete states

* For example, clustering
using state features
extracted from domain
knowledge

Discretization/Bucketization

* Pros

e Straightforward and off-the-

shelf

 Efficient S,

Va]

* Can work well for many

problems

* Cons

* A fairly naive representation
for Vv

* Assumes a constant value over
each discretized cell

* Curse of dimensionality

S=R"=S={1,...,k}"

Parametric Value Function Approximation

* Create parametric (thus learnable) functions to
approximate the value function

Vo(s) = V" (s)
Qo(s,a) ~ Q" (s,a)

e Jis the parameters of the approximation function,
which can be updated by reinforcement learning

 Generalize from seen states to unseen states

Main Types of Value Function Approx.

Vo (s)

i
/)

V)

Qo(s,a)

i
A~)

1

Many function approximations
* (Generalized) linear model
* Neural network

* Decision tree

* Nearest neighbor

* Fourier / wavelet bases

Differentiable functions
* (Generalized) linear model
e Neural network

We assume the model is
suitable to be trained for non-
stationary, non-iid data

Value Function Approx. by SGD

e Goal: find parameter vector & minimizing mean-squared
error between approximate value function Vy(s) and true
value V7(s)

7(6) = Ex [5 (V™(s) ~ Vi(s))?]

e Gradient to minimize the error

0J(0) _ - OVp(s)
* Stochastic gradient descent on one sample
0J(0)
0— 60—« 5
OV (s)

=0+ a(V7(s) = Vils) o

Featurize the State

* Represent state by a feature vector

x1(s)

(s) =

* For example of a helicopter
* 3D location
* 3D speed (differentiation of location)
* 3D acceleration (differentiation of speed)

Linear Value Function Approximation

* Represent value function by a linear combination of
features

V(s) = 6" x(s)
e Objective function is quadratic in parameters U

1
J(0) = Ex |5 (V7 (s) = 07 a(s))*
* Thus stochastic gradient descent converges on global
optimum
0J(0)

06
=04+ a(V™(s) — Vy(s))z(s)

0 «— 60— «

Step Prediction Feature
size error value

Monte-Carlo with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* Now we specify the target value function V7(s)

* We can apply supervised learning to “training data”

<81, G1>, <82, G2>, c e e <ST, GT>

For each data instance <s,, G,>
0 — 0+ a(Gr — Va(s))z(st)

MC evaluation at least converges to a local optimum
* In linear case it converges to a global optimum

TD Learning with Value Function Approx.

0 —60+a(V™(s)— Vy(s))x(s)

* TD target 7.1 + vVo(s¢+1) is a biased sample of true target
value V™ (s;)

e Supervised learning from “training data”
<817 To + 7‘/9(82)% <827 T3 + 7%(83)% LI <ST7 TT>
* For each data instance (s¢, rer1 + YVa(Str1))

0 — 0+ afrips +7Vo(si1) — Va(s))z(sy)

 Linear TD converges (close) to global optimum

Action-Value Function Approximation

* Approximate the action-value function

Qo(s,a) ~ Q" (s,a)

* Minimize mean squared error
1
J(0) = Ex | 5(Q7(s,0) = Qo(s,a))?

* Stochastic gradient descent on one sample

9.7 (6)
90

=0 +a(Q"(s,a) = Qo(s,a))

0 «— 60—«

0Qy(s,a)
00

Linear Action-Value Function Approx.

* Represent state-action pair by a feature vector

z1(s,a)

z(s,a) =

zr(s,a)

e Parametric Q function, e.g., the linear case
Qo(s,a) = QT:L'(S, a)
* Stochastic gradient descent update

0J(0)
06
=0+ a(Q™(s,a) — 0" x(s,a))z(s,a)

0 «— 60— «

TD Learning with Value Function Approx.

0Qy(s,a)

00— 0+ a(Q"(s,a) —Qy(s,a)) 90

* For MC, the target is the return G,

0Qy(s,a)

0 — 0 + a(Gt — Q9(87 a’)) By

* For TD, the targetis ri11 + YQo(St+1, at41)

0Qy(s,a)
00

0 — 0+ a(rip1 +7Qo(St+1, arv1) — Qa(s, a))

Control with Value Function Approx.

