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Self Introduction – Weinan Zhang
• Position

• Assistant Professor at John Hopcroft Center, CS Dept. of 
SJTU 2016-now

• Apex Data and Knowledge Management Lab
• Research on machine learning and data mining topics

• Education
• Ph.D. on Computer Science from University College 

London (UCL), United Kingdom, 2012-2016
• B.Eng. on Computer Science from ACM Class 07 of 

Shanghai Jiao Tong University, China, 2007-2011



Course Administration
• No official text book for this course, some 

recommended books are

• 李航《统计学习方法》清华大学出版社，2012.
• 周志华《机器学习》清华大学出版社，2016.
• Tom Mitchell. “Machine Learning”. McGraw-Hill, 1997
• Jerome H. Friedman, Robert Tibshirani, and Trevor 

Hastie. “The Elements of Statistical Learning”. Springer 
2004.

• Chris Bishop. “Pattern Recognition and Machine 
Learning”. Springer 2006.

• Richard S. Sutton and Andrew G. Barto. “Reinforcement 
Learning: An Introduction”. MIT, 2012.



Course Administration
• A hands-on machine learning course

• No assignment, no paper exam

• Select two out of three course works (80%)
• Text Classification (40%)
• Item Recommendation (40%)
• City Traffic Light Control (40%)

• Poster session (10%)

• Attending (10%)
• Could be evaluated by classroom quiz



Teaching Assistants
• Zhou Fan (范舟), ACM16, ApexLab

• Email: zhou.fan [at] sjtu.edu.cn
• Research on reinforcement learning and 

mechanism design

• Siyuan Feng (冯思远), ACM16, ApexLab
• Email: hzfengsy [at] sjtu.edu.cn
• Research on urban data computing, machine 

learning system and reinforcement learning

• Yutong Xie (谢雨桐), ACM16, ApexLab
• Email: xxxxyt [at] sjtu.edu.cn
• Research on natural language processing and 

multi-task learning



TA Administration
• Join the mail list 

• Please send your
• Chinese name
• Student number
• Email address

to Yutong Xie xxxxyt [A.T] sjtu.edu.cn
with email title “Check in CS420 2019”

• Office hour
• Every Wednesday 7-8pm, 307 Yifu Building
• TAs will be there for QA



Goals of This Course
• Know about the big picture of machine learning

• Get familiar with popular ML methodologies
• Data representations
• Models
• Learning algorithms
• Experimental methodologies

• Get some first-hand ML developing experiences

• Present your own ML solutions to real-world 
problems



Why we focus on hands-on ML

• So play with the data and get your hands dirty!

Academia
Theoretical novelty

Industry

Large-scale
practice

Startup

Application
novelty

Hands-on
ML

experience

CommunicationSolid math

Solid
engineering



Course Landscape

1. ML Introduction
2. Linear Models
3. SVMs and Kernels [cw1]

4. Neural Networks
5. Tree Models
6. Ensemble Models
7. Ranking and Filtering [cw2]

8. Graphic Models

9. Unsupervised Learning
10. Model Selection
11. RL Introduction [cw3]

12. Model-free RL
13. Multi-agent RL
14. Transfer & Meta Learning
15. Advanced ML
16. Poster Session
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Learning
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Artificial Intelligence
• Intelligence is the computational part of the ability 

to achieve goals in the world.

• Artificial intelligence (AI) is intelligence exhibited by 
machines.

• The subject AI is about the methodology of 
designing machines to accomplish intelligence-
based tasks.

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html



Methodologies of AI
• Rule-based

• Implemented by direct programing
• Inspired by human heuristics

• Data-based
• Expert systems

• Experts or statisticians create rules of predicting or decision 
making based on the data

• Machine learning
• Direct making prediction or decisions based on the data
• Data Science



What is Data Science
• Physics

• Goal: discover the 
underlying principle of the 
world

• Solution: build the model of 
the world from observations

• Data Science
• Goal: discover the 

underlying principle of the 
data

• Solution: build the model of 
the data from observations

F = G
m1m2

r2
F = G

m1m2

r2 p(x) =
ef(x)P
x0 e

f(x0)p(x) =
ef(x)P
x0 e

f(x0)



