Introduction to Reinforcement Learning

Weinan Zhang
Shanghai Jiao Tong University
http://wnzhang.net

http://wnzhang.net/teaching/cs420/index.html
What is Machine Learning

A more mathematical definition by Tom Mitchell

- Machine learning is the study of algorithms that
 - improve their performance \(P \)
 - at some task \(T \)
 - based on experience \(E \)
 - with non-explicit programming

- A well-defined learning task is given by \(<P, T, E> \)
Machine Learning

• What we have learned so far

• Supervised Learning
 • To perform the desired output given the data and labels
 • e.g., to build a loss function to minimize

• Unsupervised Learning
 • To analyze and make use of the underlying data patterns/structures
 • e.g., to build a log-likelihood function to maximize
 Supervised Learning

• Given the training dataset of \((\text{data, label})\) pairs,

\[
D = \{(x_i, y_i)\}_{i=1,2,...,N}
\]

let the machine learn a function from \text{data} to \text{label}

\[
y_i \simeq f_\theta(x_i)
\]

• Learning is referred to as updating the \text{parameter} \(\theta\)

• Learning objective: make the prediction close to the \text{ground truth}

\[
\min_\theta \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, f_\theta(x_i))
\]
Unsupervised Learning

- Given the training dataset
 \[D = \{ x_i \}_{i=1,2,...,N} \]
 let the machine learn the data underlying patterns.
- Sometimes build latent variables
 \[z \rightarrow x \]
- Estimate the probabilistic density function (p.d.f.)
 \[p(x; \theta) = \sum_z p(x|z; \theta)p(z; \theta) \]
- Maximize the log-likelihood of training data
 \[\max_\theta \frac{1}{N} \sum_{i=1}^{N} \log p(x; \theta) \]
Two Kinds of Machine Learning

• Prediction
 • Predict the desired output given the data (supervised learning)
 • Generate data instances (unsupervised learning)
 • We mainly covered this category in previous lectures

• Decision Making
 • Take actions based on a particular state in a dynamic environment (reinforcement learning)
 • to transit to new states
 • to receive immediate reward
 • to maximize the accumulative reward over time
 • Learning from interaction
Machine Learning Categories

- **Supervised Learning**
 - To perform the desired output given the data and labels\[p(y|x) \]

- **Unsupervised Learning**
 - To analyze and make use of the underlying data patterns/structures\[p(x) \]

- **Reinforcement Learning**
 - To learn a policy of taking actions in a dynamic environment and acquire rewards\[\pi(a|x) \]
Reinforcement Learning Materials

Our course on RL is mainly based on the materials from these masters.

Prof. Richard Sutton
- University of Alberta, Canada
- http://incompleteideas.net/sutton/index.html
- Reinforcement Learning: An Introduction (2nd edition)

Dr. David Silver
- Google DeepMind and UCL, UK
- http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html
- UCL Reinforcement Learning Course
- http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Prof. Andrew Ng
- Stanford University, US
- http://www.andrewng.org/
- Machine Learning (CS229) Lecture Notes 12: RL
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • On-policy SARSA
 • Off-policy Q-learning
 • Model-free Prediction and Control
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • On-policy SARSA
 • Off-policy Q-learning
 • Model-free Prediction and Control
Reinforcement Learning

• Learning from interaction
 • Given the current situation, what to do next in order to maximize utility?
Reinforcement Learning Definition

• A computational approach by learning from interaction to achieve a goal

• Three aspects
 • Sensation: sense the state of the environment to some extent
 • Action: able to take actions that affect the state and achieve the goal
 • Goal: maximize the cumulative reward over time
Reinforcement Learning

At each step t, the agent
- Receives observation O_t
- Receives scalar reward R_t
- Executes action A_t

The environment
- Receives action A_t
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}

t increments at environment step
Elements of RL Systems

- **History** is the sequence of observations, action, rewards

 \[H_t = O_1, R_1, A_1, O_2, R_2, A_2, \ldots, O_{t-1}, R_{t-1}, A_{t-1}, O_t, R_t \]

 - i.e. all observable variables up to time \(t \)
 - E.g., the sensorimotor stream of a robot or embodied agent

- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards

- **State** is the information used to determine what happens next (actions, observations, rewards)

- Formally, state is a function of the history

 \[S_t = f(H_t) \]
Elements of RL Systems

• **Policy** is the learning agent’s way of behaving at a given time
 • It is a map from state to action
 • Deterministic policy
 \[a = \pi(s) \]
 • Stochastic policy
 \[\pi(a|s) = P(A_t = a|S_t = s) \]
Elements of RL Systems

• Reward
 • A scalar defining the goal in an RL problem
 • For immediate sense of what is good

• Value function
 • State value is a scalar specifying what is good in the long run
 • Value function is a prediction of the cumulative future reward
 • Used to evaluate the goodness/badness of states (given the current policy)

\[v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots | S_t = s] \]
Elements of RL Systems

