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ABSTRACT
We address the bidding strategy design problem faced by a Demand-
Side Platform (DSP) in Real-Time Bidding (RTB) advertising. A
RTB campaign consists of various parameters and usually a prede-
fined budget. Under the budget constraint of a campaign, designing
an optimal strategy for bidding on each impression to acquire as
many clicks as possible is a main job of a DSP. State-of-the-art bid-
ding algorithms rely on a single predictor, namely the clickthrough
rate (CTR) predictor, to calculate the bidding value for each im-
pression. This provides reasonable performance if the predictor
has appropriate accuracy in predicting the probability of user click-
ing. However when the predictor gives only moderate accuracy,
classical algorithms fail to capture optimal results. We improve the
situation by accomplishing an additional winning price predictor in
the bidding process. In this paper, a method combining powers of
two prediction models is proposed, and experiments with real world
RTB datasets from benchmarking the new algorithm with a classic
CTR-only method are presented. The proposed algorithm performs
better with regard to both number of clicks achieved and effective
cost per click in many different settings of budget constraints.

1. INTRODUCTION
Online display advertisement (AD) is the main source of revenue

for Internet business. After years of evolution, the mechanism of
display AD has changed from the pre-allocated style to keyword-
based matching of sponsored search, and recently advanced to the
per-impression manner of Real-Time Bidding (RTB) paradigm [2].
Via real-time auctions, the RTB solution enables automatic AD im-
pressions selling and purchasing between advertisers and publish-
ers. According to Google’s white paper [2], RTB has been promis-
ingly recognized as the leading mechanism for online AD markets.
Participants in the RTB ecosystem include publishers, Supply-Side
Platforms (SSPs), advertisers, Demand-Side Platforms (DSPs), AD
exchanges and networks, and users surfing on the Internet. While
a user visits a Web page or activates a mobile app of a publisher
with an AD slot available, the attributes of this user and the AD
slot are sent via the AD exchange to the DSP. DSP will determine
whether the pair, consisting of the user and the slot, conforms to the
targeting rules of its customers (advertisers), and decide whether to
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Figure 1: An illustration of the RTB auction flow.

acquire this impression to display the AD provided by the adver-
tisers in real time. If this impression is of interest, a bidding value
is calculated and sent to the AD exchange for auction. Typically, a
second price auction is held to select the winner. That is, the auc-
tion winner, who sent the highest bidding price, will pay the second
highest bidding value among all bidders in the auction to the pub-
lisher and get her AD displayed. This amount paid by the advertiser
is regarded as the winning price (WP) of the impression in the auc-
tion. Refer to Figure 1 for an illustration of the RTB auction flow.
Details of the RTB mechanism can be found in [7].

DSP plays an important role on behalf of advertisers in the RTB
ecosystem. Its primary task is to determine the bidding price for
each incoming AD impression opportunity in real time where the
price has to reflect the value of the impression. Typically an impres-
sion’s value is evaluated by key performance indicators (KPIs) such
as clickthrough rate (CTR) or conversion rate (CVR). An impres-
sion with a higher expected KPI will be assigned a greater bidding
value. There have been works in the literature studying strategies
that help the DSP to calculate the bidding price from the expected
KPI of an impression. State-of-the-art optimal bidding algorithms
rely on a single input, namely the CTR or CVR predictor, to cal-
culate the bidding value. The optimal performance will result from
a predictor that correctly estimates the related KPI. If the predictor
can merely acquire moderate accuracy, however, it is expected that
this kind of solutions will fail to capture optimal results.

In the literature, there have been works regarding the predic-
tion of an impression’s winning price from its features. With the
winning price becoming directly predictable under reasonable ac-
curacy, we are able to improve the quality of the bidding strat-
egy. Specifically, if an additional winning price predictor is accom-
plished in the bidding process, the computed bidding value will be
able to reflect the true value of an impression more precisely and
enhance the overall efficiency for the bidding process of the AD
campaign. This sort of framework could provide better results than
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previous models relying on a single KPI predictor. We propose
in this paper a new method combining powers of two prediction
models, namely CTR and WP predictors. We first describe short-
comings of classical single predictor methods, and then develop our
new algorithm. The efficiency of the algorithm is shown by anal-
ogy to the well known online stochastic knapsack problem. We
also perform experiments to benchmark the proposed method with
one of the classic strategies. The experimental results show that our
method, when applied on real world RTB datasets, performs better
with regard to both number of clicks achieved and effective cost per
click in many different settings of budget constraints.

