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Abstract—In Real-Time Bidding (RTB) advertising, evaluating
the Click-Through Rate (CTR) of a bid request and an ad is
important for bidding strategy optimization on Demand-Side
Platforms (DSPs). The regression-based approaches are popular
for CTR estimation in RTB since this kind of approach is highly
efficient and scalable. The information of the bid request and
the ad contains categorical attributes (such URL) and numerical
attributes (such ad size). To vectorize the information for the
input of regression-based approaches, the categorical attributes
will be expanded to several binary features in general. However,
some categorical attributes have infinite possible values (such
as URL). Thus, for these attributes, only observed values in
training will be transformed into binary features. If there is a
new attribute or value in online environment, this information
will be lost after vectorization. In this paper, we first exploit the
feature hashing trick to transform the categorical and numerical
attributes into the large fixed size vector. Since the vector is large
and sparse, we propose a Softmax-based Ensemble Model, SEM,
which adopts only a few key features after feature hashing for
CTR estimation. The experimental results demonstrate that our
proposed approach is able to adapt to the harsh environments in
RTB, and outperforms the state-of-the-art approaches effectively
when only less than 50 features are adopted in two real datasets.

I. INTRODUCTION

Nowadays, online advertising often appears on websites

or mobile applications. Most publishers (such as websites

and mobile applications) will display an ad via Real-Time

Bidding (RTB). In RTB, there are many roles, such as Ad

Exchange (ADX), Supply-Side Platform (SSP), and Demand-

Side Platform (DSP). When a user (audience) visits a pub-

lisher’s website or mobile application which is embedded by

an SSP’s ad displaying plug-in, the publisher will send an

impression request to ADX for ad impression via the SSP’s

plug-in. Then ADX will send a bid request to each DSP.

Each DSP decides whether or not to bid for this impression

opportunity based on their evaluation. If a DSP decides to bid

for this auction, it will select an ad and a bidding price for

this impression opportunity. Finally, ADX selects the ad for

impression with the highest bidding price. The whole process

takes less than 100 ms [30].

DSP is an agent for advertisers to bid profitable bid

requests. Thus, the ad click prediction is an impor-

tant measurement to evaluate the profit of a bid re-

quest and an ad1, where the measurement is called the

1Expected profit per impression = Expected profit per click × Probability
of click.

Click-Through Rate (CTR) [1][3][9][24][29]. Many prior

works have focused on CTR estimation in RTB systems

[4][6][8][10][11][13][14][15][18][20]. The regression-based

approaches [10][13] are widely used for CTR estimation in

RTB since it has higher efficiency and scalability to deal

with the huge amount of bid requests (>10M per day) and

to satisfy the strict response time (<100 ms) in RTB. The

information of a bid request and an ad consists of categorical

attributes (such as URL) and numerical attributes (such as

ad size). For the regression-based approaches, the categorical

attributes will be converted to several binary features. For

example, the values of the gender attribute are male and female

in usual. Then it will be converted to two binary features,

is_male and is_female, and the values of these features

are 0 or 1. However, some categorical attributes may have

infinite possible values, such as URL. Only observed URL

values will be converted to binary features. When the trained

regression model meets an unobserved URL value in online

environment, this information will be ignored in calculation.

It means that we lose some information to estimate the CTR,

and the estimation performance may be affected. A common

way to avoid this situation is to explore large binary feature

space (>1M) based on large training records. Then a large

number of parameters (>1M) in the regression model have to

be maintained.

In this paper, we first utilize the feature hashing trick [21] to

transform the given bid request and the ad into the fixed size

vector to handle unobserved attributes and values. The output

size is large (about 220), and the vector is sparse in usual.

Since the vector is large and sparse, our idea is to select only

some key features in the vectors for computation. Since only

key features are adopted, the estimation performance may be

improved. Moreover, the memory and storage consumption

can be reduced. Here we proposed a Softmax-based ensemble

model, SEM, for CTR estimation in RTB. SEM is a lite

regression-based model, which adopts only few key features

from the large numbers of features in the vector after feature

hashing trick transformation. However, the traditional methods

for feature selection and dimension reduction, such as PCA

and Kernel PCA, are not suitable for RTB since the number

of bid request records and the feature size are huge. Therefore,

to select key features in RTB, we relax the definition of

key features from prior works of feature selection for more

efficiency. Here we select distinguishable features as our key
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features. The distinguishable feature represents that this feature

is suitable to distinguish click and not click. Moreover, the

distinguishability of features can be easily derived in RTB.

