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Advertising

O
22— —ad®
Advertisers Intermediary Customers
with ad budget making the match with intent

e Make the best match between advertisers and
customers with economic constraints



“Half the money I spend
on advertising is wasted;
the trouble is I don’t

know which half.”

- John Wanamaker
(1838-1922)

Father of modern advertising
and a pioneer in marketing




Wasteful Traditional Advertising
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Computational Advertising

Advertisers Intermediary Users
with ad budget making the match on the Internet

* Design algorithms to make the best match between the
advertisers and Internet users with economic constraints
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Sponsored Search
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Advertisers keyword matching Users
with ad budget on the Internet

» Advertiser sets a bid price for the keyword
e User searches the keyword
* Search engine hosts the auction to ranking the ads



Display Advertising
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Exxon Mobil
Investigated in
New York Over
Possible Lies on
Climate

By JUSTIN GILLIS and CLIFFORD
KRAUSS

3:30PMET

The sweeping inquiry, by the
state attorney general, focuses
on whether the oil company lied
to the public and investors over
the risks of climate change.

= 250 Comments » Fallor/Bloomberg, via Getty Images
An Exxon Mobil refinery in Los Angeles, Caif. The New York attorney general is
investigating the ol and gas comrpany.
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Officials forecast that the three million arrivals
expected by 2017 would provide a net gain of
perhaps a quarter of 1 percent by that year to
the European economy.

3:06 PMET

One reason for the mistrial in the Dewey &
LeBoeuf criminal case may have been the
requirement for a unanimous decision.

http://www.nytimes.com/
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2016 After Heart Attack
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Display Advertising

X ) target  w30.40, male” attrlbutes. m
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Advertisers
with ad budget

Users

user information matching on the Internet

» Advertiser targets a segment of users
* Intermediary matches users and ads by user information



Internet Advertising Frontier:
Real-Time Bidding (RTB) based Display Advertising

What is Real-Time Bidding?

* Every online ad view can be evaluated, bought,
and sold, all individually, and all instantaneously.

* Instead of buying keywords or a bundle of ad
views, advertisers are now buying users directly.

DSP/Exchange daily traffic
Advertising iPinYou, China 18 billion impressions
YOYI, China 5 billion impressions
Fikisu, US 32 billon impressions
Finance New York Stock Exchange 12 billion shares
Shanghai Stock Exchange 14 billion shares

Query per second
Turn DSP 1.6 million
Google 40,000 search

[Shen, Jiangiang, et al. "From 0.5 Million to 2.5 Million: Efficiently Scaling up Real-Time Bidding." Data Mining (ICDM),
2015 IEEE International Conference on. IEEE, 2015.]



Suppose a student regularly reads articles on emarketer.com

‘© - Marketer.

Research Topics  Products  Why eMarketer  Customer Stories  Articles

Advertisers Continue Rapid

Adoption of Programmatic Buying
By 2017, advertisers will spend more than $9 billion on

RTB

Nov 26, 2013

[ Share | ¥ Print Email

Advertizers are spending more than expected on real-time bidding, which iz

expected to account for a significant share of all display ad spending in the US

hillions, % change and % of total digital display ad spending
94.5% 59.03

012 2013 2014
W RTE dighal display ad spending
W% change 1 % of total digital display ad spending

Note: includes ail display farmats senved 1o all devices
Source; eMarketer, Dec 2013

0T war eMarketer com

QYT LSS WL LIS In s
continues its rapid transition from

infancy to a well-established display
purchase method in just a few years.

eMarketer projects RTB digital
dizplay ad spending in the US will
account for 29.0% of total US digital
dizplay ad spending by 2017, or $9.03
billion. In 2013, it will account for
19.0%, or $3.37 billion. These
estimates are revised slightly upward
from our previous forecast in August

Latest from eMarketer s

Latest Articles & Latest Webinars @
Hispanic Gen Xers Lead in Daily Tablet Usage s
Sign-Up

Chrysler's Multichannel Approach to Online Video
Gets Greater Recall @
Android Rules UK Smartphone Sales T
More Articles » eMarketer Daily Newsletter » @
Contact
MARKETING =

N EMAIL MARKETERS

WATCH THE VIDEO.
DO WHAT CAN NOW BE DONE. ®

Content-related ads




He recently checked the London hotels

Booking

) : 3 I
- Recently viewed sts ‘ Weinan Zhang e )

Browse by destination theme  Shopping

home uk

Fine Dining  Culture  Sightseeing  Monuments  Relaxation

london search results (In fact, no login is required)

18,378 properties

Search

Destination/Hotel Mame:

| Q_London

Distance: | 16 miles

Check-in Date
"1 Mon 14 v || July 2014

Check-out Date
W Frizs v || July 2014

I 1don't have specific dates yet
Guests | 2 Adults (1 room) ¥

Search

Search propertles

1,574 properties London, 2 adults, 11 nights {Jul 14 - Jul 25) Change dates

London is a top choice with fellow travelers on your selected dates (48% reserved).
Tip: Prices might be higher than normal, so try searching with different dates if possible.

8:_ Try previous week Try next week
Jul 7 - Jul 18 Jul21 - Aug 1
resened

930 out of 1857 properties are available in and around London
Showing 1-15

Sort by: Stars ¥ = Location ¥ Price ¥ Review Score ¥

Park Plaza Victoria London 2 1736 Very good 8.5

Central London, Westminster, London » & Nearby stop Score from 1137 reviews

There are 13 people looking at this hotel.
Latest booking: 1 hour ago

Price for 11 nights
& Superior Double Room We have 5 rooms left! £2,353.65
T more room types
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Even on supervisor’s homepage!
(User targeting dominates the context)

DR. JUN WANG

Computer Science, UCL

n About Me Contact Publications Teaching Research Team Prospective Students Type text to search her B

CIKM2013 Tutonal: Real-Time Bidding: A New Frontier of Computational
Advertising Research

"Relevant” Ads or not?

™ July 30th, 2013 T Comments of "

- Booking

Online advertising is now one of the fastest advancing areas in IT industry. In display and

mobile advertising, the most significant development in recent yvears is the growth of Real-Timg H

Bidding (RTB), which allows selling and buying online display advertising in real-time one ad _ B . e o
impression at a time. Since then, RTB has fundamentally changed the landscape of the digital ™ m "l" p
media market by scaling the buying process across a large number of available inventories. ek : ¢ EgEY T* - *
It also encourages behaviour (re-)targeting, and makes a significant shift toward buying London London London
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%2.2 billion RTB display spend leading the way. The market share of RTB-based spending
of all display ad spending will grow from 10% in 2011 to 27% in 20165, and its share of all
indirect spending will grow from 28% to 78%.

£134.10 £87.00 £223.38

Book now Book now Book now

Scientifically, the further demand for automation, integration and optimization in RTB brings
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RTB Display Advertising Mechanism

© bluekai
User Information Data
User Demography: M?;}Z?fi?r”lnent

Male, 26, Student
User Segmentations:
London, travelling

1. Bid Request GO s Page
Demand-Side |eliseLpage, context) d P Ad Request
Platform 2. Bid Response RTB 5 Ad —
(ad, bid price) > Ad (with tracking),) — x
Exchange
Advertiser 4. Win Notice <100 ms User

Booking (charged price) 3. Ad Auction

6. User Feedback

(click, conversion)

* Buying ads via real-time bidding (RTB), 10B per day
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Auctions scheme

private values bids

Vi =—2>b,

“\.‘f Vs —> b 2

“ ‘ winner ?
- payments SSS
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Modeling

n bidders 5

Each bidder i has value v, for the item

—  “willingness to pay”
— Known only to him — “private value”

If bidder i wins and pays p,, his utility is v,—p,
— In addition, the utility is 0 when the bidder loses.

Note: bidders prefer losing than paying more than their
value.



Strategy

A strategy for each bidder

— how to bid given your intrinsic, private value?

— a strategy here is a function, a plan for the game.
Not just a bid.

Examples for strategies: S | By | By | ..
—  bv,)=v; (truthful) B(v)=v
—  bfv)=v,/2
—  b(v)=v,/n
— Ifv<50, b(v,) =v,

otherwise, b(v,) = v,+17

Can be modeled as normal form game, where these
strategies are the pure strategies.