• Reward
 • A scalar defining the goal in an RL problem
 • For immediate sense of what is good

• Value function
 • State value is a scalar specifying what is a good state in the long run, i.e., the cumulative reward
 \[v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots | S_t = s] \]
 • Action value is a scalar specifying what is a good action at a specific state in the long run
 \[Q_\pi(s, a) = \mathbb{E}_\pi[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots | S_t = s, A_t = a] \]
Elements of RL Systems

• **A Model** of the environment that mimics the behavior of the environment
 • Predict the next state

\[
P_{sa}(s') = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]
\]

• Predicts the next (immediate) reward

\[
R_s(a) = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]
\]
Maze Example

- State: agent’s location
- Action: N,E,S,W
Maze Example

- State: agent’s location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
 - No move if the action is to the wall
Maze Example

- State: agent’s location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step
Maze Example

- State: agent’s location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

Given a policy as shown above
- Arrows represent policy $\pi(s)$ for each state s
Maze Example

- State: agent’s location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step
- Numbers represent value $v_\pi(s)$ of each state s
Categorizing RL Agents

• Model based RL
 • Policy and/or value function
 • Model of the environment
 • E.g., the maze game above, game of Go

• Model-free RL
 • Policy and/or value function
 • No model of the environment
 • E.g., general playing Atari games
Atari Example

- Rules of the game are unknown
- Learn from interactive game-play
- Pick actions on joystick, see pixels and scores
Categorizing RL Agents

• Value based
 • No policy (implicit)
 • Value function

• Policy based
 • Policy
 • No value function

• Actor Critic
 • Policy
 • Value function
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • On-policy SARSA
 • Off-policy Q-learning
 • Model-free Prediction and Control
Markov Decision Process

• Markov decision processes (MDPs) provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.

• MDPs formally describe an environment for RL
 • where the environment is FULLY observable
 • i.e. the current state completely characterizes the process (Markov property)
Markov Property

“The future is independent of the past given the present”

• Definition
 • A state S_t is Markov if and only if
 \[P[S_{t+1}|S_t] = P[S_{t+1}|S_1, \ldots, S_t] \]

• Properties
 • The state captures all relevant information from the history
 • Once the state is known, the history may be thrown away
 • i.e. the state is sufficient statistic of the future
Markov Decision Process

• A Markov decision process is a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

• \(S\) is the set of states
 • E.g., location in a maze, or current screen in an Atari game

• \(A\) is the set of actions
 • E.g., move N, E, S, W, or the direction of the joystick and the buttons

• \(P_{sa}\) are the state transition probabilities
 • For each state \(s \in S\) and action \(a \in A\), \(P_{sa}\) is a distribution over the next state in \(S\)

• \(\gamma \in [0,1]\) is the discount factor for the future reward

• \(R : S \times A \mapsto \mathbb{R}\) is the reward function
 • Sometimes the reward is only assigned to state
Markov Decision Process

The dynamics of an MDP proceeds as

• Start in a state s_0
• The agent chooses some action $a_0 \in A$
• The agent gets the reward $R(s_0,a_0)$
• MDP randomly transits to some successor state $s_1 \sim P_{s_0a_0}$
• This proceeds iteratively

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \cdots$$

• Until a terminal state s_T or proceeds with no end
• The total payoff of the agent is

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$
Reward on State Only

• For a large part of cases, reward is only assigned to the state
 • E.g., in maze game, the reward is on the location
 • In game of Go, the reward is only based on the final territory
• The reward function $R(s) : S \rightarrow \mathbb{R}$
• MDPs proceed

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \cdots$$

• cumulative reward (total payoff)

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$
MDP Goal and Policy

• The goal is to choose actions over time to maximize the expected cumulative reward

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$

• $\gamma \in [0,1]$ is the discount factor for the future reward, which makes the agent prefer immediate reward to future reward
 • In finance case, today’s $1 is more valuable than $1 in tomorrow

• Given a particular policy $\pi(s) : S \mapsto A$
 • i.e. take the action $a = \pi(s)$ at state s

• Define the value function for π

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]$$
 • i.e. expected cumulative reward given the start state and taking actions according to π
Bellman Equation for Value Function

• Define the value function for π

\[
V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]
\]

\[
= R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s)(s') V^\pi(s')
\]

Immediate Reward
State transition
Value of the next state

Bellman Equation
Optimal Value Function

• The optimal value function for each state \(s \) is best possible sum of discounted rewards that can be attained by any policy

\[
V^*(s) = \max_{\pi} V^\pi(s)
\]

• The Bellman’s equation for optimal value function

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

• The optimal policy

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

• For every state \(s \) and every policy \(\pi \)

\[
V^*(s) = V^{\pi^*}(s) \geq V^\pi(s)
\]
Value Iteration & Policy Iteration

- Note that the value function and policy are correlated

\[V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s') \]

\[\pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^\pi(s') \]

