
Scalable Hands-Free Transfer Learning
for Online Advertising

Brian Dalessandro,
Daizhuo Chen

Dstillery
470 Park Ave S.

New York, NY 10016
briand,hchen@dstillery.com

Troy Raeder,
Claudia Perlich,

Melinda Han Williams
Dstillery

troy,claudia
melinda@dstillery.com

Foster Provost
New York University

44 W. 4th Street
New York, NY 10012

fprovost@stern.nyu.edu

ABSTRACT
Internet display advertising is a critical revenue source for
publishers and online content providers, and is supported by
massive amounts of user and publisher data. Targeting dis-
play ads can be improved substantially with machine learn-
ing methods, but building many models on massive data
becomes prohibitively expensive computationally. This pa-
per presents a combination of strategies, deployed by the
online advertising firm Dstillery, for learning many models
from extremely high-dimensional data e�ciently and with-
out human intervention. This combination includes: (i) A
method for simple-yet-e↵ective transfer learning where a
model learned from data that is relatively abundant and
cheap is taken as a prior for Bayesian logistic regression
trained with stochastic gradient descent (SGD) from the
more expensive target data. (ii) A new update rule for au-
tomatic learning rate adaptation, to support learning from
sparse, high-dimensional data, as well as the integration with
adaptive regularization. We present an experimental anal-
ysis across 100 di↵erent ad campaigns, showing that the
transfer learning indeed improves performance across a large
number of them, especially at the start of the campaigns.
The combined “hands-free” method needs no fiddling with
the SGD learning rate, and we show that it is just as e↵ec-
tive as using expensive grid search to set the regularization
parameter for each campaign.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: [Pattern Recognition
- applications]

Keywords
Transfer Learning, Stochastic Gradient Descent, Adaptive
Learning Rates, Adaptive Regularization

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’14 New York, NY USA

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623349.

Online display advertising, served through real-time bid-
ding systems, is a major source of revenue for web publishers.
As media consumption continues to shift to web-hosted con-
tent, advertising dollars continue to pour into the system.
Global display advertising revenues exceed 40 billion USD
annually are growing at double-digit rates [7]. Real-time
bidding systems are run by ad exchanges: auction platforms
connecting sellers of ad placements (usually web publishers
with ad space to monetize) and buyers (usually indepen-
dent firms like Dstillery,1 operating on behalf of consumer
brands and their agencies). The goals of the buyers vary.
At Dstillery, our ultimate goal is to identify the best pos-
sible audience for each of our individual advertising clients
and advertise to this audience. What exactly “best” means
depends upon the goals of the advertiser, but usually we
optimize some form of post-view conversion rate. The defi-
nition of conversion is again campaign-specific, but always
requires taking some action (such as visiting a site, buying a
product, or signing up for a service). The post-view qualifier
means the conversion is observed in some interval following
an ad exposure but without the necessity of an ad click.

The data that we use for modeling is discussed in detail in
Section 2, but the foundation of our targeting methodology
is a suite of methods for high-dimensional, sparse classifica-
tion (ranking) that builds multiple models for each advertis-
ing campaign individually. Training a single large-scale pre-
dictive model is no longer a rare feat. Our machine learning
system trains, deploys, and continually retrains thousands
of predictive models simultaneously. The performance re-
quirements of display advertising customers and the need to
operate many models simultaneously pose a number of tech-
nical challenges, which when combined motivate an e�cient
“hands-free” operation—robust performance with minimal
intervention by the data science team. The specific chal-
lenges we consider are:

1. Cold Start: Targeting must perform well from the
beginning of a campaign, even though there may be
very little or even ZERO post-impression conversion
data.

2. Non-Stationarity: Human browsing behavior, the
basis of our models, changes over time due to natural
seasonality and marketer-specific external factors.

3. Consistency: Since we restrict ourselves from pooling
conversion data across advertisers (due to their com-

1Formerly Media6degrees

petitive concerns), we build separate models for each
one. Each model must perform well in spite of large
disparities in conversion rate and audience size.

4. Scale and Robustness: The system builds and main-
tains many di↵erent predictive models for each of hun-
dreds of campaigns simultaneously. These models have
a limited number of data scientists to monitor and val-
idate them. Thus we need an automated and robust
hands-free approach that can still learn the idiosyn-
crasies of individual campaigns.

Our current system addresses these issues with a number
of di↵erent components, amply described in prior work (see
[11] and the citations therein). The current paper explores
an alternative, novel solution to the same goal by tightly in-
tegrating transfer learning [10] and scalable predictive mod-
eling. Recent developments in adaptive learning-rate sched-
ules [14] and adaptive regularization [13] allow for incre-
mental training of linear models in millions of dimensions
without exhaustive hyper-parameter searching. Our com-
plications are (i) the need of transfer learning to support
cold start and few available positive examples, and (ii) the
application to ultra-high-dimensional modeling. This work
extends the prior work first by incorporating the transfer
learning steps directly into the large-scale linear models us-
ing Bayesian logistic regression (section 3) and second by
combining and extending state-of-the-art methods to en-
able hands-free, scalable stochastic gradient descent (SGD,
Section 4). The combination of these methods demonstra-
bly improves campaign performance, especially in the early
stages of the campaign, and this improvement is achievable
within the throughput limitations of the system. We will dis-
cuss more specific related work in the relevant sections. We
are not aware of a prior paper that describes and evaluates
a production-ready combination of current state-of-the-art
learning methods for e�cient, hands-free transfer learning
of large numbers of predictive models from extremely sparse
data.

Specifically, the contributions of this paper are:

1. We develop a transfer learning system based on these
methods and show that combining data from general
conversions with data on post-impression conversions
improves targeting performance across a large number
of campaigns.

2. We derive a new update rule for the adaptive learning-
rate algorithm of [14] so that it supports sparse up-
dates and is mathematically compatible with the adap-
tive regularization algorithm of [13].

