2019 CS420, Machine Learning, Lecture 11

Introduction to
Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html

REVIEW

What is Machine Learning

A more mathematical definition by Tom Mitchell

* Machine learning is the study of algorithms that
* improve their performance P
e atsometask T
* based on experience E
* with non-explicit programming

* A well-defined learning task is given by <P, T, E>

REVIEW

Machine Learning

e What we have learned so far

* Supervised Learning

* To perform the desired output given the data and labels
e e.g., to build a loss function to minimize

* Unsupervised Learning

e To analyze and make use of the underlying data
patterns/structures

* e.g., to build a log-likelihood function to maximize

REVIEW

Supervised Learning

* Given the training dataset of (data, label) pairs,
D = {(x4,yi) }i=1,2.... N
let the machine learn a function from data to label
yi =~ fo(x:)
* Learning is referred to as updating the parameter 6

* Learning objective: make the prediction close to
the ground truth

.
min > Ly, fo(x:)
i1

REVIEW

Unsupervised Learning

* Given the training dataset

D ={x;}i=12,.. N
let the machine learn the data underlying patterns

e Sometimes build latent variables
Z —

 Estimate the probabilistic density function (p.d.f.)

p(z;0) = > p(x|z;0)p(z; 0)

* Maximize the log-likelihood of training data

N
1
max — Zl log p(x; 0)

Two Kinds of Machine Learning

* Prediction

* Predict the desired output given the data (supervised
learning)

* Generate data instances (unsupervised learning)
* We mainly covered this category in previous lectures

* Decision Making

* Take actions based on a particular state in a dynamic
environment (reinforcement learning)
* to transit to new states
* to receive immediate reward
* to maximize the accumulative reward over time

* Learning from interaction

REVIEW

Machine Learning Categories

e Supervised Learning

* To perform the desired output given the p(y ‘ ZE)
data and labels

* Unsupervised Learning

* To analyze and make use of the underlying p(ﬁlj)
data patterns/structures

* Reinforcement Learning

e To learn a policy of taking actions in a 7-‘-(& ‘ ZE')
dynamic environment and acquire rewards

Reinforcement Learning Materials

Our course on RL is mainly based on the materials from these masters.

Prof. Richard Sutton

* University of Alberta, Canada

* http://incompleteideas.net/sutton/index.html

* Reinforcement Learning: An Introduction (2" edition)

* http://www.incompleteideas.net/book/the-book-2nd.html
Dr. David Silver

* Google DeepMind and UCL, UK

* http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Home.html

* UCL Reinforcement Learning Course

* http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng

* Stanford University, US

* http://www.andrewng.org/

* Machine Learning (CS229) Lecture Notes 12: RL
* http://cs229.stanford.edu/materials.html

Content

* Introduction to Reinforcement Learning

* Model-based Reinforcement Learning
* Markov Decision Process
* Planning by Dynamic Programming

* Model-free Reinforcement Learning
* On-policy SARSA
e Off-policy Q-learning
* Model-free Prediction and Control

Content

* Introduction to Reinforcement Learning

Reinforcement Learning

* Learning from interaction

e Given the current situation, what to do next in order to
maximize utility?

Agent

Observation MR LEATA Action

B N
YA oL)
AT o YO SL =
- o P
| “ &
—— >,
L ey £
L g/
A% |
b

Reward

Reinforcement Learning Definition

* A computational approach by learning from

interaction to achieve a goal pgent
Observation ;/ C Action
f:?/ =
Reward‘
* Three aspects
e Sensation: sense the state of the environment to some
extent

e Action: able to take actions that affect the state and
achieve the goal

* Goal: maximize the cumulative reward over time

Reinforcement Learning

Agent
SRXCTTI * At each step t, the agent

\ [gow < J— * Receives observation O,
LS * Receives scalar reward R,
* Executes action A,

observation d/‘ ®

* The environment
* Receives action A,
* Emits observation O,,,
* Emits scalar reward R,,,

* tincrements at
environment step

Environment

Elements of RL Systems

History is the sequence of observations, action, rewards
Ht — 017 Rl) A17 027 R27 A27 s ooy Ot—].) Rt—].) At—17 0t7 Rt

* j.e. all observable variables up to time t
* E.g., the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
* The agent selects actions
* The environment selects observations/rewards

State is the information used to determine what happens
next (actions, observations, rewards)

Formally, state is a function of the history

Si = f(Hy)

Elements of RL Systems

* Policy is the learning agent’s way of behaving at a
given time
* It is a map from state to action
e Deterministic policy
a=m(s)

 Stochastic policy
m(als) = P(A; = alS; = s)

Elements of RL Systems

* Reward
* A scalar defining the goal in an RL problem
* For immediate sense of what is good

* VValue function

 State value is a scalar specifying what is good in the long
run

* Value function is a prediction of the cumulative future
reward
* Used to evaluate the goodness/badness of states (given the
current policy)

