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Learning Theory
• Theorems that characterize classes of learning 

problems or specific algorithms in terms of 
computational complexity or sample complexity

• i.e. the number of training examples necessary or 
sufficient to learn hypotheses of a given accuracy
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Learning Theory
• Complexity of a learning problem depends on:

• Size or expressiveness of the hypothesis space
• Accuracy to which target concept must be approximated
• Probability with which the learner must produce a successful 

hypothesis
• Manner in which training examples are presented, e.g. randomly 

or by query to an oracle
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Model Selection
• Which model is the best?

• Underfitting occurs when a statistical model or machine learning 
algorithm cannot capture the underlying trend of the data.

• Overfitting occurs when a statistical model describes random error or 
noise instead of the underlying relationship

Linear model: underfitting 4th-order model: well fitting 15th-order model: overfitting



Regularization
• Add a penalty term of the parameters to prevent 

the model from overfitting the data

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)



Content
• Learning Theory

• Bias-Variance Decomposition
• Finite Hypothesis Space ERM Bound
• Infinite Hypothesis Space ERM Bound
• VC Dimension

• Model Selection
• Cross Validation
• Feature Selection
• Occam’s Razor for Bayesian Model Selection



Bias Variance 
Decomposition



Bias-Variance Decomposition
• Bias-Variance Decomposition

• Assume                             where
• Then the expected prediction error at an input point x0
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Bias-Variance Decomposition
• Bias-Variance Decomposition

• Assume                             where
• Then the expected prediction error at an input point x0

Observation
noise

(Irreducible
error)
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Illustration of Bias-Variance

f(x)f(x)

f̂(x)f̂(x)

BiasHigh Low

VarianceLow High

RegularizationHigh Low

Figures provided by Max Welling



Illustration of Bias-Variance

• Training error measures bias, but ignores variance.
• Testing error / cross-validation error measures both 

bias and variance.

Figures provided by Max Welling

regularization



Bias-Variance Decomposition

Regularized fit

Closest fit

Estimation 
Variance

Model bias

Estimation bias

Truth

Realization
Closest fit in population

RESTRICED 
MODEL SPACE

MODEL SPACE

• Schematic of the behavior of bias and variance

Slide credit Liqing Zhang



Hypothesis Space ERM 
Bound
Empirical Risk Minimization
Finite Hypothesis Space
Infinite Hypothesis Space



Machine Learning Process

• After selecting ‘good’ hyperparameters, we train 
the model over the whole training data and the 
model can be used on test data.
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Generalization Ability
• Generalization Ability is the model prediction 

capacity on unobserved data
• Can be evaluated by Generalization Error, defined by

R(f) = E[L(Y; f(X))] =

Z
X£Y

L(y; f(x))p(x; y)dxdyR(f) = E[L(Y; f(X))] =

Z
X£Y

L(y; f(x))p(x; y)dxdy

• where                is the underlying (probably unknown) 
joint data distribution
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• Empirical estimation of GA on a training dataset is



For any function            , with probability no less 
than           , it satisfies

where

• N: number of training instances
• d: number of functions in the hypothesis set

A Simple Case Study on Generalization Error

• Finite hypothesis set
• Theorem of generalization error bound:
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Section 1.7 in Dr. Hang Li’s text book.



Lemma: Hoeffding Inequality
Let                          be bounded independent random 
variables                  , the average variable Z is

Then the following inequalities satisfy:

X1;X2; : : : ;XNX1;X2; : : : ;XN
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http://cs229.stanford.edu/extra-notes/hoeffding.pdf



Proof of Generalized Error Bound

• Based on Hoeffding Inequality, for            , we have ² > 0² > 0

P (R(f)¡ R̂(f) ¸ ²) · exp(¡2N²2)P (R(f)¡ R̂(f) ¸ ²) · exp(¡2N²2)

• As                                     is a finite set, it satisfies F = ff1; f2; : : : ; fdgF = ff1; f2; : : : ; fdg
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0 · R(f) · 10 · R(f) · 1• For binary classification, the error rate



Proof of Generalized Error Bound

• Equivalence statements
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For Infinite Hypothesis Space
• Many hypothesis classes, including any 

parameterized by real numbers actually contain an 
infinite number of functions

• E.g., linear models, neural networks

f(x) = μ0 + μ1x1 + μ2x2f(x) = μ0 + μ1x1 + μ2x2 f(x) = ¾(W3(W2 tanh(W1x + b1) + b2) + b3)f(x) = ¾(W3(W2 tanh(W1x + b1) + b2) + b3)



Quantizing Real Numbers
• Suppose we have an H hypothesis that is parameterized by 

m real numbers
• In a computer, each real number is represented using 64 bits 

(double floating)
• Thus the hypothesis class actually consists of at most d=264m

difference hypotheses
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Sample Complexity
• For a model parameterized by m real numbers, in order to 

acquire the generalization error no higher than      with at 
least            probability, we need N training samples such 
that
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• which is linear w.r.t. the parameter number