The contributions of this work are multi-fold. (1) We describe
the shortcomings of classical bidding schemes and address their
non-optimality. (2) We develop a new algorithm that utilizes two
prediction models and discuss its optimality. (3) To the best of our
knowledge, we are the first to combine two predictors in design-
ing a bidding strategy for RTB. (4) Experiments with real world
datasets are performed to assess the efficiency of the new method.
We also set up a formal procedure for benchmarking RTB bidding
algorithms by adopting the competitive analysis.

2. PRELIMINARIES

2.1 Related Work
Online computational AD is a rapid evolving area with a number

of sub-disciplines. Among them, RTB has attracted more and more
research interests in recent years. Works in RTB concern various
aspects including bid landscape forecasting [1], bid winning price
prediction [8], and bidding strategy design [10, 5, 9]. Interested
readers can refer to [7] for the comprehensive review.

Two state-of-the-art bidding strategies are discussed in [5, 10]
both with the performance measured in terms of number of clicks
achieved in the campaign lifetime under a certain budget constraint.
In [5], the bidding value is determined by a linear function of the
predicted CTR of an impression. The work [10] develops a new
function which is in a concave instead of linear relationship with
the predicted CTR. It is supposed that the algorithm named ORTB
in [10] be optimal if only one prediction model, namely the CTR
predictor, can be used. We propose to further increase the perfor-
mance of the bidding function if one additional estimator, the WP
predictor, is incorporated into the bidding value calculation.

The work [4] employs the similar idea of incorporating winning
price prediction into the bidding value computation. However, it
considers only the winning price predictor while we take into ac-
count CTR and WP predictors simultaneously. To sum up, there
have been works concerning bidding strategy design on top of the
CTR predictor or the WP predictor, but existing ones design their
algorithms with either one of the two. We are the first, to the best
of our knowledge, who incorporate both of the two predictors in
developing an optimal RTB bidding algorithm.

2.2 Problem Formulation
We start by formally stating the problem to be addressed. Note

that there are various pricing schemes in RTB and we limit our dis-
cussion to CPM (cost per mille) pricing. In light of CPM, the price
of winning an auction is immediately charged by the publisher af-
ter the advertiser’s AD creative is displayed, regardless of whatever
the user’s action after seeing the AD. Also, the second price auction
mechanism is assumed. Given the set of impression opportunities
ψ : {~x1, ~x2, ..., ~xn} of a campaign with each impression repre-
sented by its feature vector ~xi|1 ≤ i ≤ n, and the campaign bud-
get B, we wish to obtain as many clicks as possible by bidding on
these impressions while keeping the total expense under the budget

constraint. We have to decide 1) Whether to place a bid on each ~xi
or not, and 2) If it is to bid, what is the bidding value? We denote
the outcome (click or not) of winning ~xi by an indicator variable
I(~xi) where I(~xi) equals 1 if winning ~xi leads to a click and 0
otherwise. The exact cost of ~xi is denoted by P (~xi), which means
the actual amount to be paid for winning ~xi. That is, P (~xi) is the
winning price of ~xi. If bidding with b(~xi) does not win the auction
for ~xi, I(~xi) and P (~xi) will be both 0. Now the Bidding Strategy
Design (BSD) problem is defined as follows.

DEFINITION BSD: Determine the bidding value b(~xi) for each
~xi ∈ ψ to maximize

∑n
i=1 I(~xi), subject to

∑n
i=1 P (~xi) ≤ B.

Note that we answer both questions aforementioned by a single
function b(·). Specifically, for the first question, if b(~xi) equals
0, we skip this impression and the corresponding I(~xi) and P (~xi)
equal 0 consequently. Also keep in mind that P (~xi) is always less
than b(~xi) since the auction is in a second price manner.