Vr(8) = Ex[Rir1 + YRiyo + 72Rt+3 +...|S; = s

Elements of RL Systems

* Reward
* A scalar defining the goal in an RL problem
* For immediate sense of what is good

* VValue function

 State value is a scalar specifying what is a good state in
the long run, i.e., the cumulative reward

fUW(S) = Ew[Rt—l—l + YRii0 + ’}/QRH_;; + ... ’St = S]

e Action value is a scalar specifying what is a good action
at a specific state in the long run

QW(S, a) — Ew[Rt—i—l —+ ’)/Rt_|_2 —+ ’72Rt+3 + ... |St —= S, At = CL]

Elements of RL Systems

* A Model of the environment Y A ey

that mimics the behavior of
the environment

* Predict the next state

Psa(sl) — IP)[St_|_1 — S,|St — S,At = (l] reward Yﬁ’t

* Predicts the next
(immediate) reward

Rs(a) = E[Ri11|S: = s, At = 4

Maze Example

 State: agent’s location
* Action: N,E,S,W

Maze Example

 State: agent’s location
* Action: N,E,S,W

e State transition: move

to the next grid
according to the action

* No move if the action is
to the wall

Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move
to the next grid
according to the action

Start

Reward: -1 per time
step

Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move
to the next grid
according to the action

Start

Reward: -1 per time
step

* Given a policy as shown above
e Arrows represent policy ri(s) for each state s

Maze Example

State: agent’s location
Action: N,E,S,W

State transition: move

. to the next grid

according to the action

o ol et e

step

Start 16 15

B pH

nanina

* Numbers represent value v,(s) of each state s

Categorizing RL Agents

* Model based RL
* Policy and/or value function
 Model of the environment
* E.g., the maze game above, game of Go

* Model-free RL
* Policy and/or value function
 No model of the environment
e E.g., general playing Atari games

Atari Example

i r N

i b oot
Lo -8 7 R
v ¥ L {

observation N gL Sl action

(o) ! . W B j e
i [l] Sl Vi
| r 4
Pl B N — e
A S 3 —
Lo i
1/ = BV
= o
s
|
e -~
4 ILe| 7

* Rules of the game
are unknown

* Learn from
interactive game-play

e Pick actions on
joystick, see pixels
and scores

Categorizing RL Agents

e Value based
* No policy (implicit)
e Value function

* Policy based
* Policy
 No value function

* Actor Critic
* Policy
e Value function

Content

* Model-based Reinforcement Learning
* Markov Decision Process
* Planning by Dynamic Programming

Markov Decision Process

* Markov decision processes (MDPs) provide a
mathematical framework for modeling decision
making in situations where outcomes are partly
random and partly under the control of a decision
maker.

 MDPs formally describe an environment for RL
* where the environment is FULLY observable

* i.e. the current state completely characterizes the
process (Markov property)

Markov Property

“The future is independent of the past given the present”

* Definition
* Astate S, is Markov if and only if

PSt+1]5t] = P[Se41|S1, - - -, St

* Properties

* The state captures all relevant information from the
history

* Once the state is known, the history may be thrown away
* i.e. the state is sufficient statistic of the future

Markov Decision Process

* A Markov decision process is a tuple (S, A, {P.,}, V, R)

* Sis the set of states
* E.g., location in a maze, or current screen in an Atari game

e Ais the set of actions

« E.g, move N, E, S, W, or the direction of the joystick and the
buttons

* P_, are the state transition probabilities

* For each state s € S and action a € A, P, is a distribution over the
next state in S

 y €[0,1] is the discount factor for the future reward

*R:S5 x A~ R isthereward function
 Sometimes the reward is only assigned to state

Markov Decision Process

The dynamics of an MDP proceeds as
* Start in a state s,
* The agent chooses some actiona, € A
* The agent gets the reward R(s,,a,)
* MDP randomly transits to some successor state s1 ~ Ps,q,
e This proceeds iteratively
ag a1 as

> S1 > S9 > Sg -
R(s0,a0) R(s1,a1) R(s2,a2)

S0

* Until a terminal state s; or proceeds with no end

* The total payoff of the agent is
R(s0,a0) + YR(s1,a1) + v*R(s2,az) + - --

Reward on State Only

* For a large part of cases, reward is only assigned to
the state
* E.g., in maze game, the reward is on the location

* In game of Go, the reward is only based on the final
territory

* The reward function R(s): S — R

* MDPs proceed

ao ail a2
So — S1 > S9 > 83+ -
R(s0) R(s1) R(s2)

e cumulative reward (total payoff)

R(so) +YR(s1) + v*R(s2) + - - -

MDP Goal and Policy

* The goal is to choose actions over time to maximize the
expected cumulative reward

E[R(so) + vR(s1) + v R(s2) + - -]

e y €[0,1] is the discount factor for the future reward, which
makes the agent prefer immediate reward to future reward