- It is feasible to perform iterative update towards the optimal value function and optimal policy
 - Value iteration
 - Policy iteration
Value Iteration

• For an MDP with finite state and action spaces

 \[|S| < \infty, |A| < \infty \]

• Value iteration is performed as

 1. For each state \(s \), initialize \(V(s) = 0 \).
 2. Repeat until convergence {

 For each state, update

 \[
 V(s) = R(s) + \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V(s')
 \]

 }

• Note that there is no explicit policy in above calculation
Synchronous vs. Asynchronous VI

• Synchronous value iteration stores two copies of value functions

 1. For all s in S

 \[V_{\text{new}}(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{sa}(s')V_{\text{old}}(s') \right) \]

 2. Update \(V_{\text{old}}(s') \leftarrow V_{\text{new}}(s) \)

• In-place asynchronous value iteration stores one copy of value function

 1. For all s in S

 \[V(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{sa}(s')V(s') \right) \]
Value Iteration Example: Shortest Path

Problem

V_1

V_2

V_3

V_4

V_5

V_6

V_7
Policy Iteration

• For an MDP with finite state and action spaces
 \[|S| < \infty, |A| < \infty \]

• Policy iteration is performed as

 1. Initialize \(\pi \) randomly
 2. Repeat until convergence {
 a) Let \(V := V^\pi \)
 b) For each state, update
 \[
 \pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V(s')
 \]
 }

• The step of value function update could be time-consuming
Policy Iteration

- Policy evaluation
 - Estimate V^π
 - Iterative policy evaluation
- Policy improvement
 - Generate $\pi' \geq \pi$
 - Greedy policy improvement
Evaluating a Random Policy in a Small Gridworld

- Undiscounted episodic MDP ($\gamma=1$)
- Nonterminal states 1,...,14
- Two terminal states (shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows a uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$
Evaluating a Random Policy in a Small Gridworld

\[V_k \text{ for the random policy} \quad \text{Greedy policy w.r.t. } V_k \]

\(K=0 \)

\begin{array}{cccc}
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
\end{array}

Random policy

\(K=1 \)

\begin{array}{cccc}
0.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & 0.0 \\
\end{array}

\(K=2 \)

\begin{array}{cccc}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0 \\
\end{array}
Evaluating a Random Policy in a Small Gridworld

V_k for the random policy

$K=3$

\[
\begin{pmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0 \\
\end{pmatrix}
\]

$K=10$

\[
\begin{pmatrix}
0.0 & -6.1 & -8.4 & -9.0 \\
-6.1 & -7.7 & -8.4 & -8.4 \\
-8.4 & -8.4 & -7.7 & -6.1 \\
-9.0 & -8.4 & -6.1 & 0.0 \\
\end{pmatrix}
\]

$K=\infty$

\[
\begin{pmatrix}
0.0 & -14. & -20. & -22. \\
-22. & -20. & -14. & 0.0 \\
\end{pmatrix}
\]

Greedy policy w.r.t. V_k

$V := V^\pi$

Optimal policy
Value Iteration vs. Policy Iteration

Value iteration

1. For each state s, initialize $V(s) = 0$.
2. Repeat until convergence {
 - For each state, update
 \[V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s') \]
 }

Remarks:
1. Value iteration is a greedy update strategy
2. In policy iteration, the value function update by bellman equation is costly
3. For small-space MDPs, policy iteration is often very fast and converges quickly
4. For large-space MDPs, value iteration is more practical (efficient)
5. If there is no state-transition loop, it is better to use value iteration

My point of view: value iteration is like SGD and policy iteration is like BGD

Policy iteration

1. Initialize π randomly
2. Repeat until convergence {
 a) Let $V := V^\pi$
 b) For each state, update
 \[\pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s') \]
 }

Remarks:
1. Value iteration is a greedy update strategy
2. In policy iteration, the value function update by bellman equation is costly
3. For small-space MDPs, policy iteration is often very fast and converges quickly
4. For large-space MDPs, value iteration is more practical (efficient)
5. If there is no state-transition loop, it is better to use value iteration

My point of view: value iteration is like SGD and policy iteration is like BGD
Learning an MDP Model

• So far we have been focused on
 • Calculating the optimal value function
 • Learning the optimal policy
given a known MDP model
 • i.e. the state transition $P_{sa}(s')$ and reward function $R(s)$ are explicitly given

• In realistic problems, often the state transition and reward function are not explicitly given
 • For example, we have only observed some episodes

Episode 1: $s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$

Episode 2: $s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$
Learning an MDP Model

\[
\begin{align*}
\text{Episode 1:} & \quad s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)} \\
\text{Episode 2:} & \quad s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)} \\
\vdots & \quad \vdots
\end{align*}
\]