To estimate CTR by the few selected distinguishable features,

we utilize the Softmax function to combine probabilistic

classifiers based on the selected features by exploiting the

characteristics of distinguishable features.

In summary, our major contributions are outlined as follows:

• We propose SEM, which adopts only a few features after

feature hashing for effective CTR estimation in online

RTB.

• Since SEM only adopts few features for CTR estimation,

the memory and storage consumption can be reduced

significantly in online RTB.

• We conducted a comprehensive experiment study on two

real datasets, and the experimental results demonstrate

that SEM is more effective than the state-of-the-art ap-

proaches.

The rest of this paper is organized as follows. The related

studies are discussed in Section II. The preliminaries are

presented in Section III. Section IV presents our proposed

approach. Section V shows the experiment results. Finally,

Section VI concludes this paper.

II. RELATED WORKS

To estimate CTR in online advertising, several approaches

are proposed for different proposals. For sponsored search [7]

in search engines, the problem is to estimate the CTR of a

search text and an ad. [4] and [18] focused on generating

the vectors from text data for logistic regression. However, in

RTB, the bid request and ad do not usually contain much text

information. In [11], the authors utilized logistic regression by

modifying the objective function for advertising on Twitter. In

[14], the authors utilized matrix factorization to estimate the

CTR of a web page and an ad by considering the web page and

ad hierarchy. In [8], the authors proposed a decision tree based

approach by considering the categorical information. In [6],

the authors proposed a two-stage approach which combines a

decision tree and logistic regression. First, the decision tree is

to generate the vector, and then the vector is for BOPR [5], a

variant of logistic regression, for CTR estimation. In [10], the

author focused on generating the vector for logistic regression

to estimate the conversion rate. The features are generated by

the ad, page and user hierarchies. In [13], the authors proposed

an online version of logistic regression with stochastic gradient

descent for CTR estimation in RTB. A probability is set

to determine whether a new feature will be integrated into

the original model. Then frequent new features have higher

probability to be integrated into the original model. In [15], a

factorization machine [16][17] was adopted for vector gener-

ation for logistic regression for CTR estimation. In [20], the

authors modified the objective function of logistic regression

for CTR estimation in RTB. If a bid request has a higher

bid price, a higher weight of this record is set in training.

Moreover, in [12] and [28], the authors adopted the neural

network techniques for CTR estimation in RTB. According

to the above discussion, in RTB, some works [8][10][14][15]

are not ready for the online environment. Although some

works [6][13][20] are ready for CTR estimation in online

environments, these works are inefficient and ineffective when

it comes to dealing with the issue of unobserved attributes and

values. Thus, in this paper, we focus on handling unobserved

features and values for CTR estimation in online RTB.

III. PRELIMINARIES

In this section, we define the CTR estimation problem in

this paper. First, we define the bid request and ad as follows:

Definition 1: (Bid request) A bid request ri consists of

attributes and corresponding values.

For example, in iPinYou [30], a bid request contains the

attributes, such as Ad exchange and Ad slot width,

to describe the bid request. The type of Ad exchange and

Ad slot width is categorical and numerical, respectively.

The definition of the ad is similar with the definition of the

bid request.

Definition 2: (Ad) An ad ai consists of attributes and

corresponding values.

After the DSP successfully wins an ad auction, the DSP

sends an ad to the audience. Then the DSP can track whether

the ad is clicked by the audience or not. This is called an

impression record. The definition of an impression record is

as follows:

Definition 3: (Impression record) An impression record is a

tuple (r, a, y), where r is the vector of a bid request, a is the

vector of an ad and y represents that the ad is clicked for the

request r or not. y = 1 if a is clicked, and y = 0 otherwise.

