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Advertising

• Make the best match between and 
with 



- John Wanamaker 

(1838-1922)

Father of modern advertising 
and a pioneer in marketing



Wasteful Traditional Advertising



Computational Advertising

• Design algorithms to make the best match between the 
advertisers and Internet users with economic constraints



Search: iphone 6s case

Sponsored Search



Sponsored Search

• Advertiser sets a bid price for the keyword
• User searches the keyword
• Search engine hosts the auction to ranking the ads



Display Advertising

http://www.nytimes.com/



Display Advertising

• Advertiser targets a segment of users
• Intermediary matches users and ads by user information



Internet Advertising Frontier: 
Real-Time Bidding (RTB) based Display Advertising

What is Real-Time Bidding?

• Every online ad view can be evaluated, bought, 
and sold, all individually, and all instantaneously.

• Instead of buying keywords or a bundle of ad 
views, advertisers are now buying users directly.

DSP/Exchange daily traffic

Advertising iPinYou, China 18 billion impressions

YOYI, China 5 billion impressions

Fikisu, US 32 billon impressions

Finance New York Stock Exchange 12 billion shares

Shanghai Stock Exchange 14 billion shares

Query per second

Turn DSP 1.6 million

Google 40,000 search

[Shen, Jianqiang, et al. "From 0.5 Million to 2.5 Million: Efficiently Scaling up Real-Time Bidding." Data Mining (ICDM), 
2015 IEEE International Conference on. IEEE, 2015.]



Suppose a student regularly reads articles on emarketer.com

Content-related ads



He recently checked the London hotels

(In fact, no login is required)



Relevant ads on facebook.com



Even on supervisor’s homepage!

(User targeting dominates the context)



RTB Display Advertising Mechanism

• Buying ads via real-time bidding (RTB), 10B per day

RTB

Ad

Exchange

Demand-Side 

Platform

Advertiser

Data 

Management

Platform

0. Ad Request
1. Bid Request

(user, page, context)

2. Bid Response
(ad, bid price)

3. Ad Auction
4. Win Notice
(charged price)

5. Ad
(with tracking)

6. User Feedback
(click, conversion)

User Information

User Demography: 
Male, 26, Student

User Segmentations:
London, travelling 

Page

User<100 ms
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Auctions scheme

v1

v2

v3

v4

b1

b2

b3

b4

private values bids

winner

payments $$$

http://images.google.com/imgres?imgurl=http://cincinnatirealestateauctions.com/images/CincinnatiRealEstateAuctions3.jpg&imgrefurl=http://cincinnatirealestateauctions.com/&usg=__jIaR_sTp94ihql89h9ZNlBMFFyo=&h=481&w=245&sz=16&hl=en&start=1&um=1&tbnid=F-msFc21xdqykM:&tbnh=129&tbnw=66&prev=/images?q=auctioneer&hl=en&rls=com.microsoft:en-us&um=1
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Modeling
• n bidders

• Each bidder i has value vi for the item

– “willingness to pay”

– Known only to him – “private value”

• If bidder i wins and pays pi, his utility is vi – pi

– In addition, the utility is 0 when the bidder loses.

• Note: bidders prefer losing than paying more than their 
value.



Strategy
• A strategy for each bidder

– how to bid given your intrinsic, private value?

– a strategy here is a function, a plan for the game. 
Not just a bid.  

• Examples for strategies:
– bi(vi) = vi (truthful)

– bi(vi) = vi /2

– bi(vi) = vi /n

– If v<50, bi(vi) = vi 

otherwise, bi(vi) = vi +17

• Can be modeled as normal form game, where these 
strategies are the pure strategies.

• Example for a game with incomplete information.

B(v)=v B(v)=v
/2

B(v)=v
/n

….

B(v)=v

…



Strategies and equilibrium

• An equilibrium in the auction is a profile of 
strategies B1,B2,…,Bn such that:

– Dominant strategy equilibrium: each strategy is optimal 
whatever the other strategies are.

– Nash equilibrium: each strategy is a best response to the 
other strategies.

B(v)=v B(v)=v/2 B(v)=v/n ….

B(v)=v

…



Bayes-Nash equilibrium

• Recall a set of bidding strategies is a Nash 
equilibrium if each bidder’s strategy 
maximizes his payoff given the optimal 
strategies of the others.

– In auctions: bidders do not know their opponent’s 
values, i.e., there is incomplete information.

– Each bidder’s strategy must maximize her 
expected payoff accounting for the uncertainty 
about opponent values. 



1st price auctions

• Truthful(bi = vi)?

$30 $100

$31

NO!



Equilibrium in 1st-price auctions

• Suppose bidder i’s value is vi  in [0,1], which is only 
known by bidder i.

