Introduction to Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

What is Machine Learning

A more mathematical definition by Tom Mitchell

- Machine learning is the study of algorithms that
 - improve their performance P
 - at some task T
 - based on experience E
 - with non-explicit programming

A well-defined learning task is given by <P, T, E>

Machine Learning

What we have learned so far

- Supervised Learning
 - To perform the desired output given the data and labels
 - e.g., to build a loss function to minimize
- Unsupervised Learning
 - To analyze and make use of the underlying data patterns/structures
 - e.g., to build a log-likelihood function to maximize

Supervised Learning

Given the training dataset of (data, label) pairs,

$$D = \{(x_i, y_i)\}_{i=1,2,\dots,N}$$

let the machine learn a function from data to label

$$y_i \simeq f_{\theta}(x_i)$$

- ullet Learning is referred to as updating the parameter heta
- Learning objective: make the prediction close to the ground truth

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, f_{\theta}(x_i))$$

Unsupervised Learning

Given the training dataset

$$D = \{x_i\}_{i=1,2,...,N}$$

let the machine learn the data underlying patterns

Sometimes build latent variables

$$z \rightarrow x$$

Estimate the probabilistic density function (p.d.f.)

$$p(x;\theta) = \sum_{z} p(x|z;\theta)p(z;\theta)$$

Maximize the log-likelihood of training data

$$\max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log p(x; \theta)$$

Two Kinds of Machine Learning

Prediction

- Predict the desired output given the data (supervised learning)
- Generate data instances (unsupervised learning)
- We mainly covered this category in previous lectures

Decision Making

- Take actions based on a particular state in a dynamic environment (reinforcement learning)
 - to transit to new states
 - to receive immediate reward
 - to maximize the accumulative reward over time
- Learning from interaction

Machine Learning Categories

- Supervised Learning
 - To perform the desired output given the data and labels

- Unsupervised Learning
 - To analyze and make use of the underlying data patterns/structures

- Reinforcement Learning
 - To learn a policy of taking actions in a dynamic environment and acquire rewards

$$\pi(a|x)$$

Reinforcement Learning Materials

Our course on RL is mainly based on the materials from these masters.

Prof. Richard Sutton

- University of Alberta, Canada
- http://incompleteideas.net/sutton/index.html
- Reinforcement Learning: An Introduction (2nd edition)
- http://www.incompleteideas.net/book/the-book-2nd.html

Dr. David Silver

- Google DeepMind and UCL, UK
- http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html
- UCL Reinforcement Learning Course
- http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng

- Stanford University, US
- http://www.andrewng.org/
- Machine Learning (CS229) Lecture Notes 12: RL
- http://cs229.stanford.edu/materials.html

Content

Introduction to Reinforcement Learning

- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming

- Model-free Reinforcement Learning
 - On-policy SARSA
 - Off-policy Q-learning
 - Model-free Prediction and Control

Content

Introduction to Reinforcement Learning

- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming

- Model-free Reinforcement Learning
 - On-policy SARSA
 - Off-policy Q-learning
 - Model-free Prediction and Control

Reinforcement Learning

- Learning from interaction
 - Given the current situation, what to do next in order to maximize utility?

Reinforcement Learning Definition

• A computational approach by learning from interaction to achieve a goal

- Three aspects
 - Sensation: sense the state of the environment to some extent
 - Action: able to take actions that affect the state and achieve the goal
 - Goal: maximize the cumulative reward over time

Reinforcement Learning

- At each step t, the agent
 - Receives observation O_t
 - Receives scalar reward R_t
 - Executes action A_t
- The environment
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- *t* increments at environment step

History is the sequence of observations, action, rewards

$$H_t = O_1, R_1, A_1, O_2, R_2, A_2, \dots, O_{t-1}, R_{t-1}, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- E.g., the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next (actions, observations, rewards)
- Formally, state is a function of the history

$$S_t = f(H_t)$$

- Policy is the learning agent's way of behaving at a given time
 - It is a map from state to action
 - Deterministic policy

$$a = \pi(s)$$

Stochastic policy

$$\pi(a|s) = P(A_t = a|S_t = s)$$

Reward

- A scalar defining the goal in an RL problem
- For immediate sense of what is good