3. We provide an algorithm for using both adaptive learn-
ing rates and adaptive regularization simultaneously.
We show that, within this framework, adaptive regu-
larization is just as e↵ective as an expensive grid search
for the regularization parameter.

4. We use production data to show the e↵ect of transfer
learning “in vivo”, specifically focusing on its ability
to address the cold start problem for new campaigns.
(Long-running campaigns have more natural training
data and therefore derive less benefit from transferring
information from other distributions.)

The remainder of the paper shows how these and other
developments in linear modeling can be combined into a con-
tinuously updating, hyperparameter-agnostic ad-targeting
system that transitions from learning on a proxy population

(all conversions) to the true population (post-impression
conversions) as more data becomes available. Our results
show that this strategy is indeed e↵ective for improving
campaign performance, especially in the early stages of the
campaign, and this improvement is more scalable than al-
ternative methods.

2. DATA COLLECTION PROCESS
The data which informs our proprietary ad-targeting mod-

els comes primarily from multiple continuous data streams.
One stream records general browsing events of users as they
consume content across the web. Another similar stream
records interactions between users and the brands we rep-
resent. These interactions include home page visits and
conversions on their owned websites. The last data stream
we consider is the actual ad serving process. We serve ads
to users based on various criteria and following the ads we
record whether or not these users convert. From these data
streams we can construct di↵erent but related classification
(ranking) tasks.

Our most obvious data asset for campaign optimization is
the campaign data itself. If we want to draw training data
directly from the target distribution, we can randomly tar-
get users with impressions, subsequently labeling a user as
positive if she converts soon after exposure to the ad and
negative otherwise. However, this poses serious challenges.
Serving ads randomly at a necessary scale—to avoid the se-
lection bias inherent in training on data resulting from tar-
geted impressions—is something our stakeholders are often
reluctant to do. Moreover, conversion rates are generally
quite low (often 10�6 or less), which leads to the need to
serve massive number of randomly targeted ads just to ob-
tain a moderate number of conversions for training.

This paper focuses on a method to leverage other data
sources for cheap and reliable “adjunct” training data. The
Bayesian transfer learning approach provides a principled
method for combining these data with a smaller amount of
randomly sampled post-impression data.

Before a client initiates an advertising campaign, we place
tracking pixels on various parts of the client’s web site. Vis-
its to these pixeled pages get logged (anonymously) for anal-
ysis and optimization. In parallel, we collect web browsing
data on these same anonymous users from data partners
across the web. This data is stored in our system as a set of
anonymized (hashed) URL strings linked to a user’s cookie.
These two mechanisms, which are independent of actually
serving ads, when combined give us both features and labels
that we can use to build the adjunct training data. Specifi-
cally, we build training instances in a backward looking fash-
ion. For a given period of time, we select all pixel events
coming from the client’s website and label the correspond-
ing users as positive instances. We then select a random
subset of users that were active in the same period but did
not incur a pixel event and label them as negative instances.
This design choice is very practical: while post-impression
conversion events are typically rare, general visits or conver-
sions on the client’s website are orders of magnitude more
abundant.

Thus we have two data sets for each campaign—one drawn
from the target application’s distribution, but which com-
prises relatively few positive instances, and another that is
naturally more abundant and cheaper, but doesn’t exactly
represent the problem we are trying to solve. The challenge

addressed in this paper is to use these data to build models
to estimate the relative likelihood that a previously unseen
user will convert after seeing an ad. The rest of the paper
describes and evaluates a Bayesian transfer learning frame-
work implemented to achieve this, as well as the modern
machine learning methods we have combined and enhanced
to do so at scale.

3. SCALABLE TRANSFER LEARNING
Our goal, in a nutshell, is to improve the performance of

conversion-rate modeling at all points of the campaign. We
do this by first initializing our model with a learned prior and
then incrementally improve the prediction task by incorpo-
rating post-impression conversions as they become available.
Prior work uses the term transfer learning [10] to refer to
any situation where a model learned on one classification
task (called the source task) is used to improve a predictive
model applied to a di↵erent task, the target task. We adopt
the language and notation from [10] to present our version
of transfer learning more formally.

Formally, a classification task {�, P (X), �, P (Y |X)} is com-
posed of a feature space �, a probability distribution P (X),
where X = {x1, x2, ..., xd

} 2 � is a feature vector, a la-
bel space �, where Y 2 � is the outcome of interest and
lastly, a corresponding objective function P (Y |X). In our
particular situation, we refer to the campaign data as the
target and the auxiliary data described in section 2 as the
source. We generally assume that the source and target
tasks share the same feature space � but generally assume
that PS(X) 6= P

T (X) for allX.2 We also have di↵erent out-
come spaces � for both data sets, though they are related.
In our domain �

S represents conversion labels derived from
observing general tra�c on the client’s website whereas �

T

is derived from post-impression conversions.
Our main estimation problem is to learn P

T (Y T |X) from
the target data. We do this by first learning P

S(Y S |X)
from the source data and then use that estimator as a prior
on our estimator for PT (Y T |X). We generally assume that
P

T (Y T |X) 6= P

T (Y S |X), but that the structure of the esti-
mators (specifically the weight vectors from linear models)
are similar and that is why we can use the source model as
a prior on the target.
To put this more formally, consider a logistic regression

model for a data set D

S =
�
(X1, y

S

1), . . . , (XN

, y

S

N

)

. We

use the standard log-likelihood formulation and denote the
sample logistic loss function as

`

t

(�) = �y
t

log p
t

(�)� (1� y

t

) log(1� p

t

(�)), (1)

where p

t

(�) = (1 + e

��Xt)�1. Again we use superscript S

and T to di↵erentiate between the source and target data.
Given the source data, we define what we call the source
model:

µ̂

S = argmin
µ

N

SX

t=1

[`S
t

(µ) + �

S

r(µ)], 3 (2)

where r(µ) is a suitable regularization function and �

S a
regularization weight.