Data Science

• Mathematically

• Find joint data 
distribution

• Then the conditional 
distribution

p(x)p(x)

p(x2jx1)p(x2jx1)

p(x) =
1p

2¼¾2
e¡

(x¡¹)2

2¾2p(x) =
1p

2¼¾2
e¡

(x¡¹)2

2¾2p(x) =
e¡(x¡¹)>§¡1(x¡¹)pj2¼§jp(x) =
e¡(x¡¹)>§¡1(x¡¹)pj2¼§j

• Gaussian distribution
• Multivariate • Univariate



A Simple Example in User Behavior Modeling

Interest Gender Age BBC Sports PubMed Bloomberg 
Business

Spotify

Finance Male 29 Yes No Yes No
Sports Male 21 Yes No No Yes

Medicine Female 32 No Yes No No
Music Female 25 No No No Yes

Medicine Male 40 Yes Yes Yes No

• Joint data distribution 
p(Interest=Finance, Gender=Male, Age=29, Browsing=BBC Sports,Bloomberg Business)

• Conditional data distribution
p(Interest=Finance | Browsing=BBC Sports,Bloomberg Business)

p(Gender=Male | Browsing=BBC Sports,Bloomberg Business)



Data Technology

Data itself is not valuable, data service is!



What is Machine Learning
• Learning

“Learning is any process by 
which a system improves 
performance from 
experience.”

--- Herbert Simon
Carnegie Mellon University

Turing Award (1975)
artificial intelligence, the psychology of human cognition

Nobel Prize in Economics (1978)
decision-making process within economic organizations



What is Machine Learning
A more mathematical definition by Tom Mitchell

• Machine learning is the study of algorithms that
• improve their performance P
• at some task T
• based on experience E
• with non-explicit programming

• A well-defined learning task is given by <P, T, E>



Programming vs. Machine Learning

• Traditional Programming

Program

Input

Human
Programmer Output

Slide credit: Feifei Li

• Machine Learning

Program

Input

OutputLearning
AlgorithmData



When does ML Make Advantages

ML is used when
• Models are based on a huge amount of data

• Examples: Google web search, Facebook news feed
• Output must be customized

• Examples: News / item / ads recommendation
• Humans cannot explain the expertise

• Examples: Speech / face recognition, game of Go
• Human expertise does not exist

• Examples: Navigating on Mars



Two Kinds of Machine Learning
• Prediction

• Predict the desired output given the data (supervised 
learning)

• Generate data instances (unsupervised learning)

• Decision Making
• Take actions in a dynamic environment (reinforcement 

learning)
• to transit to new states
• to receive immediate reward
• to maximize the accumulative reward over time



Trends

https://www.google.com/trends
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Some ML Use Cases



ML Use Case 1: Web Search

• Query suggestion

• Page ranking



ML Use Case 2: News Recommendation
• Predict whether a user 

will like a news given its 
reading context



ML Use Case 3: Online Advertising

• Whether the user likes the ads
• How advertisers set bid price



ML Use Case 3: Online Advertising

• Whether the user likes the ads • How advertisers set bid price

https://github.com/wnzhang/rtb-papers



ML Use Case 4: Information Extraction

Webpage Keywords



ML Use Case 4: Information Extraction

• Structural information extraction and illustration

Gmail Google Now

Zhang, Weinan, et al. Annotating needles in the haystack without looking: Product information extraction from emails. KDD 2015.



ML Use Case 4: Information Extraction
• Clinical medicine structural information extraction

Zhenghui Wang, Weinan Zhang et al. Label-aware Double Transfer Learning for Cross Specialty Medical Named Entity Recognition. NAACL 2018.



ML Use Case 5: Medical Image Analysis

• Breast Cancer Diagnoses

Wang, Dayong, et al. "Deep learning for identifying metastatic breast cancer." arXiv preprint arXiv:1606.05718 (2016).
https://blogs.nvidia.com/blog/2016/09/19/deep-learning-breast-cancer-diagnosis/



ML Use Case 6: Financial Data Prediction

• Predict the trend and volatility of financial data

Rui Luo, Xiaojun Xu, Weinan Zhang et al. A Neural Stochastic Volatility Model. AAAI 2018. 