Finally, the CTR estimation problem in this paper is defined

as follows:

Definition 4: (CTR estimation problem) Given a set of

impression records {(ri, ai, yi)}, when a bid request r
is received, the CTR estimation problem is to estimate

P (click|r, a), which denotes the probability of a clicked if

a is successfully impressed in r.

IV. OUR PROPOSED APPROACH

A. Framework Overview

Figure 1 shows our framework in this paper for CTR esti-

mation in RTB. The framework can be divided into two stages,

the online and offline stages. In the offline stage, the objective

is to select key features and construct the initial model for

online CTR estimation. The first step is to exploit feature

hashing to derive the fixed size vector for each impression

record, where the output vectors are denoted by transformed

impression records. Then only a few features will be selected

from the huge number of transformed impression records,

and the output is denoted by filtered impression records.

Finally, the initial model will be constructed from the filtered

impression records. In this paper, we propose the Softmax

Ensemble Model (SEM), which only utilize a few features, for

CTR estimation. In the online stage, an incoming bid request

and an ad will be transformed to a fixed length vector, called

the transformed input. The only value of the selected feature

6



p(click|r, a)p(click|r, a)

{(ri, ai, yi)}{(ri, ai, yi)}

{(xi, yi)}{(xi, yi)}

{(x′

i
, yi)}{(x′

i
, yi)}

(x′
, y)(x′
, y)

xx

x
′

x
′

JJ

JJ

rr aa

Fig. 1. Our framework for CTR estimation in an online RTB environment

Algorithm 1 : FeatureHash

Input: A bid request r, an ad a and the vector size m
Output: A vector x = [x1, x2, · · · , xm]T with size m

1: x = [x1, x2, · · · , xm]T , ∀i, xi = 0
2: for value v in attributes of r and a do

3: idx = hash(v) mod m
4: p ∼ uniform(0, 1)

5: if p < 0.5 then

6: xidx+ = 1
7: else

8: xidx− = 1
9: end if

10: end for

11: return x

in the offline stage will remain, where the output is called

the filtered input. Finally, the estimated CTR of a bid request

and an ad can be derived by the filtered input and SEM. If a

tracking result is received, SEM can be incrementally updated.

In the following subsections, we describe the details of feature

hashing, feature selection, filtering and SEM.

B. Feature Hashing

Since the bid request and ad may contain unobserved

attributes and values, the feature hashing trick [21] is widely

used in regression-based approaches to deal with this issue

[2][22]. In this paper, we also utilize this trick to preprocess the

input of our regression-based model. The definition of feature

hashing is as follows:

Definition 5: (Feature hashing) Given a bid request r, an ad

a and the vector size m, a vector x = [x1, x2, · · · , xm]T with

size m can be derived after feature hashing, where xi ∈ R.

The vector size m indicates m features will be generated

after feature hashing. Algorithm FeatureHash describe the

details of the feature hashing step in our framework. In

Algorithm FeatureHash, for each value v of attributes, the

feature index of v can be derived by a hash function (line 3),

where the modulo operation ensures that the feature index in

0, 1, · · · , m−1. From line 4 to 9, the value of indexed feature

will be increased of decreased with the same probability. This

process is to deal with the issue of hash collisions [21]. After

the feature hashing step, all categorical attributes and values

will be transformed into m numerical features. Whenever the

attributes and values is observed or unobserved, it ensures that

there is a feature index can be derived. Then the transformed

input is ready for the regression-based model.

In the feature hashing step of the offline stage, all impression

records {(ri, ai, yi)} will be transformed into transformed

impression records {(xi, yi)} by feature hashing. Furthermore,

in the feature hashing step of the online stage, an input which

consists of a bid request r and an ad a will be transformed

into a transformed input x.