2.3 Challenges in Classical Algorithms
With the BSD problem formally formulated, we present a brief

review on two classical algorithms, LIN [5] and ORTB [10], that
rely on a single CTR predictor to determine the bidding value for an
impression. LIN models an impression’s bidding value as a linear
function of its predicted CTR (denoted as pCTR hereafter) by

bLIN (~xi) = λLIN · pCTR(~xi). (1)

ORTB calculates the bidding value for an impression from a concave-
shaped function of its pCTR as1

bORTB(~xi) =

√
c

λORTB
· pCTR(~xi) + c2 − c. (2)

In these two equations, λLIN , λORTB and c are tunable param-
eters of the corresponding algorithms. Clearly, they both produce
the bidding value for an impression from the predicted CTR. LIN is
a so-called truth telling strategy emphasizing that an impression’s
bidding value should be linearly proportional to its expected use-
fulness, while ORTB is also truth telling except that it models the
bidding value by a slightly complicated yet still monotonically in-
creasing function of the worth expectation of an impression.

While the corresponding works of LIN and ORTB demonstrated
their effectiveness, we now claim and prove that these classical al-
gorithms cannot lead to the optimal result.

THEOREM 1. Classical BSD algorithms relying on merely a
single CTR predictor cannot be optimal.

PROOF. We prove by giving a counterexample. Consider a cam-
paign with B = 130 and 4 impressions shown in the right of Figure
2 (ignore the pWP and bid-eff. columns for now). Clearly, an opti-
mal algorithm should place a bid on ~W and a bid on ~Y with b( ~W )

> 80 and b(~Y ) > 40 while bidding on ~X and ~Z with b( ~X) < 60
and b(~Z) < 20 if impressions can arrive in any order. Such a bid-
ding scheme wins ~W and ~Y with total cost 120 < 130 and obtains 2
clicks without wasting the budget on the non-clicking impressions
~X and ~Z. However, neither ORTB nor LIN can achieve this no mat-
ter how their parameters are tuned. We plot the bidding/winning
price – pCTR relationship for these impressions at the left part of
Figure 2. The dotted curve conforms to the optimal bidding strat-
egy, which is in a shape that none of the two algorithms’ bidding
function can possibly be. It is because the dotted curve corresponds

1There is another variant with a more complicated model in [10], but it performs
similarly to the one presented here. As such, we omit the discussion of that alternative.
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Imp. Click pCTR WP pWP bid-eff.

1 0.8 80 82 0.009756
0 0.6 60 62 0.009677
1 0.4 40 41 0.009756
0 0.2 20 21 0.009524

W
X
Y
Z

pCTR

b
80

0.2	 0.4 0.6 0.8

60

40

20

Figure 2: An illustrative sample scenario of RTB campaign.

to a polynomial of degree 3, while the degree of ORTB’s function
is only 2, not to speak of the degree-1 (linear) function of LIN.

It might be argued that, however, one is able to design a bid-
ding function with a polynomial of degree 3 or greater. But please
note that the sample campaign is just an over-simplified scenario
consisting of only 4 impressions. If the similar pattern of impres-
sions such as ~Z, ~Y , ~X (ordered by increasing pCTR first, and then
the click pattern happens to be 0, 1, 0) or ~Y , ~X, ~W (click pattern
1, 0, 1) occurs repeatedly in a campaign (this is inevitable since the
CTR predictor has limited accuracy), one will need to design a bid-
ding function of an unrealistic high degree, which sounds meaning-
less and whose relationship of bidding value versus predicted CTR
is difficult to be explained. Hence, we emphasis that in addition
to the predicted CTR, other factors should also be considered in
designing the bidding strategy in order to deal with the stochastic
relationship of the actual click behavior versus the predicted CTR.

2.4 Dataset Overview and Intuition
We use the iPinYou dataset2 to develop our algorithm and per-

form experiments. The dataset is a collection of real world RTB
DSP logs used in a bidding algorithm competition held in 20133. It
consists of 3 seasons’ data. For each season, the competition offi-
cer released to participants a training set for algorithm development
and parameter tuning, as well as a testing set for validation and of-
fline leaderboard benchmarking. A thorough analysis report on this
dataset can be found in [11].

According to the argument of [1], the winning bid prices of auc-
tions in RTB follow the log-normal distribution. A trivial extension
can be made as: in RTB, the winning bid prices of auctions for
impressions with user clickthrough also follow the log-normal dis-
tribution. Moreover, inspired by [8] that proposed a method for
predicting individual impression’s winning price directly from its
feature vector, we are able to develop a BSD solution utilizing the
characteristic of the winning price distribution of a campaign as
well as the predicted winning price of each impression in the cam-
paign. The algorithms will be described in the next section.