* In finance case, today’s $1 is more valuable than $1 in tomorrow
* Given a particular policy 7(s): S5 +— A
* i.e.take the action a = 7(s) at state s
* Define the value function for 7
V7(s) = E[R(s0) + vR(s1) +v°R(s2) + - -~ |s0 = s,]

* j.e. expected cumulative reward given the start state and taking
actions according to

Bellman Equation for Value Function

 Define the value function for 7

V™ (s) = E[R(s0) + yR(s1) + v*R(s2) + - - - so = s, 7]

-~

YV7(s1)
= R(s) +7v E PSW(S)(S/)VW(S/) Bellman Equation
s’eS
Immediate State Value of
Reward transition the next

state
Time
decay

Optimal Value Function

* The optimal value function for each state s is best possible
sum of discounted rewards that can be attained by any policy

V*(s) = max V" (s)
T
* The Bellman’s equation for optimal value function

V*(s) = R(s)+maXWZP3a W*(s')

s'eS
* The optimal policy

* L INY 7%)
T (S) — arg%leaj(Z Psa(s)V (3)
s'eS
* For every state s and every policy

Vi(s) =V™ (s) > V7(s)

Value Iteration & Policy Iteration

* Note that the value function and policy are correlated

* It is feasible to perform iterative update towards the optimal
value function and optimal policy
* Value iteration
* Policy iteration

Value lteration

* For an MDP with finite state and action spaces
S| < o0, |A] < o0

e Value iteration is performed as

1. For each state s, initialize V(s) =
2. Repeat until convergence {

For each state, update

V(s) = R(s) + maxy Z Psq(s
s’'eS

}

* Note that there is no explicit policy in above calculation

Synchronous vs. Asynchronous VI

* Synchronous value iteration stores two copies of value
functions

1. Forallsin$S

new PSCL O
Vi (S)Hfgleaj(< +’YZ 1d()

s'eS
2. Update V14(s") «— View(s)

* In-place asynchronous value iteration stores one copy of
value function

1. Forallsin$S

V(s) max (R(S) + Z Psa(s')V(s’)>

s'eS

Value Iteration Example: Shortest Path

g 0 0 0 0 0 1 1 1 0 1 2
0 0 0 0 -1 1 1 1 1 2 2
0 0 0 0 1 -1 1 1 2 2 2
0 0 0 0 1 1 1 1 2 2 2
Problem V1 V2 V3
0 1 2 3 0 1 2 | -3 0 1 2 3 0 1 2
1 2 3 3 1 2 3| -4 1 2 3 4 1 2 3
2 3 3 3 2 3 4 | -4 2 3 4 5 2 3 4
3 3 3 3 3 4 4 | -4 3 4 5 5 3 4 5
V 4 V5 V6 V7

Policy Iteration

* For an MDP with finite state and action spaces
S| < o0, |A] < o0

 Policy iteration is performed as

1. |Initialize T randomly

2. Repeat until convergence {
a) Let V.=V~
b) For each state, update
m(s) = argmax Y Py, (s)V(s)

cA
¢ s’'eS

)

* The step of value function update could be time-consuming

Policy Iteration

starting
V r

* Policy evaluation
* Estimate V™
* lterative policy evaluation

* Policy improvement
 Generate 1/ > 7
* Greedy policy improvement

evaluation

m

n—>greedy(V)

v

improvement

Evaluating a Random Policy in a Small Gridworld

1 2 3
4 5 6 7 r= _1
[s lo ho lit on all transitions
actions 2 hs lia

* Undiscounted episodic MDP (y=1)

 Nonterminal states 1,...,14

* Two terminal states (shaded squares)

* Actions leading out of the grid leave state unchanged
* Reward is -1 until the terminal state is reached

* Agent follows a uniform random policy

w(nl) = m(el) = m(s]) = m(wl) = 0.25

Evaluating a Random Policy in a Small Gridworld

V, for the Greedy policy
random policy w.r.t. V,

0.0/ 0.0[0.0] 0.0 L
00/ 00]00]00 bl _
=0 N Random policy
0.0/ 0.000.0]0.0 e L

0.0]0.0)0.0]100

0.0[-1.0[-1.0[-1.0 —
10[-1.0|-1.0]-1.0 f
1.0|-1.0[-1.0[-1.0 il
10|-1.0[-10| 0.0 o] -

0.0|-1.7]-2.0{-2.0

20[-20[-17| 00 | =

Evaluating a Random Policy in a Small Gridworld

V, for the Greedy policy
random policy w.rt. V,
2429|130 — = Tq
-3 2.4[-29|-30]-2.9 Pl s |
- 291-3.0(-29|-24 t T_) l_)
2.9]3.0|-29|2. |
3.0[-2.9|-2.4| 00 Ll - -
- T
0.0|-6.1]-8.4] 9.0 - [« T4 V=V
. y t (_T
6.1 7.7| 84| 84 . .
(=10 - f L,(_l =k Optimal policy
8.4|-8.4|-7.7[-6.1 =
9.0/|-8.4|-6.1] 0.0 L] -] -
0.0|-14.[-20 [-22. — = lq
=00 ~14.]-18.{-20.|-20. N P
20.[-20.|-18.|-14. Y] o],
22]20|-14] 00 L S -