C. Feature Selection

After the feature hashing step, each tuple (bid request, ad)

is transformed into the vector with size m. In usual, the size

m is set to a large number, such as 220 ≈ 106. Thus, the

vector derived by feature hashing is sparse. We think that

only a few key features in the m features are effective for

CTR estimation in RTB. However, the traditional approaches

for feature selection or dimension reduction, such as PCA

and SVD, are not suitable for the environment in RTB since

the number of impression records and the feature size m are

too large. Some works [19][23][26][27][31] are proposed for

online feature selection. However, in RTB, the amount of data

(>10M) and the number of features (>1M) go beyond the

consideration in these works. It indicates that the definition of

key features in these works is still too strict in RTB. Therefore,

the definition of key features should be relax since the key

features should be easily derived in the environment in RTB.

In this paper, we are likely to discover the distinguishable

feature j, which means that the distribution p(xj |y = 1)
and p(xj |y = 0) are significantly different. Figure 2 shows

our concept of the distinguishability of features. In Figure 2,

feature j1 is more distinguishable than feature j2. To measure
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Fig. 2. The concept of distinguishability of features

the distinguishability of a feature, the difference in conditional

means is adopted since it can be easily and quickly derived

in RTB. The definition of the distinguishability of feature is

presented as follows:

Definition 6: (Distinguishability) Given a set of transformed

impression records {(xi, yi)}, the distinguishability of feature

j, dj , is |E[xj |y = 1]−E[xj|y = 0]|, where j = 1, 2, · · · ,m.

After the distinguishability of features is defined, Algo-

rithm FeatureSelect is proposed to discover distinguishable

features from transformed impression records in the offline

stage. The Algorithm FeatureSelect only scans the transformed

impression records once (from line 6 to line 16), and then the

distinguishability of each feature will be derived and stored

in the heap H (from line 17 to line 22). Finally, the set J of

the k most featured indexes can be derived from H (line 23),

where j ∈ {1, 2, · · · ,m} for each j ∈ J .

Performance analysis: In FeatureSelect, the program first

initializes variables for the distinguishability of each feature

(line 2 to line 5), and the time complexity is O(m). Then Fea-

tureSelect scans each feature of each transformed impression

record (from line 17 to line 22), and the time complexity is

O(mn). Moreover, FeatureSelect calculates the distinguisha-

bility of each feature, and stores the distinguishability to heap

H (from line 17 to line 22), where the time cost O(m).
Finally, the time cost of popping k feature indexes from H
is O(k logm). Thus, the time complexity of FeatureSelect is

O(m) + O(mn) + O(k logm) = O(mn), where k � m.

On the other hand, since FeatureSelect only needs O(m)
space to store the distinguishability of each feature, the space

complexity of FeatureSelect is O(m).

D. Filtering

After the feature selection step, the index set J can be de-

rived. Then only k features will be selected in the transformed

input x, and J determines which feature will be selected. The

formal definition of filtering is defined as follows:

Definition 7: (Filtering) Given a vector x = [x1, x2, · · · ,
xm]T and an index set J = j1, j2, · · · , jk, the filtered vector

is x
′ = [x′

1, x
′

2, ·, x
′

k]
T , where x′

j′ = xj and j is the j′-th
feature (index) in J .

In the filtering step of the offline stage, given a set of

transformed impression records {(x, y)}, the output is the

set of filtered impression records {(x′, y)}. Moreover, in the

Algorithm 2 : FeatureSelect

Input: A set of transformed impression records {(xi, yi)}
with size n, a constant k

Output: An index set J with size k, which contains the

indexes of the k most distinguishable features.

1: count = 0

2: for j from 1 to m do

3: sumC
j = 0

4: sumU
j = 0

5: end for

6: for i from 1 to n do

7: The i-th impression record (xi = [xi1, xi2, · · · , xim], yi)
8: for j from 1 to m do

9: if yi = 1 then

10: sumC
j += xij

11: count += 1

12: else

13: sumU
j += xij

14: end if

15: end for

16: end for

17: H = max heap()

18: for j from 1 to m do

19: meanC
j = sumC

j /count
20: meanU

j = sumU
j /(m− count)

21: H .push(j, |meanC
j −meanU

j |)
22: end for

23: J = pop m items from H
24: return J

filtering step of the online stage, given a transformed input x,

the output is the filtered input x′ after filtering.