Qo ~ Q"

Starting 6

7 = e-greedy(Qp)

* Policy evaluation: approximately policy evaluation Qg ~ Q"

* Policy improvement: e-greedy policy improvement

NOTE of TD Update

* For TD(0), the TD target is

e State value

) 0+ a(V7(s,) Vi(s)) ot
= -+ alris +2Vilsr1) — Vo(s) L 0o
* Action value
0 — 0+ a(Q(s,a) — Qols. a))aQ%(g’ 2
9Qo(s,a)

=0+ a(ri +7Qo(si11, ar41) — Qo(s,a)) o0

e Although ¥ is in the TD target, we don’t calculate gradient
from the target. Think about why.

ase Study: Mountain Car

MOUNTAIN CAR Goal

Episode 12

Step 428
-'.‘i.\"‘"f ’.\"”i’ﬂ_&
‘\"i".ll i

AL
FEETC , L

el AN
AN
i

A iy '].“ G

l"lll[“ﬂ"'

Ll

ST

ol
L]

'l Ly P O

"'!ro.ir'&'n:*:!- 'S 0
L P oty

R GGA G

ZERT 2y

~f i Y
L S Pl

R RS,

‘.”mf Z

The gravity is stronger Py S
. “ﬁ Wi

than the car’s engine !
0g"

LR

AN A R

Cost-to-go function

Case Study: Mountain Car

Mountain Car
Steps per episode
log scale
averaged over 100 runs

Mountain Car

1000

400

200

100

300

280

Steps per episode 260

averaged over
first 50 episodes
and 100 runs

240

220

1
500

Episode

n=4

0.5 1 1.5
¢ x number of tilings (8)

Deep Q-Network (DQN

Star Gunner
Robotank |
Atlantis]
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault]
Road Runner :
Kangaroo |
James Bond
Tennis |
Pong |
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pl\ot:
Enduro
Fishing Derby |
Up and Down |
lce Hockey]
Q'bert |
H.ER.O.]

il

o

ES
n

=
2
]

!

ili

2
*

T

At human-level or above

i

Asterix | SHl— Below human-level
Battle Zone | jersll—
Wizard of Wor | 6rlll——
Chopper Command | GilE—
Centipede | EERIE——
Bank Heist | [sril
River Raid | Sfll-
Zaxxon | sasll~
Amidar | {8l
Alien | 4888
Venture | 8l —
Seaquest | [h2su
Double Dunk | ==
Bowling | 4%
Ms. Pac-Man | [} 13%
Astercids | 7%
Frostbite | he%
Gravitar | fis% m
Private Eye |b2%
Montezuma's Flevenge: 0% 1
f I I I I I e 1
V] 100 200 300 400 500 600 1,000 4,500%

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.

Deep Q-Network (DQN

* Implement Q function with deep neural network

Convolution Convolution Fully connected Fully connected

.
No input
J

=
Lo |
0

NN ZZAN

Oooo

N,

i

b ddo

,’ﬁ?q‘%

d

L S =

¢ 0000000060 5

 fd

LA
s

.,

T

A
dhoon

® o0 0000000
® 000000000

N
AN
EH
J
+
CEEEELL

r+0O

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.

Deep Q-Network (DQN)

* The loss function of Q-learning update at iteration i

Lz(ez) — IE(s,a,r,s’)NU(D) [(T + ’YIIiLa/JXQ(SI, CL/; (91_) o Q(S7 a; 92))2]

r |
target Q value estimated Q value

* J;are the network parameters to be updated at iteration j
e Updated with standard back-propagation algorithms

* J; are the target network parameters
* Only updated with &, for every C steps

* (s,a,r,s)~U(D): the samples are uniformly drawn from the
experience pool D

* Thus to avoid the overfitting to the recent experiences

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Human-level control through deep reinforcement learning. Nature 2015.

