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Model Bidding Strategy 

• A function mapping from bid request feature space to a 
bid price  

• Design this function to optimise the advertising key 
performance indicators (KPIs) 
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Bidding Strategy in Practice 
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Bidding Strategy in Practice: New Perspective 
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Discussed Topics of This Talk 

Fundamentals 

• CTR/CVR Estimation 

• Bid Landscape Forecasting 

• Bidding Strategies 
 

Advances 

• Arbitrage 

• Unbiased Training and Optimisation 

• Conversion Attribution 



CTR/CVR Estimation 

• A seriously unbalanced-label binary regression problem 

 

 

– Negative down sampling, calibration 

• Logistic Regression 

 [Lee et al. Estimating Conversion Rate in Display Advertising from Past Performance 

Data. KDD 12] 



CTR/CVR Estimation 

• Follow-The-Regularised-Leader (FTRL) regression 
[McMahan et al. Ad Click Prediction : a View from the Trenches. KDD 13]  

 

 

 

    Closed-form solution 



CTR/CVR Estimation 

• Factorisation Machines 
      

 

 

 

 

– Explicitly model feature interactions 

– Empirically better than logistic regression 

– A new way for user profiling 

• GBDT+FM 
     

[Oentaryo et al. Predicting response in mobile advertising with hierarchical 

importance-aware factorization machine. WSDM 14] 

[http://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf] 



Deep Learning Models [our working project] 



Bid Landscape Forecasting 
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Bid Landscape Forecasting 

• Log-Normal Distribution 
[Cui et al. Bid Landscape Forecasting in Online Ad Exchange Marketplace. KDD 11]  
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Bid Landscape Forecasting 

• Price Prediction via Linear Regression 
[Wu et al. Predicting Winning Price in Real Time Bidding with Censored Data. KDD 
15]  

 

 

 

– Modelling censored data in lost bid requests 
 

 



Bidding Strategies 

• How much to bid for each bid request? 

 

 

 

 

• Bid to optimise the KPI with budget constraint 
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Bidding Strategies 

• Truthful bidding in second-price auction 

 

– Bid the true value of the impression 

 

 

• Non-truthful linear bidding 

 

– With budget and volume consideration 

[Chen et al. Real-time bidding algorithms for performance-based display 

ad allocation. KDD 11] 

[Perlich et al. Bid Optimizing and Inventory Scoring in Targeted Online 

Advertising. KDD 12] 

 



Bidding Strategies 

• Direct functional optimisation 

 

 

 

 

 
 

• Solution: Calculus of variations 

CTR winning function 

bidding function 

budget 

Est. volume 
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[Zhang et al. Optimal real-time bidding for display advertising. KDD 14] 
 



Optimal Bidding Strategy Solution 

17 [Zhang et al. Optimal real-time bidding for display advertising. KDD 14] 



Overall Performance – Optimising Clicks or Conversions 
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iPinYou dataset 

[Zhang et al. Optimal real-time bidding for display advertising. KDD 14] 
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Display Advertising Intermediaries 

This work: Intermediary arbitrage algorithms in RTB display advertising. 
21 

[Zhang et al. Statistical Arbitrage Mining for Display Advertising. KDD 15] 



Intermediary’s Statistical Arbitrage via RTB 

• Statistical arbitrage opportunity occurs, e.g., when 

 (CPM) cost per conversion < (CPA) payoff per conversion 

1000 impressions * 5 cent < 8000 cent for 1 conversion 22 



Statistical Arbitrage Mining 

• Expected utility (net profit) and cost on multiple 
campaigns 

CVR estimation winning function 

bidding function 

Cost upper bound 

Est. payoff 

Prob. of selecting 
Campaign i 

Bid request vol. 
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• Optimising net profit by tuning bidding function and 
campaign volume allocation 

 

 

 

 

 

 

 

Statistical Arbitrage Mining 

Total cost  
constraint 

Risk control 

E-Step 

M-Step 

Total arbitrage 
net profit 

• Solve it in an EM fashion 
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M-Step: Bidding function optimisation 

• Fix v and tune b() 
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E-Step: Campaign volume allocation 

• Multi-campaign portfolio optimisation 

 

 

 

    where 

 

Portfolio margin 
variance 

Portfolio margin 
mean 

Net profit margin 
on each campaign 
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Campaign Portfolio Optimisation Results 
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Dynamic Portfolio Optimisation 
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Online A/B Test on BigTree™ DSP 

• 23 hours, 13-14 Feb. 2015, with $60 budget each 
29 
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Problem of Training Data Bias 

• Data observation process 

 

 

 

 

• We want to train the model 

 

• But we train on the biased data 

A bid 

request 
Bid 

Data 

observation 

If win 

[Zhang et al. Learning and Optimisation with Censored Auction Data in Display Advertising. AAAI 2016 Submission] 



Unbiased Training 

• Eliminate the data bias via importance sampling 

• Training target 

• Modelling winning probability via bid landscape 



Unbiased Training 

• Modelling winning probability via bid landscape 

• Only use observed impression data [UOMP] 

• Also use lost bid request data (censored data) [KMMP] 

nj: # {winning prices > bj}      dj: # {winning prices = bj} 



Experimental Results 

• Winning probability estimation 



Experimental Results 

• CTR estimation: immediate performance improvement 
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Conversion Attribution 

• Assign credit% to each channel according to contribution 

• Current solution: last-touch attribution 
[Shao et al. Data-driven multi-touch attribution models. KDD 11] 



Multi-Touch Attribution 

• How to estimate the contribution of each channel? 

 [Shao et al. Data-driven multi-touch attribution models. KDD 11] 

• A more general formula 

 [Dalessandro et al. Casually Motivated Attribution for Online Advertising. 

ADKDD 11] 



[Shao et al. Data-driven multi-touch attribution models. KDD 11] 



Bidding in Multi-Touch Attribution Mechanism 

• Current bidding strategy 

– Driven by last-touch attribution 

• A new bidding strategy 

– Driven by multi-touch attribution 

[Xu et al. Lift-Based Bidding in Ad Selection. ArXiv 1507.04811. 2015] 



Value-based bidding v.s. Lift-based bidding 

 



Value-based bidding v.s. Lift-based bidding 

• Comparison 

– Lift-based bidding help brings more conversions to advertisers 

– but its eCPA is higher than value-based bidding because of 
last-touch attribution 

• Lift-based bidding with multi-touch attribution could 
bring a better eco-system 



Taking-home Messages 

• Statistical Arbitrage Mining: The internal auction selects 
the ad with highest arbitrage margin instead of the 
highest bid price. 

 

• Unbiased Training: Add the weight to each instance to 
eliminate the auction-selection bias. 

 

• Attribution and Bidding: Bidding proportional to the 
CVR lift instead of CVR value. 



Computational Advertising Research in Academia 

Disadvantages 

• Lack of data and online test platform 

• Lack of specific domain knowledge 

 

Advantages 

• Good at mathematic modelling 

• Focus on knowledge collection and communication 

• More research human resource 

 



OpenBidder Project: www.openbidder.com 

• Online open-source benchmarking project 

– Bid optimisation, CTR estimation, Bid landscape etc. 

• Bridge academia and industry research on 
computational advertising 

45 



Collaborations 

• Collaborations are more than welcome! 

UK: US: 

CN: 



Thank You! 
Questions? 

http://www.computational-advertising.org 
http://www0.cs.ucl.ac.uk/staff/w.zhang 
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