E. Softmax Ensemble Model, SEM

By recalling our concept in the feature selection step, the

selected features are distinguishable. Based on this concept,

the naive Bayesian classifier (NBC) is suitable for our situation

since NBC has good performance when the value distribution

of different classes are significantly different. If there are many

features in NBC, any two features are considered independent.

We think that this consideration is too strict in RTB. In this

paper, our approach is to construct NBCs, where each NBC is

based on one feature. Then we combine the results of NBCs.

For a feature j, the NBC of feature j, fj(x
′), is as follows:

fj(x
′) = p(click|x′, j) = p(click|x′

j , j)

=
p(xj |click, j)p(click)

p(xj |click, j)p(click) + p(xj |unclick, j)p(unclick)
(1)

where j is the indicator that only the j-th feature in x
′ is

adopted. p(xj |click, j) and p(xj |unclick, j) are the conditional

probability density of the j-th feature by considering clicked

and unclicked impression records, respectively. p(click|j) =
p(click) and p(unclick|j) = p(unclick) since p(click|j) is the

proportion of clicked impression records that is invariant to j.
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To combine the probability of click for each NBC, we

exploit the softmax gating network [25] to combine the results

of NBC since the softmax gating network is based on the

law of total probability, which satisfies that the output is a

probability in [0, 1]. Our Softmax Ensemble Model (SEM)

h(x� = [x�

1, x
�

2, · · · , x
�

k]
T ;B) is to estimate p(click|r, a)

defined in Definition 4, and the detailed description is as

follows:

h(x�;B) = p(click|x�;B) =

k∑

j=1

p(j|x�;B)p(click|x�, j)

=

k∑

j=1

wj(x
�;B)fj(x

�) (2)

where wj(x
�;B) denotes the weight of j-th NBC with re-

spect to x
�, fj(x

�) is the j-th NBC (Equation 1), B =
[bT

1 ,b
T
2 , · · · ,b

T
k ]

T ∈ R
k×k denotes the parameters for weight

controlling with respect to x
�, and bj = [bj1, bj2, · · · , bjk].

Moreover, wj(x
�;B) is defined as follows:

wj(x
�;B) =

ebjx
′

∑k

j′=1 e
bj′x

′
(3)

Suppose there are n filtered impression records {(x�

1, y1),
(x�

2, y2), · · · , (x�

n, yn)}, to discover a suitable B for SEM,

the maximum likelihood principle is adopted. Hence, it can

be represented as follows:

argmin
B

1

n

n∑

i=1

Qi(B) +
λ

n
c(B) (4)

where Qi(B) = −yi log h(xi;B)−(1−yi) log(1−h(xi;B)),
and λc(B) denotes the regularization term with respect to B.

To derive B with a huge n and for an online environment,

the stochastic gradient descent is utilized to derive B by

scanning n filtered impression records once. For each bj ∈ B,

the updated equation is as follows:

bj = bj − η[∇Qi(B) + λ
∂

∂bj

c(B)] (5)

where η is the learning rate, and ∇Qi(B) is as follows:

wj(xi;B)xi(fj(x
�)− h(xi;B))

h(xi;B)− yi
h(xi;B)(1 − h(xi;B))

(6)

In the online stage, given a filtered input x
�, the output

of the estimating step is h(x�;B) (Equation 2). Moreover,

given a tracking result (x�, y), the parameters of SEM B and

the parameters of each NBC will be updated in the model

updating step, where B is updated by Equation 5. Algorithm

OnlineUpdate is for the model updating step in the online

stage. Algorithm OnlineUpdate first prepares the elements for

Equation 5 (from lines 5 to 11), and then updates each bj in

B by Equation 5 (from lines 13 to 17). In the offline stage,

given a set of n filtered impression records {(x�

i, yi)}, the

model constructing step equals to the model updating step in

the online stage for each filtered impression records (x�

i, yi).