Content

* Policy gradient

Parametric Policy

* We can parametrize the policy

mo(als)
which could be deterministic
a = mp(s)
or stochastic
mo(als) = P(als; 0)

e ¥is the parameters of the policy
* Generalize from seen states to unseen states
* We focus on model-free reinforcement learning

Policy-based RL

* Advantages
* Better convergence properties

 Effective in high-dimensional or continuous action
spaces

* No.1 reason: for value function, you have to take a max
operation

e Can learn stochastic polices

* Disadvantages
* Typically converge to a local rather than global optimum

e Evaluating a policy is typically inefficient and of high
variance

Policy Gradient

* For stochastic policy mg(a|s) = P(als;6)

* Intuition
 lower the probability of the action that leads to low value/reward
* higher the probability of the action that leads to high value/reward

* A 5-action example

1. Initialize 0 3. Update @ by policy gradient 5. Update U by policy gradient
Action Probability Action Probability Action Probability
0.25 0.4 0.4
0.2 0.3 0.3
0.15
0.1 0.2 0.2
IIIIIIIIIIII 11
0 0 0 .
Al A2 A3 Ad A5 Al A2 A3 Ad A5 Al A2 A3 A4 A5
2. Take action A2 4. Take action A3

Observe positive reward Observe negative reward

Policy Gradient in One-Step MDPs

* Consider a simple class of one-step MDPs
e Starting in state s ~ d(s)
* Terminating after one time-step with reward r_,

* Policy expected value

J(0) =Erylr] =) d(s) > mo(als)rsa

sesS aEA

0J(0) _ Zd(s) Z 87?9(a|3)rsa

0
sesS acA J

Likelihood Ratio

* Likelihood ratios exploit the following identity
Omg(als) 1 Omg(als)
o0 mo(als) mo(als) 06

0lo
— el 20Tk

* Thus the policy’s expected value

J(O) =E,,[r] = Zd ZT(@CL| frsa

sES acA
Omg(als)
=D ds)) sa
seS acA oo : ______
1 i
=) d(s) Y malals) a Ogm)(a|8) I'sal
seS acA .__________________'

0log mg(als) This can be approximated by sampling
00 5@¢| state s from d(s) and action a from

B

Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs

* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to

* start state objective J,, average reward objective J
value objective J,,,

g and average

e Theorem

* For any differentiable policy mg(al|s), for any of policy objective
functionJ=J,,J the policy gradient is

1’ “avR’ avV ’

8.J(6)
"o =l

0log m(als)
00

Q™ (s,a)

Please refer to appendix of the slides for detailed proofs

Monte-Carlo Policy Gradient (REINFORCE)

* Update parameters by stochastic gradient ascent

* Using policy gradient theorem
* Using return G, as an unbiased sample of Q™ (s,a)

&810gﬁe(at|5t)

o0 G

Aet —

* REINFORCE Algorithm
Initialize & arbitrarily
for each episode {s1,a1,72,..., -1, ar_1,77} ~ ™ do
fort=1to 7T-1 do
0« 0+ oz% log mg(a|sy) Gy
end for
end for
return 0

Puck World Example

o

target O

% @ -50 r_-rf
iy -55

‘.@. 0

-5

-10

L e e O O O

@’I
n
A
A
P
g i
'

V

-15

-20

-25

-30

-35

Average Reward

-40

-—\\

-45

/A

Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds

3e+07 6e+07 9e+07
[terations

Policy is trained using variant of MC policy gradient

1.2e+08

1.5e+08

Softmax Stochastic Policy

e Softmax policy is a very commonly used stochastic policy
efQ(Saa')
Tg(als) = I

* where f4(s,a) is the score function of a state-action pair
parametrized by ¢, which can be defined with domain knowledge

* The gradient of its log-likelihood

Ologm(als) _ Ofs(s,a) _ Z fos.am) Ofo(s, a”)
96 o0 S ,efe<sa 06
_ 0fy(s,a)

) [L)