• Given this value, bidder i must submit a sealed bid  
bi (vi )

• We view bidder i’s strategy as a bidding function bi : 
[0,1] -> R+. Some properties: 

– Bidders with higher values will place higher bids. So bi is a 
strictly increasing function

– Bidders are also symmetric. So bidders with the same 
value will submit the same bid:  bi = b (symmetric Nash 
equilibrium)

– Win(bi) = F(vi), where F is the C.D.F. of the true value 
distribution



Equilibrium in 1st-price auctions

• Bidder 1’s payoff

• The expected payoff of bidding b1 is given by

• An optimal strategy bi should maximize 

v1 - b1 if  b1 > max{b(v2 ),...,b(vn )}

0 if  b1 £ max{b(v2 ),...,b(vn )}

ì

í
ï

îï

p (b1) = (v1 - b1)P(b1 > max{b(v2 ),...,b(vn )

        = (v1 - b1)P(b1 > b(v2 ),...,b1 > (vn ))

p (b1)

})



Equilibrium in 1st-price auctions

• Suppose that bidder i cannot attend the auction and 
that she asks a friend to bid for her

– The friend knows the equilibrium bidding function b* but 
doe not know vi 

– Bidder tells his friend the value as x and wants him to 
submit the bid b* (x)

– The expected pay off in this case is

• The expected payoff is maximized when reporting 
his true value vi to his friend (x = vi) 

p (b*, x) =  (v1 - b*(x))P(b*(x) > b*(v2 ),...,b*(x) > b*(vn ))

            = (v1 - b*(x))P(x > v2 ,..., x > vn ) = (v1 - b*(x))FN-1(x)



Equilibrium in 1st-price auctions

• So if we differentiate the expected payoff with 
respect to x, the resulting derivative must be zero 
when x = vi : 

• The above equals zero when x = vi ; rearranging 
yields:

dp (b*, x)

dx
=

d(v1 - b*(x))FN-1(x)

dx

= (N -1)F N-2 (x) f (x)(v1 - b*(x))- FN-1(x)b* ' (x)

(N -1)FN-2 (v1) f (v1)v1

= FN-1(v1)b* ' (v1) + (N -1)FN-2(v1) f (v1)b*(v1)

=
dFN-1(v1)b*(v1)

dv



Equilibrium in 1st-price auctions
• Taking the integration on both side

• If we assume a bidder with value zero must bid zero, 
the above constant is zero. Therefore, we have 
(replace vi with v)

• It shows that in the equilibrium, each bidder bids 
the expectation of the second-highest bidder’s value
conditional on winning the auction. 



Untruthful bidding in 1st-price auctions

• Suppose that each bidder’s value is uniformly 
distributed on [0,1]. 

– Replacing F(v)=v and f(v)=1 gives



Equilibrium in 2nd-price auctions

• bidder 1’s payoff

• The expected payoff of bidding b1 is given by

• Suppose b1 < v1, if b1 is increased to v1 the integral 
increases by the amount 

• The reverse happens if b1 > v1

v1 - bi if  b1 > bi > max{b(v2 ),...,b(vi-1),b(vi+1),...,b(vn )}

0 if  b1 £ max{b(v2 ),...,b(vn )}

ì

í
ï

îï



Equilibrium in 2nd-price auctions

• bidder 1’s payoff

• The expected payoff of bidding b1 is given by

• Or taking derivative of π(v1, b1) w.r.t. b1 yields b1 = v1

v1 - bi if  b1 > bi > max{b(v2 ),...,b(vi-1),b(vi+1),...,b(vn )}

0 if  b1 £ max{b(v2 ),...,b(vn )}

ì

í
ï

îï

So telling the truth b1 = v1 is a Bayesian 
Nash equilibrium bidding strategy!



Reserve Prices and Entry Fees

• Reserve Prices: the seller is assumed to have 
committed to not selling below the reserve
– Reserve prices are assumed to be known to all bidders

– The reserve prices = the minimum bids

• Entry Fees: those bidders who enter have to pay 
the entry fee to the seller

• They reduce bidders’ incentives to participate, 
but they might increase revenue as 
– 1) the seller collects extra revenues 

– 2) bidders might bid more aggressively



RTB Auctions

• Second price auction with reserve price

• From a bidder’s perspective, the market price
z refers to the highest bid from competitors

• Payoff: (vimpression– z) × P(win)

• Value of impression depends on user response
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RTB Display Advertising Mechanism

• Buying ads via real-time bidding (RTB), 10B per day

RTB

Ad

Exchange

Demand-Side 

Platform

Advertiser

Data 

Management

Platform

0. Ad Request

1. Bid Request
(user, page, context)

2. Bid Response
(ad, bid price)

3. Ad Auction
4. Win Notice
(charged price)

5. Ad
(with tracking)

6. User Feedback
(click, conversion)

User Information

User Demography: 
Male, 26, Student

User Segmentations:
London, travelling 

Page

User
<100 ms



Predict how likely the user is going to 
click the displayed ad.