Algorithm 3 : OnlineUpdate

Input: A tracking result (x� = [x�

1, x
�

2, · · · , x
�

k]
T , y), param-

eters of SEM B = [bT
1 ,b

T
2 , · · · ,b

T
k ]

T and a learning rate

η
1: w = [w1,w2, · · · ,wk]
2: f = [f1, f2, · · · , fk]
3: sum weight = 0
4: h = 0
5: for j from 1 to k do

6: update θθθj using x�

j for fj
7: wj = ebjx

′

8: fj = fj(x
�)

9: sum weight = sum weight + wj

10: h = h + wj · fj
11: end for

12: h = h/sum weight

13: for j from 1 to k do

14: ∇Q = wj/sum weight · bj · (fj − h) h−y
h(1−h)

15: ∇C = ∂
∂bj

c(B)

16: bj = bj − η(∇Q + λ · ∇C)
17: end for

Performance analysis: Assume there are n filtered impres-

sion records, and k features are selected. For each NBC fj(x
�),

the time complexity of estimating, updating and constructing

is O(1), O(1) and O(n), respectively. For online estimating

of SEM, the time complexity is O(k(k + O(1)) = O(k2).
For online model updating of SEM, the time complexity is

O(k · k + k) = O(k2) (Algorithm OnlineUpdate). For offine

model constructing of SEM, the time complexity is O(n·k2) =
O(nk2). On the other hand, for each NBC fj(x

�), the space

complexity of estimating, updating and constructing is O(1),
O(1) and O(1), respectively. Thus, the space complexity of

SEM online estimating, SEM online model updating and SEM

offine model constructing is O(k), O(k · k) = O(k2) and

O(k2), respectively.

V. PERFORMANCE EVALUATION

In this section, we conduct the experiments to evaluate the

effectiveness and efficiency of our proposed framework. We

implemented the proposed algorithms in Python.

A. Dataset Description

In the experiments, our datasets are from iPinYou2. Two

datasets, iPinYou2 and iPinYou3, were selected from iPinYou.

iPinYou2 and iPinYou3 are the training data of season 2 and

of season 3 in iPinYou, respectively3. Tables I and II show

the basic statistics of these two datasets4. In the following

experiments, the training and testing setting is one day for

2http://data.computational-advertising.org/
3Note that the season 1 data is not adopted in our experiments since no

audience information is available for season 1. Moreover, the testing data of
season 2 and season 3 are not adopted in our experiments since there are no
click results for evaluation.

4The detailed statistics are shown in [30].
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TABLE I
BASIC STATISTICS OF THE IPINYOU2 DATASET

date # of impressions # of clicks CTR (×10
−4)

2013-06-06 1,821,350 1,150 6.314
2013-06-07 1,805,953 1,044 5.781
2013-06-08 1,634,830 1,156 7.071
2013-06-09 1,651,524 1,140 6.903
2013-06-10 1,920,370 1,522 7.926
2013-06-11 1,745,722 1,379 7.899
2013-06-12 1,657,338 1,360 8.206

TABLE II
BASIC STATISTICS OF THE IPINYOU3 DATASET

date # of impressions # of clicks CTR (×10
−4)

2013-10-19 228,133 83 3.638
2013-10-20 214,295 65 3.033
2013-10-21 848,740 500 5.891
2013-10-22 695,720 388 5.577
2013-10-23 226,785 590 26.02
2013-10-24 245,897 369 15.01
2013-10-25 319,681 414 12.95
2013-10-26 268,453 263 9.797
2013-10-27 110,467 28 2.535
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Fig. 3. The average log-likelihood with different k in the two datasets

training (offline stage) and the next day for testing (the online

stage). Furthermore, the feature hashing size m is set to 220 =
1, 048, 576.

B. Impact of k

In our approach, the index set J has to be determined before

model constructing. If the size of J , k, is too small, it may

decrease the effectiveness since some distinguishable features

are not considered. In contrast, if k is too large, it increases the

memory and storage consumption of computation. To discover

a suitable k, we observe the performance with different k.

Log-likelihood is selected to measure our proposed methods,

SEM, where log-likelihood [6][8][11][12][14][15] is a common

measurement to evaluate the methods of CTR estimation. We

calculate the average log-likelihood of the log-likelihood of

each date with different k in the two datasets. Figure 3 shows

the relation between the average log-likelihood and k in the

two datasets. In iPinYou2, Figure 3(a) shows that SEM has

the highest average log-likelihood when k = 30. Thus, the

default k is set to 30 for the iPinYou2 dataset in the following

experiments. On the other hand, in Figure 3(b), the average

log-likelihood of SEM increases insignificantly. For iPinYou3,

the default k is set to 40 in the following experiments.