3. METHODOLOGY
In this section, our BSD algorithms are presented. The algo-

rithms are divided into two phases. The first phase inputs the train-
ing dataset and trains the models required in the second phase while
the latter phase determines the actual bidding price for each im-
pression in the online bidding process with the testing dataset. We
discuss algorithms in two cases: one with perfect CTR and WP
prediction, and the other with imperfect prediction. Though the
perfect prediction can not possibly be realistic, we still deliberate
it because it helps us gain some insight into the development of an
algorithm under the condition of imperfect prediction.

3.1 Perfect Prediction: Algorithm PERF
When the CTR and WP predictors are flawless (in other words,

having 100% prediction accuracy), what we are concerned about is
2Downloaded from http://data.computational-advertising.org
3See http://contest.ipinyou.com

to spend the budget in the most efficient way so that we can acquire
the most clicks with the lowest budget consumption. The algorithm
is called PERF and its two phases are described below.

Phase 1 (model training)
Input:

Impression logs
Output:

I - Click predictor
P - Winning price (cost) predictor
Ω - Campaign’s PDF of winning prices with click
Ntr, Nte - Number of impressions with click

The click predictor I is used to forecast whether an impression
opportunity will have clickthrough or not. The impression is repre-
sented by a feature vector ~x consisting of user attributes (e.g., age,
gender, location), AD attributes (e.g., dimension, visibility, title)
and attributes from the publisher side (e.g., URL/App name, con-
tent category). For some ~x, we are sure that I(~x) is either 1 or 0
because it is predicted perfectly. The winning price predictor P re-
veals the winning price (i.e., cost) P (~x) for ~x. For approximation
in practice, I can be trained by some well known binary classifica-
tion methods (e.g., SVM, random forest), and P can be learned by
the censored regression proposed in [8]. The distribution PDF Ω
can be obtained by simply calculating the average and standard de-
viation of winning prices from impression logs with clickthrough
since we know it conforms to the log-normal distribution, or alter-
natively by the more sophisticated method described in [1]. The
number of impressions with click serves as a basis for estimating
the number of clicking impressions from the testing campaign un-
der the assumption that both training and testing sets exhibit similar
distributions. We just count the number of impressions with click
from the training set, and multiply it by the ratio of campaign life-
time to produce the expected number of clicking impressions of the
testing campaign. That is, Nte = Ntr × Tte

Ttr
where Ttr and Tte

is the campaign lifetime of training and testing sets respectively. I ,
P , Ω and Nte will be used in the online bidding phase as follows.

Phase 2 (online bidding)
Input:

B - Campaign budget
~x - Individual impression feature vector

State variable:
Bcur - Current budget available, initialized as B

Output:
b(~x) - Bid value for ~x (0 means don’t bid on ~x)

Procedure:

1. Solve
∫ β

0

pNte Ω(p) dp = B for β to obtain the value pbound.

2. Input an impression ~x. Check if I(~x) = 1. If yes, go to Step
3. Otherwise return 0 and continue with the next impression.
Stop if there is no impression left.

3. Use P (~x) to obtain the expected cost for ~x.
4. If P (~x) ≤ Bcur and P (~x) ≤ pbound , return P (~x)+δ where
δ is a small amount (can be the minimum unit of currency
accepted in the auction) and updateBcur accordingly as Step
5. Otherwise return 0 and go back to Step 2.

5. Bcur := Bcur − P (~x) if bidding with P (~x) + δ on ~x wins
the auction. If Bcur becomes 0, or there is no impression
left, then stop. Otherwise go back to Step 2.

Here are details of the design. With the perfect click predictor,
we know whether an impression will lead to a click or not, thus we
skip all impressions with I(~x) = 0 and proceed further only with



those having I(~x) = 1 in Step 2. For each clicking impressions,
we know its exact cost by the perfect WP predictor P (~x). To al-
locate the budget to acquire as many clicks as possible, we begin
spending on impressions with the cheapest price and proceed to
those with higher prices gradually until all budget is consumed, or
until the campaign has passed all over. The integral in Step 1 and
the comparison of P (~x) with pbound in Step 3 reflects this strategy.