Value Iteration vs. Policy Iteration

Value iteration Policy iteration
1. For each state s, initialize V(s) = 0. 1. Initialize m randomly
2. Repeat until convergence { 2. Repeat until convergence {
For each state, update a) LletVv.=V"
N b) For each state, update
V(s) = R(s) + max y Z Pso(s)V (s')
’ s'es m(s) = arg max P (8HV($)
} a€ s'eS
}
Remarks:

Value iteration is a greedy update strategy

In policy iteration, the value function update by bellman equation is costly
For small-space MDPs, policy iteration is often very fast and converges quickly
For large-space MDPs, value iteration is more practical (efficient)

If there is no state-transition loop, it is better to use value iteration

s wnh e

My point of view: value iteration is like SGD and policy iteration is like BGD

Learning an MDP Model

* So far we have been focused on
e Calculating the optimal value function
e Learning the optimal policy
given a known MDP model
* i.e. the state transition P_,(s’) and reward function R(s) are explicitly
given

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (

EpiSOde 1: S(()l) ao—) Sgl) al—) Sgl) a2—> Sgl) L. Sg})
R(So)(l) R(Sl)(l) R(82)(1)

- @) @ o @ & @ @

Episode 2: s;’ ——— s, ——— 85 ———— S5 -+ S,

R(s0)2) R(s1)®) R(s2)®2)

Learning an MDP Model

(1) (1) (1)
Episode 1: 581) _H sgl) M, Sgl) N sél) :
R(sg)(M) R(s1)M) R(s2)M
(2) (2) (2)
Episode 2: 582) —>a0 s§2) —>a1 552) —>a2 s§2)-
R(s0)2) R(s1)®2) R(s2)®)

e Learn an MDP model from “experience”
* Learning state transition probabilities P_(s’)

D

s

_ #times we took action a in state s and got to state s’

P, (s') =

#times we took action a in state s

* Learning reward R(s), i.e. the expected immediate reward

R(s) = average{R(s)(i)}

Learning Model and Optimizing Policy

e Algorithm

1. Initialize T randomly.
2. Repeat until convergence {

a)
b)

C)

d)

Execute it in the MDP for some number of trials

Using the accumulated experience in the MDP, update our
estimates for P, and R

Apply value iteration with the estimated P_, and R to get the
new estimated value function V

Update it to be the greedy policy w.r.t. V

Learning an MDP Model

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (
Episode 1: s(()l) N sgl) 4 sgl) _ %2 sél) o Sﬁfl)
R(sg)() R(s1)(M) R(s2)M)
- @ a5 @ &) @ &’ @) @
Episode 2: sy ——— 8] —— 85 s sy Sy
R(s0)2) R(s1)® R(s2)®@)

* Another branch of solution is to directly learning value &
policy from experience without building an MDP

*i.e. Model-free Reinforcement Learning

Content

* Model-free Reinforcement Learning
 Model-free Prediction
* Monte-Carlo and Temporal Difference

* Model-free Control
* On-policy SARSA and off-policy Q-learning

Content

* Model-free Reinforcement Learning

* Model-free Prediction
* Monte-Carlo and Temporal Difference

Model-free Reinforcement Learning

* In realistic problems, often the state transition and reward
function are not explicitly given

* For example, we have only observed some episodes

1)

(1) (1) (
Episode 1: sél) _ Sgl) e SN Sgl) _ %2 35(51) . Sﬁfl)
R(s0)) R(s1)™) R(s2)(1)
: (2) ag” () ai 2) o (2) (2)
Episode 2: Sy ——— 8] ———— 85 ——— 83 -+ S
R(s0)®) R(s1)®2) R(s2)®

* Model-free RL is to directly learn value & policy from
experience without building an MDP

* Key steps: (1) estimate value function; (2) optimize policy

Value Function Estimation

* In model-based RL (MDP), the value function is

calculated by dynamic programming
V7™(s) = E[R(s0) + vR(s1) + 7*R(s2) + - -|s0 = s,7]

R(S) + Z Psw(s) (S/)VW(S/)

s'eS

* Now in model-free RL
* We cannot directly know P, and R
* But we have a list of experiences to estimate the values

(1) (1) (1)
Episode 1: sél) N sgl) G SN sgl) %, s:(),l) .. sg,})
R(So)(l) R(sl)(l) R(32)(1)
- @ e @ e @ 4 @ @
Episode 2: 55/ ——— 5 ———— 85 ———— S5 -5

R(So)(2) R(Sl)(2) R(Sz)(2)

Monte-Carlo Methods

* Monte-Carlo methods are a broad class of
computational algorithms that rely on repeated
random sampling to obtain numerical results.