ML Use Case 7: Social Networks
• Friends/Tweets/Job Candidates suggestion



ML Use Case 8: Anomaly Detection
• Detect malicious calls

Huichen Li, Xiaojun Xu, Weinan Zhang et al. A Machine Learning Approach To Prevent Malicious Calls Over Telephony Networks. Oakland 2018.



ML Use Case 9: Interactive Recommendation

• Douban.fm music recommend and feedback
• The machine needs to make decisions, not just prediction

Xiaoxue Zhao, Weinan Zhang et al. Interactive Collaborative Filtering. CIKM 2013.



ML Use Case 10: Robotics Control
• Stanford Autonomous Helicopter

• http://heli.stanford.edu/



ML Use Case 10: Robotics Control
• Ping pong robot

• https://www.youtube.com/watch?v=tIIJME8-au8



ML Use Case 11: Self-Driving Cars
• Google Self-Driving Cars

• https://www.google.com/selfdrivingcar/



ML Use Case 12: Game Playing
• Take actions given screen pixels

• https://gym.openai.com/envs#atari

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.



ML Use Case 13: AlphaGo

IBM Deep Blue (1996)
• 4-2 Garry Kasparov on Chess
• A large number of crafted rules
• Huge space search

Google AlphaGo (2016)
• 4-1 Lee Sedol on Go
• Deep machine learning on big data

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search."
Nature 529.7587 (2016): 484-489.



ML Use Case 14: Text Generation
• Making decision of selecting the next word/char
• Chinese poem example. Can you distinguish?

南陌春风早，东邻去日斜。

紫陌追随日，青门相见时。

胡风不开花，四气多作雪。

山夜有雪寒，桂里逢客时。

此时人且饮，酒愁一节梦。

四面客归路，桂花开青竹。

Human Machine

Lantao Yu, Weinan Zhang, et al. Seqgan: sequence generative adversarial nets with policy gradient. AAAI 2017.
Jiaxian Guo, Sidi Lu, Weinan Zhang et al. Long Text Generation via Adversarial Training with Leaked Information. AAAI 2018.



ML Use Case 15: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Wolfpack game
• Red agents are the predators
• Blue agent is the prey
• Red agent gets close to blue

agent to make a capture, then
the whole team gets a reward

Results
• Red agents learn to cooperate.



ML Use Case 15: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Leibo, Joel Z., et al. "Multi-agent Reinforcement Learning in Sequential Social Dilemmas." AAMAS 2017.

Gathering game
• Red and blue agents are compete for 

food
• Each agent can either move to eat or 

attack the other to make it paused

Results
• Red agents learn to compete 

when food resource is
insufficient.



ML Use Case 15: Multi-Agent Game Playing

• Multi-agent game playing
• Learning to cooperate and compete

Peng Peng, Jun Wang et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to 
Play StarCraft Combat Games. NIPS workshop 2017. 



ML Use Case 16: Many-Agent Interactions
• MAgent game: aligning

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 



ML Use Case 16: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: city simulation



ML Use Case 16: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: battle



ML Use Case 16: Many-Agent Interactions

Lianmin Zheng, Jiacheng Yang et al. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence. NIPS 2017 & AAAI 2018 Demos. 

• MAgent game: battle



History of Machine Learning
• 1950s

• Samuel’s checker player
• Machine learning term created

• 1960s
• Neural networks: Perceptron
• Pattern recognition 
• Minsky and Papert prove limitations of Perceptron

• 1970s
• Symbolic concept induction
• Winston’s arch learner
• Expert systems and the knowledge acquisition bottleneck
• Quinlan’s ID3
• Mathematical discovery with AM

Slide credit: Ray Mooney

Arthur Samuel 
coined the term 
“machine learning” 
in 1959



History of Machine Learning
• 1980s

• Advanced decision tree and rule learning
• Explanation-based Learning (EBL)
• Learning and planning and problem solving
• Utility problem
• Analogy
• Cognitive architectures
• Resurgence of neural networks (connectionism, backpropagation)
• Valiant’s PAC Learning Theory
• Focus on experimental methodology