2When referring to constructs within target or source data,
we use the superscripts S and T to di↵erentiate
3We use µ in this equation instead of � to distinguish it as
the initialization model learned on source data

We expect that the source model is relatively e↵ective
for identifying a high-performance audience even though the
training data are not drawn from the “proper” (target) dis-
tribution. We want a model that will rank highly a set of
users who are likely to convert following the presentation of
an ad. The source model instead identifies users who are
similar to a client’s customer set with respect to their web
browsing history, independent of the advertising process.

We can directly model the target task by first creating an
appropriate dataset. Let the target data setDT = {(X1, y

T

1)
. . . (X

N

, y

T

N

)}, whereX
t

is defined as above and y

T

t

is defined
as a post-impression conversion. In order to induce transfer
learning from P

S(yS |X) to P

T (yT |X), we add a non-zero
Gaussian or Laplace prior on the logistic regression coe�-
cients that estimate P

T (yT |X) . Our resulting optimization
problem then looks like:

�̂

T = argmin
�

N

TX

t=1

[`T
t

(�) + �

T

r(� � µ̂

S)], (3)

where again we are using the standard logistic loss. The dif-
ferences between equations (2) and (3) are that in (3) we are
training over the target data and have modified the regular-
ization function in (3) to incorporate a non-zero informative
prior. This form of knowledge transfer is highly scalable,
because although we do incur the additional cost of learning
µ

s, the cost of learning with equation 3 is no more than had
we used a zero-mean prior. This is a major benefit in sup-
port of this method over more complicated transfer learning
methods [10] and a motivating factor for putting it to use in
our system.

Incorporating a source model for transfer learning as a
Bayesian prior is not new. In a text-mining application,
Chelba et al [5] successfully incorporate a prior model as a
Bayesian prior into a maximum entropy Markov model to
recover the correct capitalization of uniformly-cased text.
Similarly, Arnold et al [2] use the hierarchical structure of
features to learn informative priors over features to use in
training conditional random fields. For transfer learning
with logistic regression, Raina et al [12] perform text clas-
sification using a learned Gaussian prior. However, the for-
mulation is quite di↵erent; we view our formulation as much
more straightforward (they focus on the prior variance). In
advertising applications, Chapelle et al [4] use informative
priors in logistic regression models but not explicitly as a
transfer learning mechanism. In their application they build
models incrementally and use the previous iteration’s model
as the prior. We are not aware of any prior work that ex-
plicitly uses Bayesian transfer learning in a large-scale pro-
duction application.

4. HYPERPARAMETER FREE LEARNING
Recall that our goal is twofold. As described above, we

would like to take advantage of both the plentiful source
data and the expensive-but-more-appropriate target data.
We also would like to do this e�ciently with minimal human
curation. A popular and e↵ective algorithm for building lin-
ear models with large-yet-sparse, data is Stochastic Gradient
Descent (SGD) [4, 9, 15]. The main drawback of SGD is that
it includes various hyper-parameters (learning rates, regular-
ization parameters, etc.) that need to be carefully tuned in
order to achieve good performance. Parameter tuning ulti-

mately complicates and lengthens the model training phase.
Firms that need to build hundreds or thousands of models
simultaneously, in production, face a daunting task setting
these hyper-parameters separately for each campaign.

To enable building many models with few data scientists,
and to reduce the training load on our system, we have de-
veloped a “hands-free” approach that does not require ei-
ther manual parameter setting or expensive grid-search. The
methods we present here are well suited for large and sparse
consumer behavior data and they integrate well with the
transfer-learning described above. In particular, we present
a hyper-parameter-free SGD logistic regression training al-
gorithm based on combining and enhancing two recent de-
velopments: the adaptive learning rates [14] (which we call
NoPesky) and adaptive regularization [13].

We made several enhancements to make NoPesky learn-
ing rates and adaptive regularization work together and ef-
ficiently in the current context. Specifically, we adapted the
NoPesky learning rate method so that we can 1) take advan-
tage of the sparse structure of the data to run e�cient SGD
updates, 2) explicitly integrate the regularization term in
order to make NoPesky work with adaptive regularization,
and 3) give the NoPesky algorithm a more robust starting
point when positive samples are rare.

It is helpful to start by considering the update step of
a standard SGD algorithm: at time t, we observe a new
training sample with per-sample loss

f

t

(�) = `

t

(�) + �r(� � µ), (4)

where � comprises the model coe�cients; `

t

is the per-
sample logistic loss function as defined in Section 3; � is
the regularization factor, and r is the regularization function
having the form r(� � µ) = 1

2

P
d

i=1(�i

� µ

i

)2. We denote

the average loss function by f = 1
N

P
N

t=1 ft, and the average

logistic loss function by ` = 1
N

P
N

t=1 `t. With each training
sample, and for each dimension i of the model, we calculate
the gradient r

t,i

= @ft
@�i

|
�=�t and update the dimension’s

coe�cient via

�

t+1,i = �

t,i

� ⌘

t,i

r
t,i

, (5)

where ⌘

t,i

is the learning rate at time t for dimension i.4

Because our algorithm works with both source and target
models, we drop the superscripts S and T throughout this
section.

4.1 NoPesky Learning Rates
The NoPesky learning rate method sets the SGD learning

rates in a greedy manner by choosing a rate that minimizes
the expected value of the average loss function f after each
SGD update. It is generally impossible to solve this mini-
mization problem exactly, but an approximate solution can
be obtained and works well in practice. The method utilizes
the second-order derivatives of the per-sample loss function,
making it suitable for learning models with a smooth loss
function, such as linear and logistic regression. Our experi-
ments validate prior research [14], showing that SGD algo-
rithms trained with the NoPesky learning rates perform as
4Our algorithm uses di↵erent learning rates for di↵erent
dimensions, rather than a global learning rate for all di-
mensions. Multiple studies suggest that dimension-specific
learning rates yield superior performance to global learning
rates, particularly for data sets with sparse features like ours
[6, 9].

well as state-of-the-art adaptive learning rate schedules such
as AdaGrad [6]. The di↵erence is that NoPesky learning re-
quire no systematic parameter tuning and thus can promote
faster learning.