Examples of Sample Complexity
• For fitting linear regression on k-dimensional data 

f(x) = μ0 + μ1xf(x) = μ0 + μ1x f(x) = μ0 + μ1x1 + μ2x2f(x) = μ0 + μ1x1 + μ2x2

For 1-dimension data linear 
regression, we normally need 
around 10 points to fit a 
straight line with some 
confidence

For 2-dimension data linear 
regression, we normally need 
around 20 points to fit a 
hyperplane with some 
confidence



Examples of Sample Complexity
• For fitting linear regression on k-dimensional data 

f(x) = μ0 +
106X
i=1

μixif(x) = μ0 +
106X
i=1

μixi

For 1-million dimensional data linear regression, we normally need 
around 10 million points to fit a straight line with some confidence

x=[Weekday=Friday, Gender=Male, City=Shanghai, …]

x=[0,0,0,0,1,0,0 0,1 0,0,1,0…0, …]

• A standard feature engineering paradigm

1 5:1 9:1 12:1 45:1 154:1 509:1 4089:1 45314:1 988576:1
0 2:1 7:1 18:1 34:1 176:1 510:1 3879:1 71310:1 818034:1

…



VC Dimensions



Shattering
• Definition

• A model class can shatter a set of points

x(1); x(2); : : : ; x(n)x(1); x(2); : : : ; x(n)

if for every possible labeling over those points, there exists 
a model in that class that obtains zero training error.

For example, linear model class shatters above three-point set



VC Dimension
• The larger the subset of X that can be shattered, 

the more expressive the hypothesis space is, i.e. 
the less biased.

• The Vapnik-Chervonenkis dimension, VC(H), of 
hypothesis space H defined over instance space 
X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite subsets 
of X can be shattered then VC(H) = ∞

Ray Mooney

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• To shatter m instances, we need |H| ≥ 2m, thus
VC(H) = m ≤ log2|H|

Alexey Chervonenkis

Vladimir Vapnik



Vapnik & Chervonenkis

26 November 2014 22 September 2014



VC Dimension Example
• Consider linear models in the real-plane. Some 3 instances 

can be shattered.

All 8 possible labeling can be separated.



VC Dimension Example
• Consider linear models in the real-plane. Some 3 instances 

lying in a straight line can NOT be shattered.

• As we can find a 3-instance set to shatter by the linear 
model, the VC dimension of linear models is at least 3



VC Dimension Example
• Consider axis-parallel rectangles in the real-plane, i.e. 

conjunctions of intervals on two real-valued features. Some 
4 instances can be shattered.

Some 4 instances cannot be shattered:

Ray Mooney



VC Dimension Example (cont)
• No five instances can be shattered since there can be at 

most 4 distinct extreme points (min and max on each of the 
2 dimensions) and these 4 cannot be included without 
including any possible 5th point.

• Therefore VC(H) = 4
• Generalizes to axis-parallel hyper-rectangles (conjunctions 

of intervals in n dimensions): VC(H)=2n.

Ray Mooney



Upper Bound on Sample Complexity with VC

• Using VC dimension as a measure of expressiveness, the 
following number of examples have been shown to be 
sufficient for PAC Learning (Blumer et al., 1989).

• Compared to the previous result using log|H|, this bound 
has some extra constants and an extra log2(1/ε) factor. Since 
VC(H) ≤ log2|H|, this can provide a tighter upper bound on 
the number of examples needed for PAC learning.
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Some Examples of VC Dimension
• The VC dimension of a hyperplane in d dimension  

is d+1
• It is a coincidence that the VC dimension of a hyperplane 

is almost identical to the number of parameters needed 
to define a hyperplane

f(x) = μ0 + μ1x1 + μ2x2f(x) = μ0 + μ1x1 + μ2x2



Some Examples of VC Dimension
• A sine wave has infinite VC dimension but only 2 

parameters
• By choosing the phase & period carefully we can shatter 

any random set of 1D data points

h(x) = sin(ax + b)h(x) = sin(ax + b)

http://mlweb.loria.fr/book/en/VCdiminfinite.html



Some Examples of VC Dimension
• Neural networks with some types of activation functions 

also have infinite VC dimension

Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." arXiv preprint arXiv:1611.03530 (2016).