User response estimation problem

• Click-through rate estimation as an example
• Date: 20160320
• Hour: 14
• Weekday: 7
• IP: 119.163.222.*
• Region: England
• City: London
• Country: UK
• Ad Exchange: Google
• Domain: yahoo.co.uk
• URL: http://www.yahoo.co.uk/abc/xyz.html
• OS: Windows
• Browser: Chrome
• Ad size: 300*250
• Ad ID: a1890
• User tags: Sports, Electronics

Click (1) or not (0)?

Predicted CTR (0.15)

http://www.yahoo.co.uk/abc/xyz.html


Feature Representation

• Binary one-hot encoding of categorical data

x=[Weekday=Wednesday, Gender=Male, City=London]

x=[0,0,1,0,0,0,0 0,1 0,0,1,0…0]

High dimensional sparse binary feature vector



Linear Models

• Logistic Regression

– With SGD learning

– Sparse solution

• Online Bayesian Probit Regression



ML Framework of CTR Estimation

• A binary regression problem

– Large binary feature space (>10 millions)
• Bloom filter to detect and add new features (e.g., > 5 instances)

– Large data instance number (>10 millions daily)

– A seriously unbalanced label
• Normally, #click/#non-click = 0.3%

• Negative down sampling

• Calibration
– An isotonic mapping from prediction to calibrated prediction



Logistic Regression

• Prediction

• Cross Entropy Loss

• Stochastic Gradient Descent Learning

[Lee et al. Estimating Conversion Rate in Display Advertising from Past Performance Data. KDD 12]



Logistic Regression with SGD

• Pros
– Standardised, easily understood and implemented

– Easy to be parallelised

• Cons
– Learning rate η initialisation

– Uniform learning rate against different binary 
features



Logistic Regression with FTRL
• In practice, we need a sparse solution as >10 million feature dimensions
• Follow-The-Regularised-Leader (FTRL) online Learning

[McMahan et al. Ad Click Prediction : a View from the Trenches. KDD 13]

s.t.

• Online closed-form update of FTRL

t: current example index
gs: gradient for example t

adaptively selects regularisation functions 

[Xiao, Lin. "Dual averaging method for regularized stochastic learning and online optimization." Advances in Neural Information Processing Systems. 2009]



Online Bayesian Probit Regression
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Given the sampling distribution          and the prior 
     it remains to calculate the posterior. 

                        (4)  

The exact posterior over weights   can neither be 
represented compactly nor calculated in closed form. We 
therefore resort to approximate message passing. In order 
to bring out the full factorial structure of the likelihood, 
we introduce two latent variables    , and consider the 
equivalent joint density function              which 
factorises as 

                                  (5)  

This distribution can be understood in terms of the 
following generative process, which is also reflected in 
the factor graph in Figure 1.  

 Factors   : Sample weights   from the Gaussian 

prior     .  

 Factor  : Calculate the score   for x as the inner 

product    , such that                   .  

 Factor  : Add zero-mean Gaussian noise to obtain   

from  , such that                  .  

 Factor  : Determine   by a threshold on the noisy 

score   at zero, such that                     .  

3.3. Inference 

The factor graph in Figure 1 allows us to break down the 
computation of the posterior over weights   into local 

computations referred to as messages (Kschischang, Frey, 
& Loeliger, 2001). In fact, since the exact posterior 
calculation is intractable, we maintain an approximation 
of the posterior in the same family of distributions as the 
prior (3). The approximate message passing algorithm 
used is expectation propagation (Minka, 2001) in the 
mode of assumed Gaussian density filtering. 

There are two inference tasks corresponding to two types 
of marginal distributions to be computed on the factor 
graph in Figure 1.  

 Given training example       and prior     , infer 

the new posterior          (upward messages).  

 Given posterior          and feature vector   infer 

predictive distribution        (downward messages). 

We represent the Gaussian beliefs over weights   by 
sparse vectors only storing values different from the prior. 

 A vector of means   (            
)

 
  

 A vector of variances    (    
         

 )
 
. 