Example for a game with incomplete information.



Strategies and equilibrium

* An equilibrium in the auction is a profile of
strategies B,,B.,...,B,, such that:

— Dominant strategy equilibrium: each strategy is optimal
whatever the other strategies are.

— Nash equilibrium: each strategy is a best response to the
other strategies.

B(v)=v B(v)=v/2 | B(v)=v/n

B(v)=v




Bayes-Nash equilibrium

* Recall a set of bidding strategies is a Nash
equilibrium if each bidder’s strategy
maximizes his payoff given the optimal
strategies of the others.

— In auctions: bidders do not know their opponent’s
values, i.e., there is incomplete information.

— Each bidder’s strategy must maximize her
expected payoff accounting for the uncertainty
about opponent values.



15t price auctions

* Truthful(b,=v,)? NO!




Equilibrium in 15t-price auctions

Suppose bidder i’s value is v; in [0,1], which is only
known by bidder i.

Given this value, bidder i must submit a sealed bid
bi(v;)
We view bidder i’s strategy as a bidding function b;:
[0,1] -> R, Some properties:
— Bidders with higher values will place higher bids. So b; is a
strictly increasing function

— Bidders are also symmetric. So bidders with the same
value will submit the same bid: b, = b (symmetric Nash
equilibrium)

— Win(b;) = F(v,), where F is the C.D.F. of the true value
distribution



Equilibrium in 15t-price auctions
Bidder 1’s payoff

v =By if by >max{b(v,),....b(v,)}
0 if by <max{b(v,),....b(v,)}

The expected payoff of bidding b, is given by

p(b,) = (v, - b)P(b, > max{b(vz),...,b(vn)})
= (v, = b)P(b, > b(v,),....b, > (v,))

An optimal strategy b; should maximize p(b,)



Equilibrium in 15t-price auctions

 Suppose that bidder i cannot attend the auction and
that she asks a friend to bid for her

— The friend knows the equilibrium bidding function b* but
doe not know v,

— Bidder tells his friend the value as x and wants him to
submit the bid b* (x)

— The expected pay off in this case is
pb ,x)= (v, =b ()P (x)>b (v,),...b (x)>b"(v,))
= (1 =0 (X))P(x> vy, x>v,) = (v = b (X)) F" 7 (x)

* The expected payoff is maximized when reporting
his true value v, to his friend (x = v))



Equilibrium in 15t-price auctions

So if we differentiate the expected payoff with
respect to x, the resulting derivative must be zero
when x = v :

dp(b”,x) _ d(v, = b ())F"(x)
dx dx
= (N =-DF"* (x) f(x)(v = b (x)) = F* 7 (x)b ™" (x)
The above equals zero when x = v;; rearranging
yields: (N - 1)F"2(v,) f (),
=F"7 ()b () (N =D)F" (1) f(m)b " (v)
_ dF N_l(vl)b*(vl)
dv




Equilibrium in 15t-price auctions

 Taking the integration on both side

FY (v)b (v,) = (N — I)T xf(x)F" 7% (x)dx + constant

e |f we assume a bidder with value zero must bid zero,
the above constant is zero. Therefore, we have
(replace v, with v)

(N-1) j XF(OEFY 2 (x)dix j xdF" ™ (x)

h'(v)= =
(V ) FN_I(V) FN_I(V )
* It shows that in the equilibrium, each bidder bids
the expectation of the second-highest bidder’s value
conditional on winning the auction.




Untruthful bidding in 15*-price auctions

e Suppose that each bidder’s value is uniformly
distributed on [0,1].

— Replacing F(v)=v and f(v)=1 gives

j:xd M(x) j:xdel
0

b (v)=

v

0
FN—I (Vl ) VN_I

O C—

Y(N=Dx"2dx  (N-1) j V!
0

N-1 —
v VAl




Equilibrium in 2"9-price auctions

 bidder 1’s payoff
v=b, i by> b, > Max{b(v,), e (V) b(V,0), e BV, )}
0 if by <max{b(v,),...,b(v,)}
. The expected payoff of bidding b, is given by

7,6 = [ = 0)dFY (x)= [ (N = 1), ) f0)F 2 ()

* Suppose b, <v,, if b, is increased to v, the integral
increases by the amount

[V = 1), = ) f () (o

* The reverse happensif b, > v,



Equilibrium in 2"9-price auctions
 bidder 1’s payoff
vi=b, if b >b;>max{b(v,),...0(v. 1), b(Vis)s-., b(v,)}
0 if b, <max{b(v,),....b(v )}
* The expected payoff of bidding b, is given by

20 = [ (4 =)l ()= [ (V= 1), = ) f Q)2 (o

* Ortaking derivative of (v, b,) w.r.t. biyields b, = v,

So telling the truth b, = v, is a Bayesian

Nash equilibrium bidding strategy!



Reserve Prices and Entry Fees

e Reserve Prices: the seller is assumed to have
committed to not selling below the reserve

— Reserve prices are assumed to be known to all bidders
— The reserve prices = the minimum bids

* Entry Fees: those bidders who enter have to pay
the entry fee to the seller

* They reduce bidders’ incentives to participate,
but they might increase revenue as
— 1) the seller collects extra revenues
— 2) bidders might bid more aggressively



RTB Auctions

Second price auction with reserve price

From a bidder’s perspective, the market price
7 refers to the highest bid from competitors

Payoff: (v x P(win)

impression % )

Value of impression depends on user response
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* User response estimation



RTB Display Advertising Mechanism

€ bluekai
User Information
Data
Management
User Demography: Platform
Male, 26, Student

User Segmentations:
London, travelling

Y Page

1. Bid Request
(user, page, context) GO g|€ 0. Ad Request
Demand-Side [€ €
Platform 2. Bid Response RTB 5.Ad
(ad, bid price) Ad (with tracking)
‘ 1  Exchange >
Advertiser 4. Win Notice <100 ms
n (charged price) 3. Ad Auction
[Booking o |8
T 6. User Feedback
(click, conversion)

* Buying ads via real-time bidding (RTB), 10B per day



Predict how likely the user is going to
click the displayed ad.
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User response estimation problem

* Click-through rate estimation as an example

* Date: 20160320

* Hour: 14
 Weekday: 7
 |P:119.163.222.*

* Region: England

e City: London

* Country: UK » Click (1) or not (0)?
* Ad Exchange: Google

* Domain: yahoo.co.uk
* URL: h.ttp://www.yahoo.co.uk/abc/xvz.html Predicted CTR (0.15)
* 0OS: Windows

e Browser: Chrome

e Ad size: 300*250
 AdID:al890

e User tags: Sports, Electronics



http://www.yahoo.co.uk/abc/xyz.html

Feature Representation

* Binary one-hot encoding of categorical data

x=[Weekday=Wednesday, Gender=Male, City=London]

vy

x=[0,0,1,0,0,0,0 0,1 0,0,1,0...0]

High dimensional sparse binary feature vector



Linear Models

* Logistic Regression
— With SGD learning
— Sparse solution

* Online Bayesian Probit Regression



ML Framework of CTR Estimation

* A binary regression problem

mm Z L(y,7) + AP(w)
(y,z)

— Large binary feature space (>10 millions)
* Bloom filter to detect and add new features (e.g., > 5 instances)

— Large data instance number (>10 millions daily)

— A seriously unbalanced label
* Normally, #click/#non-click = 0.3%
* Negative down sampling

e Calibration
— An isotonic mapping from prediction to calibrated prediction



Logistic Regression

 Prediction

1
] + e we

* Cross Entropy Loss

Y =

L(y,y) = —ylogy — (1 —y)log(1l —9)

* Stochastic Gradient Descent Learning
w < (I = Aw+n(y —g)z

[Lee et al. Estimating Conversion Rate in Display Advertising from Past Performance Data. KDD 12]



Logistic Regression with SGD

A

w < (L= ANw+n(y — )z

* Pros
— Standardised, easily understood and implemented
— Easy to be parallelised

e Cons

— Learning rate n initialisation

— Uniform learning rate against different binary
features



Logistic Regression with FTRL

In practice, we need a sparse solution as >10 million feature dimensions
* Follow-The-Regularised-Leader (FTRL) online Learning