We first sketch the core steps of the original NoPesky
learning rate method that are necessary for presenting our
adaptations. The method treats the stochastic gradient r

t,i

as a random variable, and chooses a learning rate to min-
imize the expected regularized loss after one SGD update,
that is:

⌘

t,i

 argmin
⌘

Ert,i [f(�t,i

� ⌘r
t,i

e

i

)], (6)

where e

i

is a unit vector in dimension i. In order to solve
the above minimization problem, three approximations are
made. First, the average loss function f is approximated
by a quadratic function in the neighborhood of �

t

. This
is achieved by approximating its first-order derivative by
g

t,i

⇡ E[r
t,i

], and the second-order derivative by h

t,i

⇡
E[@

2
ft

@�

2
i

|
�=�t]. Second, the first-order moment of r

t,i

is

approximated by g

t,i

⇡ E[r
t,i

]. And lastly, the second-
order moment of r

t,i

is approximated by v

t,i

⇡ E[r2
t,i

].
One can then solve (6) and obtain an approximate solution,
which is set as the per-sample, dimension specific learning
rate.

⌘

t,i

=
1

h

t,i

g

2
t,i

v

t,i

. (7)

The three approximate variables are calculated as running
averages

g

t,i

=(1� ⌧

�1
t,i

)g
t�1,i + ⌧

�1
t,i

r
t,i

,

v

t,i

=(1� ⌧

�1
t,i

)v
t�1,i + ⌧

�1
t,i

r2
t,i

,

h

t,i

=(1� ⌧

�1
t,i

)h
t�1,i + ⌧

�1
t,i

@

2
f

t

@�

2
i

����
�=�t

,

(8)

where ⌧

t,i

is an averaging window, that can be heuristically
set by ⌧1,i = 1 and

⌧

t+1,i = (1�
g

2
t,i

v

t,i

)⌧
t,i

+ 1. (9)

The use of a dynamic averaging window determined by equa-
tion (9) to update equation (8) enables this method to adapt
to non-stationary data. When the data distributions change,
⌧ is automatically reset to a lower number which increases
the learning rate and enables more exploration.

To work within our system, we have made the following
enhancements to the NoPesky method.

Sparse Updates.
As discussed above, online webpage visitation data is ex-

tremely sparse. It is desirable to take advantage of this ex-
treme sparsity to speed up the SGD updates—specifically,
we would like to enhance the NoPesky method such that at
step t, we only update dimension i if x

t,i

6= 0.
In regularized logistic regression, the per-sample loss func-

tion has two components: the logistic loss function and the
regularization function. The logistic loss function `

t

(de-
fined in (1)) has a convenient property that its gradient in
dimension i is 0 if x

t,i

= 0, thus allowing for sparse updates.
Unfortunately, the regularization term �

2

P
i

(�
i

�µ
i

)2 gener-
ally does not have zero gradients. In fact, the regularization

term is independent of x
t

and has non-zero gradient in di-
mension i as long as �

t,i

6= µ

i

. This regularization term
prevents us from running e�cient sparse updates.

Our solution is to rewrite the per-sample loss function as
the following:

f̃

t

(�) = `

t

(�) +
X

i:xt,i 6=0

�

2
N

N

i

(�
i

� µ

i

)2 (10)

here N is the total number of training samples, and N

i

is the total number of times that dimension i is present
in a sample. We essentially reassigned the regularization
term to the per-sample loss function. Instead of assign-
ing equal regularization strength to every data sample, we
choose to only regularize a dimension when that dimension
is present, and correspondingly increase the regularization
strength of that dimension in inverse proportion to the num-
ber of samples that have this dimension. In so doing, we
have kept the total regularization strength unchanged, i.e.,
1
N

P
N

t=1 ft(�) =
1
N

P
N

t=1 f̃t(�) = f .
Our learning method operates on the rewritten per-sample

loss function f̃

t

instead of f
t

. At step t, for dimension i such

that x
t,i

= 0, sincer
t,i

= @f̃t
@�i

|
�=�t= 0, we can safely ignore

updates on these dimensions and only run updates (7) (8)
(9) on dimensions i with x

t,i

6= 0.

Explicit Handling of Regularization.
The original NoPesky method doesn’t explicitly handle

regularization terms, e↵ectively putting the regularization as
part of the loss function. Hence the regularization term also
contributes to the running estimates g

t,i

, v
t,i

and h

t,i

. This
inhibits the integration of NoPesky with adaptive regularization—
we would like it to be capable of handling changing regular-
ization factors.

Fortunately, since the regularization term is deterministic
and can be calculated precisely, we can exclude them from
the calculation of the running estimates. Thus, instead of
(8), we have

g

t,i

=(1� ⌧

�1
t,i

)g
t�1,i + ⌧

�1
t,i

@`

t

@�

i

����
�=�t

,

v

t,i

=(1� ⌧

�1
t,i

)v
t�1,i + ⌧

�1
t,i

@`

t

@�

i

����
�=�t

!2

,

h

t,i

=(1� ⌧

�1
t,i

)h
t�1,i + ⌧

�1
t,i

@

2
`

t

@�

2
i

����
�=�t

,

(11)

We can then modify our three approximations to

E[r
t,i

] ⇡ g

t,i

+ �

t,i

(�
t,i

� µ

i

),

E[r2
t,i

] ⇡ v

t,i

+ 2�
t,i

(�
t,i

� µ

i

)g
t,i

+ �

2
t,i

(�
t,i

� µ

i

)2,

E

"
@

2
f

t

@�

2
i

����
�=�t

#
⇡ h

t,i

+ �

t,i

,

here �

t,i

= �

t

N

Ni
is a time-sensitive dimension-specific regu-

larization factor (�
t

comes from adaptive regularization be-
low). This leads us to

⌘

t,i

=
1

(h
t,i

+ �

t,i

)
[g

t,i

+ �

t,i

(�
t,i

� µ

i

)]2⇥
v

t,i

+ 2�
t,i

(�
t,i

� µ

i

)g
t,i

+ �

2
t,i

(�
t,i

� µ

i

)2
⇤
.