• Learn an MDP model from “experience”
 • Learning state transition probabilities \(P_{sa}(s')\)
 \[
 P_{sa}(s') = \frac{\text{#times we took action } a \text{ in state } s \text{ and got to state } s'}{\text{#times we took action } a \text{ in state } s}
 \]
 • Learning reward \(R(s)\), i.e. the expected immediate reward
 \[
 R(s) = \text{average}\left\{ R(s)^{(i)} \right\}
 \]
Learning Model and Optimizing Policy

• Algorithm

1. Initialize π randomly.
2. Repeat until convergence {
 a) Execute π in the MDP for some number of trials
 b) Using the accumulated experience in the MDP, update our estimates for P_{sa} and R
 c) Apply value iteration with the estimated P_{sa} and R to get the new estimated value function V
 d) Update π to be the greedy policy w.r.t. V
}
Learning an MDP Model

• In realistic problems, often the state transition and reward function are not explicitly given
 • For example, we have only observed some episodes

Episode 1: \[s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)} \]

Episode 2: \[s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)} \]

• Another branch of solution is to directly learning value & policy from experience without building an MDP

• i.e. Model-free Reinforcement Learning
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • Model-free Prediction
 • Monte-Carlo and Temporal Difference
 • Model-free Control
 • On-policy SARSA and off-policy Q-learning
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • Model-free Prediction
 • Monte-Carlo and Temporal Difference
 • Model-free Control
 • On-policy SARSA and off-policy Q-learning
Model-free Reinforcement Learning

- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

\[
\begin{align*}
\text{Episode 1:} & \quad s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \ldots s_T^{(1)} \\
\text{Episode 2:} & \quad s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \ldots s_T^{(2)}
\end{align*}
\]

- Model-free RL is to directly learn value & policy from experience without building an MDP
- Key steps: (1) estimate value function; (2) optimize policy
Value Function Estimation

• In model-based RL (MDP), the value function is calculated by dynamic programming

\[
V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi] = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') V^\pi(s')
\]

• Now in model-free RL
 • We cannot directly know \(P_{sa} \) and \(R \)
 • But we have a list of experiences to estimate the values

Episode 1: \(s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)} \)

Episode 2: \(s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)} \)
Monte-Carlo Methods

- Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- Example, to calculate the circle’s surface

\[
\text{Circle Surface} = \text{Square Surface} \times \frac{\#\text{points in circle}}{\#\text{points in total}}
\]
Monte-Carlo Methods

- Go: to estimate the winning rate given the current state

$$\text{Win Rate}(s) = \frac{\# \text{win simulation cases started from } s}{\# \text{simulation cases started from } s \text{ in total}}$$
Monte-Carlo Value Estimation

• Goal: learn V^π from episodes of experience under policy π

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]$$

• Recall that the return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots \gamma^{T-1} R_T$$

• Recall that the value function is the expected return

$$V^\pi(s) = \mathbb{E}[G_t | s_t = s, \pi]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} G^{(i)}_t$$

• Sample N episodes from state s using policy π

• Calculate the average of cumulative reward

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return
Monte-Carlo Value Estimation

• Implementation
 • Sample episodes policy π

$$
\begin{align*}
S_0^{(i)} & \xrightarrow{a_0^{(i)}} S_1^{(i)} & \xrightarrow{a_1^{(i)}} S_2^{(i)} & \xrightarrow{a_2^{(i)}} S_3^{(i)} & \cdots & S_T^{(i)} \sim \pi \\
R_1^{(i)} & & R_2^{(i)} & & R_3^{(i)} &
\end{align*}
$$

• Every time-step t that state s is visited in an episode
 • Increment counter $N(s) \leftarrow N(s) + 1$
 • Increment total return $S(s) \leftarrow S(s) + G_t$
 • Value is estimated by mean return $V(s) = S(s)/N(s)$
 • By law of large numbers

$$
V(s) \rightarrow V^\pi(s) \text{ as } N(s) \rightarrow \infty
$$
Incremental Monte-Carlo Updates

• Update $V(s)$ incrementally after each episode

• For each state S_t with cumulative return G_t

\[
N(S_t) \leftarrow N(S_t) + 1
\]

\[
V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)}(G_t - V(S_t))
\]

• For non-stationary problems (i.e. the environment could be varying over time), it can be useful to track a running mean, i.e. forget old episodes

\[
V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))
\]
Monte-Carlo Value Estimation

Idea: \[V(S_t) \approx \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)} \]

Implementation: \[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from **complete** episodes: no bootstrapping (discussed later)
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate
Temporal-Difference Learning

\[G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = R_{t+1} + \gamma V(S_{t+1}) \]

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess
Monte Carlo vs. Temporal Difference