¢
. 1
W11 = arg min (gl;t W H 5 Z os||w — W3||§ - )\1||w\|1)

w s=1

st. g1t = 2221 g,  adaptively selects regularisation functions

o, = \[ _Js—1 t: current example index

g.: gradient for example t

* Online closed-form update of FTRL

Wtsy1,i = 0 if |Zt}3'| S )\1
| —ne(2e,s —sgn(ze,i)A1) otherwise.
Zt—1 = Bl:it—1 — Zz;ll OsWs Mt,i = at -
[McMahan et al. Ad Click Prediction : a View from the Trenches. KDD 13] B+ \/23:1 Ys,i

[Xiao, Lin. "Dual averaging method for regularized stochastic learning and online optimization." Advances in Neural Information Processing Systems. 2009]



Online Bayesian Probit Regression

Given feature x, predicting click y
p(ylx,w): = d’(
Where probit function ®(t) = ft N(s;0,1)ds

And prior distribution p(w) = | N (W3 i 00;)

The factorised mode

Where

y - wa)
B

v M

h
py|t) -pt]s) p(s|x,w)- pw) ,
p(s|lx,w):=6(s = wlx).
p(t]|s):= N(t;s, %) q
Approximated inference via
p(y|t): = &(y = sign(¢)). Expectation Propagation

[Graepel et al. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in
Microsoft's Bing Search Engine. ICML 10]



Linear Prediction Models

)= f(w"z)

* Pros
— Highly efficient and scalable
— Explore larger feature space and training data

* Cons
— Modelling limit: feature independence assumption

— Cannot capture feature interactions unless defining
high order combination features

* E.g., hour=10AM & city=London & browser=Chrome



Non-linear Models

Factorisation Machines

Gradient Boosting Decision Trees

Combined Models

Deep Neural Networks



Factorisation Machines

Prediction based on feature embedding

yrMm () 1= sigmoid wo—l—Zw@af +T Y (vi,vj)x; fcj)

=1 j=1+1

— Explicitly model feature interactions

* Second order, third order etc.
— Empirically better than logistic regression
— A new way for user profiling

[Rendle. Factorization machines. ICDM 2010.]

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]



Factorisation Machines

Prediction based on feature embedding

yeMm () 1= blngId 'wo +sz$ +T T (vi,vj)x; :cj)

=1 j=1+1

For x=[Weekday=Friday, Gender=Male, ]

YFM (SE) — SlngOld ("bi-'[} + WEriday T Whale T Wshanghai

+ <vFriday_- vMale) + <’U’F11d'n vbh'tl]“hﬁl) + <v1\:{aler UShamghai))
[Rendle. Factorization machines. ICDM 2010.]

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]



Field-aware Factorisation Machines

Feature embedding for another field

N N
yFFM(CD) — q1gmold (uo -+ Z w; + T y\ ?ﬁeld j,ﬁeld(i)>xi$j)
1i=1 j=1+1
For x=[Weekday=Friday, Gender=Male, ]

yrrm () = sigmoid (u-*o + Wriday T Whale + WShanghai
+ <UF1‘ida}r_,Gender; UI\-'Iale.,\-’Veekday> + <UFrida.y,City; ’UShanghai_,\-’Veekday>

+ <UI\-'la.1e_,City; vShanghai,Gender))

[Juan et al. Field-aware Factorization Machines for CTR Prediction. RecSys 2016.]



Gradient Boosting Decision Trees

* Additive decision trees for prediction

K
bi = d(xi) = Y fu(xi), frn€F
k=1

[Chen and He. Higgs Boson Discovery with Boosted Trees . HEPML 2014.]



Gradient Boosting Decision Trees
ka Xi), fx€F

. Learnmg
t
L0 = Zlyu 1)+ 3"
=1 =1

n L
= Z Uys, 97 + fi(x)) + ) QU fi)
' i1

1 t
L0 ~ Z[l(y J) + gifo(xi) + §hz‘ft2(xz‘)] + > Q(fi)
/ \ =
gi — a@(t—l)l(yia g(t—l)) 8A(i: 1) (yiag(t—l))

[Tiangi Chen. https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf]
[Chen and He. Higgs Boson Discovery with Boosted Trees . HEPML 2014.]



Combined Models: GBDT + LR

} Input Features

P~ Tree Splits

} Transformed Features

= Linear Classifier

[He et al. Practical Lessons from Predicting Clicks on Ads at Facebook . ADKDD 2014.]



Combined Models: GBDT + FM

@ @ nnz=13-39 GBDT nnz=30
feat=3 feat=30 x 27

NG

“nnz”" means the number of non-zero elements of each impression; “feat” represents
the size of feature space.

Rst

e

[http://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf]



Neural Network Models

Difficulty:
Impossible to
directly deploy
neural network
models on such
data

CTR
Fully Connected

Hidden Layer (12)

Fully Connected

Hidden Layer (I1)

Fully Connected

Hidden Layer (z)

Fully Connected but only
update weights on lines
connecting to postive units
when backpropagating

Sparse Features @ o @ @ o @ 1M

E.g., input features 1M, first layer 500, then 500M parameters for first layer



Review Factorisation Machines

Prediction based on feature embedding

yrMm () 1= sigmoid ’wo—l—Z’w@x +T Y (vi,vj)x; :cj)

=1 j=1+1

— Embed features into a k-dimensional latent space

— Explore the feature interaction patterns using vector inner-
product

[Rendle. Factorization machines. ICDM 2010.]

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]



Factorisation Machine is a Neural Network

click

latent layer

dense real vector @

embedding via
factorisation machine

sparse binary

vector ' '
global field i ' field j

N N N
Yy () = sigmoid(wo + Z W;T; + Z Z (v;, vj>$ixj)
i=1

i=1 j=i+1



Factorisation-machine supported Neural
Networks (FNN)

CTR O y = sigmoid(Wsly + b3)
Fully Connected |

Hiden Layer (12 O OO OO0 0O lo = tanh(Wli + bo)
Fully Connected |
Hiden Layer (1)

1 = tanh(le + bl)

Fully Connected

Dense Real Layer (z)

_ 1,2 K
25 = (w’ijviivi?"'Jvi )
Initialised by FM's

Weights and Vectors. — [ . .. .
g = W, - x[start; : end;]
Fully Connected within
each field

[Factorisation Machine Initialised]

Sparse Binary
Feactures (x)

Global |

[Zhang et al. Deep Learning over Multi-field Categorical Data — A Case Study on User Response Prediction. ECIR 16]



Factorisation-machine supported Neural
Networks (FNN)

Dense Real Layer (z) @ :

Initialised by FM's
Weights and Vectors.

Fully Connected within
each field

Sparse Binary
Feactures (x)

Global | Field i

e Chain rule to update factorisation machine parameters

L(y, 9 ) Oz /
9, (y,a'y) _ 0L(y,9) ‘%Z, _ 8L(y’y)w[starti : end;]
oW, 0zi  OW, 0z

. . L(y. 1
Wi+ W,—n- 0 8(% y):c[sta,rtz- : end;].
Zi

[Zhang et al. Deep Learning over Multi-field Categorical Data — A Case Study on User Response Prediction. ECIR 16]




But factorisation machine is still different from
common additive neural networks

click

latent layer

dense real vector @

embedding via
factorisation machine

sparse binary

vector ' '
global field i ' field j

N N N
Yy () = sigmoid(wo + Z W;T; + Z Z (v;, vj>f,c@'$j)
i=1

i=1 j=i+1



Product Operations as Feature
Interactions

0000
000
000
00009

QOO QOQOPD)

City:Shanghai  Occupation:Student City:Shanghai  Occupation:Student

Inner Product Operation Quter Product Operation

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]



Product-based Neural Networks (PNN)

CTR ?