Value function

- State value is a scalar specifying what is good in the long run
- Value function is a prediction of the cumulative future reward
 - Used to evaluate the goodness/badness of states (given the current policy)

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

Reward

- A scalar defining the goal in an RL problem
- For immediate sense of what is good

Value function

• State value is a scalar specifying what is a good state in the long run, i.e., the cumulative reward

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

 Action value is a scalar specifying what is a good action at a specific state in the long run

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

- A Model of the environment that mimics the behavior of the environment
 - Predict the next state

$$\mathcal{P}_{sa}(s') = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

 Predicts the next (immediate) reward

$$\mathcal{R}_s(a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• State: agent's location

• Action: N,E,S,W

State: agent's location

Action: N,E,S,W

- State transition: move to the next grid according to the action
 - No move if the action is to the wall

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

- Given a policy as shown above
 - Arrows represent policy $\pi(s)$ for each state s

State: agent's location

Action: N,E,S,W

 State transition: move to the next grid according to the action

 Reward: -1 per time step

• Numbers represent value $v_{\pi}(s)$ of each state s

Categorizing RL Agents

- Model based RL
 - Policy and/or value function
 - Model of the environment
 - E.g., the maze game above, game of Go
- Model-free RL
 - Policy and/or value function
 - No model of the environment
 - E.g., general playing Atari games

Atari Example

- Rules of the game are unknown
- Learn from interactive game-play
- Pick actions on joystick, see pixels and scores

Categorizing RL Agents

- Value based
 - No policy (implicit)
 - Value function
- Policy based
 - Policy
 - No value function
- Actor Critic
 - Policy
 - Value function

Content

Introduction to Reinforcement Learning

- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming

- Model-free Reinforcement Learning
 - On-policy SARSA
 - Off-policy Q-learning
 - Model-free Prediction and Control

Markov Decision Process

 Markov decision processes (MDPs) provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.

- MDPs formally describe an environment for RL
 - where the environment is FULLY observable
 - i.e. the current state completely characterizes the process (Markov property)

Markov Property

"The future is independent of the past given the present"

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, \dots, S_t]$$

Properties

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. the state is sufficient statistic of the future

Markov Decision Process

- A Markov decision process is a tuple $(S, A, \{P_{sa}\}, \gamma, R)$
- S is the set of states
 - E.g., location in a maze, or current screen in an Atari game
- A is the set of actions
 - E.g., move N, E, S, W, or the direction of the joystick and the buttons
- P_{sa} are the state transition probabilities
 - For each state $s \in S$ and action $a \in A$, P_{sa} is a distribution over the next state in S
- $\gamma \in [0,1]$ is the discount factor for the future reward
- $R: S \times A \mapsto \mathbb{R}$ is the reward function
 - Sometimes the reward is only assigned to state

Markov Decision Process

The dynamics of an MDP proceeds as

- Start in a state s₀
- The agent chooses some action $a_0 \subseteq A$
- The agent gets the reward $R(s_0, a_0)$
- MDP randomly transits to some successor state $s_1 \sim P_{s_0 a_0}$
- This proceeds iteratively

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \cdots$$

- Until a terminal state s_T or proceeds with no end
- The total payoff of the agent is

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

Reward on State Only

- For a large part of cases, reward is only assigned to the state
 - E.g., in maze game, the reward is on the location
 - In game of Go, the reward is only based on the final territory
- The reward function $R(s):S\mapsto \mathbb{R}$
- MDPs proceed

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \cdots$$

cumulative reward (total payoff)

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

MDP Goal and Policy

 The goal is to choose actions over time to maximize the expected cumulative reward

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$

- $\gamma \in [0,1]$ is the discount factor for the future reward, which makes the agent prefer immediate reward to future reward
 - In finance case, today's \$1 is more valuable than \$1 in tomorrow
- Given a particular policy $\pi(s): S \mapsto A$
 - i.e. take the action $a=\pi(s)$ at state s
- Define the value function for π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots + |s_0| = s, \pi]$$