• Dataset: CIFAR-10
• 50,000 training 

images
• Net: Inception 

model

• MLP also converges 
to zero training loss 
on random labels 
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Cross Validation for Model Selection
Training

Data
Original 
Training 

Data

Model

Evaluation

Validation
Data

Random 
Split

• For example, 5-fold cross validation
• Split the dataset into 5 folds

1 2 3 4 5

• Cross validation 1: train the model on 1,2,3,4, and validate on 5
• Cross validation 2: train the model on 2,3,4,5, and validate on 1
• …



Cross Validation for Model Selection

K-fold Cross Validation
1. Set hyperparameters
2. For K times repeat: 

• Randomly split the original training data into training and validation 
datasets

• Train the model on training data and evaluate it on validation data, 
leading to an evaluation score

3. Average the K evaluation scores as the model performance

Training
Data

Original 
Training 

Data

Model

Evaluation

Validation
Data

Random 
Split



Machine Learning Process

• After selecting ‘good’ hyperparameters, we train 
the model over the whole training data and the 
model can be used on test data.

Training
Data

Data 
Formaliz-

ation

Model

Evaluation

Test
Data

Raw 
Data

Raw 
Data



Data Representation

• The data is formalized into feature representation
• How to select ‘good’ features to improve model 

performance? i.e. generalization ability

Training
Data

Data 
Formaliz-

ation

Model

Evaluation

Test
Data

Raw 
Data

Raw 
Data



Features in Computer Vision

SIFT Spin image

HoG RIFT

Textons GLOH



Features in Text Classification
• Input text
SJTU is a public research university in Shanghai, China, 
established in 1896. Now it is one of C9 universities in China.

• Bag-of-words representation

SJTU:1, is:2, a:1, public:1, research:1, university:2, in:3, 
Shanghai:1, China:2, establish:1, 1896:1, now:1, it:1, one:1, 
of:1

• The size of vocabulary would be over 100k



Feature Selection
• Various feature representations make each data 

instance formalized into a high-dimensional vector
• which needs a large number of training instances for a 

reliable model, i.e. the generalization error is small
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• We have already known GE is decomposed as
Err(x0) = ¾2

² + Bias2(f̂(x0)) + Var(f̂(x0))Err(x0) = ¾2
² + Bias2(f̂(x0)) + Var(f̂(x0))

• Small number of features may increase the model bias
• Large number of features may increase the variance
• Feature selection: a trade-off between bias and variance



L1 Regularization for Feature Selection

• L2-Norm (Ridge)

min
μ

1

N

NX
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• L1-Norm (LASSO)
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m=1

μ2m
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jμmj



Feature Selection Methods
• Unsupervised

Linear Non-linear
Selection Correlation 

between inputs
Mutual information 
between inputs

Projection Principal 
component analysis

Sammon’s mapping, 
Self-organizing maps

• Supervised
Linear Non-linear

Selection Correlation between inputs 
and target

Mutual information between 
inputs and target, greedy 
selection, genetic algorithms

Projection Linear discriminant analysis, 
partial least squares

Multilayer perceptrons, 
auto-encoders, projection 
pursuit



Feature Selection Methods Study
• Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature 

selection in text categorization." ICML. Vol. 97. 1997.

• Studied task: text classification
• Features: bag of words, each dimension represents a term
• Instances: a document of words (terms)
• Target: one of m classes of the document



Feature Selection Methods
• Document frequency (DF)

• i.e., the number of documents in which a feature occurs
• Select the high DF features

• Assumption: low frequency features are either non-informative 
or not influential for global performance

• Information Gain (IG)
• IG measures the information obtained for target 

prediction by knowing the feature

Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.

G(t) =¡
mX

i=1

P (ci) log P (ci)

+ P (t)
mX

i=1

P (cijt) log P (cijt) + P (¹t)
mX

i=1

P (cij¹t) log P (cij¹t)

G(t) =¡
mX

i=1

P (ci) log P (ci)

+ P (t)
mX

i=1

P (cijt) log P (cijt) + P (¹t)
mX

i=1

P (cij¹t) log P (cij¹t)



Feature Selection Methods
• Mutual Information (MI)

• MI of two random variables is a measure of the mutual 
dependence between the two variables

Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.

I(X;Y ) =
X
y2Y

X
x2X

log
p(x; y)

p(x)p(y)
I(X;Y ) =

X
y2Y

X
x2X

log
p(x; y)

p(x)p(y)

• For MI between a feature t and the target c (as two 
random variables)

I(t; c) = log
P (t; c)

P (t)P (c)
' log

A£N

(A + C)£ (A + B)
I(t; c) = log

P (t; c)

P (t)P (c)
' log

A£N

(A + C)£ (A + B)

• A: #. documents t and c co-occur
• B: #. documents t occurs without c
• C: #. documents c occurs without t
• N: #. documents in total



Feature Selection Methods
• Mutual Information (MI)

• MI of two random variables is a measure of the mutual 
dependence between the two variables

Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.