Hidden Layer 2

Fully Connected L2 O O O """ O O

Hidden Layer 1

Fully Connected L1 O O O """ O Q

Product Layer

|
I
Pair-wisely Connected /Q\i

Inner Product
...... Or
Outer Product

N
E ing L
. mb.eddmg ayer f Feature 1 Feature2 | «eeee Feature N
Field-wisely Connected
,A
Input Field 1 Field2 | e Field N

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]



Convolutional Click Prediction Model (CCPM)

* CNN to (partially) select good feature combinations

€]
€2
€3

.
Funnn

Instance matrix
with varied length

Prediction

Convolution

ko =2

c Flexible pooling

Convolution = f(s)
k1=3

[Qiang Liu et al. A convolutional click prediction model. CIKM 2015]



Overall Performance

AUC Log Loss
Model Criteo 1IPinYou Criteo 1PinYou
LR 71.48% 73.43% 0.1334 5.581e-3
EM 72.20% 75.52% 0.1324 5.504e-3
ENN 75.66% 76.19% 0.1283 5.443e-3
CCPM 76.71% 76.38% 0.1269 5.522e-3
PNN-I 77.79 % 79.14% 0.1252 5.195e-3
PNN-II 17.54% 81.74 % 0.1257 5.211e-3
PNN-III 77.00% 76.61% 0.1270 4.975e-3

RMSE

Model Criteo iPinYou Criteo iPinYou
LR 0.362e-4 5.350e-07 6.680e-2 7.353e-2
EFM 0.284e-4 5.343e-07 7.436e-2 8.635e-2
ENN 9.030e-4 5.285e-07 1.024e-1 0.635e-2
CCPM 8.938e-4 5.343e-07 [.124e-1 8.335e-2
PNN-I 8.803e-4 4.851e-07 1.243e-1 1.376e-1
PNN-II 8.846e-4 5.293e-07 [.211e-1 1.349e-1
PNN-III 8.988e-4 4.819e-07 1.118e-1 1.740e-1




Training with Instance Bias

Auction Selection

— Filt
as a rliter L

I ose
B - - - - - ———— - —— - @
— |
| |
—— |
I . 1

: @ Auction
I
— :
| |
— | [
-, E ) I
I— Win s = with |alb?([5
— — e.q., Clic
I I W?I'l price
I I
I I .

p(data) Train Model p(data)
{EE
Opt Est

Data Distribution

Pre-bid Full-Volume Discrepancy Post-bid Winning
Bid Request Data Impressions Data

p(x) - P(win|x,bs) = ¢.(x)
—— — ; ——

bid request auction selection Impression

w(be) = P(win|x, by) = /{: ) P (2)dz

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]




Unbiased Learning

* General machine learning problem

min Egep, o) [£(0, fo())] + A0 (6)
e But the training data distribution is g(x)

— A straightforward solution: importance sampling

Eomp. (o[£ (v, fo(2))] = / po(@) Ly, fo(@))da

€T

_ / 0o (@) L(?i; éem():c)) iz = By (o [ﬁ(i; i};i()m))}

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



Unbiased CTR Estimator Learning

Table : Online A/B testing of CTR estimation (Yahoo!).

Camp. | BiIaAs AUC. kKMMpP AUC AUC Lift

C1 63.73% 64.12% 0.34%
C2 87.45% 88.58% 1.13%
C3 69.73% 75.52% 5.79%
C4 88.82% 89.55% 0.73%
C5 69.71% 72.29% 2.58%
C6 89.33% 90.70% 1.37%
C7 77.76% 78.92% 1.16%
C8 74.57% 76.98% 2.41%
C9 71.04% 73.12% 2.08%
all 73.48% 76.45% 2.97%

Y O0% . ! ! CTR !lefer!ence ! | |

1509 ----s-m-bommseseebeeoe b

100%(-+--eieesmmseebessnencbeens

50%

0%

Cl C2 C3 C4 0] Coe c7 c8 C9 all

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]
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RTB Display Advertising Mechanism

€ bluekai
User Information
Data
Management
User Demography: Platform
Male, 26, Student

User Segmentations:
London, travelling

Y Page

1. Bid Request
(user, page, context) GO g|€ 0. Ad Request
Demand-Side [€ €
Platform 2. Bid Response RTB 5.Ad
(ad, bid price) Ad (with tracking)
‘ 1  Exchange >
Advertiser 4. Win Notice <100 ms
n (charged price) 3. Ad Auction
[Booking o |8
T 6. User Feedback
(click, conversion)

* Buying ads via real-time bidding (RTB), 10B per day



Data of Learning to Bid

e Data

(X, 1)

(up, 1500%x20, Shanghai, 0)
(down, 1200x25,Paris, 1)
(left,20x1000, Los Angeles, 2)
(right, 35X600, London, 3)

O W P O o
o o R
X X W o
X X O |

— Bid request features: High dimensional sparse binary vector
— Bid: Non-negative real or integer value

— Win: Boolean

— Cost: Non-negative real or integer value

— Feedback: Binary



Problem Definition of Learning to Bid

* How much to bid for each bid request?
— Find an optimal bidding function b(x)

o — Bid Request
Blddlng (user, ad, page, context)

Strategy

—>  Bid Price

* Bid to optimise the KPI with budget constraint
max KPI

bidding strategy

subject to cost < budget



Bidding Strategy in Practice

Bidding Strategy

e

Feature Eng. N Whitelist /
Blacklist
Frequency
Capping CTR/CVR
| Estimation
Retargeting |
| Campaign
Budget | ] Pricing
Pacing [ Scheme
| |
Bid Bid
Landscape Calculation

Bid Request
(user, ad,
page, context)

> Bid Price

74



Bidding Strategy in Practice:
A Quantitative Perspective

Bidding Strategy

Bid Request
Preprocessing < (user, ad,
page, context)
CVR, Estimation Estimation
revenue
4 L ]

Bidding Function > Bid Price

75



Bid Landscape Forecasting

20000 - -
15000 =
Count Auction
10000 - Winning
Probability
5000 = |
— — — Month1
Month2
O - L 5 L "
l ' ! l 0 1 2 3 4 5
0 100 200 300 . -
. . Bid Amount in Virtual Currenc
Win bid Y
Win probability: Expected cost:

b [7 zp(2)dz
w(b) = 2)dz c(b) = =&
= =



Bid Landscape Forecasting

Auction
Winning
Probability

1

Month2

— — = Month1 | |

1 2 3 4
Bid Amount in Virtual Currency

* Log-Normal Distribution

fs(a:; Hs J)

1

ToN 2T

5 g

2.0p

1.5F

1.0

0.5f

05 1.0 15 2.0 25 3.0
I

—(lnz—p)*?

= €

202

x>0

[Cui et al. Bid Landscape Forecasting in Online Ad Exchange Marketplace. KDD 11]



Bid Landscape Forecasting

* Price Prediction via Linear Regression

T
_ AT 1 (Zi_ﬁ ﬂfz)
z=08"x+e¢ mgx E og @ -

— Modelling censored data in lost bid requests

Bz, — bi)

Pb; < 2) = fl)( :

g Yohno(2E2) (20

eW €L

[Wu et al. Predicting Winning Price in Real Time Bidding with Censored Data. KDD 15]



Survival Tree Models

. Feature weekday hour region city

— | KLD 079 056 091 0.84
region )
KLD = 0.91
adexchange weekday .
KLD = 1.25 KLD = 0.82 Node split
OO O O e
Clustering
categories
hour useragent city slotwidth
KLD = 0.71 KLD = 0.63 KLD = 0.96 KLD = 0.58
region hour
KLD = 0.57 KLD = 0.77

O O O O
AN

[Yuchen Wang et al. Functional Bid Landscape Forecasting for Display Advertising. ECMLPKDD 2016 ]




Bidding Strategies

* How much to bid for each bid request?

o P Bid Request
Blddlng (user, ad, page, context)

Strategy

—>  Bid Price

* Bid to optimise the KPI with budget constraint
max KPI

bidding strategy

subject to cost < budget



Classic Second Price Auctions

* Single item, second price (i.e. pay market price)
b
Reward given a bid: R(b) = / (r — 2)p(z)dz
0

Optimal bid: b* = max R(b)

OR(b)
= (r —0)p(b)
OR(D)

p— b* p— I
5 0= r Bid true value



Truth-telling Bidding Strategies

* Truthful bidding in second-price auction

— Bid the true value of the impression

Value of click, if clicked
— Impression true value = ~|:
0, if not clicked

— Averaged impression value = value of click * CTR
— Truth-telling bidding:

bid = Tconv X CVR or bid = Tclick X CTR

[Chen et al. Real-time bidding algorithms for performance-based display ad allocation. KDD 11]