• i.e. expected cumulative reward given the start state and taking actions according to $\boldsymbol{\pi}$

Bellman Equation for Value Function

• Define the value function for π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \underbrace{\gamma R(s_1) + \gamma^2 R(s_2) + \cdots}_{\gamma V^{\pi}(s_1)} | s_0 = s, \pi]$$

$$= R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s') \qquad \text{Bellman Equation}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Immediate State Value of transition the next state
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Time decay

Optimal Value Function

 The optimal value function for each state s is best possible sum of discounted rewards that can be attained by any policy

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

The Bellman's equation for optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

The optimal policy

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

• For every state s and every policy π

$$V^*(s) = V^{\pi^*}(s) \ge V^{\pi}(s)$$

Value Iteration & Policy Iteration

Note that the value function and policy are correlated

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$
$$\pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

- It is feasible to perform iterative update towards the optimal value function and optimal policy
 - Value iteration
 - Policy iteration

Value Iteration

For an MDP with finite state and action spaces

$$|S| < \infty, |A| < \infty$$

- Value iteration is performed as
 - 1. For each state s, initialize V(s) = 0.
 - 2. Repeat until convergence {

For each state, update

$$V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$$

Note that there is no explicit policy in above calculation

Synchronous vs. Asynchronous VI

- Synchronous value iteration stores two copies of value functions
 - 1. For all s in S

$$V_{\text{new}}(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V_{\text{old}}(s') \right)$$

- 2. Update $V_{\text{old}}(s') \leftarrow V_{\text{new}}(s)$
- In-place asynchronous value iteration stores one copy of value function
 - 1. For all s in S

$$V(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V(s') \right)$$

Value Iteration Example: Shortest Path

Policy Iteration

For an MDP with finite state and action spaces

$$|S| < \infty, |A| < \infty$$

- Policy iteration is performed as
 - 1. Initialize π randomly
 - 2. Repeat until convergence {
 - a) Let $V := V^{\pi}$
 - b) For each state, update

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

The step of value function update could be time-consuming

Policy Iteration

- Policy evaluation
 - Estimate V^{π}
 - Iterative policy evaluation
- Policy improvement
 - Generate $\pi' \geq \pi$
 - Greedy policy improvement

Evaluating a Random Policy in a Small Gridworld

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma=1$)
- Nonterminal states 1,...,14
- Two terminal states (shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows a uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Evaluating a Random Policy in a Small Gridworld

Evaluating a Random Policy in a Small Gridworld

Value Iteration vs. Policy Iteration

Value iteration

- 1. For each state s, initialize V(s) = 0.
- 2. Repeat until convergence {

For each state, update

$$V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$$

Policy iteration

- 1. Initialize π randomly
- 2. Repeat until convergence {
 - a) Let $V := V^{\pi}$
 - b) For each state, update

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

Remarks:

- 1. Value iteration is a greedy update strategy
- 2. In policy iteration, the value function update by bellman equation is costly
- 3. For small-space MDPs, policy iteration is often very fast and converges quickly
- 4. For large-space MDPs, value iteration is more practical (efficient)
- 5. If there is no state-transition loop, it is better to use value iteration

My point of view: value iteration is like SGD and policy iteration is like BGD

Learning an MDP Model

- So far we have been focused on
 - Calculating the optimal value function
 - Learning the optimal policy

given a known MDP model

- i.e. the state transition $P_{sa}(s')$ and reward function R(s) are explicitly given
- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

Learning an MDP Model

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2: $s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(2)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{} s_3^{(2)} \cdots s_T^{(2)}$

:

- Learn an MDP model from "experience"
 - Learning state transition probabilities $P_{sa}(s')$

$$P_{sa}(s') = \frac{\text{\#times we took action } a \text{ in state } s \text{ and got to state } s'}{\text{\#times we took action } a \text{ in state } s}$$