3.2 Imperfect Prediction: Algorithm PRUD
In this subsection we discuss the case when the CTR and WP

predictions are imperfect since it is impossible to have perfect pre-
dictors in reality. The algorithm is called PRUD (naming inspired
by “a prudent bidder") and also consists of two phases.

Phase 1 (model training)
Input:

Impression logs
Output:

pCTR - CTR predictor
pWP - Winning price (cost) predictor
ρcut - bid efficiency cutoff value

The training phase has three outputs, two of which are CTR pre-
dictor and WP predictor. To train the CTR predictor, we refer to the
logistic regression proposed in [6]. The censored regression [8] is
used in WP model training. In addition, a bid efficiency cutoff value
is produced. The bid efficiency ρ of an impression ~x is defined as:

ρ(~x) = pCTR(~x) / pWP (~x). (3)

The bid efficiency corresponds to the following argument. When
an impression is with a high CTR, we would have a strong inten-
tion to bid on it because the expected revenue is high due to the
high clickthrough rate (i.e., probability of click). However, when
an impression has a relatively low CTR but is accompanied with
a low predicted WP, it could still be reasonable to “invest" on this
impression since even if it ends up with no clickthrough eventually,
the loss of investment is insignificant due to the low price (cost).
That is, we use the predicted CTR and WP simultaneously to deter-
mine whether an impression is worthy of spending our budget. The
higher CTR and lower WP an impression has (thus bigger ρ), the
more valuable it appears. Therefore, we define the bid efficiency as
dividing CTR by WP to reflect this intuition.

After defining the bid efficiency for an impression, we now face
a problem: to or not to bid on an impression with a certain bid effi-
ciency value? To remedy it, we use the training dataset to perform
a search for a cutoff value, that is, the lowest ρ value acceptable for
this campaign under a predefined budget constraint. When an im-
pression has a ρ higher than or equal to the cutoff value, we bid on it
with the predicted WP plus a small lift-up value (since it is a second
price auction). Otherwise the impression is skipped. We find the
cutoff value that results in the most clicks achieved in a campaign’s
training period under some budget constraint. And then, the same
cutoff value is used as the threshold in the same campaign’s testing
period with the same condition of budget constraint.

We now present the online bidding algorithm as follows.

Phase 2 (online bidding)
Input:

B - Campaign budget
~x - Individual impression feature vector

State variable:
Bcur - Current budget available, initialized as B

Output:

b(~x) - Bid value for ~x (0 means don’t bid on ~x)
Procedure:

1. Input an impression ~x. Check if ρ(~x) ≥ ρcut. If yes, go
to Step 2. Otherwise return 0 and continue with the next
impression. Stop if there is no impression left.

2. If pWP (~x) ≤ Bcur , return pWP (~x) + δ where δ is a small
amount (can be the minimum unit of currency accepted in the
auction) and update Bcur accordingly as Step 3. Otherwise
return 0 and go back to Step 1.

3. Bcur := Bcur − P (~x) if bidding with pWP (~x) + δ on
~x wins the auction and its exact winning price is P (~x). If
Bcur becomes 0, or there is no impression left, then stop.
Otherwise go back to Step 1.

An illustrative example for PRUD. Recall the sample cam-
paign in Figure 2. The predicted winning prices for the four im-
pressions and their corresponding bid efficiencies are listed at the
pWP and bid-eff. columns respectively. Setting ρcut to 0.0097,
PRUD picks up ~W and ~Y , discards ~X and ~Z, and produces the
optimal result of 2 clicks with budget consumption 120.