We will not provide a detailed derivation of the inference 
equations because adPredictor can be seen as a special 
case of the TrueSkill™  rating algorithm for games 
(Herbrich, Minka, & Graepel, 2007). The input feature 
vector in adPredictor corresponds to a team of players, 
with each active weight in adPredictor corresponding to 
the skill of a player in the team. Inference on the weights 
in adPredictor is equivalent to inference on the player 
skills in TrueSkill after a hypothetical match against a 
team with known skill of zero. Given the factor graph in 
Figure 1 together with Table 1 in the above paper the 
update equations can be derived.   

3.3.1. UPDATE EQUATIONS FOR ONLINE LEARNING 

The update equations represent a mapping from prior to 
posterior parameter values based on input-output 
pairs               ̃   ̃   . In terms of Figure 1, the 
calculation can viewed as following the message passing 
schedule towards the weights   . We define the total 
variance for a given input   as 

            (6)  

The update for the posterior parameters is given by: 
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The functions   and   (see also Figure 2) are given by 

Figure 1: Factor graph model of Bayesian probit regression 

with message flow. Only active weights are shown. 
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Linear Prediction Models

• Pros

– Highly efficient and scalable

– Explore larger feature space and training data

• Cons

– Modelling limit: feature independence assumption

– Cannot capture feature interactions unless defining 
high order combination features

• E.g., hour=10AM & city=London & browser=Chrome



Non-linear Models

• Factorisation Machines

• Gradient Boosting Decision Trees

• Combined Models

• Deep Neural Networks



Factorisation Machines

• Prediction based on feature embedding

– Explicitly model feature interactions
• Second order, third order etc.

– Empirically better than logistic regression

– A new way for user profiling

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]

[Rendle. Factorization machines. ICDM 2010.]

Logistic Regression Feature Interactions



Factorisation Machines

• Prediction based on feature embedding

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]

[Rendle. Factorization machines. ICDM 2010.]

Logistic Regression Feature Interactions

For x=[Weekday=Friday, Gender=Male, City=Shanghai]



• Feature embedding for another field

Field-aware Factorisation Machines

[Juan et al. Field-aware Factorization Machines for CTR Prediction. RecSys 2016.]

Field-aware field embedding

For x=[Weekday=Friday, Gender=Male, City=Shanghai]



Gradient Boosting Decision Trees
• Additive decision trees for prediction

• Each decision tree

[Chen and He. Higgs Boson Discovery with Boosted Trees . HEPML 2014.]



Gradient Boosting Decision Trees

• Learning

[Chen and He. Higgs Boson Discovery with Boosted Trees . HEPML 2014.]
[Tianqi Chen. https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf]



Combined Models: GBDT + LR

[He et al. Practical Lessons from Predicting Clicks on Ads at Facebook . ADKDD 2014.]



Combined Models: GBDT + FM

[http://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf]



Neural Network Models

• Difficulty: 
Impossible to 
directly deploy 
neural network 
models on such 
data

1M

500

500M

E.g., input features 1M, first layer 500, then 500M parameters for first layer



Review Factorisation Machines

• Prediction based on feature embedding

– Embed features into a k-dimensional latent space

– Explore the feature interaction patterns using vector inner-
product

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-
aware factorization machine. WSDM 14]

[Rendle. Factorization machines. ICDM 2010.]

Logistic Regression Feature Interactions



Factorisation Machine is a Neural Network



[Zhang et al. Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction. ECIR 16]

[Factorisation Machine Initialised]

Factorisation-machine supported Neural 
Networks (FNN)



[Zhang et al. Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction. ECIR 16]

Factorisation-machine supported Neural 
Networks (FNN)

• Chain rule to update factorisation machine parameters



But factorisation machine is still different from 
common additive neural networks



Product Operations as Feature 
Interactions

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]



Product-based Neural Networks (PNN)

Inner Product
Or

Outer Product

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]



Convolutional Click Prediction Model (CCPM)

• CNN to (partially) select good feature combinations

[Qiang Liu et al. A convolutional click prediction model. CIKM 2015]



Overall Performance



Training with Instance Bias

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



Unbiased Learning

• General machine learning problem

• But the training data distribution is q(x)

– A straightforward solution: importance sampling

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



Unbiased CTR Estimator Learning

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]
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RTB Display Advertising Mechanism

• Buying ads via real-time bidding (RTB), 10B per day

RTB

Ad

Exchange

Demand-Side 

Platform

Advertiser

Data 

Management

Platform

0. Ad Request

1. Bid Request
(user, page, context)

2. Bid Response
(ad, bid price)

3. Ad Auction
4. Win Notice
(charged price)

5. Ad
(with tracking)

6. User Feedback
(click, conversion)

User Information

User Demography: 
Male, 26, Student

User Segmentations:
London, travelling 

Page

User
<100 ms



Data of Learning to Bid

– Bid request features: High dimensional sparse binary vector

– Bid: Non-negative real or integer value

– Win: Boolean

– Cost: Non-negative real or integer value

– Feedback: Binary

• Data



Problem Definition of Learning to Bid

• How much to bid for each bid request?