• Learning reward R(s), i.e. the expected immediate reward

$$R(s) = \operatorname{average} \left\{ R(s)^{(i)} \right\}$$

Learning Model and Optimizing Policy

Algorithm

- 1. Initialize π randomly.
- 2. Repeat until convergence {
 - a) Execute π in the MDP for some number of trials
 - b) Using the accumulated experience in the MDP, update our estimates for P_{sa} and R
 - c) Apply value iteration with the estimated P_{sa} and R to get the new estimated value function V
 - d) Update π to be the greedy policy w.r.t. V

}

Learning an MDP Model

- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

- Another branch of solution is to directly learning value & policy from experience without building an MDP
- i.e. Model-free Reinforcement Learning

Content

- Introduction to Reinforcement Learning
- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming
- Model-free Reinforcement Learning
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning

Content

- Introduction to Reinforcement Learning
- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming
- Model-free Reinforcement Learning
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning

Model-free Reinforcement Learning

- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

- Model-free RL is to directly learn value & policy from experience without building an MDP
- Key steps: (1) estimate value function; (2) optimize policy

Value Function Estimation

 In model-based RL (MDP), the value function is calculated by dynamic programming

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= $R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

- Now in model-free RL
 - We cannot directly know P_{sa} and R
 - But we have a list of experiences to estimate the values

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

Monte-Carlo Methods

- Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- Example, to calculate the circle's surface

Circle Surface = Square Surface
$$\times \frac{\text{\#points in circle}}{\text{\#points in total}}$$

Monte-Carlo Methods

Go: to estimate the winning rate given the current state

$$\label{eq:win_simulation} \text{Win Rate}(s) = \frac{\# \text{win simulation cases started from } s}{\# \text{simulation cases started from } s \text{ in total}}$$

Monte-Carlo Value Estimation

• Goal: learn V^{π} from episodes of experience under policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

Recall that the return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-1} R_T$$

Recall that the value function is the expected return

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= $\mathbb{E}[G_t | s_t = s, \pi]$

$$\simeq \frac{1}{N} \sum_{i=1}^N G_t^{(i)} \qquad \text{Sample N episodes from state s using policy π}$$
 • Calculate the average of cumulative reward

Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Value Estimation

- Implementation
 - Sample episodes policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

- Every time-step *t* that state *s* is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return V(s) = S(s)/N(s)
 - By law of large numbers

$$V(s) \to V^{\pi}(s) \text{ as } N(s) \to \infty$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after each episode
- For each state S_t with cumulative return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

 For non-stationary problems (i.e. the environment could be varying over time), it can be useful to track a running mean, i.e. forget old episodes

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Monte-Carlo Value Estimation

Idea:
$$V(S_t) \simeq rac{1}{N} \sum_{i=1}^N G_t^{(i)}$$

Implementation:
$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping (discussed later)
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Temporal-Difference Learning

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = R_{t+1} + \gamma V(S_{t+1})$$

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

$$\uparrow \qquad \uparrow$$
Observation Guess of future

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

Monte Carlo vs. Temporal Difference

- The same goal: learn V^{π} from episodes of experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- TD target: $R_{t+1} + \gamma V(S_{t+1})$
- TD error: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$

Driving Home Example

State	Elapsed Time (Minutes)	Predicted Time to Go	Predicted Total Time
Leaving office	0	30	30
Reach car, raining	5	35	40
Exit highway	20	15	35
Behind truck	30	10	40
Home street	40	3	43
Arrow home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known

- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is unbiased estimate of $V^{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma V^{\pi}(S_{t+1})$ is unbiased estimate of $V^{\pi}(S_t)$
- TD target $R_{t+1} + \gamma$ $V(S_{t+1})$ is biased estimate of $V^{\pi}(S_t)$ current estimate
- TD target is of much lower variance than the return
 - Return depends on many random actions, transitions and rewards
 - TD target depends on one random action, transition and reward

Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use

- TD has low variance, some bias
 - Usually more efficient than MC
 - TD converges to $V^{\pi}(S_t)$
 - (but not always with function approximation)
 - More sensitive to initial value than MC

Random Walk Example

Random Walk Example

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})]$$

- For time constraint, we may jump n-step prediction section and directly head to model-free control
- Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t))$$