3.3 PRUD and Knapsack Problem
It is worth noting that we can relate BSD to the well known knap-

sack problem (KP). We regard each bidding impression opportunity
~xi as a stone with value vi and weight wi. We have a knapsack
capable of holding stones and its capacity is W . Our goal is to
load the knapsack with as valuable stones as possible while keep-
ing the total weight under the knapsack capacity. For the analogy
of PRUD to KP, the value vi of a stone ~xi is the corresponding
CTR prediction pCTR(~xi) and the stone’s weight wi is the asso-
ciated predicted cost pWP (~xi). The campaign budget B is con-
sidered as the knapsack capacity W . There are many forms of KP
and here we are dealing with the online stochastic variant. Specif-
ically, we do not know the characteristic portfolio of all stones in
advance. Instead, the stones are coming one after another thus we
can inspect a stone’s value and weight only after receiving one,
and then decide whether to pack it or not immediately on the fly.
Once a stone has been packed, we are unable to discard it after-
wards. Nor can we reconsider a previously unpacked stone later
again. The book [3] provides excellent discussion and algorithms
for various types of KP problems. For the online stochastic one, an
algorithm named THRESHOLD is given as follows. First, an effi-
ciency threshold T is defined. Then upon receiving a stone ~xi, its
efficiency is calculated by vi/wi and compared with T . If the effi-
ciency is greater than or equal to T , the stone is packed. Otherwise
the stone is discarded. Each stone is handled sequentially in the
coming order until finally the knapsack capacity is exhausted or all
stones have been processed. Unfortunately there is no guaranteed
optimal solution for the online stochastic KP. The THRESHOLD
algorithm is a semi-optimal one if the threshold value T is care-
fully determined. In our BSD context, algorithm PRUD learns the
best threshold value by tuning the bid efficiency cutoff value with
the training dataset. Provided the testing dataset has a distribution
of impressions similar to the training dataset, and the budget is set
to a fixed percentage of the sum of all impressions’ cost (say, 1/16
of

∑
P (~xi)), the same cutoff value learned from the training phase

can be used in the online bidding phase to produce the same level
of semi-optimal result.

4. EXPERIMENTS AND BENCHMARKING
We depict in this section our experiments for benchmarking the

two algorithms PRUD and ORTB. We use the 9 campaigns in sea-
sons 2 and 3 of the iPinYou dataset for the experiments because
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Season Cpg. CTR WPpred WPreal WPpred WPreal 1/64 1/64 1/32 1/32 1/16 1/16 1/8 1/8 1/4 1/4 1/2 1/2
AUC Avg. Avg. RMSE Stdev. ORTB PRUD ORTB PRUD ORTB PRUD ORTB PRUD ORTB PRUD ORTB PRUD

3 2259 0.8870 102.81 126.64 77.16 79.44 16.67 30.21 29.17 38.54 42.71 51.04 55.21 65.63 69.79 78.13 88.54 95.83
3 2261 0.8756 94.53 123.74 78.79 83.53 28.05 32.93 31.71 42.68 42.68 53.66 53.66 65.85 74.39 79.27 90.24 95.12
3 2821 0.8195 99.39 120.90 66.40 80.29 20.00 21.72 24.14 28.28 33.79 38.62 45.86 51.72 62.76 70.00 81.03 86.21
3 2997 0.7440 69.96 87.36 62.16 75.18 17.04 17.71 23.32 22.65 31.84 31.39 43.72 42.38 57.85 58.52 76.91 78.03
2 1458 0.9257 81.83 91.23 53.18 62.55 72.08 72.30 73.97 73.41 77.42 76.53 80.76 80.53 86.76 85.54 92.66 92.66
2 3358 0.9286 121.54 134.07 50.83 65.42 62.75 66.97 67.34 69.72 72.29 74.13 79.45 80.37 87.16 87.52 92.66 93.03
2 3386 0.8094 111.45 122.46 58.57 69.97 24.78 25.65 29.37 29.12 35.81 36.06 45.85 46.84 59.98 65.18 79.93 80.67
2 3427 0.9025 106.01 116.10 51.44 62.73 59.49 60.70 62.74 63.41 70.73 71.54 75.75 76.02 82.38 81.30 90.65 90.24
2 3476 0.8671 95.69 108.84 53.28 62.97 43.63 47.03 51.27 53.54 60.91 62.61 66.57 68.56 79.60 79.04 88.39 88.39

Table 1: Leftmost: Statistics of CTR and WP predictors. Rightmost: Benchmark results of ORTB versus PRUD in competitive ratio.

they provide a more comprehensive set of features than season 1.
We first introduce the preparation of data, followed by some is-
sues of predictor model training and algorithm tuning. Finally, the
benchmark results are presented.