• 1990s
• Data mining
• Adaptive software agents and web applications
• Text learning
• Reinforcement learning (RL)
• Inductive Logic Programming (ILP)
• Ensembles: Bagging, Boosting, and Stacking
• Bayes Net learning
• Support vector machines
• Kernel methods

Slide credit: Ray Mooney



History of Machine Learning
• 2000s

• Graphical models
• Variational inference
• Statistical relational learning
• Transfer learning
• Sequence labeling
• Collective classification and structured outputs
• Computer systems applications

• Compilers
• Debugging
• Graphics
• Security (intrusion, virus, and worm detection)

• Email management
• Personalized assistants that learn
• Learning in robotics and vision

Slide credit: Ray Mooney



History of Machine Learning
• 2010s

• Deep learning
• Learning from big data
• Learning with GPUs or HPC
• Multi-task & lifelong learning
• Deep reinforcement learning
• Massive applications to vision, speech, text, networks, 

behavior etc.
• Meta-learning and AutoML
• …

Slide credit: Ray Mooney



Machine Learning Categories
• Supervised Learning

• To provide the desired output given the data and labels

• Unsupervised Learning
• To analyze and make use of the underlying data 

patterns/structures

• Reinforcement Learning
• To learn a policy of taking actions in a dynamic 

environment and acquire rewards



Machine Learning Process

• Basic assumption: there exist the same patterns 
across training and test data

Training
Data

Data 
Formaliz-

ation

Model

Evaluation

Test
Data

Raw 
Data

Raw 
Data



Supervised Learning
• Given the training dataset of (data, label) pairs, 

let the machine learn a function from data to label

• Function set              is called hypothesis space
• Learning is referred to as updating the parameter
• How to learn?

• Update the parameter to make the prediction close to 
the corresponding label

• What is the learning objective?
• How to update the parameters?

D = f(xi; yi)gi=1;2;:::;ND = f(xi; yi)gi=1;2;:::;N

yi ' fμ(xi)yi ' fμ(xi)

μμ

ffμ(¢)gffμ(¢)g



Learning Objective
• Make the prediction close to the corresponding 

label

• Loss function                         measures the error 
between the label and prediction

• The definition of loss function depends on the data 
and task

• Most popular loss function: squared loss

min
μ

1

N

NX
i=1

L(yi; fμ(xi))min
μ

1

N

NX
i=1

L(yi; fμ(xi))

L(yi; fμ(xi))L(yi; fμ(xi))

L(yi; fμ(xi)) =
1

2
(yi ¡ fμ(xi))

2L(yi; fμ(xi)) =
1

2
(yi ¡ fμ(xi))

2



Squared Loss

• Penalty much 
more on larger 
distances

• Accept small 
distance (error) 

• Observation 
noise etc.

• Generalization

L(yi; fμ(xi)) =
1

2
(yi ¡ fμ(xi))

2L(yi; fμ(xi)) =
1

2
(yi ¡ fμ(xi))

2



Gradient Learning Methods

μnew Ã μold ¡ ´
@L(μ)

@μ
μnew Ã μold ¡ ´

@L(μ)

@μ

L(μ)L(μ)



A Simple Example

• Observing the data                                 , we can use 
different models (hypothesis spaces) to learn

• First, model selection (linear or quadratic)
• Then, learn the parameters

f(x) = μ0 + μ1xf(x) = μ0 + μ1x f(x) = μ0 + μ1x + μ2x
2f(x) = μ0 + μ1x + μ2x
2

f(xi; yi)gi=1;2;:::;Nf(xi; yi)gi=1;2;:::;N

An example from Andrew Ng



Learning Linear Model - Curve

f(x) = μ0 + μ1xf(x) = μ0 + μ1x



Learning Linear Model - Weights

f(x) = μ0 + μ1xf(x) = μ0 + μ1x



Learning Quadratic Model

f(x) = μ0 + μ1x + μ2x
2f(x) = μ0 + μ1x + μ2x
2



Learning Cubic Model

f(x) = μ0 + μ1x + μ2x
2 + μ3x

3f(x) = μ0 + μ1x + μ2x
2 + μ3x

3



Model Selection
• Which model is the best?

• Underfitting occurs when a statistical model or machine learning 
algorithm cannot capture the underlying trend of the data.