• The same goal: learn V^π from episodes of experience under policy π

• Incremental every-visit Monte-Carlo
 • Update value $V(S_t)$ toward actual return G_t
 $$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

• Simplest temporal-difference learning algorithm: TD
 • Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$
 $$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

• TD target: $R_{t+1} + \gamma V(S_{t+1})$
• TD error: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$
Driving Home Example

<table>
<thead>
<tr>
<th>State</th>
<th>Elapsed Time (Minutes)</th>
<th>Predicted Time to Go</th>
<th>Predicted Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaving office</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Reach car, raining</td>
<td>5</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Exit highway</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Behind truck</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Home street</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>Arrow home</td>
<td>43</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>
Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods ($\alpha=1$)

Changes recommended by TD methods ($\alpha=1$)
Advantages and Disadvantages of MC vs. TD

• TD can learn before knowing the final outcome
 • TD can learn online after every step
 • MC must wait until end of episode before return is known

• TD can learn without the final outcome
 • TD can learn from incomplete sequences
 • MC can only learn from complete sequences
 • TD works in continuing (non-terminating) environments
 • MC only works for episodic (terminating) environments
Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is unbiased estimate of $V^\pi(S_t)$

- True TD target $R_{t+1} + \gamma V^\pi(S_{t+1})$ is unbiased estimate of $V^\pi(S_t)$

- TD target $R_{t+1} + \gamma \underbrace{V(S_{t+1})}_{\text{current estimate}}$ is biased estimate of $V^\pi(S_t)$

- TD target is of much lower variance than the return
 - Return depends on many random actions, transitions and rewards
 - TD target depends on one random action, transition and reward
Advantages and Disadvantages of MC vs. TD (2)

• MC has high variance, zero bias
 • Good convergence properties
 • (even with function approximation)
 • Not very sensitive to initial value
 • Very simple to understand and use

• TD has low variance, some bias
 • Usually more efficient than MC
 • TD converges to $V^\pi(S_t)$
 • (but not always with function approximation)
 • More sensitive to initial value than MC
Random Walk Example

Estimated value

State

true values

0
1

0.8

0.6

0.4

0.2

0

A B C D E

0 0 0 0 1

start
Random Walk Example

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

RMS error, averaged over states

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
Monte-Carlo Backup

\[V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)) \]
Temporal-Difference Backup

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
Dynamic Programming Backup

\[V(S_t) \leftarrow \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})] \]
• For time constraint, we may jump n-step prediction section and directly head to model-free control

• Define the n-step return

\[G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}) \]

• n-step temporal-difference learning

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t)) \]
Content

• Introduction to Reinforcement Learning

• Model-based Reinforcement Learning
 • Markov Decision Process
 • Planning by Dynamic Programming

• Model-free Reinforcement Learning
 • Model-free Prediction
 • Monte-Carlo and Temporal Difference
 • Model-free Control
 • On-policy SARSA and off-policy Q-learning
Uses of Model-Free Control

• Some example problems that can be modeled as MDPs
 • Elevator
 • Parallel parking
 • Ship steering
 • Bioreactor
 • Helicopter
 • Aeroplane logistics
 • Robocup soccer
 • Atari & StarCraft
 • Portfolio management
 • Protein folding
 • Robot walking
 • Game of Go

• For most of real-world problems, either:
 • MDP model is unknown, but experience can be sampled
 • MDP model is known, but is too big to use, except by samples

• Model-free control can solve these problems
On- and Off-Policy Learning

• Two categories of model-free RL

• On-policy learning
 • “Learn on the job”
 • Learn about policy π from experience sampled from π

• Off-policy learning
 • “Look over someone’s shoulder”
 • Learn about policy π from experience sampled from another policy μ
State Value and Action Value

\[G_t = R_{t+1} + \gamma R_{t+2} + \ldots \gamma^{T-1} R_T \]

• State value
 • The state-value function \(V^\pi(s) \) of an MDP is the expected return starting from state \(s \) and then following policy \(\pi \)
 \[V^\pi(s) = \mathbb{E}_\pi[G_t | S_t = s] \]

• Action value
 • The action-value function \(Q^\pi(s,a) \) of an MDP is the expected return starting from state \(s \), taking action \(a \), and then following policy \(\pi \)
 \[Q^\pi(s,a) = \mathbb{E}_\pi[G_t | S_t = s, A_t = a] \]
Bellman Expectation Equation

• The state-value function $V^\pi(s)$ can be decomposed into immediate reward plus discounted value of successor state

$$V^\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma V^\pi(S_{t+1})|S_t = s]$$