4.1 Implementation and Tuning
Data Preparation. It is known that PRUD performs best when

training and testing sets express similar impression distributions.
ORTB also tunes its parameters with the training set and operates in
the testing phase with what learned, so that the same argument (best
performance under similar training/testing distributions) holds nat-
urally. Hence, we want to benchmark them under this condition.
As such, we randomly sample 2/3 of impressions from the original
iPinYou training set for each of the 9 campaigns to produce 9 new
data collections which serve as our new training sets, and 1/3 of
original training impressions to form the 9 new testing sets.

Feature Extraction. The predictor training requires a feature set
as input. The iPinYou dataset provides 24 features and we select
17 of them. All features are extracted and converted to binary by
dummy encoding. The number of converted features ranges from
87,845 for the smallest campaign to 510,357 for the largest one.

Predictor Quality. After feature extraction, CTR and WP pre-
dictors are trained respectively with L2-regularized logistic regres-
sion and censored regression. We list AUC (area under ROC curve)
of CTR predictor and RMSE (root mean squared error) of WP pre-
dictor in the left of Table 1. The standard deviations of real winning
prices and the average values for both predicted and real winning
prices are depicted as well. These WP-related statistics are mea-
sured from impressions with click, excluding non-clicking ones.
From the table, we see that CTR predictor performs well on sea-
son 2 but somewhat unsatisfactorily on season 3. Meanwhile, the
RMSE values of WP predictor all fall within one standard devia-
tion of real winning prices. It can be observed that the predictor
has acceptable (but far from perfect) accuracy in predicting win-
ning prices. Note that predicting an individual impression’s win-
ning price from its feature vector under RTB context is still a pi-
oneer subject in the literature, and what we can do best currently
is the model proposed by [8] which produces the moderate perfor-
mance shown here. We will demonstrate that, however, incorporat-
ing such an ordinary predictor into algorithm PRUD adds consid-
erable power in optimizing the bidding efficiency.

WP Predictor Lift Value. From Table 1, we see that WP predic-
tor tends to underestimate4 hence a proper lift value has to be added.
Otherwise we will lose too many impressions if we just bid accord-
ing to the original predicted prices. What follows is, how should the
lift value be determined? It is difficult to be derived theoretically
and after some experiments we decide to find the value empirically

4 This is expected as what has been discussed in [8].

by a heuristic procedure. Specifically, we find the smallest L with
the training data by the following inequality5 for each campaign:

pWP (~x) + L > P (~x) for 95% of {~x | I(~x) = 1}. (4)

After L is determined, we use pWP ′(~x) = pWP (~x) + L as the
new predicted WP for each ~x of the campaign. The lift value not
only serves as a compensation to the underestimated winning price,
but also acts as the δ value described in the online bidding phase of
algorithm PRUD in Section 3.2. We regard L as another parameter
of PRUD in addition to the bid efficiency cutoff value ρcut.

Tuning for ORTB. ORTB has two parameters: c and λ. We
follow the ORTB work to tune them. Please refer to [10] for details.

Tuning for PRUD. PRUD also has two parameters. We have ex-
plained how the lift value L is determined. What remains is the bid
efficiency cutoff value ρcut. Following the same scenario in [10],
we set the budget as 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2 respectively
of the total cost of all impressions for each campaign. Since there
are 9 campaigns, we have thus a total of 9 × 6 = 54 test cases. We
use the training set to find the optimal ρcut that produces the largest
number of clicks for each test case.

Tuning for PERF. Though PERF is not realizable in practice,
we are still able to implement it because we have the complete test-
ing data on hand. Recall the model training phase from Section 3.1.
The click predictor, cost predictor and campaign PDF of winning
prices with click (actually we use the exact composition of click-
ing impressions instead of the probability distribution) are readily
revealed by scanning the whole testing data. We implement PERF
and use it as the basis for comparing the relative performance of
ORTB with PRUD to be discussed in the next subsection.

4.2 Benchmark Results
The results collected from applying each of the three algorithms

on the prepared dataset are depicted in the right of Table 1. We
follow the convention of competitive analysis and present the com-
petitive ratio (CR) in the table. For each campaign-budget setting,
we run PERF, ORTB and PRUD separately and then calculate the
competitive ratio by dividing the number of clicks that ORTB or
PRUD delivers by the number of clicks achieved by PERF:

CR =
#ClickORTB|PRUD

#ClickPERF
× 100%. (5)

PERF provides the upper-bound a bidding algorithm is able to reach
and the competitive ratio indicates how well ORTB or PRUD can
do compared to PERF. It can be observed that PRUD wins ORTB in
41 cases, loses to ORTB in 11 cases and ties with ORTB in 2 cases
out of the total 54 cases. To ease the assessment, we also draw the
CR chart by bar plot in Figure 3.
5The percentage 95% is selected because it performs best among several values tested.
100% is not used because it will result in an extremely large lift value.
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Figure 3: ORTB versus PRUD measured in competitive ratio.