* Example, to calculate the circle’s surface

Circle Surface = Square Surface x

#points in circle

#points in total

Monte-Carlo Methods

* Go: to estimate the winning rate given the current state

Evaluation

0240240

-O1T 900 jﬂ

@

0@

\

50
5

-

-

1
@

47347

Win Rate(s)

#win simulation cases started from s

~ #simulation cases started from s in total

Monte-Carlo Value Estimation

e Goal: learn V™ from episodes of experience under policy it
() (3) (3)

N a N a N a .)
N NI NI
Rgz) Rgt) Réz)

e Recall that the return is the total discounted reward
Gy = Ri1+7YRi2+ ... 'Ry

* Recall that the value function is the expected return

V™(s) = E[R(s0) + YR(s1) + 7" R(s2) + - -0 = s, 7]

= E[Gt|st = s, 7]
1 o
~ ~ Z ng) Sample N episodes from state s using policy rt
i=1 * Calculate the average of cumulative reward

* Monte-Carlo policy evaluation uses empirical mean return instead of expected
return

Monte-Carlo Value Estimation

* Implementation
* Sample episodes policy

ORI O N RO SNSRI g

S0 TG % T %2 T s
R; R, Ry

* Every time-step t that state s is visited in an
episode
* Increment counter N(s) < N(s)+1
* Increment total return S(s) < S(s) + G
* Value is estimated by mean return V(s) = S(s)/N(s)
* By law of large numbers

Vi(s) = V™(s) as N(s) — o0

Incremental Monte-Carlo Updates

* Update V(s) incrementally after each episode
* For each state S, with cumulative return G,
N(S;) «— N(S;) + 1

N(St) (Gt - V(St))

* For non-stationary problems (i.e. the environment could be
varying over time), it can be useful to track a running mean,
i.e. forget old episodes

V(St) — V(St) —+ Q’(Gt — V(St))

Monte-Carlo Value Estimation

N

1 i
ldea: V(S;) ~ ~ Z G§)
i=1

Implementation: V' (S;) «— V(S;) + a(Gy — V(S5}))

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping (discussed
later)

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs
* All episodes must terminate

Temporal-Difference Learning

Gi = Rit1 +YRiso +V*Rizz 4+ ... = Rip1 + vV (Siq1)

V(S) « V(St) + a(Rir1 + YV (Sey1) — V(Sh))

Observation Guess of
future

* TD methods learn directly from episodes of experience

* TD is model-free: no knowledge of MDP transitions /
rewards

* TD learns from incomplete episodes, by bootstrapping

* TD updates a guess towards a guess

Monte Carlo vs. Temporal Difference

* The same goal: learn V" from episodes of experience under
policy it

* Incremental every-visit Monte-Carlo
* Update value V(S,) toward actual return G,

V(St> — V(St) —+ Oé(Gt — V(St))

e Simplest temporal-difference learning algorithm: TD
* Update value V(S,) toward estimated return R; 1 + vV (S¢i1)

V(St) < V(St) + a(Rer1 + YV (Se+1) — V(St))

* TDtarget: Ryr1 + YV (Str1)
* TDerror: §; = Ryiq1 +4V(Sia1) — V(Sy)

Driving Home Example

State Elapsed Time Predicted Predicted

(Minutes) Time to Go Total Time
Leaving office 0 30 30
e | s | s | a
Exit highway 20 15 35
Behind truck 30 10 40
Home street 40 3 43
Arrow home 43 0 43

Driving Home Example: MC vs. TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45 5
___actual outcome_____ actual
outcome
. 40 _ 4
Predicted Predicted
total total
travel 35 travel
time time
30
T T T T T | T T | T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Situation Situation

Advantages and Disadvantages of MC vs. TD

* TD can learn before knowing the final outcome
e TD can learn online after every step

 MC must wait until end of episode before return is
known

* TD can learn without the final outcome
* TD can learn from incomplete sequences
* MC can only learn from complete sequences
e TD works in continuing (non-terminating) environments
* MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

e Return Gy = Ryr1+YRiy2 + ...+~ 1Ry isunbiased
estimate of V(S,)

* True TD target Ri+1 4+ YV ™ (S¢+1) is unbiased estimate of
Vi(S,)

* TD target Ry+1 +v V(St41) is biased estimate of V7(S))

current estimate

e TD target is of much lower variance than the return
* Return depends on many random actions, transitions and rewards
* TD target depends on one random action, transition and reward

Advantages and Disadvantages of MC vs. TD (2)

* MC has high variance, zero bias
* Good convergence properties
e (even with function approximation)
* Not very sensitive to initial value
* Very simple to understand and use

 TD has low variance, some bias
e Usually more efficient than MC
* TD converges to V(S,)

e (but not always with function approximation)
* More sensitive to initial value than MC