• The action-value function $Q^\pi(s, a)$ can similarly be decomposed

$$Q^\pi(s, a) = \mathbb{E}_\pi[R_{t+1} + \gamma Q^\pi(S_{t+1}, A_{t+1})|S_t = s, A_t = a]$$
State Value and Action Value

\[
V^\pi(s) \leftarrow s
\]

\[
Q^\pi(s, a) \leftarrow s, a
\]

\[
V^\pi(s) = \sum_{a \in A} \pi(a | s) Q^\pi(s, a)
\]

\[
Q^\pi(s, a) = R(s, a) + \gamma \sum_{s' \in S} P_{sa}(s') V^\pi(s')
\]
Model-Free Policy Iteration

- Given state-value function \(V(s) \) and action-value function \(Q(s,a) \), model-free policy iteration shall use action-value function

- Greedy policy improvement over \(V(s) \) requires model of MDP
 \[
 \pi^{\text{new}}(s) = \arg \max_{a \in A} \left\{ R(s, a) + \gamma \sum_{s' \in S} P_{sa}(s') V^{\pi}(s') \right\}
 \]
 We don’t know the transition probability

- Greedy policy improvement over \(Q(s,a) \) is model-free
 \[
 \pi^{\text{new}}(s) = \arg \max_{a \in A} Q(s, a)
 \]
Generalized Policy Iteration with Action-Value Function

• Policy evaluation: Monte-Carlo policy evaluation, $Q = Q^\pi$
• Policy improvement: Greedy policy improvement?
Example of Greedy Action Selection

• Greedy policy improvement over $Q(s,a)$ is model-free

$$\pi^{\text{new}}(s) = \arg \max_{a \in A} Q(s, a)$$

• Given the right example
 • What if the first action is to choose the left door and observe reward=0?
 • The policy would be suboptimal if there is no exploration

Left:
- 20% Reward = 0
- 80% Reward = 5

Right:
- 50% Reward = 1
- 50% Reward = 3

“Behind one door is tenure – behind the other is flipping burgers at McDonald’s.”
\(\varepsilon \)-Greedy Policy Exploration

- Simplest idea for ensuring continual exploration
- All \(m \) actions are tried with non-zero probability
- With probability \(1 - \varepsilon \), choose the greedy action
- With probability \(\varepsilon \), choose an action at random

\[
\pi(a|s) = \begin{cases}
\frac{\varepsilon}{m} + 1 - \varepsilon & \text{if } a^* = \arg \max_{a \in A} Q(s, a) \\
\frac{\varepsilon}{m} & \text{otherwise}
\end{cases}
\]
ε-Greedy Policy Improvement

- **Theorem**
 - For any ε-greedy policy \(\pi \), the ε-greedy policy \(\pi' \) w.r.t. \(Q^\pi \) is an improvement, i.e.
 \[
 V^{\pi'}(s) \geq V^\pi(s)
 \]

\[
V^{\pi'}(s) = Q^\pi(s, \pi'(s)) = \sum_{a \in A} \pi'(a|s)Q^\pi(s, a)
\]

\[
= \frac{\epsilon}{m} \sum_{a \in A} Q^\pi(s, a) + (1 - \epsilon) \max_{a \in A} Q^\pi(s, a)
\]

\[
\geq \frac{\epsilon}{m} \sum_{a \in A} Q^\pi(s, a) + (1 - \epsilon) \sum_{a \in A} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} Q^\pi(s, a)
\]

\[
= \sum_{a \in A} \pi(a|s)Q^\pi(s, a) = V^\pi(s)
\]
Generalized Policy Iteration with Action-Value Function

- Policy evaluation: Monte-Carlo policy evaluation, $Q = Q^\pi$
- Policy improvement: ε-greedy policy improvement
Monte-Carlo Control

Every episode:

- Policy evaluation: Monte-Carlo policy evaluation, $Q \approx Q^\pi$
- Policy improvement: ϵ-greedy policy improvement
MC Control vs. TD Control

• Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 • Lower variance
 • Online
 • Incomplete sequences

• Natural idea: use TD instead of MC in our control loop
 • Apply TD to update action value $Q(s,a)$
 • Use ϵ-greedy policy improvement
 • Update the action value function every time-step
SARSA

• For each state-action-reward-state-action by the current policy

 At state s, take action a
 Observe reward r
 Transit to the next state s'
 At state s', take action a'

• Updating action-value functions with Sarsa

 $$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma Q(s', a') - Q(s, a))$$
On-Policy Control with SARSA

Every time-step:

- Policy evaluation: Sarsa \(Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma Q(s', a') - Q(s, a)) \)
- Policy improvement: \(\epsilon \)-greedy policy improvement
SARSA Algorithm

Sarsa: An on-policy TD control algorithm

Initialize $Q(s,a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$
Repeat (for each episode):
 Initialize S
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Repeat (for each step of episode):
 Take action A, observe R, S'
 Choose A' from S' using policy derived from Q (e.g., ϵ-greedy)
 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$
 $S \leftarrow S'; \ A \leftarrow A'$
 until S is terminal