Content

- Introduction to Reinforcement Learning
- Model-based Reinforcement Learning
 - Markov Decision Process
 - Planning by Dynamic Programming
- Model-free Reinforcement Learning
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning

Uses of Model-Free Control

- Some example problems that can be modeled as MDPs
 - Elevator
 - Parallel parking
 - Ship steering
 - Bioreactor
 - Helicopter
 - Aeroplane logistics

- Robocup soccer
- Atari & StarCraft
- Portfolio management
- Protein folding
- Robot walking
- Game of Go
- For most of real-world problems, either:
 - MDP model is unknown, but experience can be sampled
 - MDP model is known, but is too big to use, except by samples
- Model-free control can solve these problems

On- and Off-Policy Learning

Two categories of model-free RL

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π

- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from another policy μ

State Value and Action Value

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-1} R_T$$

State value

• The state-value function $V^{\pi}(s)$ of an MDP is the expected return starting from state s and then following policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Action value

• The action-value function $Q^{\pi}(s,a)$ of an MDP is the expected return starting from state s, taking action a, and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

Bellman Expectation Equation

• The state-value function $V^{\pi}(s)$ can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1})|S_t = s]$$

• The action-value function $Q^{\pi}(s,a)$ can similarly be decomposed

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q^{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

State Value and Action Value

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) Q^{\pi}(s, a)$$

Model-Free Policy Iteration

- Given state-value function V(s) and action-value function Q(s,a), model-free policy iteration shall use action-value function
- Greedy policy improvement over V(s) requires model of MDP

$$\pi^{\text{new}}(s) = \arg\max_{a \in A} \left\{ R(s, a) + \gamma \sum_{s' \in S} P_{sa}(s') V^{\pi}(s') \right\}$$

We don't know the transition probability

• Greedy policy improvement over Q(s,a) is model-free

$$\pi^{\text{new}}(s) = \arg\max_{a \in A} Q(s, a)$$

Generalized Policy Iteration with Action-Value Function

- Policy evaluation: Monte-Carlo policy evaluation, $Q = Q^{\pi}$
- Policy improvement: Greedy policy improvement?

Example of Greedy Action Selection

• Greedy policy improvement over Q(s,a) is model-free

$$\pi^{\text{new}}(s) = \arg\max_{a \in A} Q(s, a)$$

- Given the right example
 - What if the first action is to choose the left door and observe reward=0?
 - The policy would be suboptimal if there is no exploration

Left: Right: 20% Reward = 0 50% Reward = 1 80% Reward = 5 50% Reward = 3

"Behind one door is tenure – behind the other is flipping burgers at McDonald's."

ε -Greedy Policy Exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1- ε , choose the greedy action
- With probability ε , choose an action at random

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a^* = \arg\max_{a \in A} Q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

ε -Greedy Policy Improvement

Theorem

• For any ε -greedy policy π , the ε -greedy policy π' w.r.t. Q^{π} is an improvement, i.e. $V^{\pi'}(s) \geq V^{\pi}(s)$

$$\begin{split} V^{\pi'}(s) &= Q^{\pi}(s,\pi'(s)) = \sum_{a \in A} \pi'(a|s)Q^{\pi}(s,a) \\ & \text{\textit{m} actions} \quad = \frac{\epsilon}{m} \sum_{a \in A} Q^{\pi}(s,a) + (1-\epsilon) \max_{a \in A} Q^{\pi}(s,a) \\ &\geq \frac{\epsilon}{m} \sum_{a \in A} Q^{\pi}(s,a) + (1-\epsilon) \sum_{a \in A} \frac{\pi(a|s) - \epsilon/m}{1-\epsilon} Q^{\pi}(s,a) \\ &= \sum_{a \in A} \pi(a|s)Q^{\pi}(s,a) = V^{\pi}(s) \end{split}$$

Generalized Policy Iteration with Action-Value Function

- Policy evaluation: Monte-Carlo policy evaluation, $Q = Q^{\pi}$
- Policy improvement: ε -greedy policy improvement

Monte-Carlo Control

Every episode:

- Policy evaluation: Monte-Carlo policy evaluation, $Q \approx Q^{\pi}$
- Policy improvement: ε -greedy policy improvement