Algorithm 1 Hyper-parameter Free Learning

Input: ⌧init, e, ↵, �0

Data variables: �
i

, ḡ

i

, v̄

i

, h̄

i

 0, ⌧
i

 1, � �0

for t = 1 to N do

Draw a training sample
for each dimension i : x

t,i

6= 0 do

Calculate g

i

= @`t
@�i

|
�=�t and h

i

= @

2
`t

@�

2
i
|
�=�t

ḡ

i

 (1� ⌧

�1
i

)ḡ
i

+ ⌧

�1
i

g

i

v̄

i

 (1� ⌧

�1
i

)v̄
i

+ ⌧

�1
i

g

2
i

h̄

i

 (1� ⌧

�1
i

)h̄
i

+ ⌧

�1
i

h

i

greg �

t

(N/N

i

)(�
i

� µ

i

)
if ⌧

i

< ⌧init then

�

i

 �

i

� e(g
i

+ greg)
⌧

i

 ⌧

i

+ 1
else

ratio (ḡ
i

+ greg)
2
/(v̄

i

+ 2ḡ
i

greg + g

2
reg)

⌘

i

 ratio/(h̄
i

+ �

t

(N/N

i

))
�

i

 �

i

� ⌘

i

(g
i

+ greg)
⌧

i

 (1� ratio)⌧
i

+ 1
end if

end for

Draw a validation sample

�

t+1 = �

t

+ ↵�

t

P
d

i=1
@`

val
t

@�i
|
�=�t �

t,i

.

end for

Robust Slow-Start Initialization.
Finally, we address one more limitation to the original

NoPesky method, when applied to our context. The NoPesky
method relies on a number of approximations that get in-
creasingly better as it runs more updates. Unfortunately
these approximations can be inaccurate in the initial stages
of the training when there are few updates and the coe�-
cients are far from the optimal solution. The original paper
[14] proposed a slow-start method to process the first 0.1%
of the data with a small constant learning rate in order to
obtain a stable estimate of the running averages. While this
method works well in their setting, where data have dense
rows, it doesn’t work well with data having sparse rows be-
cause many dimensions might not show up at all in the first
0.1% of the data samples!

Thus, we introduce an alternative slow-start method. We
use a small learning rate (✏) for updates in a particular di-
mension until we have seen at least ⌧init samples having that
dimension. E↵ectively we use a fixed learning rate SGD al-
gorithm for the first ⌧init updates in a dimension, and only
after that do we start to engage the NoPesky method. We
set ⌧init = 100 and e = 10�6 and use this for all of our
experiments 5.

4.2 Adaptive Regularization
A common strategy for selecting optimal regularization

weights is to perform a grid search: train multiple models
using di↵erent regularization factors, and select the one that
yields the best performance on the validation data. As dis-

5While the slow start mechanism does in fact create hyper-
parameters, we found that the same settings work for a large
class of similar problems (i.e., all sparse campaign data sets)
and no tuning is needed once an appropriate configuration
is found for that class

cussed above, this is time-consuming and prohibitive when
training very large numbers of models.

Adaptive regularization [13] o↵ers an alternative solution.
It adapts the regularization factor iteratively on the vali-
dation data while learning the model on the training data.
Adaptive regularization works with L

2-regularized models
and can be integrated into an SGD algorithm. Instead of
training multiple models with di↵erent but fixed regulariza-
tion factors, with adaptive regularization we train one model
with regularization factors that change over time. This is
achieved by running a gradient descent algorithm on the
regularization weight.

Adaptive regularization works as follows: alternatively
draw one sample from the training data and one sample
from the validation data then run the SGD update for the

training sample. Let `val
t

be the logistic loss function of the
validation sample. Adaptive regularization then runs the
following update

�

t+1 = max{�
t

+ ↵

dX

i=1

@`

val
t

@�

i

�����
�=�t

�

t,i

, 0} (12)

where ↵ is a fixed learning rate. The max is necessary be-
cause we would like to keep the regularization factor always
a non-negative quantity.

Dimension-Homogeneous Update.
There are a few undesirable features of the update in

(12). First, it is di�cult to choose a learning rate ↵ that
works well across multiple magnitudes of the regularization
factor. Second, the need to truncate at 0 in (12) seems
artificial. Finally, the dimension of the update equation
doesn’t match, because the dimension of @`

@�

� equals the
dimension of `, which is a logistic loss function and hence
dimensionless. But � is not dimensionless and has dimension
(dimension of �2)�1 based on (4).

We fix the above issues by slightly modifying the update
equation to

�

t+1 = �

t

+ ↵�

t

dX

i=1

@`

val
t

@�

i

�����
�=�t

�

t,i

. (13)

By inserting �

t

to the gradient term, we restored the di-
mension homogeneity of the update formula. We found this
modified update formula performs more robustly in practice.

We illustrate adaptive regularization at work in Figure 1.
In this example, we take a one-day sample from our training
data stream (the source data defined in the previous section)
and perform several training runs, with each one having a
di↵erent initial starting point for the regularization factor.
The plot shows the path that � takes as the optimization
sees more data. We see that all paths converge to the same
factor, though the speed to convergence is sensitive to the
initial starting point.

In practice, we set the fixed learning rate ↵ = 0.001. Be-
cause we will perform many updates on the regularization
factor, and the model changes slowly around the optimal
regularization factor, the performance of our model is not
sensitive to the choice of this learning rate.