• Overfitting occurs when a statistical model describes random error or 
noise instead of the underlying relationship

Linear model: underfitting Quadratic model: well fitting 5th-order model: overfitting



Model Selection
• Which model is the best?

• Underfitting occurs when a statistical model or machine learning 
algorithm cannot capture the underlying trend of the data.

• Overfitting occurs when a statistical model describes random error or 
noise instead of the underlying relationship

Linear model: underfitting 4th-order model: well fitting 15th-order model: overfitting



Regularization
• Add a penalty term of the parameters to prevent 

the model from overfitting the data

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)



Typical Regularization
• L2-Norm (Ridge)

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj22min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj22

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj1min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸jjμjj1

• L1-Norm (LASSO)

Ð(μ) = jjμjj22 =
MX

m=1

μ2mÐ(μ) = jjμjj22 =
MX

m=1

μ2m

Ð(μ) = jjμjj1 =
MX

m=1

jμmjÐ(μ) = jjμjj1 =
MX

m=1

jμmj



More Normal-Form Regularization

• Contours of constant value of  
X

j

jμj jq
X

j

jμj jq

Ridge LASSO

• Sparse model learning with q not higher than 1
• Seldom use of q > 2
• Actually, 99% cases use q = 1 or 2



Principle of Occam's razor

Among competing hypotheses, the one with 
the fewest assumptions should be selected.

• Recall the function set              is called hypothesis 
space

ffμ(¢)gffμ(¢)g

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸Ð(μ)

Original loss Penalty on assumptions



Model Selection

• An ML solution has model parameters      and 
optimization hyperparameter

• Hyperparameters
• Define higher level concepts about the model such as 

complexity, or capacity to learn.
• Cannot be learned directly from the data in the standard 

model training process and need to be predefined.
• Can be decided by setting different values, training different 

models, and choosing the values that test better
• Model selection (or hyperparameter optimization) 

cares how to select the optimal hyperparameters.

min
μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸kμk2
2min

μ

1

N

NX
i=1

L(yi; fμ(xi)) + ¸kμk2
2

μμ
¸̧



Cross Validation for Model Selection

K-fold Cross Validation
1. Set hyperparameters
2. For K times repeat: 

• Randomly split the original training data into training and validation 
datasets

• Train the model on training data and evaluate it on validation data, 
leading to an evaluation score

3. Average the K evaluation scores as the model performance

Training
Data

Original 
Training 

Data

Model

Evaluation

Validation
Data

Random 
Split



Machine Learning Process

• After selecting ‘good’ hyperparameters, we train 
the model over the whole training data and the 
model can be used on test data.

Training
Data

Data 
Formaliz-

ation

Model

Evaluation

Test
Data

Raw 
Data

Raw 
Data



Generalization Ability
• Generalization Ability is the model prediction 

capacity on unobserved data
• Can be evaluated by Generalization Error, defined by

R(f) = E[L(Y; f(X))] =

Z
X£Y

L(y; f(x))p(x; y)dxdyR(f) = E[L(Y; f(X))] =

Z
X£Y

L(y; f(x))p(x; y)dxdy

• where                is the underlying (probably unknown) 
joint data distribution

p(x; y)p(x; y)

R̂(f) =
1

N

NX
i=1

L(yi; f(xi))R̂(f) =
1

N

NX
i=1

L(yi; f(xi))

• Empirical estimation of GA on a training dataset is



For any function            , with probability no less 
than           , it satisfies

where

• N: number of training instances
• d: number of functions in the hypothesis set

A Simple Case Study on Generalization Error

• Finite hypothesis set
• Theorem of generalization error bound:

F = ff1; f2; : : : ; fdgF = ff1; f2; : : : ; fdg

f 2 Ff 2 F
1¡ ±1¡ ±

R(f) · R̂(f) + ²(d;N; ±)R(f) · R̂(f) + ²(d;N; ±)

²(d;N; ±) =

r
1

2N

³
log d + log

1

±

´
²(d;N; ±) =

r
1

2N

³
log d + log

1

±

´

Section 1.7 in Dr. Hang Li’s text book.