Random Walk Example

. 0 O 0 . 0 . 0 . 0 . 1 .
start
0.8 -

100
0.6 - '%

Estimated (1) ——
value 0.4 /
true
values
0.2 -

0 | | | | |

Random Walk Example

0.25 -

0.2 \\:

RMS error, U157
averaged
over states 0.1

0.05

Walks / Episodes
V(St) — V(St) + a(Reg1 + 7V (Se41) = V(S))

Monte-Carlo Backup

V(S:) «— V(S) + a(Gy — V(Sy))

Temporal-Difference Backup

V(5t) — V(5t) + a(Ber1 + 7V (St41) — V(51))

SIS

Dynamic Programming Backup

V(St) — E[Rt11 + 9V (St41)]
s

* For time constraint, we may jump n-step
prediction section and directly head to
model-free control

e Define the n-step return

ng) = Rit1 +YRey2 + - + 7" Rign + 7"V (Stin)

* n-step temporal-difference learning

V(Sy) « V(Se) + a(G™ - V(S,))

Content

* Model-free Reinforcement Learning

* Model-free Control
* On-policy SARSA and off-policy Q-learning

Uses of Model-Free Control

* Some example problems that can be modeled as MDPs

e Elevator * Robocup soccer
Atari & StarCraft

Portfolio management

Parallel parking

Ship steering

Bioreactor Protein folding

Helicopter Robot walking

Aeroplane logistics Game of Go

* For most of real-world problems, either:
 MDP model is unknown, but experience can be sampled
« MDP model is known, but is too big to use, except by samples

* Model-free control can solve these problems

On- and Off-Policy Learning

* Two categories of model-free RL

* On-policy learning
e “Learn on the job”
e Learn about policy r from experience sampled from it

e Off-policy learning
e “Look over someone’s shoulder”

* Learn about policy 7 from experience sampled from
another policy u

State Value and Action Value

Gy = Rip1 +yRio+...7 'Ry

e State value

* The state-value function V*(s) of an MDP is the expected
return starting from state s and then following policy

VT (s) = Ex|Gt|St = 5]

e Action value

* The action-value function Q*(s,a) of an MDP is the
expected return starting from state s, taking action a,
and then following policy rt

Q™ (s,a) = E; |G| St = s, Ay = a

Bellman Expectation Equation

* The state-value function V*(s) can be decomposed
into immediate reward plus discounted value of
successor state

V7 (s) = Ex[Ry1 + V" (St41)|5t =]

* The action-value function Q7(s,a) can similarly be
decomposed

Q™ (s,a) = Ex[Riy1 +vQ™ (Sit1, As41)|S: = s, Ay = al

State Value and Action Value

VT (s) s
VT(s) =) (als)Q7(s,a)

acA

Q" (s,a) < s,a

Q" (s,a) — s,a

R(s,a) Q"(s,a) = R(s,a) +7 Z Psa(s)V7(s)

s'eS

Vﬂ'(sl) — 8/

Model-Free Policy Iteration

* Given state-value function V(s) and action-value function
Q(s,a), model-free policy iteration shall use action-value
function

* Greedy policy improvement over V(s) requires model of MDP

7% (s) = arg max {R(s, a)+ 7y Z PSG(S’)V”(SI)}

acEA
s'eS

We don’t know the transition probability

e Greedy policy improvement over Q(s,a) is model-free

new _
TV (s) = arg max Q(s,a)

Generalized POlICy Iteration with Action-Value Function

(x, Tx

* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: Greedy policy improvement?

Example of Greedy Action Selection

. . Left: Right:
* Greedy pOlICY Improvement 20% Reward =0 50% Reward =1
over Q(s,a) is model-free 80% Reward =5 50% Reward = 3

new -
% (s) = arg max Q(s,a)

* Given the right example

 What if the first action is to
choose the left door and
observe reward=07? -

* The policy would be
suboptimal if there is no
exploration

“Behind one door is tenure — behind the other
is flipping burgers at McDonald’s.”

e-Greedy Policy Exploration

e Simplest idea for ensuring continual exploration
* All m actions are tried with non-zero probability
* With probability 1-¢, choose the greedy action
e With probability €, choose an action at random

e/m+1—e€ if a* =argmax,cq Q(s,a)
m(als) = .
e/m otherwise

e-Greedy Policy Improvement

e Theorem

* For any e-greedy policy T, the e-greedy policy i’ w.r.t. Q"
is an improvement, i.e. V7 (s) > V7 (s)

V™ (s) = Q" (s, (s Zwa| Q7 (s, a)

acA
m actions = % ;Q”(s, a)+ (1 —¢) max Q7 (s,a)
7r 7'('(61,’8) - e/m s
>—C;4Q S, a) 1—e)aezA - Q" (s, a)

Generalized POlICy Iteration with Action-Value Function

(x, Tx

* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: e-greedy policy improvement