– Find an optimal bidding function b(x)

• Bid to optimise the KPI with budget constraint

Bid Request
(user, ad, page, context)

Bid Price

Bidding 

Strategy



Bidding Strategy in Practice

Bid Request
(user, ad, 

page, context)

Bid Price

Bidding Strategy

Feature Eng. Whitelist / 

Blacklist

Retargeting

Budget 

Pacing

Bid 

Landscape

Bid 

Calculation

Frequency 

Capping CTR / CVR 

Estimation

Campaign 

Pricing 

Scheme

74



Bidding Strategy in Practice: 
A Quantitative Perspective

Bid Request
(user, ad, 

page, context)

Bid Price

Bidding Strategy

Utility 

Estimation

Cost 

Estimation

Preprocessing

Bidding Function

CTR,
CVR,

revenue

Bid landscape

75



Bid Landscape Forecasting

Auction 
Winning 

Probability

Win probability: Expected cost:

Count

Win bid



Bid Landscape Forecasting

• Log-Normal Distribution

Auction 
Winning 

Probability

[Cui et al. Bid Landscape Forecasting in Online Ad Exchange Marketplace. KDD 11] 



Bid Landscape Forecasting

• Price Prediction via Linear Regression

– Modelling censored data in lost bid requests

[Wu et al. Predicting Winning Price in Real Time Bidding with Censored Data. KDD 15] 



Survival Tree Models

[Yuchen Wang et al. Functional Bid Landscape Forecasting for Display Advertising. ECMLPKDD 2016 ]

Node split
Based on
Clustering 
categories



Bidding Strategies

• How much to bid for each bid request?

• Bid to optimise the KPI with budget constraint

Bid Request
(user, ad, page, context)

Bid Price

Bidding 

Strategy



Classic Second Price Auctions

• Single item, second price (i.e. pay market price)

Reward given a bid:

Optimal bid:

Bid true value



Truth-telling Bidding Strategies

• Truthful bidding in second-price auction

– Bid the true value of the impression

– Impression true value =

– Averaged impression value = value of click * CTR

– Truth-telling bidding:

[Chen et al. Real-time bidding algorithms for performance-based display ad allocation. KDD 11]

Value of click, if clicked

0, if not clicked



Truth-telling Bidding Strategies

• Pros
– Theoretic soundness

– Easy implementation (very widely used)

• Cons
– Not considering the constraints of

• Campaign lifetime auction volume

• Campaign budget

– Case 1: $1000 budget, 1 auction

– Case 2: $1 budget, 1000 auctions
[Chen et al. Real-time bidding algorithms for performance-based display ad allocation. KDD 11]



Non-truthful Linear Bidding

• Non-truthful linear bidding

– Tune base_bid parameter to maximise KPI

– Bid landscape, campaign volume and budget 
indirectly considered

[Perlich et al. Bid Optimizing and Inventory Scoring in Targeted Online Advertising. KDD 12]



ORTB Bidding Strategies

• Direct functional optimisation

CTRwinning function

bidding function

budget

Est. volume cost upperbound

[Zhang et al. Optimal real-time bidding for display advertising. KDD 14]

• Solution: Calculus of variations



Optimal Bidding Strategy Solution

86
[Zhang et al. Optimal real-time bidding for display advertising. KDD 14]



Unbiased Optimisation

• Bid optimization on ‘true’ distribution

• Unbiased bid optimization on biased distribution

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



Unbiased Bid Optimisation

A/B Testing 
on Yahoo! 
DSP.

[Zhang et al. Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising. KDD 2016.]



That’s the first half of the tutorial!
Questions?
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Conversion Attribution

• Assign credit% to each channel according to contribution

• Current industrial solution: last-touch attribution

[Shao et al. Data-driven multi-touch attribution models. KDD 11]

Ad on Yahoo Sports Ad on Facebook Ad on Amazon

Ad on Google
Ad on TV



Rule-based Attribution

[Kee. Attribution playbook – google analytics. Online access.]



A Good Attribution Model

• Fairness

– Reward an individual channel in accordance with 
its ability to affect the likelihood of conversion

• Data driven

– It should be built based on ad touch and 
conversion data of a campaign

• Interpretability

– Generally accepted by all the parties

[Dalessandro et al. Casually Motivated Attribution for Online Advertising. ADKDD 11]



Bagged Logistic Regression

• For M iterations

– Sample 50% data instances and 50% features

– Train a logistic regression model and record the feature 

weights

• Average the weights of a feature

Display Search Mobile Email Social Convert?