TABLE III
THE MEMORY USAGE OF DIFFERENT METHODS IN ONLINE ESTIMATION IN

IPINYOU2 (MB)

06-07 06-08 06-09 06-10 06-11 06-12

LR 3,531 3,484 3,333 3,502 3,902 3,480
LR-FH 3,873 4,248 4,153 4,152 4,278 4,148
FTRL 35.44 36.60 35.52 37.14 37.29 35.41
SEM 33.81 33.82 33.82 33.82 33.82 33.82

TABLE IV
THE MEMORY USAGE OF DIFFERENT METHODS IN ONLINE ESTIMATION IN

IPINYOU3 (MB)

10-20 10-21 10-22 10-23 10-24 10-25 10-26 10-27

LR 501 476 1,809 1,563 482 493 616 530
LR-FH 1,092 987 2,981 2,542 946 958 1,177 1,079
FTRL 25.46 27.25 31.98 25.66 25.34 26.48 25.98 24.05
SEM 34.27 34.28 34.28 34.27 34.27 34.27 34.27 34.27
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Fig. 4. The memory usage of SEM in online estimation with different k in
the two datasets

C. Memory Usage Evaluation

Since the bid request and ad may contain unobserved

attributes and values, the feature size will increase rapidly

when the amount of data is increasing. Although the feature

hashing trick can limit a bound of feature size, the feature size

is still huge (larger than 1M in usual). In our approach, one

of the tasks is to reduce the memory and storage consumption

after the feature hashing step. Here we obverse the memory

usage of different methods in online estimating and in offline

training. The methods for comparisons are LR, LR-FH, FTRL

and SEM, where LR represents the logistic regression, LR-FH

represents the logistic regression based on feature hashing, and

FTRL is the state-of-the-art method [13] for CTR estimation

in RTB based on logistic regression. Note that the logistic

regression based methods LR and LR-FH are the baseline

methods.

Tables III and IV show the memory usage of different

methods in online estimation in the two datasets. LR and

LR-FH cost large memory usage since the number of features

is huge. The memory usage of LR-FH is large than the

memory usage of LR since the number of distinct features

is less than the hash size m = 220. The memory usage of

FTRL and SEM is only 1/100-1/20 of the memory usage of

LR and LR-FH in the two datasets. In online updating, FTRL

adds a new feature into the original model with a probability,

where the setting is 0.03 in our experiments. Thus, the frequent

feature has higher probability to be added into the original

model. If the probability is higher, the memory usage of FTRL
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TABLE V
THE MEMORY USAGE OF DIFFERENT METHODS IN OFFLINE TRAINING IN

IPINYOU2 (MB)

06-07 06-08 06-09 06-10 06-11 06-12

LR 10,665 10,574 9,519 9,519 10,847 9,900
LR-FH 18,441 23,580 21,664 21,101 23,646 22,760

SEM 32.96 32.97 32.97 32.97 32.97 32.97

TABLE VI
THE MEMORY USAGE OF DIFFERENT METHODS IN OFFLINE TRAINING IN

IPINYOU3 (MB)

10-20 10-21 10-22 10-23 10-24 10-25 10-26 10-27

LR 1,386 1,310 5,001 4,164 1,320 1,364 1,758 1,501
LR-FH 3,133 2,974 10,873 9,196 2,913 3,017 4,167 3,276

SEM 33.39 33.40 33.40 33.40 33.39 33.39 33.39 33.39
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Fig. 5. The memory usage of SEM in offline training with different k in the
two datasets

is higher. In other words, the memory usage of FTRL depends

on the probability setting. Figure 4 shows the memory usage of

UEF in online estimation with different k in the two datasets.

The trend of SEM is consistent with our analysis, O(k2).
Tables V and VI show the memory usage of different

methods in offline training in the two datasets. LR and LR-FH

cost huge memory usage in offline training in the two datasets.