Monte-Carlo Control

Starting Q
(s, T

Every episode:
* Policy evaluation: Monte-Carlo policy evaluation, Q = Q™

* Policy improvement: e-greedy policy improvement

MC Control vs. TD Control

* Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)
* Lower variance
* Online
* Incomplete sequences

* Natural idea: use TD instead of MC in our control loop
* Apply TD to update action value Q(s,a)
* Use e-greedy policy improvement
* Update the action value function every time-step

SARSA

* For each state-action-reward-state-action by the current
policy

@ Atstate s, take action a

Observe reward r

<> Transit to the next state s’

@ Atstate s, take action o’

e Updating action-value functions with Sarsa

Q(s,a) — Q(s,a) + ar + yQ(s', a’) — Q(s,a))

On-Policy Control with SARSA

Starting Q
(s, T

Every time-step:
* Policy evaluation: Sarsa Q(s,a) — Q(s,a) + a(r +yQ(s',a") — Q(s,a))

* Policy improvement: e-greedy policy improvement

SARSA Algorithm

Sarsa: An on-policy TD control algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q) (e.g., e-greedy)
Q(S,4) < Q(S, A) + a[R+1Q(S", A') — Q(S, A)]
S« S A+ Al

until S is terminal

 NOTE: on-policy TD control sample actions by the current policy, i.e., the
two ‘A’s in SARSA are both chosen by the current policy

SARSA Example: Windy Gridworld

s G TL

standard
moves

O 0 01 1 1 2 2 10

 Reward = -1 per time-step until reaching goal
e Undiscounted

SARSA Example: Windy Gridworld

optimal a trajectory

170 - P
150 4
S G
X I
100 4 Actions
Episodes 0 0 0 I
50 -
0_

| | | 1 | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps
Note: as the training proceeds, the Sarsa policy achieves the goal more and
more quickly

Off-Policy Learning

* Evaluate target policy r(a|s) to compute V*(s) or Q(s,a)

* While following behavior policy u(als)

{sl,al,rg, S92,Q9, .. .,ST} ~ U

* Why off-policy learning is important?
Learn from observing humans or other agents

Re-use experience generated from old policies
Learn about optimal policy while following exploratory policy
Learn about multiple policies while following one policy

An example of my research in MSR Cambridge
* Collective Noise Contrastive Estimation for Policy Transfer Learning. AAAI 2016.

Importance Sampling

* Estimate the expectation of a different distribution

Importance Sampling for Off-Policy Monte-Carlo

Use returns generated from u to evaluate it

Weight return G, according to importance ratio between
policies

Multiply importance ratio along with episode

{81,&1,7“2,82,&2, . .,ST} ~ U

or/n _ Tlatlse) m(aerlsern) - mlar|st)

: lalse) placr]sin) plarlsr)

Update value towards corrected return
V(sy) — V(sy) + a(GFH = V(sy))

e Cannot use if u is zero when it is non-zero
* Importance sample can dramatically increase variance

Importance Sampling for Off-Policy TD

Use TD targets generated from u to evaluate it

Weight TD target r+yV(s’) by importance sampling

Only need a single importance sampling correction

Tl a+|S
Vi(s)) — V(s) +a ((ass1) (ree1 + YV (S041)) — V(st)>
p(a|st)
importance D
sampling target
correction

Much lower variance than Monte-Carlo importance sampling

Policies only need to be similar over a single step

Q-Learning

* For off-policy learning of action-value Q(s,a)

* No importance sampling is required (why?)

* The next action is chosen using behavior policy az11 ~ u(-|st)
* But we consider alternative successor action a ~ 7(-|s¢)

* And update Q(s,,a,) towards value of alternative action

Q(st,ay) «— Q(st,at) + a(rer1 + YQ(St41, a’) — Q(5¢,a4))

action
from t
not u

Off-Policy Control with Q-Learning

* Allow both behavior and target policies to improve
* The target policy it is greedy w.r.t. Q(s,a)
m(S¢11) = arg HZE}X Q(St+1, a’)

* The behavior policy u is e.g. e-greedy policy w.r.t. Q(s,a)
* The Q-learning target then simplifies

rert +9Q(se41,07) = o1 + YQ(s141, arg max Q(se41, a'))
= Tt+1 + ymax Q(s¢41,a")

* Q-learning update
Q(s1,a1) — Qs @) + alrpsr +ymax Q(se1,a') — Qse, ar))

Q-Learning Control Algorithm

I At state s, take action a

Observe reward r

Transit to the next state s’

® O O Atstates), take action argmax Q(s',a’)

Q(s1,a1) — Qs @) + i + ymax Q(se1,a') — Qse, ar))

* Theorem: Q-learning control converges to the optimal
action-value function

Q(s,a) = Q (s, a)

Q-Learning Control Algorithm

At state s, take action a
Observe reward r

Transit to the next state s’

® O O Atstates, take action argmax Q(s’,a’)
Q(st, at) < Q(st,at) + are41 + HZE}X Q(st41,0a") — Q(s¢, ar))