1 1 0 0 1 1

1 0 1 1 1 0

0 1 0 1 0 1

0 0 1 1 1 0

[Shao et al. Data-driven multi-touch attribution models. KDD 11]



A Probabilistic Attribution Model

• Conditional probabilities

• Attributed contribution (not-normalized)

[Shao et al. Data-driven multi-touch attribution models. KDD 11]



[Shao et al. Data-driven multi-touch attribution models. KDD 11]



[Shao et al. Data-driven multi-touch attribution models. KDD 11]



Data-Driven Probabilistic Models

[Shao et al. Data-driven multi-touch attribution models. KDD 11]

• A more generalized and data-driven model
[Dalessandro et al. Causally Motivated Attribution for Online Advertising. ADKDD 11]

– is the probability that the ad touch sequence begins 
with

• The “relatively heuristic” data-driven model



Attribution Comparison: LTA vs MTA

[Dalessandro et al. Casually Motivated Attribution for Online Advertising. ADKDD 11]



Shapley Value based Attribution

• Coalitional game

– How much does a player contribute in the game?

[Fig source: https://pjdelta.wordpress.com/2014/08/10/group-project-how-much-did-i-contribute/]



Shapley Value based Attribution

• Coalitional game
– is the conversion rate of different subset of publishers

– The Shapley value of publisher     is

[Berman, Ron. Beyond the last touch: Attribution in online advertising.” Available at SSRN 2384211 (2013)]

CVR of those touched by all 
the publishers in 



Survival theory-based model

• Use addictive hazard functions to explicitly model:
– the strength of influence, and 
– the time-decay of the influence

[Zhang et al. Multi-Touch Attribution in Online Advertising with Survival Theory. ICDM 2014]



• Establish a graph from observed user journeys

Markov graph-based approach

[Anderl et al. Mapping the customer journey: A graph-based framework for online attribution modeling. SSRN 2014]



• Attribute based on probability change of reaching 
conversion state

Markov graph-based approach

[Anderl et al. Mapping the customer journey: A graph-based framework for online attribution modeling. SSRN 2014]



MTA-based budget allocation

• Typical advertiser 
hierarchy

• Typical budget 
allocation scheme

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]



• Estimate sub-campaign spending capability
– New sub-campaign: assign a learning budget

– Existing sub-campaign: assign an x% more budget

• Calculate ROI of each sub-campaign

• Allocate budget in a 
cascade fashion

1 if       is the last touch 
point else 0                    (LTA) 

(MTA)

MTA-based budget allocation

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]



MTA-based budget allocation

• Results on a real ad campaign

[Geyik et al. Multi-Touch Attribution Based Budget Allocation in Online Advertising. ADKDD 14]



Attribution and Bidding

• For CPA campaigns, conventional bidding strategy is 
to bid prop. to estimated action rate (a.k.a. 
conversion rate). Is that always correct?

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]



Attribution and Bidding



Rational DSPs for CPA advertisers

• DSP’s perspective:

– Cost: second price in the auction

– Reward: CPA if (1) there is action, and (2) the 
action is attributed to it

– A rational DSP will always bid

In LTA, p(attribution|action) is always 1 for the last 
toucher. Therefore DSPs are bidding to maximize their 
chance to be attributed instead of maximizing conversions.



Bidding in Multi-Touch Attribution

• Current bidding strategy (driven by LTA)

• A new bidding strategy (driven by MTA)

– If attribution is based on the AR lift

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]

Lift- based bidding



Lift-based bidding

• Estimating action rate lift
– Learn a generic action prediction model       on top 

of features extracted from user-states

– Then action rate lift can be estimated by

• Deriving the base_bid

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]



Lift-based bidding

[Xu et al. Lift-Based Bidding in Ad Selection. AAAI 2016.]
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Pacing Control

• Budget pacing control helps advertisers to define 
and execute how their budget is spent over the 
time. 

• Why?
– Avoid premature campaign stop, overspending and 

spending fluctuations. 

– Reach a wider range of audience

– Build synergy with other marketing campaigns

– Optimize campaign performance



Examples

[Lee et al. Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising. ADKDD 13]



Two streams of approaches

Bid modification Probabilistic throttling

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Bid modification with PID controller

• Add a monitor, a controller and an actuator module into the 
bidding system

• Achieve reference KPI (e.g. eCPC) by bid modification

[Zhang et al. Feedback Control of Real-Time Display Advertising. WSDM 2016.]



Bid modification with PID controller

• Current control signal is calculated by PID controller

• Bid price is adjusted by taking into account current control signal

• A baseline controller: Water-level controller

[Zhang et al. Feedback Control of Real-Time Display Advertising. WSDM 2016.]