Truth-telling Bidding Strategies

bid = Tconv X CVR or bid = Tclick X CTR

* Pros
— Theoretic soundness
— Easy implementation (very widely used)

* Cons

— Not considering the constraints of
* Campaign lifetime auction volume
* Campaign budget
— Case 1: S1000 budget, 1 auction
— Case 2: S1 budget, 1000 auctions

[Chen et al. Real-time bidding algorithms for performance-based display ad allocation. KDD 11]



Non-truthful Linear Bidding

* Non-truthful linear bidding

predicted_CTR

base_CTR
— Tune base_bid parameter to maximise KPI

bid = base_bid X

— Bid landscape, campaign volume and budget
indirectly considered

max KPI

bidding strategy

subject to cost < budget

[Perlich et al. Bid Optimizing and Inventory Scoring in Targeted Online Advertising. KDD 12]



ORTB Bidding Strategies

* Direct functional optimisation

winning function CTR

\
b(Jorrs = arg max N / Oi(5(0) o 0)
b 0
V bidding function

subject to Ny / b(0)w(b(8) )py(0)d0 < B < budget
6 N

Est. volume cost upperbound

 Solution: Calculus of variations

002 = / 0w (b(0))pe(0)d6) — A /9 b(O)w(b(0))ps (0)dO + j‘v_f

OL(b(0),\) Ow(b(9))
9b(0) ob(0)
[Zhang et al. Optimal real-time bidding for display advertising. KDD 14]

—0 wm | Mw(b(0)) = [9 - Ab(@)}




Optimal Bidding Strategy Solution

1.00 - 200 =
> 400 -
=075~
E: @
Q Q — ¢=20
D0 50 - e}
g o — ¢=50
£ T 200 — =80
= o
£0.25 -
= 100 -
0.00 - 0-
I 1 1 1 1 | I | I
0 100 ) . 200 300 0.0000 0.0005 0.0010 0.0015  0.0020
b bid price 0 KPI
(a) Winning function 1. (b) Bidding function 1.

w(b(@)) = . j—(izg) ‘ bORTBl(Q) = \/59 +c?—c

[Zhang et al. Optimal real-time bidding for display advertising. KDD 14] -



Unbiased Optimisation

* Bid optimization on ‘true’ distribution

arg max T/f(a:)w(b(f(a:)))pm(a;)dm
b() @x

subject to T/ b(f(x))wb(f(x)))p.(x)de = B

£

* Unbiased bid optimization on biased distribution

gz (T )
w(bg )

arg max T/f Jw(b(f(x)))
b()

subject to Tf b(f(x))w(b(f(x))) z:é:})) de = B

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]

£r



Unbiased Bid Optimisation

Click Number Difference

: e T e T T
A/B Testing o R
on Yahoo! 0%
o llll
DSP. % s 2l

200% CTR ID|fferlence .

o ol
P e
s0% ) e B
0%

Cl C2 C3 Cc4 C5 C6 c7 C8 C9 all
eCPC D|fference

5%
0%
-5%
-10%
-15%
-20% : : : : : ‘ : : :
25% | i | | | | ; | | |

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



That’s the first half of the tutorial!
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Conversion Attribution

Vo Ad on Yahoo Sports

Ad on Facebook

Ad on TV \‘\\ -----
B

Ad on Amazon

/ Ad on Google

Assign credit% to each touch point

e Assign credit% to each channel according to contribution
* Current industrial solution: last-touch attribution

[Shao et al. Data-driven multi-touch attribution models. KDD 11]



Rule-based Attribution

Display Video Display Social
Customer Journey Conversion
Last Touch 0% 0% 0% 100%
First Touch 100% 0% 0% 0%
Linear 25% 25% 25% 25%
Time Decay 10% 20% 30% 40%
Position Based 40% 10% 10% 40%

[Kee. Attribution playbook — google analytics. Online access.]



A Good Attribution Model

e Fairness

— Reward an individual channel in accordance with
its ability to affect the likelihood of conversion

e Data driven

— It should be built based on ad touch and
conversion data of a campaign

* |Interpretability
— Generally accepted by all the parties

[Dalessandro et al. Casually Motivated Attribution for Online Advertising. ADKDD 11]



Bagged Logistic Regression

Display | Search Mobile Email Social Convert?
1 1 0 0 1 1
1 0 1 1 1 0
0 1 0 1 0 1
0 0 1 1 1 0

* For M iterations
— Sample 50% data instances and 50% features

— Train a logistic regression model and record the feature
weights

* Average the weights of a feature

[Shao et al. Data-driven multi-touch attribution models. KDD 11]



A Probabilistic Attribution Model

Conditional probabilities

Npositive(Ti)
Npositive(Ti) + Nnegative (i)
Npositive(Ti, ;)
Npositive(Ti, ;) + Npegative(Ti, T;5)

P(y|z:) =

P(ylwi, z;) =

Attributed contribution (not-normalized)

2;_ _ {p(ym,mj) — p(yl|zi) — p(:ul%)}

7 ok

C(xi) = p(ylz:) +

[Shao et al. Data-driven multi-touch attribution models. KDD 11]



15000 0 5000 15000

5000

0

bagged logistic regression model

.E.

+ s

= o
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T o - “eoetgofocopiso—
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simple probabilistic model
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[Shao et al. Data-driven multi-touch attribution models. KDD 11]




Table 2: The MTA user-level attribution analysis.

Channel MTA Total LTA Total Difference
Search Click 17,494 17,017 97%
Email Click 6,938 7,340 106%
Display Network A 5,567 8,148 146%
Display Network G 2,037 470 23%
Display Network B 1,818 1,272 70%
Display Trading Desk 1,565 1,367 87%
Display Network C 1,494 1,373 92%
Display Network D 1,491 1,233 83%
Email View 1,420 458 327
Display Network E 1,187 1,138 96%
Brand Campaign 907 1,581 174%
Social 768 1,123 146%
Display Network I1 746 234 38%
Display Network F 673 787 117%
Display Network [ 489 136 28%
Retail Email Click 483 491 102%
Display Network J 222 92 AT
Retail Email 168 110 66%
Social Click 133 153 115%
Video 58 31 547




Data-Driven Probabilistic Models

e The “relatively heuristic” data-driven model

[Shao et al. Data-driven multi-touch attribution models. KDD 11]

Viw) = 5Pl + 33— 3 (ko) = Plolay)

e A more generalized and data-driven model
[Dalessandro et al. Causally Motivated Attribution for Online Advertising. ADKDD 11]

V(e) = Y wsilP(ylS.x) - P(y]S))

— Wg,; isthe probability that the ad touch sequence begins
with S, z;



Attribution Comparison: LTA vs MTA

Data Generating Parameters

Attribution Results

Ad Simulated Last Last Multi

Channel Group Propensity || Conversion Touch Touch Touch Delta | Delta

Likelihood Rate Propensity | Conversions | Conversions N %
1 Gen Prospecting 5.0% 0.100% 0.2% 1,023 2,176 1,153 | 113%
2 Gen Prospecting 10.0% 0.080% 0.2% 1,932 3,284 1,352 | 70%
3 Gen Prospecting 10.0% 0.070% 0.2% 1,854 3,085 1,231 | 66%
4 Gen Prospecting | 15.0% 0.050% 0.2% 2,491 3,434 943 | 38%
5 Gen Prospecting 15.0% 0.050% 1.8% 3,134 3,143 9 0%
§ Gen Prospecting 20.0% 0.010% % 2,008 730 2,202 | -15%
7 Gen Prospecting 20.0% 0.008% 6.7% 3,558 260 -3,298 | -93%
8 Gen Prospecting 25.0% 0.008% 6.8% 4,406 409 -3,997 | -91%
9 Refargeting 2.5% 0.500% 3.0% 3,021 5,613 1,752 | 0
10 Retargeting 2.5% 0.400% 6.0% 3,375 4,489 1,114 | 33%
11 Retargeting 3.0% 0.300% 10.5% 3,468 4,068 600 17%
12 Retargeting 3.5% 0.250% 15.3% 3,728 3,997 269 | 7%
13 Search 0.5% 1.000% 23.7% 2,109 2,430 321 15%
14 Search 0.5% 2.000% 23.6% 5,329 5,045 -284 -5%