* Why Q-learning is an off-policy control method?
* Learning from SARS generated by another policy u
* The first action a and the corresponding reward r are from u
* The next action ad’ is picked by the target policy 7(si+1) = arg max Q(s¢41,a")

 Why no importance sampling?
e Action value function not state value function

SARSA vs. Q-Learning Experiments

_ . SARSA
e Cliff-walking Rea [T T T T T T T T T 1] satepath
* Undiscounted B Al |
— rCaiinTg | .
* Episodic task S The Cliff G

e Reward =-1 on all w e S
transitions R=-100

e Stepping into cliff

Sarsa
area incurs -100
reward and sent the
agent back to the Sum of .
start rz\gﬁ,%s ‘ Q-learning
* Why the results are episode . o
' ' - th £=0.
like this? g-greedy policy wi
~100 : , , . .
0 100 200 300 400 500

Episodes

Further Readings

* You can learn following content offline

Relationship Between DP and TD

Full Backup (DP) Sample Backup (TD)

Bellman
Expectation

Equation for s, d
™
V7(s) Iterative Policy Evaluation TD Learning
Q" (s,a) — s,a s,a
Bellman r
Expectation °
Equation for s.a

QTI'(SI, a/) - 8/, a

T
Q" (s, a) Q-Policy Iteration SARSA

Q*(s,a) — s,a
Bellman
Optimality
Equation for

Q*(Sl,al) <—|8/,al e o o Sl,a/

*
Q"(s,a) Q-Value lteration Q-Learning

Relationship Between DP and TD

Full Backup (DP) Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V(s) < Elr + 7V (s')|s] V(s) <=1 +~V(s)
Q-Policy Iteration SARSA
Q(s,a) — E[r +~Q(s',d)|s, d] Q(s,a) <=1 +~Q(s',d')
Q-Value lteration Q-Learning
Qs,a) — E|r +ymaxQ(s',)|s,a| | Q(s,a) < r + ymax Q(s',)
a’ a’

where

rey=z—z+aly—1)

n-Step Prediction

e Let TD target look n steps into the future

1D (1-step) 2-step 3-step n-step Monte Carlo

E

n-Step Return

e Consider the following n-step return for n=1,2,...,0°

n=1 (TD) Ggl) = Rt_|_1 + ’)/V(St_|_1)

n =2 G%Q) = Rit1 +YRig2 + vV (Si12)

n=o00 (MC) G =Ry +vRio+...+9 Ry
* Define the n-step return
G{" = Rey1 + YRy + ...+ 7" Ry + 7"V (Spin)
* n-step temporal-difference learning

V(S) « V(Si) + (G — V(Sy))

n-Step Return

e Define the n-step return

ng) = Riy1 +YRip2+ ...+ 9" Reyn + 7"V (St1n)

* n-step temporal-difference learning

V(S) — V(Si) + (G — V(Sy))

n-Step Return

 Why it can speed up learning compared to one-step
methods

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—>{ +
v
> ¥
G G G +
A A } -

ng) = Rip1 +yRypo+ ...+ ’Yn_lRt—l—n + ’YnV(St—Fn)

V(Si) — V(Si) + (G — V(Sy))

Random Walk Example for n-step TDs
0 o 0 e 0 e 0 Q 0 e 1 .

start

0.55 | 512

05 f
Average RMS
error
over 19 states
and first 10

episodes 0.35

oast ||\ /

04 \

oaf "

025,

Averaging n-Step Returns

* We can further average n-step returns over different n

e e.g. average the 2-step and 3-step returns

1 1
2 2 3)
2G + 2G
e Combines information from two

different time-steps

e Can we efficiently combine
information from all time-steps?

DO | =

DN | —

TD(A) for Averaging n-Step Returns

TD(A), A-return

1D (1-step) 2-step 3-step n-step Monte Carlo

!

TD(A) for Averaging n-Step Returns

TD(A), A-return

* The A-return G combines
all n-step returns G\™
e Using weight (1 — A" 1
1=

G =(1-NY e
(1-n) A n=1
* Forward-view TD(A)

(1=1) 22
V(S:) « V(S) + a(G? — V(S)

T-1-1

TD(A) for Averaging n-Step Returns

weight given to _
TN the 3-step return total area = 1

N is (1 —A\)\?

| ?7/ decay by A
Weight 1= % \/ \ weight given to

actual, final return
iS AT—!‘,— 1

t T
Time
T—t—1
Gr=(1-x Y algl AT,
n=1

e When A=1, GtA = (¢, which returns to Monte-Carlo method
e When A=0, GtA — Ggl), which returns to one-step TD

TD(A) vs. n-step TD

TD(A) n-step TD

0.55

05} I

RMS error at |
the end of oast |\ /

the episode
over the first \
10 episodes oss} \ "
Off-line o

041

03

025}

19-state Random walk results

* The results with off-line A-return algorithms are slightly better at
the best value of a and A