For LR and LR-FH, the amount of memory usage in online

estimating is about 1/10 of the amount of memory usage in

offline training since LR and LR-FH have to load all data

into memory in offline training. Furthermore, for SEM, the

memory usage in offline training is unrelated to the number

of impressions. Figure 5 shows the memory usage of UEF in

offline training with different k in the two datasets. The trend

of SEM is also consistent with our analysis, O(k2).

D. Efficiency Evaluation

In RTB, DSP should respond to ADX’s bid request in real

time, where the time limitation is usually about 100ms [29].

When the DSP receives a bid request, it will estimate the CTR

of the bid request for each ad hosted by the DSP one by one.

Then DSP will determine the most suitable ad and bid price

to respond. Since the CTR estimation is a key component of

the bidding strategy of DSPs, we obverse the running time

(per input) of different methods in online estimation. On the

other hand, since the number of impression records is huge

in RTB, the offline training efficiency is an important issue.

Thus, we also obverse the running time of different methods

in offline training. The selected methods for comparison are

LR, LR-FH, FTRL and SEM.
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Fig. 6. The running time (per input) of different methods in online estimation
in the two datasets
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Fig. 7. The running time (per input) of SEM in online estimation with
different k in the two datasets
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Fig. 8. The running time of SEM in offline training with different k in the
two datasets

Figure 6 shows the running time of different methods in

online estimation in the two datasets. SEM has longer running

time than LR and LR-FH since there are O(k) exponentiation

operations in SEM. However, the difference between the run-

ning time of SEM and the running time of LR and LR-FH is

slight (less then 1 ms). FTRL has the shortest running time

since the number of features increases over time5. For SEM,

the running time in iPinYou3 is longer than the running time in

iPinYou2 since k is set to 30 and 40 in iPinYou2 and iPinYou3,

respectively. Figure 7 shows the running time of SEM in online

estimation with different k in the two datasets. The results are

similar to our analysis, but the running time is insensitive to k.

Moreover, Figure 8 shows the running time of SEM in offline

training with different k in the two datasets. The results in

offline training are similar to the results in online estimating,

the running time is insensitive to k.
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Fig. 9. The log-likelihood of different methods in online estimation in the
two datasets

E. Effectiveness Evaluation

After the efficient evaluation, we finally observe the perfor-

mance of our proposed methods for online estimation in the

two datasets. Log-likelihood is adopted as the measurements

for effectiveness evaluation. The comparisons are LR, LR-FH,

FTRL and SEM. Figure 9 shows the log-likelihood of different

methods in the two datasets. In both iPinYou2 (Figure 9(a))

and iPinYou3 (Figure 9(b)), our method, SEM, has the highest

log-likelihood on all dates. In contrast, LR and LR-FH have

the lowest log-likelihood on all dates in the two datasets.

SEM has higher log-likelihood than the state-of-the-art method,

FTRL, in iPinYou2, but the log-likelihood of SEM and FTRL

are almost the same in iPinYou3. According to the above

results and discussion, our proposed method SEM has higher

performance in most situations in the two datasets.

VI. CONCLUSION

In this paper, we focus on dealing with the unobserved

attributes and values for CTR estimation in online RTB. To

deal with the issue, we exploit the feature hashing trick to

transform the bid request and the ad into a fixed size vector.

Since the vector after feature hashing is large and sparse,

we propose SEM which utilizes only a few distinguishable

features instead of all features after feature hashing. To derive

the distinguishable features in RTB, we utilize the difference

of means to measure the distinguishability of features. Then

the distinguishable features can be easily derived in RTB.

NBC is adopted for CTR estimation based on the distin-

guishable features since the characteristics of distinguishability

is suitable for NBC. By considering the dependency of the

distinguishable features, each selected distinguishable feature

is for one NBC. Then the Softmax function is adopted to

integrate the results of NBCs. In the experiments in two real

datasets, the results show that SEM outperforms than the state-

of-the-art methods, and the memory usage can be significantly

reduced when only less than 50 features are adopted.
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