[Dalessandro et al. Casually Motivated Attribution for Online Advertising. ADKDD 11]




Shapley Value based Attribution

* Coalitional game

— How much does a player contribute in the game?
ﬁA ﬂB /ﬁc

[Fig source: https://pjdelta.wordpress.com/2014/08/10/group-project-how-much-did-i-contribute/]




Shapley Value based Attribution

* Coalitional game

— v is the conversion rate of different subset of publishers
— The Shapley value of publisher i is

o)=Y B S0 G- i)
SCN\{i} ' \

CVR of those touched by all
the publishersin S U {3}

[Berman, Ron. Beyond the last touch: Attribution in online advertising.” Available at SSRN 2384211 (2013)]



Survival theory-based model

e Use addictive hazard functions to explicitly model:
— the strength of influence, and
— the time-decay of the influence

17.5 200

[Zhang et al. Multi-Touch Attribution in Online Advertising with Survival Theory. ICDM 2014]



Markov graph-based approach

e Establish a graph from observed user journeys

50%

663"/
Journey 1: C1 —C2 - C3 — CONVERSION

START 50% 50% ey & (2 = A~ END
33&
C2 =mp C3 =—p CONV
100% 50%

[Anderl et al. Mapping the customer journey: A graph-based framework for online attribution modeling. SSRN 2014]



Markov graph-based approach

* Attribute based on probability change of reaching
conversion state

50%

@ NULL
66%
66%
Journey 1: C1 —C2 - C3 - CONVERSION

Journey 2. C1 —END

START 50% 50% Journey 3: C2 - C3 - END
3:&
C2 — C3 — CONV
100% 50%

[Anderl et al. Mapping the customer journey: A graph-based framework for online attribution modeling. SSRN 2014]



MTA-based budget allocation

* Typical advertiser
hierarchy

* Typical budget
allocation scheme

Adve I"tlSEl'

el A

Campaign 1

(Insertion Order 1 -

Product 1)

Campaign 2

(Insertion Order2 - | * -

Product 2)

Campaign n

* * * |(Insertion Order n -

Product n)

PN

Sub-campaign 2.1
(Line Item 2.1 -
Targeting 2.1)

Sub-campaign 2.m

.+ «| (Lineltem2.m -

Targeting 2.m)

Insertion Order
Daily Budget - B

e

Line Item 1
Daily Budget - B,

ROI - R,

Spending Capability -

N

S, Spending Capability - S,

Line ltem m
Daily Budget - B,

ROI - Ry,

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]



MTA-based budget allocation

Estimate sub-campaign spending capability

— New sub-campaign: assign a learning budget
— Existing sub-campaign: assigh an x% more budget

* Calculate ROI of each sub-campaign

2 va,|P(lilaz)|v(aj)

i Money spent by I;

* Allocate budget in a
cascade fashion

1if I; is the last touch
point else 0 (LTA)
V(i)

(MTA)

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]




MTA-based budget allocation

* Results on a real ad campaign

Comparison of the Budget Allocation Schemes Utilizing
Two Action Attribution Methodologies in Terms of ROI

30 : . . |
Last-Touch Attr. ——
Multi-Touch Attr. ---3¢--
25+ |
X
20 |
>
15 F |
10 F " |
5 , . . . |

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]



Attribution and Bidding

* For CPA campaigns, conventional bidding strategy is
to bid prop. to estimated action rate (a.k.a.
conversion rate). Is that always correct?

A tiny example
Two users: a and b

AR,: 0.04 if exposed to the ad, 0.03 if not;
ARp: 0.02 if exposed to the ad, 0.001 if not.

If only one of them can be exposed to the ad, who will you select?

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]



Attribution and Bidding

A not-so-tiny example

Two users: a and b, campaign CPA: $100

AR,: 0.04 if exposed to the ad, 0.03 if not (lift: 0.01);

ARp: 0.02 if exposed to the ad, 0.001 if not (lift: 0.019).
Bidder; bids prop. to AR assuming exposed: $4 for a, $2 for b;
Bidder, bids prop. to AR lift: $2 for a, $3.8 for b.

Incremental value from Bidder;: 0.01 conversions;

Incremental value from Bidder,: 0.19 conversions.

Expected attribution to Bidder;: 0.04 conversions;

Expected attribution to Bidder,: 0.02 conversions.

Prevalent bidding strategy does not optimize campaign performance;
Bidders are not rewarded fairly.



Rational DSPs for CPA advertisers

* DSP’s perspective:
— Cost: second price in the auction

— Reward: CPA if (1) there is action, and (2) the
action is attributed to it

— A rational DSP will always bid
bid = AR x CPA x p(attribution|action)

In LTA, p(attribution|action) is always 1 for the last
toucher. Therefore DSPs are bidding to maximize their
chance to be attributed instead of maximizing conversions.



Bidding in Multi-Touch Attribution

* Current bidding strategy (driven by LTA)

bid = AR X

CPA

A new bidding strategy (driven by MTA)
— |f attribution is based on the AR lift

Ap = p(action|sy(a)) — p(action|s)

bid =

Ap x base_bid

S

Lift- based bidding

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]



Lift-based bidding

s {a7) G

e Estimating action rate lift

— Learn a generic action prediction model P on top
of features extracted from user-states F(s)

— Then action rate lift can be estimated by

~

Ap = P(action|F(s4(a))) — P(action|F(s))

e Deriving the base bid g =

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]



Lift-based bidding

Value-based bidding vs. lift-based bidding - Advertiser's perspective

Value-based biddihg

Lift-based bidding

Adv . . Action Tt . ' Action T Action lift Lift-over-lift
imps # actions [vs “No bid") # imps # actions l(vs “no bid")
1 53,396 714 11.2% 59,703 826 28.7% 13.6% 156%
2 298,333 896 8.9% 431,637 980 19.1% 9.4% 115%
3 11,048,583 1,477 2.7% 11,483,360 1509 4.9% 2.2% 82%
4 3,915,792 2,016 6.6% 4,368,441 2,471 30.6% 22.6% 367%
5 6,015,322 6,708 19.6% 8,770,935 8,201 47.8% 23.6% 144%
’ . . . . ; .
Value-based bidding vs. lift-based bidding - DSP’s perspective.
Ady Value-based bidding Lift-based bidding Inventory- Cost-per-
# imps # attrs Inventory cost # imps # attrs Inventory cost cost diff imp diff
1 53,396 50 $278.73 59,703 50 $300.31 7.7% -3.6%
2 298,333 80 $1,065.05 431,637 80 $1,467.57 37.8% -4.8%
3 11,048,583 240 $25,522.22 11,483,360 240 $25,837.56 1.2% -2.6%
4 3,915,792 200 $10,846.74 4,368,441 200 $11,183.21 3.1% -7.6%
5 6,015,322 500 $19,296.51 8,770,935 500 $23,501.90 21.8% -16.5%

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]
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Pacing Control

* Budget pacing control helps advertisers to define
and execute how their budget is spent over the
time.

* Why?
— Avoid premature campaign stop, overspending and
spending fluctuations.
— Reach a wider range of audience
— Build synergy with other marketing campaigns
— Optimize campaign performance



Budget Spend

Examples
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(d) Traffic Based Pacing

(e) Performance Based Pacing

[Lee et al. Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising. ADKDD 13]



Two streams of approaches

Response
Rate

Campaign
Setup

feedback

Spending

Bid modification

Campaign
Setup

Probabilistic throttling

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Bid modification with PID controller

e Add a monitor, a controller and an actuator module into the
bidding system

* Achieve reference KPI (e.g. eCPC) by bid modification

— DSP Bidding Agent ——— — Dynamic System ——
1. Bid
) Request
Ad —»| Bid Calculator | J
0. Ad
Controller Bid Price RTB Request [——
Control l Adjusted R 2.Bid Excﬁgnge < 9 —
Si | Bid price esponse —
&%ﬁ'{gk 91 .| Actuator P P > 5.Ad [=—
4. Wi 3. Auction ’ —
Error .Win
factors “Igslasulred < Notice Page
valle !l Monitor ’
.‘ __— e | — — m ] o e e e e e e e e e = = = =
] I 6. User Feedback User
Reference
KPI

[Zhang et al. Feedback Control of Real-Time Display Advertising. WSDM 2016.]