The control signal

Reference KPI Actual KPI value





• Online eCPC control performance of a mobile game 
campaign

Bid modification with PID controller

[Zhang et al. Feedback Control of Real-Time Display Advertising. WSDM 2016.]



Probabilistic throttling with 
conventional feedback controller

• P(t): pacing-rate at time slot t

• Leverage a conventional feedback controller:
– P(t)=P(t–1)*(1–R) if budget spent > allocation

– P(t)=P(t–1)*(1+R) if budget spent < allocation 

[Agarwal et al. Budget Pacing for Targeted Online Advertisements at LinkedIn. KDD 2014.]



Probabilistic throttling with adaptive 
controller

• Leverage an adaptive controller

is the desired spend (allocated) at time slot t+1. Different 
desired spending patterns can incur different calculation.

[Lee et al. Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising. ADKDD 13]

Desired spending in the 
next time-slot

Forecasted request volume and 
bid win rate in the next time-slot



Pacing control for campaign 
optimization

• Campaign optimization objectives:

– Reach delivery and performance goals

• Branding campaigns: Spend out budget > Campaign 
performance (e.g., in terms of eCPC or eCPA) 

• Performance campaigns: Meet performance goal > 
Spend as much budget as possible. 

– Execute the budget pacing plan 

– Reduce creative serving cost 

Can we achieve all these objectives by pacing control?

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Smart pacing

1.0 

0.6 

1.0 

0.1 

0.001 

0.001 

0.001 

0.001 

1.0 

1.0 

0.8 1.0 

0.001 0.2 

Layer 3 

Layer 2 

Layer 1 

Layer 0 

Ad request  
volume 

Time slot 

Budget pacing plan 

Actual  
spending 

Time slot 

 
High responding  

 
Low responding  

0.001 0.001 

Slow down Speed up 

[Xu et al. Smart Pacing for Effective Online Ad Campaign Optimization. KDD 2015.]



Smart pacing performance



Smart pacing vs conventional 
feedback controller



Smart pacing vs conventional 
feedback controller
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Does targeting help online advertising?

• Segment user based on … 
– LP: Long-term Page-view ,     SP: Short-term Page-view

– LQ: Long-term Query ,           SQ: Short-term Query

[J Yan, et al. How much can behavioral targeting help online advertising? WWW 2009]

Compare the best CTR segment with baseline (random users)



User segmentation

• Different user segmentation algorithms may have different 
results

[J Yan, et al. How much can behavioral targeting help online advertising? WWW 2009]



User segmentation

• From user – documents to user – topics

– Topic modeling using PLSA, LDA, etc. 

[X Wu et al. Probabilistic latent semantic user segmentation for behavioral targeted advertising. 
Intelligence for Advertising 2009]

User Topic Term



Targeting landscape

• Targeting: reach the precise users who are receptive to 
the marketing messages.

Geo-targeting Demo-targeting

Behavioral 
Targeting

Search Re-
targeting

Mail Re-
targeting

Social Targeting

Site Re-targeting

Desired users

Web-site targeting

Proximity 
Targeting



Targeting landscape

• A bit too complicated …

domain1,
domain2,
Purchase CAT1,
Purchase CAT2,
… MRT

keyword1,
keyword2,
… SRT

Facebook “Like”1,
Facebook “Like”2,
…

Social

Bazooka CAT1,
Bazooka CAT2,
…

BT

Audience 
Match

Digital 
Direct

Proximity

Geo Demo Device

Advertiser
(ad campaign)

etc.



Audience expansion

• AEX Simplifies targeting by discovering similar 
(prospective) customers

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]



Rule mining-based approach

• Identify feature-pair-based associative 
classification rules

– Affinity that a feature-pair towards conversion:

– Top k feature (pairs) are kept as scoring rules

Especially good for those tail campaigns (e.g. CVR < 0.01%)

[Mangalampalli et al, A feature-pair-based associative classification approach to look-alike 
modeling for conversion-oriented user-targeting in tail campaigns. WWW 2011]

Probability to observe 
feature-pair f in data



Rule mining-based approach

• Campaign C1: a tail campaign 

• Campaign C2: a head campaign

[Mangalampalli et al, A feature-pair-based associative classification approach to look-alike 
modeling for conversion-oriented user-targeting in tail campaigns. WWW 2011]



Weighted criteria-based approach

• Similarity Criterion:

• Novelty Criterion: 

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]



Weighted criteria-based approach

• Quality Criterion:

• Final score

[J Shen, et al., Effective Audience Extension in Online Advertising, KDD 2015]