MC Control vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to update action value Q(s,a)
 - Use ε -greedy policy improvement
 - Update the action value function every time-step

SARSA

 For each state-action-reward-state-action by the current policy

Updating action-value functions with Sarsa

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') - Q(s,a))$$

On-Policy Control with SARSA

Every time-step:

- Policy evaluation: Sarsa $Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') Q(s,a))$
- Policy improvement: ε -greedy policy improvement

SARSA Algorithm

Sarsa: An on-policy TD control algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Choose A from S using policy derived from Q (e.g., \epsilon\text{-}greedy)
   Repeat (for each step of episode):
   Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \epsilon\text{-}greedy)
  Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

 NOTE: on-policy TD control sample actions by the current policy, i.e., the two 'A's in SARSA are both chosen by the current policy

SARSA Example: Windy Gridworld

- Reward = -1 per time-step until reaching goal
- Undiscounted

SARSA Example: Windy Gridworld

Note: as the training proceeds, the Sarsa policy achieves the goal more and more quickly

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $V^{\pi}(s)$ or $Q^{\pi}(s,a)$
- While following behavior policy $\mu(a|s)$

$$\{s_1, a_1, r_2, s_2, a_2, \dots, s_T\} \sim \mu$$

- Why off-policy learning is important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies
 - Learn about optimal policy while following exploratory policy
 - Learn about multiple policies while following one policy
 - An example of my research in MSR Cambridge
 - Collective Noise Contrastive Estimation for Policy Transfer Learning. AAAI 2016.

Importance Sampling

Estimate the expectation of a different distribution

$$\mathbb{E}_{x \sim p}[f(x)] = \int_{x} p(x)f(x)dx$$

$$= \int_{x} q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= \mathbb{E}_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right]$$

• Re-weight each instance by $\beta(x) = \frac{p(x)}{q(x)}$

Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from μ to evaluate π
- Weight return G_t according to importance ratio between policies
- Multiply importance ratio along with episode

$$\{s_1, a_1, r_2, s_2, a_2, \dots, s_T\} \sim \mu$$

$$G_t^{\pi/\mu} = \frac{\pi(a_t|s_t)}{\mu(a_t|s_t)} \frac{\pi(a_{t+1}|s_{t+1})}{\mu(a_{t+1}|s_{t+1})} \cdots \frac{\pi(a_T|s_T)}{\mu(a_T|s_T)} G_t$$

Update value towards corrected return

$$V(s_t) \leftarrow V(s_t) + \alpha (G_t^{\pi/\mu} - V(s_t))$$

- Cannot use if μ is zero when π is non-zero
- Importance sample can dramatically increase variance

Importance Sampling for Off-Policy TD

- Use TD targets generated from μ to evaluate π
- Weight TD target $r+\gamma V(s')$ by importance sampling
- Only need a single importance sampling correction

$$V(s_t) \leftarrow V(s_t) + \alpha \left(\frac{\pi(a_t|s_t)}{\mu(a_t|s_t)} (r_{t+1} + \gamma V(s_{t+1})) - V(s_t)\right)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

- Much lower variance than Monte-Carlo importance sampling
- Policies only need to be similar over a single step

Q-Learning

- For off-policy learning of action-value Q(s,a)
- No importance sampling is required (why?)
- The next action is chosen using behavior policy $a_{t+1} \sim \mu(\cdot|s_t)$
- But we consider alternative successor action $a \sim \pi(\cdot|s_t)$
- And update $Q(s_t, a_t)$ towards value of alternative action

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

$$\uparrow$$
action
$$from \pi$$

$$not \mu$$

Off-Policy Control with Q-Learning

- Allow both behavior and target policies to improve
- The target policy π is greedy w.r.t. Q(s,a)

$$\pi(s_{t+1}) = \arg\max_{a'} Q(s_{t+1}, a')$$

- The behavior policy μ is e.g. ε -greedy policy w.r.t. Q(s,a)
- The Q-learning target then simplifies

$$r_{t+1} + \gamma Q(s_{t+1}, a') = r_{t+1} + \gamma Q(s_{t+1}, \arg \max_{a'} Q(s_{t+1}, a'))$$
$$= r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a')$$