5. EMPIRICAL ANALYSIS
In this section we demonstrate empirically the improve-

ments conferred by transfer learning, as well as the robust-

Figure 1: Adaptive regularization with dimension-

homogeneous update formula (13) converges to the

same regularization factor starting from a wide

range of initial values.

ness of the “hands-free” design. The analysis is conducted
experimentally across 100 di↵erent campaigns, across a wide
variety of advertisers from di↵erent industries, with di↵er-
ent base rates, and with di↵erent inherent predictability. A
quick summary goes as follows: 1) using the transfer learn-
ing from section 3 achieves better results than not using
transfer learning, and 2). doing this “hands-free” via the
methods detailed in section 4 does not perform much worse
than doing a full-blown grid search that is (at least) an order
of magnitude less e�cient. In all of these experiments, we
report results on experiments conducted on data from indi-
vidual campaigns, either in full detail or in aggregate. In
every case, the source and target data sets used are specific
to that particular campaign (as described above).

5.1 Transfer and Hands-free Operation
Our first set of experiments was conducted on data from a

single time frame spanning two time periods. We chose 100
advertisers and for each advertiser created 3 data sets: (1)
a source data set DS

0 in period ⌧0, (2) a target data set DT

0

in period ⌧0, and (3) a target data set D

T

1 in period ⌧1. In
this scenario periods ⌧0 and ⌧1 are disjoint but consecutive,
and ⌧0 and ⌧1 span fourteen and seven days, respectively.

For this set of experiments we use a 2x2 factorial design
for examining the modeling. One experimental factor is
whether or not we use transfer learning. For the “Trans-
fer Learning” variant we first learn a weight vector µ̂s using
equation 2 on the source data D

S

0 . We then use D

T

0 , µ̂

s

and equation 3 to learn a source-domain-adapted model on
the target data. For the “No Transfer” (control) variant, we
again use D

T

0 and equation 3 but without the informative
prior µ̂

s. The second design factor represents how we tune
the hyper-parameters when training the models. For the
“Adaptive” variant, we use the adaptive regularization with
the NoPesky learning rate schedule. For the “Grid Search”
variant we use the AdaGrad learning rate formula and speci-
fiy a fixed regularization weight. We search over a 4x9 grid
of values, where we use all powers of ten between 100 and
10�3 for the initial AdaGrad learning rate and 102 to 10�6

for the regularization weight. In all training scenarios we

(a) (b) (c)

Figure 2: These plots show experimental results on 100 campaigns under di↵erent learning scenarios. Each

point within each plot shows the lift evaluated on the same holdout set using the two methodologies listed.

Plot (a) isolates the e↵ect of using transfer learning vs. not using transfer learning using traditional grid-based

hyper-parameter search for regularization and AdaGrad learning rates for both. We see that transfer learning

almost always improves performance on the target data set. Plot (b) compares transfer learning using grid

search vs. the hands-free methods we introduce in this paper. We see that hands-free is competitive with

the more expensive approach. Plot (c) shows our main result, comparing transfer learning with adaptive

learning vs. no transfer learning and traditional grid search. This combines methods from (a) and (b), and

demonstrates the net performance e↵ect from the integrated, enhanced method.

select hyper-parameters by splitting the training data into
training and validation sets. We choose the hyper-parameter
configuration that performs best on the validation set and
then retrain on the entire training set using the selected
hyper-parameters.

Figure 2 shows6 the results of multiple tests on the dif-
ferent training scenarios. In figure 2 (a) we first establish
that transfer learning improves performance under tradi-
tional hyper-parameter selection methods. In both axes, the
models were trained using our Grid Search variant and the
only di↵erence is that transfer learning was used to produce
the results in the vertical axis. Overall, we see that 91% of
points fall above the identity line, meaning transfer learn-
ing improves performance for an overwhelming majority of
cases.

In figure 2 (b) we hold the transfer learning variant con-
stant and test whether our adaptive hyper-parameter se-
lection strategies fare better or worse than traditional grid
search. Overall we see a balanced and tight scatter around
the identity line, with the exception of two campaigns. This
suggests that in the context of our transfer learning strat-
egy, adaptive hyper-parameter search is as e↵ective as more
traditional grid search methods. This is a powerful result,
as it suggests we can indeed have a “hands-free” approach
to training our models while keeping the training costs low.
Our grid search optimization required 36 runs through the
training data whereas the adaptive approach only takes one.
In a more realistic setting, we may be able to reduce the grid
space, but even then, we’d expect to still require 5-10 train-
ing runs to find an optimum. Thus, the adaptive approach
significantly speeds up our ability to build transfer-enhanced
models.

In figure 2 (c) we show the variants of transfer learning
with adaptive hyper-parameter search against no transfer
with grid search. This is our closest comparison between

6Note that all 3 plots in figure 2 evaluate generalization
performance using lift. Using AUC instead shows the same
results qualitatively. See Table 1 for summary results.

our proposed approach and what might be done without
access to the source data. We see that 2 (a) and 2 (c) are
qualitatively similar, with the di↵erence being that (c) can
be achieved up to 10 times faster because of the adaptive
learning.

The results of these three comparisons are summarized in
table 1. In each row we report the mean of di↵erences when
training according to the strategies specified in the first col-
umn. For AUC we measure the di↵erence between the two
strategies and for Lift we measure the ratio between the two.
In our experimental design, we set our null hypothesis to be
that using one variant produces no di↵erence in performance
over the other variant. We report the mean AUC di↵erence
and Lift ratio, in the 2nd and 5th columns, respectively (we
take 1st� 2nd for AUC and 1st/2nd for lift). We also report
the p-Values using a paired t-test on these statistics. If we
think about these methods as global strategies for all cam-
paigns, we can conclude with strong confidence that transfer
learning improves campaigns on average and adaptive learn-
ing does not hurt.