Lemma: Hoeffding Inequality
Let                          be bounded independent random 
variables                    , the average variable Z is

Then the following inequalities satisfy:

X1;X2; : : : ;XnX1;X2; : : : ;Xn

Z =
1

n

nX
i=1

XiZ =
1

n

nX
i=1

Xi

Xi 2 [a; b]Xi 2 [a; b]

P (Z ¡ E[Z] ¸ t) · exp

μ ¡2nt2

(b¡ a)2

¶
P (E[Z]¡ Z ¸ t) · exp

μ ¡2nt2

(b¡ a)2

¶P (Z ¡ E[Z] ¸ t) · exp

μ ¡2nt2

(b¡ a)2

¶
P (E[Z]¡ Z ¸ t) · exp

μ ¡2nt2

(b¡ a)2

¶
http://cs229.stanford.edu/extra-notes/hoeffding.pdf



Proof of Generalized Error Bound

• Based on Hoeffding Inequality, for            , we have ² > 0² > 0

P (R(f)¡ R̂(f) ¸ ²) · exp(¡2N²2)P (R(f)¡ R̂(f) ¸ ²) · exp(¡2N²2)

• As                                     is a finite set, it satisfies F = ff1; f2; : : : ; fdgF = ff1; f2; : : : ; fdg
P (9f 2 F : R(f)¡ R̂(f) ¸ ²) = P (

[
f2F

fR(f)¡ R̂(f) ¸ ²g)

·
X
f2F

P (R(f)¡ R̂(f) ¸ ²)

· d exp(¡2N²2)

P (9f 2 F : R(f)¡ R̂(f) ¸ ²) = P (
[

f2F
fR(f)¡ R̂(f) ¸ ²g)

·
X
f2F

P (R(f)¡ R̂(f) ¸ ²)

· d exp(¡2N²2)

• Assume the bounded loss function L(y; f(x)) 2 [0; 1]L(y; f(x)) 2 [0; 1]



Proof of Generalized Error Bound

• Equivalence statements

P (9f 2 F : R(f)¡ R̂(f) ¸ ²) · d exp(¡2N²2)P (9f 2 F : R(f)¡ R̂(f) ¸ ²) · d exp(¡2N²2)

mm
P (8f 2 F : R(f)¡ R̂(f) < ²) ¸ 1¡ d exp(¡2N²2)P (8f 2 F : R(f)¡ R̂(f) < ²) ¸ 1¡ d exp(¡2N²2)

• Then setting
± = d exp(¡2N²2) , ² =

r
1

2N
log

d

±
± = d exp(¡2N²2) , ² =

r
1

2N
log

d

±
The generalized error is bounded with the probability

P (R(f) < R̂(f) + ²) ¸ 1¡ ±P (R(f) < R̂(f) + ²) ¸ 1¡ ±



Discriminative Model and Generative Model

• Discriminative model
• modeling the dependence of unobserved variables on 

observed ones
• also called conditional models.
• Deterministic: 
• Probabilistic:

• Generative model
• modeling the joint probabilistic distribution of data
• given some hidden parameters or variables

• then perform the conditional inference

y = fμ(x)y = fμ(x)
pμ(yjx)pμ(yjx)

pμ(x; y)pμ(x; y)

pμ(yjx) =
pμ(x; y)

pμ(x)
=

pμ(x; y)P
y0 pμ(x; y0)

pμ(yjx) =
pμ(x; y)

pμ(x)
=

pμ(x; y)P
y0 pμ(x; y0)



Discriminative Model and Generative Model

• Discriminative model
• modeling the dependence of unobserved variables on 

observed ones
• also called conditional models.
• Deterministic: 
• Probabilistic:

• Directly model the dependence for label prediction
• Easy to define dependence-specific features and models
• Practically yielding higher prediction performance

• Linear Regression, Logistic Regression, k Nearest Neighbor, SVMs, 
(Multi-Layer) Perceptrons, Decision Trees, Random Forest etc.

y = fμ(x)y = fμ(x)
pμ(yjx)pμ(yjx)



Discriminative Model and Generative Model

• Generative model
• modeling the joint probabilistic distribution of data
• given some hidden parameters or variables

• then do the conditional inference

• Recover the data distribution [essence of data science]
• Benefit from hidden variables modeling

• Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov 
Random Fields, Latent Dirichlet Allocation etc.
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