Q-learning update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-Learning Control Algorithm

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Theorem: Q-learning control converges to the optimal action-value function

$$Q(s,a) \to Q^*(s,a)$$

Q-Learning Control Algorithm

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

- Why Q-learning is an off-policy control method?
 - Learning from SARS generated by another policy μ
 - The first action a and the corresponding reward r are from μ
 - The next action a' is picked by the target policy $\pi(s_{t+1}) = \arg\max_{a'} Q(s_{t+1}, a')$
- Why no importance sampling?
 - Action value function not state value function

SARSA vs. Q-Learning Experiments

- Cliff-walking
 - Undiscounted reward
 - Episodic task
 - Reward = -1 on all transitions
 - Stepping into cliff area incurs -100 reward and sent the agent back to the start
- Why the results are like this?

Further Readings

You can learn following content offline

Relationship Between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation Equation for $V^{\pi}(s)$	$V^{\pi}(s) \leftrightarrow s$ $V^{\pi}(s') \leftrightarrow s'$ Iterative Policy Evaluation	s, a r s' s', a' TD Learning
	,	1D Learning
Bellman Expectation Equation for $Q^{\pi}(s,a)$	$Q^{\pi}(s,a) \hookrightarrow s,a$ r S' $Q^{\pi}(s',a') \hookrightarrow s',a$ Q -Policy Iteration	s, a r s' s', a' SARSA
Bellman Optimality Equation for $Q^*(s,a)$	$Q^*(s,a) \hookrightarrow s,a$ $Q^*(s',a') \hookrightarrow s',a'$ $Q^*(s',a') \hookrightarrow s',a'$ $Q^*(s',a') \hookrightarrow s',a'$	s, a r s' s' s', a' Q-Learning

Relationship Between DP and TD

Full Backup (DP)	Sample Backup (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[r + \gamma V(s') s]$	$V(s) \stackrel{\alpha}{\leftarrow} r + \gamma V(s')$
Q-Policy Iteration	SARSA
$Q(s, a) \leftarrow \mathbb{E}[r + \gamma Q(s', a') s, a]$	$Q(s,a) \xleftarrow{\alpha} r + \gamma Q(s',a')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a') s, a\right]$	$Q(s,a) \xleftarrow{\alpha} r + \gamma \max_{a'} Q(s',a')$
	where

 $x \xleftarrow{\alpha} y \equiv x \leftarrow x + \alpha(y - x)$

n-Step Prediction

• Let TD target look *n* steps into the future

n-Step Return

• Consider the following *n*-step return for $n=1,2,...,\infty$

$$n=1$$
 (TD) $G_t^{(1)}=R_{t+1}+\gamma V(S_{t+1})$ $n=2$ $G_t^{(2)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 V(S_{t+2})$ \vdots \vdots \vdots $n=\infty$ (MC) $G_t^{(\infty)}=R_{t+1}+\gamma R_{t+2}+\ldots+\gamma^{T-1}R_T$

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t))$$

n-Step Return

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{(n)} - V(S_t))$$

n-Step Return

 Why it can speed up learning compared to one-step methods

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$
$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t))$$

Random Walk Example for *n*-step TDs

Averaging *n*-Step Returns

- We can further average n-step returns over different n
- e.g. average the 2-step and 3-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(3)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?

$TD(\lambda)$ for Averaging *n*-Step Returns

$TD(\lambda)$ for Averaging *n*-Step Returns

- The λ -return G_t^{λ} combines all n-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view TD(λ)

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\lambda} - V(S_t))$$

$TD(\lambda)$ for Averaging *n*-Step Returns

- When λ =1, $G_t^{\lambda}=G_t$, which returns to Monte-Carlo method
- When λ =0, $G_t^{\lambda}=G_t^{(1)}$, which returns to one-step TD

$TD(\lambda)$ vs. *n*-step TD

19-state Random walk results

• The results with off-line λ -return algorithms are slightly better at the best value of α and λ