5.2 Transfer and Incremental Training
In this set of experiments we explore a scenario that re-

flects an additional aspect of production training and model
use at a firm like Dstillery. In particular, data arrives incre-
mentally and continually from the moment a new campaign
is initiated until it runs its course, and (hopefully) is replaced
by a new campaign.

Since SGD trains via incremental updates, it can run
naturally as an incremental learning system. For a given
campaign, at any point in time we have a targeting model
that has been trained using all data available up until that
point; this model will then be used to target the follow-
ing time period’s ads. We simulate this process by cre-
ating daily samples from the advertising system for each
campaign, and then incrementally updating the campaign’s
model using some experimental learning-algorithm variant.

AUC Di↵. AUC Di↵. AUC Di↵. Lift Ratio Lift Ratio Lift Ratio

Mean % > 0 p-Value Mean % >1 p-Value

Transfer:Grid vs. No Transfer: Grid 2.07 86% < 10e�6
1.22 91% < 10e�6

Transfer:Adapt vs. Transfer: Grid -0.30 50% 0.15 1.01 65% 0.09

Transfer:Adapt vs. No Transfer: Grid 1.77 80% < 10e�6
1.23 93% < 10e�6

Table 1: Each row in this table is a comparison of two methods on the 100 campaigns shown in figure 2.

The table reports the mean di↵erence of AUC (on a 100 point scale) between the first and second variants

(listed in the first column) and the mean ratio of Lift for the first variant over the second variant across all

the campaigns. The p-Values are a result of paired t-tests under the null hypothesis that the mean AUC

di↵erence = 0 and mean Lift ratio = 1. The columns labeled ’%>k’ show the number of campaigns where

the metric reported was strictly greater than k. These results show that transfer learning overall improves

the performance (over not using it) and that the hands-free learning does not substantially reduce predictive

performance.

Figure 3: This figure shows the comparative results for three strategies for incremental training. For each day

of analysis we initialize a model from the prior day, train on campaign data for the specified day and evaluate

on campaign data for the following day. We explore 3 modeling strategies (Transfer Learning, Control A with

no prior and Control B with previous day’s model as a prior). Each point compares either Transfer Learning

or Control B variants to the Control A variant.

We then evaluate the resultant model on the following day’s
sample.

We explore three variants in this set of experiments: (1)
“Transfer Learning” – using equation 3 with µ̂

s derived from
the source data;7 (2) “Control A” – equation 3 with µ̂

s = 0
(the standard regularization case), and (3) “Control B” –
equation 3 with µ̂

s specified as the prior day’s model. This
final “Control B”variant is the methodology used by [4], and

7In this set of experiments we learn one estimate of µ̂s for
each campaign and hold that fixed throughout the 60 days
of training.

is the method most similar to our work in design.8 For each
variant, on each day, we train on just the given day’s data
using the chosen prior with adaptive regularization and op-
timize using SGD with the NoPesky adaptive learning rates.
When performing incremental updates using SGD, we found
that performance generally improves when each day’s model
is initialized with the prior day’s model and that the state
of all parameters used to compute the learning rate are per-
sisted and carried over to the next day (let’s call this the
‘warm start’).

8The work by [4] was not explicitly attempting knowledge
transfer, but can be interpreted as an instance of Bayesian
transfer, like ours except transferring across time periods.

Figure 4: Snapshot of the Dstillery KPI dashboard showing median lift over an internal baseline across

all active campaigns. The ‘L99’ line is the median Lift KPI of our transfer learning algorithm across all

campaigns. The ‘NN-ALL’ line is the median Lift KPI across all campaigns of all of our learning algorithms

combined.

Figure 3 shows aggregated results of running incremen-
tal training with daily performance evaluation across 30
randomly sampled campaigns from our production system
(sampled with the one constraint that the target data had
at least 5 post-impression conversions for each day of anal-
ysis). In the top chart we show the average relative Lift
ratio between the variants Transfer Learning and Control
B over Control A. In the bottom chart we show the av-
erage di↵erence in AUC. Thus, in each chart a black dot
above the reference line means that Transfer Learning out-
performed Control A for that time period. An“X”above the
line means that Control B outperformed Control A for that
time period. A black dot above an “X” means that Trans-
fer Learning outperformed Control B for that time period.
And vice versa. From these results we can see multiple ef-
fects: (1) when comparing to Control A, the postive e↵ect of
transfer learning wears o↵ over time; (2) when comparing to
Control A, the transfer learning benefit is more pronounced
for AUC than for Lift, although for both metrics there is
a general benefit, and (3) Control B tends to underperform
both variants, and this is more dramatic in AUC.

The first trend mentioned above is something we ought
to expect - as more data is introduced into the system, and
because the models do have some form of a memory built
into them, we should expect the weights learned just with
the target data will start to converge toward an optimal
point. The second trend can possibly be explained by dif-
ferent properties of the metrics themselves. In general, Lift
can be a very high variance metric in data scenarios with
a low absolute number of positive outcomes. This variance
comes from both (i) the model, because it is more di�cult
to fit the tails of the distribution, and (ii) the evaluation
itself: since we are updating the models one day at a time,
we have less target data per model-building and evaluation
step and this increases the expected variance. As a policy,
we always review both AUC and Lift, even though Lift is
the more appropriate metric.

The third trend mentioned above might be the most un-
expected (to us at least), and the sub-optimality of Control
B warranted additional analysis. Figure 5 shows the aver-
age L2-norm of the weight vectors � learned for each variant
for each day. The general trend we see is that the average

Figure 5: Average L2-norms for the models aggre-

gated and reported in figure 3

norm of weight vectors trained using the Control B variant
is bigger than that of the other two. This trend is likely an
artifact of regularizing towards existing models. The issue
is two-fold and manifests from the fact that the regulariza-
tion prior is a moving target. Over time, the weight vector
gets closer to an optimal solution and this often coincides
with an increasing norm. Eventually the process begins to
overfit the data and the regularization is too restrictive to
let the model escape from a specific solution. Also, this reg-
ularization strategy makes it di�cult to escape optimization
valleys in non-stationary data. The NoPesky learning rate
schedule has a built-in method for adapting to changing data
distributions (i.e., by “forgetting”most of the past), but for-
getting the past is di�cult when the regularizer forces the
model to remember it. Thus, the Transfer Learning prior
might be better in our application because it doesn’t in-
crease over time and is biased enough to avoid overfitting.
It is anchored close enough to a specific day’s optimal so-
lution to be useful but not too close that it over-fits in a
generally noisy learning environment.