Bid modification with PID controller

e Current control signal is calculated by PID controller

e(tk) =

:Eor"

fL‘(tk:

Y

= Actual KPI value

Reference KPI -

qb(tk_H) — )\pe(tk) + A1 Ze(tj)Atj + AD

7=1

Ae(tk)
JAN 7

* Bid price is adjusted by taking into account current control signal

ba(t) = b(t) exp{p(t)}

The control signal

A baseline controller: Water-level controller
P(tr+1) < o(tk) + v(zr — x(tk))

[Zhang et al. Feedback Control of Real-Time Display Advertising. WSDM 2016.]
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Bid modification with PID controller

* Online eCPC control performance of a mobile game
campaign

[Zhang et al. Feedback Control of Real-Time Display Advertising.

90

Online eCPC control
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- 1000
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0
WSDM 2016.]



Probabilistic throttling with
conventional feedback controller

e P(t): pacing-rate at time slot t

* Leverage a conventional feedback controller:
— P(t)=P(t—-1)*(1-R) if budget spent > allocation
— P(t)=P(t—1)*(1+R) if budget spent < allocation

“llocation :
curve

—p
0 time T

[Agarwal et al. Budget Pacing for Targeted Online Advertisements at LinkedIn. KDD 2014.]



Probabilistic throttling with adaptive
controller

* Leverage an adaptive controller

Desired spending in the
pacing rate(t+1) next time-slot

s(t+1)| reqs(t) win_rate(t)
s(t) |reqs(t+1) win_rate(t+1)

bia  reqs(t) win'}Qte(t)

s(t) reqs(t+1) win_rate(t+41)

= pacing_rate(t)

= pacing_rate(t)

Forecasted request volume and
bid win rate in the next time-slot

b1 is the desired spend (allocated) at time slot t+1. Different
desired spending patterns can incur different calculation.

[Lee et al. Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising. ADKDD 13]



Pacing control for campaign
optimization

 Campaign optimization objectives:
— Reach delivery and performance goals

* Branding campaigns: Spend out budget > Campaign
performance (e.g., in terms of eCPC or eCPA)

* Performance campaigns: Meet performance goal >
Spend as much budget as possible.

— Execute the budget pacing plan
— Reduce creative serving cost

Can we achieve all these objectives by pacing control?

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Smart pacing

Ad request - High responding
volume 4 1.0
Low responding
//‘\ 1.0 100
0.6\ T ™\
/ 0.1 / 0.8 | 10| ™\
Layer 3 L~ \
/ i 0.00 \ T A —
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Budget pacing plan

Actual
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Slow down

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Spending ($)

Smart pacing performance
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Cumulative spending ($)

Smart pacing vs conventional
feedback controller
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Cumulative spending ($)

Smart pacing vs conventional
feedback controller
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Does targeting help online advertising?

 Segment user based on ...
— LP: Long-term Page-view, SP: Short-term Page-view
— LQ: Long-term Query , SQ: Short-term Query

Compare the best CTR segment with baseline (random users)

700.00% 700.00%

BIP OLQ OSP WSQ BLP OLQ GSP ®SQ

600.00% 600.00%
g 500.00% £ 500.00% : K]
> 400.00% 2 400.00% ,; .4
» ¢
é 300.00% E“ 300.00% . o
(] D)
E 200.00% E 200.00% S . = [
X e =% = K
100.00% 100.00% - I:.: -Elq " = K
0.00% - 0.00% - = = s =
20 40 80 160 20 40 80 160
# segments by k-means # segments by CLUTO
(a) User clustering by k-means (b) User clustering by CLUTO

[J Yan, et al. How much can behavioral targeting help online advertising? WWW 2009]



User segmentation

* Different user segmentation algorithms may have different
results

OCLUTO BK-means B MinHash

1000.00%

800.00%

600.00%
400.00%

CTR improvements

200.00%

0.00%

20 160

iP'IJSSI' Sengll%Q

[J Yan, et al. How much can behavioral targeting help online advertising? WWW 2009]



User segmentation

* From user — documents to user — topics
— Topic modeling using PLSA, LDA, etc.

[X Wu et al. Probabilistic latent semantic user segmentation for behavioral targeted advertising.
Intelligence for Advertising 2009]



Targeting landscape

* Targeting: reach the precise users who are receptive to
the marketing messages.

Geo-targeting Demo-targeting

Web-site targeting ]

Behavioral . .
[ Targeting ] [ Site Re-targeting ]

[ Social Targeting ]

[ Search Re- ] [ Mail Re- ] Q

targeting targeting

[ Proximity ]
Targeting

¢
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Targeting landscape

* A bit too complicated ...
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Audience expansion

 AEX Simplifies targeting by discovering similar
(prospective) customers

Extended Segment

Segment
Defined
by Advertiser

@ Given a segment S, find a larger audience that is
- Similar to the audience inside S
- Able to bring good ROI

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]



Rule mining-based approach

* |dentify feature-pair-based associative
classification rules

— Affinity that a feature-pair towards conversion:

F-LLR = |P(f) x log (p(ﬁf;'ﬁﬂi?ﬁﬂ)om)

Probability to observe
feature-pair f in data

— Top k feature (pairs) are kept as scoring rules

Especially good for those tail campaigns (e.g. CVR < 0.01%)

[Mangalampalli et al, A feature-pair-based associative classification approach to look-alike
modeling for conversion-oriented user-targeting in tail campaigns. WWW 2011]



Rule mining-based approach

 Campaign C1: a tail campaign
 Campaign C2: a head campaign

Table 1: Results for Campaign C}

Baseline Lift (Conversion Rate) | Lift (AUC)
Random Targeting 82% —
Linear SVM 301% 11%
GBDT 100% 2%

Table 2: Results for Campaign C>

Baseline Lift (Conversion Rate) [ Lift (AUC)
Random Targeting 48% —
Linear SVM -12% -6%
GBDT -40% -14%

[Mangalampalli et al, A feature-pair-based associative classification approach to look-alike
modeling for conversion-oriented user-targeting in tail campaigns. WWW 2011]



Weighted criteria-based approach

* Similarity Criterion:

Similarity Novelty Value
P(New|Original)|P('Original| N ew)|Good/OK [ Bad?

Sim(cnewg S) — p(cne’u;*|s) 1 0 Bad

_ |aud(cnew) Naud(S)|

|aud(8) | New @ 1 ~ 0.5 Good

Original ~ 0.5 0 Bad

* Novelty Criterion:

O Original | =~ (.2 ~ 0.8 OK

ngmal ~ (.8 ~ (0.2 oK

= 1—p(S5|cnew)

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]



Weighted criteria-based approach

* Quality Criterion:

Zuemd(cmw) click(u, adv)
ZuEaud(cmw) imp(u, adv)

q(Crew) =

* Final score
logScore(cnew|S) = 01 log(p(crewl|S)) +

02 log(1 —p(S|cnew)) + 03 log(q(crew))

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]
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Audience Expansion for OSN Advertising

 Campaign-agnostic: enrich member profile attributes
 Campaign-aware: identify similar members

. Campaign-Agnostic

Enriched Member
Profile Attributes

A

: “Similar X"
Profile Attribute Expansion

[ e Expansion
] . Online Eligible
Campaigns

Member Profile
Attributes

®_ -
.‘_ Request
Es!

User Pageview

Get Member
Profile Attributes

Online

Match

Offline
Match

..............................

Campaign

Targeting
Data

Offline Eligible
Campaigns

Lookalike
Audiences

Post-expansion filters

“Similar Profiles”
Lookalike Expansion

3

Exact
Audiences

......................................