I(X;Y ) =
X
y2Y

X
x2X

log
p(x; y)

p(x)p(y)
I(X;Y ) =

X
y2Y

X
x2X

log
p(x; y)

p(x)p(y)

• For MI between a feature t and the target c (as two 
random variables)

I(t; c) = log
P (t; c)

P (t)P (c)
' log

A£N

(A + C)£ (A + B)
I(t; c) = log

P (t; c)

P (t)P (c)
' log

A£N

(A + C)£ (A + B)

• Two ways of measuring the goodness of a feature

Iavg(t) =
mX

i=1

P (ci)I(t; ci)Iavg(t) =
mX

i=1

P (ci)I(t; ci) Imax(t) =
m

max
i=1

fI(t; ci)gImax(t) =
m

max
i=1

fI(t; ci)g



Feature Selection Methods
• Statistic (CHI)

• Measures the lack of independence between t and c

Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.

Â2(t; c) =
N £ (AD ¡ CB)2

(A + C)£ (B + D)£ (A + B)£ (C + D)
Â2(t; c) =

N £ (AD ¡ CB)2

(A + C)£ (B + D)£ (A + B)£ (C + D)

• A: #. documents t and c co-occur
• B: #. documents t occurs without c
• C: #. documents c occurs without t
• D: #. documents neither c not t occurs
• N: #. documents in total

Â2Â2

• Two ways of measuring the goodness of a feature

Iavg(t) =
mX

i=1

P (ci)Â
2(t; ci)Iavg(t) =

mX
i=1

P (ci)Â
2(t; ci) Imax(t) =

m
max
i=1

fÂ2(t; ci)gImax(t) =
m

max
i=1

fÂ2(t; ci)g



Empirical Performance

kNN on Reuters dataset: 9610 training document, 3662 test documents
Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.



Empirical Performance

Linear model on Reuters dataset: 9610 training document, 3662 test documents
Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text categorization." Icml. Vol. 97. 1997.



“Occam’s Razor” Result (Blumer et al., 1987)

• Assume that a concept can be represented using at most n
bits in some representation language.

• Given a training set, assume the learner returns the 
consistent hypothesis representable with the least number 
of bits in this language.

• Therefore the effective hypothesis space is all concepts 
representable with at most n bits.

• Since n bits can code for at most 2n hypotheses, |H|=2n, 
sample complexity is bounded by:

N ¸
³

log
1

±
+ log 2n

´
=² =

³
log

1

±
+ n log 2

´
=²N ¸

³
log

1

±
+ log 2n

´
=² =

³
log

1

±
+ n log 2

´
=²

Ray Mooney



Principle of Occam's razor

Among competing hypotheses, the one with 
the fewest assumptions should be selected.

• Recall the function set              is called hypothesis 
space

ffμ(¢)gffμ(¢)g

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)

Original loss Penalty on assumptions

Ray Mooney



Model Selection

• An ML solution has model parameters      and 
optimization hyperparameters

• Hyperparameters
• Define higher level concepts about the model such as 

complexity, or capacity to learn.
• Cannot be learned directly from the data in the standard 

model training process and need to be predefined.
• Can be decided by setting different values, training different 

models, and choosing the values that test better
• Model selection (or hyperparameter optimization) 

cares how to select the optimal hyperparameters.

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj22min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj22

μμ
¸̧



Bayesian Occam’s Razor
• For a model H and the observed data D, the posterior of the 

parameter is

p(wjD;H) =
p(Djw;H)p(wjH)

p(DjH)
p(wjD;H) =

p(Djw;H)p(wjH)

p(DjH)

• Bayes’ rule also provides a posterior over models
p(HjD) / p(DjH)p(H)p(HjD) / p(DjH)p(H)

p(DjH) =

Z
w

p(Djw;H)p(wjH)dwp(DjH) =

Z
w

p(Djw;H)p(wjH)dw

http://mlg.eng.cam.ac.uk/zoubin/papers/05occam/occam.pdf

• H1 is a simple model focusing on 
data in region C1

• H2 is a complex model which can 
model data in a wider region



Bayesian Occam’s Razor

http://rsta.royalsocietypublishing.org/content/371/1984/20110553

p(DjH)p(DjH)

• A complex model spreads its mass over many more possible datasets
• A simple model concentrates its mass on a smaller fraction of possible data
• The normalization                                  is what results in an automatic Occam razor

R
D p(DjH)dD = 1

R
D p(DjH)dD = 1



Interpretation of “Occam’s Razor” Result

• Since the encoding is unconstrained it fails to 
provide any meaningful definition of “simplicity.”

• Hypothesis space could be any sufficiently small 
space, such as “the 2n most complex boolean
functions, where the complexity of a function is the 
size of its smallest DNF representation”

• Assumes that the correct concept (or a close 
approximation) is actually in the hypothesis space, 
so assumes a priori that the concept is simple.

• Does not provide a theoretical justification of 
Occam’s Razor as it is normally interpreted.

APPENDIX