5.3 Production Performance
As additional, auxiliary support that the hands-free trans-

fer method works well, we present its actual production per-
formance. In the experiments above, we took care to control
for the di↵erent factors that a↵ect performance on a hold-
out set so that we could isolate the di↵erent e↵ects of our
design choices. Once released ‘into the wild’ there are many
elements that prevent a pure apples-to-apples comparison
(when not doing a pure A/B test on them). Nonetheless,
we find in particular that our implementation of hands-free
transfer learning is in aggregate our best-performing learn-
ing method.

Figure 4 shows a screen shot taken from our internal KPI
dashboard. We benchmark every targeting algorithm for ev-
ery campaign against a default baseline that runs as part of
the campaign. We normalize the conversion rates of each
algorithm in each campaign against its respective baseline
and call this our “Lift KPI.”Figure 4 here shows the median
Lift KPI across all campaigns for the fourth quarter of 2013.
The top line (called ‘L99’9) represents our transfer learning
algorithms in action. The bottom line (called ‘NN-ALL’)
is a blend of all our algorithms combined. While this ‘L99’
group might not perform best for every campaign, in general
it is our best and demonstrably performs well above aver-
age across all campaigns. Many of the fluctuations in rela-
tive performance between these two lines are driven by the
internal campaign allocation optimizations of the system.
Each campaign starts with a set of competing algorithms.
As we get live feedback we reallocate impressions to the bet-
ter performing algorithms until the algorithm’s performance
converges to the mean of the campaign. Thus, as with pro-
duction numbers generally, these should not be taken as an
exact comparison between algorithms under identical condi-
tions.

6. CONCLUSION AND DISCUSSION
We have presented a set of techniques that when applied

together present a robust and scalable solution to several
challenges often encountered in online display advertising.
Our transfer learning approach shares intuition with prior
work [1], [8], in that one can look outside of the target data
set for sources of signal that can be passed to the target
problem. An advantage to our formulation is that (in retro-
spect) it is very straightforward, which is a virtue when de-
signing and implementing large-scale, completely automated
machine learning systems. Our focus here is on producing
a scalable, accurate, and robust system. We have achieved
that through the combination of Bayesian transfer learning
and the extension and integration of methods for adaptive,
parameter-free learning. Looking forward, adaptive regular-
ization is a recently developed strategy and more research
needs to be done to understand its performance bounds and
general limitations. On the transfer learning side, the e↵ec-
tiveness of the strategy depends on specifying an appropriate
prior. This work presents a straightforward mechanism for
how to transfer; more sophisticated methods could increase
the advantages from inductive transfer. Additionally, within
this framework, understanding when to transfer is necessary
for developing a fully robust solution.

9We often use obscure terminology to refer to our internal
products

7. REFERENCES
[1] D. Agarwal, R. Agrawal, R. Khanna, and N. Kota.

Estimating rates of rare events with multiple
hierarchies through scalable log-linear models. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 213–222. ACM, 2010.

[2] A. Arnold, R. Nallapati, and W. W. Cohen. Exploiting
feature hierarchy for transfer learning in named entity
recognition. In ACL, pages 245–253, 2008.

[3] M. Broadie, A. Zeevi, and D. Cicek. Multidimensional
Stochastic Approximation: Adaptive Algorithms and
Applications. 2013.

[4] O. Chapelle, E. Manavoglu, and R. Rosales. Simple
and scalable response prediction for display
advertising. Transactions on Intelligent Systems and
Technology, 2013.

[5] C. Chelba and A. Acero. Adaptation of maximum
entropy capitalizer: Little data can help a lot.
Computer Speech & Language, 20(4):382–399, 2006.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, pages 2121–2159, 2011.

[7] Interactive Advertising Bureau. Q3 2013 earnings
press release. http://www.iab.net.

[8] Y. Liu, S. Pandey, D. Agarwal, and V. Josifovski.
Finding the right consumer: optimizing for conversion
in display advertising campaigns. In Proceedings of the
fifth ACM international conference on Web search and
data mining, pages 473–482. ACM, 2012.

[9] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad
click prediction: a view from the trenches. In KDD
’13: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1222–1230, New York, New York,
USA, Aug. 2013. ACM Request Permissions.

[10] S. J. Pan and Q. Yang. A survey on transfer learning.
Knowledge and Data Engineering, IEEE Transactions
on, 22(10):1345–1359, 2010.

[11] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman,
and F. Provost. Machine learning for targeted display
advertising: Transfer learning in action. Machine
Learning, pages 1–25, 2013.

[12] R. Raina, A. Y. Ng, and D. Koller. Constructing
informative priors using transfer learning. In
Proceedings of the 23rd international conference on
Machine learning, pages 713–720. ACM, 2006.

[13] S. Rendle. Learning recommender systems with
adaptive regularization. In Proceedings of the fifth
ACM international conference on Web search and
data mining, pages 133–142. ACM, 2012.

[14] T. Schaul, S. Zhang, and Y. LeCun. No more pesky
learning rates. arXiv preprint arXiv:1206.1106, 2012.

[15] W. Xu. Towards optimal one pass large scale learning
with averaged stochastic gradient descent. arXiv
preprint arXiv:1107.2490, 2011.

[16] M. D. Zeiler. ADADELTA: An Adaptive Learning
Rate Method. arXiv preprint arXiv:1212.5701, 2012.