Softmax Stochastic Policy

e Softmax policy is a very commonly used stochastic policy
efQ(Saa')
Tg(als) = I

* where f4(s,a) is the score function of a state-action pair
parametrized by ¢, which can be defined with domain knowledge

* For example, we define the linear score function
T
fo(s,a) =0 x(s,a)

Ologmg(als) Ofe(s,a) _E, [3f0(57a/)]
ae T 80 N7T9(|S) ae

= 33(3, a) — Ea/wﬂ'g(a’|8) [:E(S7 CL/)]

Sequence Generation Example

G Next MC D

. 0-0-0-0-0 : action search
True data' ©-@0-0-0 ' i
»O-0-0-0-O : Reward
" O-0-O0-0-O ' State
Real World . 0-0-0-0-0 | |, i —— Reward
! + Train .
; —_— D !
. 00000 . E Reward
G Generate 0000 : '
00000 . :
. ©-0-0-0-0 ! ! Reward
r 0000 ! : |

Policy Gradient

e Generator is a reinforcement learning policy Gy(y:|Y1..—1) of
generating a sequence

* Decide the next word (discrete action) to generate given the
previous ones, implemented by softmax policy

e Discriminator provides the reward (i.e. the probability of being
true data) for the whole sequence

* Gis trained by MC policy gradient (REINFORCE)

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.]

Experiments on Synthetic Data

e Fvaluation measure with Oracle

T
NLLoracle = _]EYLTNGO [Z log Goracle (yt‘Ylit—l)]

t=1
Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
p-value <107° | <107° | <107®° | <10°°
100 Learning curve
SeqGAN

98 N VILE
% 9.6 - == Schedule Sampling
© | N\ e PG-BLEU
5 94
>
2 92
-l
= 90

8.8

8.6

50

100

150

Epochs

200

250

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.]

APPENDIX
Policy Gradient Theorem: Average Reward Setting

* Average reward objective

n—oo N,

ZE{H m)|so = s,a0 = a, 77}

8\/ ZﬂsaQﬁsa Vs

J(m) = lim lIEE {7“1 +ry 4+ Tn|7T} = Z d"(s) Z 7(s,a)r(s,a)

B 87r(s a) . o
= ; 0 Q (S,a)—kﬂ(s,a)%Q (S,Q)}

= Z :8%59,@)@#(3 a) + 7(s, a)(%(—|—ZPG V7™ (s ﬂ
— Z :—871'289, a)Q”(s,a) +7T(s,a)< — 8{9(9 ™) + %ZP;LS/VW s))}

N 0J(m) _ Z -87(3 a)Q”(s 0) + (s, 0) Z 8V8779(3’)} B 8‘/8”9(3)

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)

APPENDIX
Policy Gradient Theorem: Average Reward Setting

* Average reward objective

oJ(m) on(s,a) N 8‘/” V™ (s)
BL _Z{ o ¢ ZP } a0
S (s)? AT Za“a +Zd“ Zw(s,a)ZP“ sl Zd“ 2

e e S 0 - EE oo Y
:szﬂ (Zmapa)aw szﬂ aW()

:zS: (SZ - PSS/) Zdﬂ (‘9‘/7’ (s")

:,Esjdf(s Zd” Za”a REPILULY o 2 0) 5
DN zé’”)

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)

APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective
J(r) =]E:Zyt_l

¢S50, 7Ti|

StZS,at:a,ﬂ'}

Q7(s,a) =E Z’Yk_lmrk

3V defaZWsaQwsa Vs

B '871’(8 a) Y
— za: By Q" (s,a) + m(s, a)(?HQ (s,a)}

_ Z :aﬂgza)QW(S a) + (s, a) (s, a +Z’YP@ V7 (s)]

Zﬁﬁ(saQ”sa —|—Z7T3avz

a

8‘/”

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)

APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective

oV7™(s or(s,a
89(>:Z ée sa—i—ZwsavZ 551
Z (97?(5 a) Q" (s,a) =" Pr(s — s,0,)Z 67(8 2 Q" (s,a)

a a

Z SCLVZ ss1 ZZWSQV sslavﬁé)

o) o 0‘/”(51)
—Z’ypssl 50— ZP”I“(S s1,1,7) 5

S1

oV™(s1) on(s,a) . B) V7™ (s2)

a 52

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)

APPENDIX

Policy gradient theorem: Start Value Setting

 Start state value objective

8‘/”(8) 0 87'['(8,@) T 1 87'['(81,) ™
5 =7 Pr(ses,O,w);TQ (s,a) + 7 SZPr(s—nsl,l,ﬁ); Q" (s1,a)
ovT
#7730 Prls s lom) 3 P — s 1m0
on(s,a) on(s1,a)
_ A0 ™ 1) T
= PT(S_)&O’W)XG:TQ (s,a) + 7 ;PT(SHsl,l,ﬂ')%: 50 Q™ (s1,a)
+ ~2 Z Pr(s — 59,2, W)—avaéSQ)
DI LR ol D AU E) TN ke LV
k=0 = 6 r k=0 69 |
aJ(m) aw so . or(s,a) (87T (s,a)
= 0 ;kzoy Prso—>sk7r)z 50 Zd 20 —Q"(s,a)

Please refer to Chapter 13 of Rich Sutton’s Reinforcement Learning: An Introduction (2"¢ Edition)

Problems of REINFORCE

* Episodic data tasks

* Normally the task should have terminal state so the
cumulated discounted rewards can be directly calculated
for REINFORCE

* Low data efficiency

* |In practice, REINFORCE needs a large amount of data for
training

* High training variance (most important shortage)

 Sampling the value from one or several episode includes
very high variance

Actor-Critic

e |dea of actor-critic

* REINFORCE policy gradient uses Monte Carlo sampling
to directly estimate the value of (s, a,) as G,

* Why not to build a trainable value function Q, to
perform such an estimation?

e Actor and Critic

Actor mg(als)
The policy of
taking actions
that learns to
make critic
satisfied

Critic Q4(s,a)
The value function
that learns to
accurately estimate
the action value of
actor policy

Actor-Critic Training

* Critic Q4(s,a)

* learns to accurately estimate the action value of the
current actor policy

Qqﬁ(sa CL) = T(Sa CL) + ’YES’Np(s’|s,a),a’~7rg (a’|s”) [Q¢(S/7 CL/)]

* Actor mg(als)
e learns to take actions that make critic satisfied

J(0) = Eguprylmo(als)Qy(s, a)]

0J(0) dlog my(als)
o6 ~Enl gp Qs

A2C: Advantageous Actor-Critic

* |dea: to normalize the critic score by subtracting a
baseline function

* More informative guidance: lower the probability of bad
actions and higher the one of good actions

 Further lower variance

e Advantageous function
A" (s,a) = Q" (s,a) — V7 (s)

Action Value Advantageous Value

Al A2 A3 A4 A5

O P N W b~ U1 O
' ' '
w N = o = N w

Al A2 A3 A4 A5

A2C: Advantageous Actor-Critic

e Action value and state value functions
QW(Sa a) — T(Sa CL) + ’YES’Np(s’|8,a),a’N7T9 (a'|s") [qu(s,a CL/)]
T(Sa CL) T ,Y]ES’NP(Slls,CL) [VW(S,)]

* Thus we only need to fit state value function to fit
the advantageous function

A" (s,a) = Q" (s,a) — V7 (s)
= 7“(8, CL) + ’YEs’Np(s’|s,a) [Vﬂ(sl) — VW(S)]
~r(s,a) +y(V™(s) = V7(s))

Sample the next state s’

More Explanations and Experiments of A2C

* https://medium.freecodecamp.org/an-intro-to-
advantage-actor-critic-methods-lets-play-sonic-the-
hedgehog-86d6240171d

 https://medium.com/m/global-
identity?redirectUrl=https%3A%2F%2Fhackernoon.
com%2Fintuitive-rl-intro-to-advantage-actor-critic-
a2c-4ff545978752