Auction

[ offline processes
[ Online processes

_.. Campaign-Aware

Expansion

[H Liu et al. Audience expansion for online social network advertising. KDD 2016]



Audience Expansion for OSN Advertising

* Member similarity
evaluation
— Density of a
segment:
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— Expansion ratio vs
Density ratio

Density ratio (log scale)
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[H Liu et al. Audience expansion for online social network advertising. KDD 2016]




Transferred lookalike

* Web browsing prediction (CF task)

ity =0 (v + S vl S s ST et
i J VR |

user feature

publisher feature

K-dimensional latent vector

* Ad response prediction (CTR task])

AT . r r_u r D a
Yupa = J(wo + E w;T; + E W;T; + E w
i j l

ad feature

D PERTEETD 9 PERIEEES 3) PERTER)
1 ] 1 l 3 l

[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to

CTR Estimation. ECIR 2016]




Transferred lookalike

Using web browsing data, which is largely available, to infer the ad clicks
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2 2 2 2 2 2
ﬁLwC,O'wc I'LVC’O-VcI V de O-VdI I,Lvrba,a-vr’a.[ er,ajﬁwrba

|| e
‘\(@ OfL &

I°+ J¢

1"+ J* L'

Y
D] D]

CF Task CTR Task
[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to

CTR Estimation. ECIR 2016]




Joint Learning in Transferred lookalike
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[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to
CTR Estimation. ECIR 2016]



Table of contents

* Reserve price optimization



Reserve price optimisation

-

g © winning bid

& O other bids

= ---- reserve price

g

2 .

(0] : O

© T

T ) O __________ ® 0O

Q | O O

O o | O o O
' OO O """"""" (‘j =

Ads o @)

ltime (auctiong) ”
The task:

* To find the optimal reserve prices to maximize publisher revenue

The challenge:

* Practical constraints v.s theoretical assumptions

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



Why

* Suppose it is second price auction and b4, b,
are first and second prices

— Preferable case: by = a > b, (increases revenue)

— Undesirable case: @ > bq (lose revenue)

Charge b2

True @

False

Charge (¥ ‘

Sold

True @

False

To collect and sort
all bids




An example

* Suppose: two bidders, whose private values b4, b, are both
drawn from Uniform|[0O, 1]

* Without a reserve price, the expected payoff r is:
r = E[min(b4, b,)] = 0.33

e Witha=0.2:

r = E[min(by, b,) |b; > 0.2,b, > 0.2] + (0.8 X 0.2) X 2 x 0.2 = 0.36
* Witha =0.5:

r = E[min(by, b,) |b; > 0.5,b, > 0.5] + (0.5 X 0.5) x 2 x 0.5 = 0.42
e Witha = 0.6:

r = E[min(b,, b,) |b; > 0.6,b, > 0.6] + (0.6 X 0.4) X 2 X 0.6 = 0.405

N\ 1

Paying the second highest price Paying the reserve price

[Ostrovsky et al, Reserve prices in internet advertising auctions: A field experiment. EC 2011]



Theoretically optimal reserve price

In the second price auctions, an advertiser bid its private
value b

Suppose bidders are risk-neutral and symmetric (i.e. having
same distributions) with bid C.D.F F(b)

The publisher also has a private value 1},

The optimal reserve price is given by: « = 1-Fla) +V
F/(a) p

[Levin and Smith, Optimal Reservation Prices in Auctions, 1996]



Results from a field experiment

* Using the theoretically optimal reserve price on Yahoo!
Sponsored search

Table 7: Restricted sample (optimal reserve price < 20«)

Variable Value {f-statistic p-value
Number of keywords (T — treatment group) 222,249
Number of kevwords (C — control group) 11,615
(Mean change in depth in T)—(mean change in depth in C) —(.8612 —60.29 < 0.0001
(Mean change in revenue in T)—(mean change in revenue in C) —11.88% —2.45 0.0144
Estimated impact of reserve prices on revenues Pl —9.19% —11.1 < 0.0001

Mixed results

Table 8: Restricted sample (optimal reserve price > 20¢)

\ Value f-statistic p-value

Variable

Number of keywords (T — treatment group) 216,383

Number of keywords (C — control group) 11,401

(Mean change in depth in T)—(mean change in depth in C) —(1.9664 —55.09 < 0.0001

14.59% 1.79 0.0736

(Mean change in revenue in T)—(mean change in revenue in C)
3.80% 241 < 0.0001

Estimated impact of reserve prices on revenues

[Ostrovsky et al, Reserve prices in internet advertising auctions: A field experiment. EC 2011]



Bidding strategy is a mystery

* Advertisers have their own bidding strategies (No access
to publishers)

* They change their strategies frequently

— — : 120 . ; .
+ Elghlestbldeveryf:](?sr]ectt)r;tljds 5 5 : —  4-week
—&— Hourly average of highest bid H 100 6 ]
5 ; 5 : : e -week
: — Learner
80 .
)
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@)

0 |
0 30
Day

Lifetime in days

Many advertisers bid at fixed values And they come and go
with bursts and randomness.

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



Uniform/Log-normal distributions do NOT fit well
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Test at the placement level
(because we usually set reserve prices
on placements)
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Test at the auction level

» Chi-squared test for Uniformity

» Anderson-Darling test for Normality

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



A simplified dynamic game

* Players: auction winner w ,publisher P
e |nitial status: I;: b > o ; I, otherwise

e The action set of the winner A,;:
aw1, to increase b to higher than o;
aw?2, to increase b to lower thaIZI o . ap2, ifI=1I
aw3, to decrease or hold b to higher than a; 8,(I) =
awa4, to decrease or hold b to lower than c.

e The action set of the publisher A,:
ap1, to increase or hold « to higher than b;
ap2, to increase or hold « to lower than b; . w3, ifI =1
ap3, to decrease o to higher than b; Sw(l) = aw1. f1=1Iy
ap4, to decrease o to lower than b. o

aps, ifI=1Is

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



OneShot: the algorithm based on
dominant strategy

* The algorithm essentially uses a conventional
feedback controller

e

alt+1)= (1 eM)a(t) if a(t) > bi(t)
S a(t+1)=1Hex)at) ifbi(t) > at) > ba(t)
at+1) = (14eN)a®) ifba(t) > ad)

\

e A practical example setting of the parameters:

e = 1.0, \p, = 0.3, A\ = 0.01, and A\, = 0.02

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



OneShot performance

BayesianU} - ..... J — . —— .......
OptAucf S S e B .
OneShot F o— T T— S —
Averagelmm | | b
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Revenue (normalised)

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



Advertiser attrition concern
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[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]




Optimal reserve price in upstream
auctions

* A different problem
setting

— Upstream charges a
revenue-share (e.g.
25%) from each
winning bid.

— What is the optimal
reserve price for such
a marketplace?

Publisher
Inventory
Opportunity
y

N
{dsp3,$6}

Y

Downstream
MarketPlace

{dsp3.86} = {dsp3,88*(1-0.25)}

v w
Upstream Floor = $4.7
MarketPlace Revenue Share = 25%

A
{dsp2,$8} | | {dsp3,89} {dsp4,%4}
. 4

i e

[Alcobendas et al., Optimal reserve price in upstream auctions: Empirical application on
online video advertising. KDD 2016]



Optimal reserve price in upstream
auctions

* Assume bidder’s valuation of the inventory is an i.i.d. realization of the
random variable V, and bidders are risk neutral, the optimal reserve
price for upstream marketplace satisfies

Probability of winning downstream auction

/
[pefv (pe) — 1+ Fv (o)) Fv (pe)” ~'IPp(pe) =
— Support interval of V

OPp(wr(pz)) [*

N—1
[ufv(u) =14+ F(u)]|Fv (u)” |du
Expected price if having at least Probability that a bidder wins
one bidder above reserve price the upstream auction with bid u

If without downstream auction, optimal condition is
[oufv(pu) — 14 Fv(pn)] =0



Optimal reserve price in upstream
auctions

Type of Placement

Nb Placements

Placements
with Positive Revenue Lift (%)

Expected Revenue Lift (%)

No Downstream Auction (pZ) 71 1% 39%
Downstream Auction: No Correction (pf) 30 67% 25%
Downstream Auction: Correction (py) 30 7% 29%
Type of Placement Nb Placements Placements Expected Revenue Lift (%)
with Positive Revenue Lift (%)
No Downstream Auction (p;,)
- Above Current Floor 24 88% 38%
- Below Current Floor 47 2% 40%
Downstream Auction: No Correction (p},)
- Above Current Floor 9 100% 92%
- Below Current Floor 21 52% 11%
Downstream Auction: Correction (p})
- Above Current Floor 13 100% 88%
- Below Current Floor 17 1% 22%

[Alcobendas et al., Optimal reserve price in upstream auctions
online video advertising. KDD 2016]

: Empirical application on
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