• NOTE: on-policy TD control sample actions by the current policy, i.e., the two ‘A’s in SARSA are both chosen by the current policy
SARSA Example: Windy Gridworld

- Reward = -1 per time-step until reaching goal
- Undiscounted
SARSA Example: Windy Gridworld

Note: as the training proceeds, the Sarsa policy achieves the goal more and more quickly.
Off-Policy Learning

• Evaluate target policy $\pi(a|s)$ to compute $V^\pi(s)$ or $Q^\pi(s,a)$
• While following behavior policy $\mu(a|s)$
 \[\{s_1, a_1, r_2, s_2, a_2, \ldots, s_T\} \sim \mu \]

• Why off-policy learning is important?
 • Learn from observing humans or other agents
 • Re-use experience generated from old policies
 • Learn about optimal policy while following exploratory policy
 • Learn about multiple policies while following one policy
 • An example of my research in MSR Cambridge
Importance Sampling

• Estimate the expectation of a different distribution

\[\mathbb{E}_{x \sim p}[f(x)] = \int p(x) f(x) \, dx \]

\[= \int q(x) \frac{p(x)}{q(x)} f(x) \, dx \]

\[= \mathbb{E}_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right] \]

• Re-weight each instance by \(\beta(x) = \frac{p(x)}{q(x)} \)
Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from μ to evaluate π
- Weight return G_t according to importance ratio between policies
- Multiply importance ratio along with episode

$$G_t^{\pi/\mu} = \frac{\pi(a_t|s_t) \pi(a_{t+1}|s_{t+1}) \cdots \pi(a_T|s_T)}{\mu(a_t|s_t) \mu(a_{t+1}|s_{t+1}) \cdots \mu(a_T|s_T)} G_t$$

- Update value towards corrected return

$$V(s_t) \leftarrow V(s_t) + \alpha(G_t^{\pi/\mu} - V(s_t))$$

- Cannot use if μ is zero when π is non-zero
- Importance sample can dramatically increase variance
Importance Sampling for Off-Policy TD

- Use TD targets generated from μ to evaluate π
- Weight TD target $r + \gamma V(s')$ by importance sampling
- Only need a single importance sampling correction

$$V(s_t) \leftarrow V(s_t) + \alpha \left(\frac{\pi(a_t|s_t)}{\mu(a_t|s_t)} (r_{t+1} + \gamma V(s_{t+1})) - V(s_t) \right)$$

- Much lower variance than Monte-Carlo importance sampling
- Policies only need to be similar over a single step
Q-Learning

• For off-policy learning of action-value $Q(s,a)$
• No importance sampling is required (why?)
• The next action is chosen using behavior policy $a_{t+1} \sim \mu(\cdot|s_t)$
• But we consider alternative successor action $a \sim \pi(\cdot|s_t)$
• And update $Q(s_t,a_t)$ towards value of alternative action

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

action from π not μ
Off-Policy Control with Q-Learning

• Allow both behavior and target policies to improve
• The target policy π is greedy w.r.t. $Q(s,a)$

$$\pi(s_{t+1}) = \arg\max_{a'} Q(s_{t+1}, a')$$

• The behavior policy μ is e.g. ε-greedy policy w.r.t. $Q(s,a)$
• The Q-learning target then simplifies

$$r_{t+1} + \gamma Q(s_{t+1}, a') = r_{t+1} + \gamma Q(s_{t+1}, \arg\max_{a'} Q(s_{t+1}, a'))$$

$$= r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a')$$

• Q-learning update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$
Q-Learning Control Algorithm

At state s, take action a

Observe reward r

Transit to the next state s'

At state s', take action $\text{argmax } Q(s',a')$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max \limits_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

• Theorem: Q-learning control converges to the optimal action-value function

$$Q(s, a) \rightarrow Q^*(s, a)$$
Q-Learning Control Algorithm

At state s, take action a
Observe reward r
Transit to the next state s'

At state s', take action $\text{argmax } Q(s',a')$

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)) \]

• Why Q-learning is an off-policy control method?
 • Learning from SARS generated by another policy μ
 • The first action a and the corresponding reward r are from μ
 • The next action a' is picked by the target policy $\pi(s_{t+1}) = \text{arg max}_{a'} Q(s_{t+1}, a')$

• Why no importance sampling?
 • Action value function not state value function
SARSA vs. Q-Learning Experiments

- Cliff-walking
 - Undiscounted reward
 - Episodic task
 - Reward = -1 on all transitions
 - Stepping into cliff area incurs -100 reward and sent the agent back to the start

- Why the results are like this?