Relation of AUC to algorithm performance. We find in gen-
eral that, the lower AUC the CTR predictor for a campaign, the
more improvement PRUD provides over ORTB. It is because that
ORTB relies on merely the CTR predictor and thus a better pre-
diction performance directly results in the delicacy of the final out-
come of ORTB. On the other hand, PRUD incorporates additionally
the WP predictor, and the WP predictor in some manner compen-
sates the defect of the CTR predictor.

A plus in addition to clicks. We also show the performance
comparison by effective cost per click (eCPC) in Figure 4. The
eCPC is calculated by dividing the total cost of a campaign by the
number of clicks obtained. The lower the eCPC is, the more cost-
efficiency an algorithm provides. It can be seen that PRUD exhibits
lower eCPC than ORTB in almost all cases (51 of 54, or 94%).
Even for many cases that PRUD loses to ORTB in terms of number
of clicks, PRUD still performs better if measured by eCPC. This is
not surprising, though. Since we develop PRUD by starting from
pursuing impressions with high bid efficiency while the efficiency
is determined by dividing the predicted CTR (related to number of
clicks) by the predicted winning price (related to cost), and this for-
mula is in the reciprocal form of eCPC, PRUD favors eCPC (higher
efficiency implying lower eCPC) naturally.

5. CONCLUDING REMARKS
In this paper, we develop a new bidding strategy based on two

predictors, the CTR and WP predictors, to serve as the bidding
value generator for a DSP running its real time auction in the RTB
context. The algorithm, named PRUD, is expected to be optimal by
analogy to the well known online stochastic knapsack problem. We
perform experiments with real world RTB datasets and use a formal
competitive analysis benchmarking flow to compare PRUD with
the state-of-the-art single-predictor ORTB bidding algorithm. Our
results show the outstanding bidding efficiency of PRUD in terms
of not only a greater number of clicks achieved, but also a lower
effective cost per click for an advertising campaign. By combining

Figure 4: ORTB versus PRUD measured in effective cost per click.

powers of the two predictors, PRUD provides a new cost-efficient
strategy for a DSP competing in the rapid emerging RTB market.

Acknowledgments
This paper was supported in part by Ministry of Science and Tech-
nology, R.O.C., under Contract 105-2221-E-006-140-MY2, 105-
2634-B-006-001, and 104-2221-E-002-214-MY3. The authors also
thank Bridgewell for providing their RTB logs for a preliminary
analysis in this work.

6. REFERENCES
[1] Y. Cui, R. Zhang, W. Li, and J. Mao. Bid landscape fore-

casting in online ad exchange marketplace. In KDD, 2011.
[2] Google. The arrival of real-time bidding and what it means

for media buyers. Google, 2011.
[3] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack

problems. Springer, 2004.
[4] X. Li and D. Guan. Programmatic buying bidding strategies

with win rate and winning price estimation in real time
mobile advertising. In PAKDD. Springer, 2014.

[5] C. Perlich, B. Dalessandro, R. Hook, O. Stitelman,
T. Raeder, and F. Provost. Bid optimizing and inventory
scoring in targeted online advertising. In KDD, 2012.

[6] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
WWW, 2007.

[7] J. Wang and S. Yuan. Real-time bidding: A new frontier of
computational advertising research. In WSDM, 2015.

[8] W. C.-H. Wu, M.-Y. Yeh, and M.-S. Chen. Predicting
winning price in real time bidding with censored data. In
KDD, 2015.

[9] W. Zhang, Y. Rong, J. Wang, T. Zhu, and X. Wang. Feedback
control of real-time display advertising. In WSDM, 2016.

[10] W. Zhang, S. Yuan, and J. Wang. Optimal real-time bidding
for display advertising. In KDD, 2014.

[11] W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding
benchmarking with ipinyou dataset. arXiv:1407.7073, 2014.

2148