Weighted criteria-based approach

Weighted-criteria



Audience Expansion for OSN Advertising

• Campaign-agnostic: enrich member profile attributes

• Campaign-aware: identify similar members

[H Liu et al. Audience expansion for online social network advertising. KDD 2016]



Audience Expansion for OSN Advertising

• Member similarity 
evaluation

– Density of a 
segment:

– Expansion ratio vs 
Density ratio

[H Liu et al. Audience expansion for online social network advertising. KDD 2016]



Transferred lookalike

• Web browsing prediction (CF task)

• Ad response prediction (CTR task)

[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to 
CTR Estimation. ECIR 2016]

user feature publisher feature K-dimensional latent vector

ad feature



Transferred lookalike
Using web browsing data, which is largely available,  to infer the ad clicks

[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to 
CTR Estimation. ECIR 2016]



Joint Learning in Transferred lookalike

[Zhang et al. Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to 
CTR Estimation. ECIR 2016]
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Reserve price optimisation

The task:
• To find the optimal reserve prices to maximize publisher revenue

The challenge:
• Practical constraints v.s theoretical assumptions

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



Why

• Suppose it is second price auction and 𝑏1, 𝑏2
are first and second prices

– Preferable case: 𝑏1 ≥ 𝛼 > 𝑏2 (increases revenue)

– Undesirable case: 𝛼 > 𝑏1 (lose revenue)



• Suppose: two bidders, whose private values 𝑏1, 𝑏2 are both 
drawn from Uniform[0, 1]

• Without a reserve price, the expected payoff 𝑟 is:

• With α = 0.2:

• With α = 0.5:

• With α = 0.6:

An example

[Ostrovsky et al, Reserve prices in internet advertising auctions: A field experiment. EC 2011]

𝑟 = 𝐸 min 𝑏1, 𝑏2 = 0.33

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.5, 𝑏2 > 0.5 + (0.5 × 0.5) × 2 × 0.5 = 0.42

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.2, 𝑏2 > 0.2 + (0.8 × 0.2) × 2 × 0.2 = 0.36

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.6, 𝑏2 > 0.6 + 0.6 × 0.4 × 2 × 0.6 = 0.405

Paying the second highest price Paying the reserve price



Theoretically optimal reserve price

• In the second price auctions, an advertiser bid its private 
value 𝑏

• Suppose bidders are risk-neutral and symmetric (i.e. having 
same distributions) with bid C.D.F  𝐹 𝑏

• The publisher also has a private value  𝑉𝑝

• The optimal reserve price is given by:

[Levin and Smith, Optimal Reservation Prices in Auctions, 1996]

𝛼 =
1 − 𝐹 𝛼

𝐹′ 𝛼
+ 𝑉𝑝



Results from a field experiment

• Using the theoretically optimal reserve price on Yahoo! 
Sponsored search

Mixed results

[Ostrovsky et al, Reserve prices in internet advertising auctions: A field experiment. EC 2011]



• Advertisers have their own bidding strategies (No access 

to publishers)

• They change their strategies frequently

Bidding strategy is a mystery

Many advertisers bid at fixed values

with bursts and randomness.

And they come and go

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



Uniform/Log-normal distributions do NOT fit well

Test at the placement level
(because we usually set reserve prices 

on placements)

Test at the auction level

• Chi-squared test for Uniformity

• Anderson-Darling test for Normality

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



A simplified dynamic game

• Players: auction winner      ,publisher 

• Initial status:       :             ;       otherwise

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



OneShot: the algorithm based on 
dominant strategy

• The algorithm essentially uses a conventional 
feedback controller

• A practical example setting of the parameters:

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



OneShot performance

[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]



[Yuan et al. An Empirical Study of Reserve Price Optimisation in Display Advertising. KDD 2014]

Advertiser attrition concern



Optimal reserve price in upstream 
auctions

• A different problem 
setting
– Upstream charges a 

revenue-share (e.g. 
25%) from each 
winning bid.

– What is the optimal 
reserve price for such 
a marketplace?

[Alcobendas et al., Optimal reserve price in upstream auctions: Empirical application on 
online video advertising. KDD 2016]



Optimal reserve price in upstream 
auctions

• Assume bidder’s valuation of the inventory is an i.i.d. realization of the 
random variable V, and bidders are risk neutral, the optimal reserve 
price for upstream marketplace satisfies

If without downstream auction, optimal condition is

Probability of winning downstream auction

Probability that a bidder wins
the upstream auction with bid u

Expected price if having at least 
one bidder above reserve price

Support interval of V



Optimal reserve price in upstream 
auctions

[Alcobendas et al., Optimal reserve price in upstream auctions: Empirical application on 
online video advertising. KDD 2016]
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