\(\varepsilon \)-greedy policy with \(\varepsilon = 0.1 \)
Further Readings

• You can learn following content offline
Relationship Between DP and TD

<table>
<thead>
<tr>
<th></th>
<th>Full Backup (DP)</th>
<th>Sample Backup (TD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman Expectation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation for $V^\pi(s)$</td>
<td>$V^\pi(s) \leftarrow s$</td>
<td>Q-Policy Iteration</td>
</tr>
<tr>
<td></td>
<td>$V^\pi(s') \leftarrow s'$</td>
<td></td>
</tr>
<tr>
<td>Iterative Policy Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-Policy Iteration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-Value Iteration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-Learning</td>
<td></td>
</tr>
<tr>
<td>Bellman Expectation Equation for $Q^\pi(s, a)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q^\pi(s, a) \leftarrow s, a</td>
<td>SARSA</td>
</tr>
<tr>
<td></td>
<td>Q^\pi(s', a') \leftarrow s', a</td>
<td></td>
</tr>
<tr>
<td>Q-Policy Iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-Learning</td>
<td></td>
</tr>
<tr>
<td>Bellman Optimality Equation for $Q^*(s, a)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q^*(s, a) \leftarrow s, a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q^*(s', a') \leftarrow s', a'</td>
<td>Q-Learning</td>
</tr>
<tr>
<td>Q-Value Iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-Learning</td>
<td></td>
</tr>
</tbody>
</table>
Relationship Between DP and TD

<table>
<thead>
<tr>
<th>Full Backup (DP)</th>
<th>Sample Backup (TD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative Policy Evaluation</td>
<td>TD Learning</td>
</tr>
<tr>
<td>$V(s) \leftarrow \mathbb{E}[r + \gamma V(s')</td>
<td>s]$</td>
</tr>
<tr>
<td>Q-Policy Iteration</td>
<td>SARSA</td>
</tr>
<tr>
<td>$Q(s, a) \leftarrow \mathbb{E}[r + \gamma Q(s', a')</td>
<td>s, a]$</td>
</tr>
<tr>
<td>Q-Value Iteration</td>
<td>Q-Learning</td>
</tr>
<tr>
<td>$Q(s, a) \leftarrow \mathbb{E}[r + \gamma \max_{a'} Q(s', a')</td>
<td>s, a]$</td>
</tr>
</tbody>
</table>

where

$$
\alpha x = y \equiv x \leftarrow x + \alpha(y - x)
$$
n-Step Prediction

- Let TD target look n steps into the future
\(n \)-Step Return

- Consider the following \(n \)-step return for \(n=1,2,...,\infty \)

\[
\begin{align*}
n = 1 & \quad \text{(TD)} \quad G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) \\
n = 2 & \quad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) \\
\vdots & \quad \vdots \\
n = \infty & \quad \text{(MC)} \quad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T
\end{align*}
\]

- Define the \(n \)-step return

\[
G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})
\]

- \(n \)-step temporal-difference learning

\[
V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t))
\]
n-Step Return

- Define the *n*-step return

\[G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}) \]

- *n*-step temporal-difference learning

\[V(S_t) \leftarrow V(S_t) + \alpha(G_t^{(n)} - V(S_t)) \]
n-Step Return

- Why it can speed up learning compared to one-step methods

\[
G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})
\]

\[
V(S_t) \leftarrow V(S_t) + \alpha (G_t^{(n)} - V(S_t))
\]
Random Walk Example for n-step TDs

Average RMS error over 19 states and first 10 episodes
Averaging n-Step Returns

• We can further average n-step returns over different n
• e.g. average the 2-step and 3-step returns

\[
\frac{1}{2} G^{(2)} + \frac{1}{2} G^{(3)}
\]

• Combines information from two different time-steps
• Can we efficiently combine information from all time-steps?
TD(λ) for Averaging n-Step Returns

$1 - \lambda$

$(1 - \lambda)\lambda$

$(1 - \lambda)\lambda^2$

$(1 - \lambda)\lambda^{n-1}$

$1 + \lambda + \lambda^2 + \cdots = \frac{1}{1 - \lambda}$

$(1 - \lambda)\lambda^{T-t-1}$
TD(\(\lambda\)) for Averaging \(n\)-Step Returns

- The \(\lambda\)-return \(G_t^{\lambda}\) combines all \(n\)-step returns \(G_t^{(n)}\)
- Using weight \((1 - \lambda)\lambda^{n-1}\)

\[
G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}
\]

- Forward-view TD(\(\lambda\))

\[
V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\lambda} - V(S_t))
\]
TD(λ) for Averaging n-Step Returns

- When \(\lambda = 1 \), \(G_t^\lambda = G_t \), which returns to Monte-Carlo method.
- When \(\lambda = 0 \), \(G_t^\lambda = G_t^{(1)} \), which returns to one-step TD.

![Diagram Illustrating TD(λ) for Averaging n-Step Returns]

\[
G_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t
\]
TD(λ) vs. n-step TD

RMS error at the end of the episode over the first 10 episodes
Off-line

19-state Random walk results

• The results with off-line λ-return algorithms are slightly better at the best value of α and λ