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Abstract

Online publishers rely on real-time bidding (RTB) markets to sell their remnant in-
ventory and increasingly to command higher prices for “premium” content. How-
ever, content providers have lagged advertisers historically in the sophistication of
their pricing models, as evidenced by the large increase in demand-side platforms
without corresponding investment on the sell-side. Informed advertisers collect
user-intent and demographic information in addition to the publisher context in
order to score the relevance of impressions. The resulting differential impression
pricing is only visible to publishers as a positive externality to revenue unless they
collect the same audience targeting information. In this paper, we introduce a
Bayesian hierarchical model of auction clearing price that can naturally account
for the presence of publisher-advertiser information asymmetry and quantify its
impact on price. Although the current model is simply exploratory, it suggests that
richer models of dynamic floor pricing may improve publisher revenue.

1 Introduction

Real time bidding (RTB) markets have emerged as the preferred medium for ad networks and large
advertisers to buy remnant inventory [3]. Individual publisher impressions are auctioned off in
real time to participating advertisers, allowing them fine-grained control over audience targeting. In
theory, publishers set floor prices in line with their view of the value of their inventory, and the degree
of risk they must take on selling media to potentially unknown third-parties. Advertisers bid on the
individual impressions, buying specific audience information, such as demographic, session history
and intender status, from third-party data providers and demand-side platforms (DSPs), leading to
information asymmetry between the demand- and supply-side. This presence of informed bidders
amongst advertisers bidding on particular inventory causes adverse selection [6], with publishers
raising floor prices across the board to avoid selling inventory at a perceived discount.

In this paper we explore the effects of informed bidders and information asymmetries between
the supply- and demand-side in RTB markets and the resulting effects on empirical ad market mi-
crostructure. We posit that quantifying the effects of information externalities on informed bidding
in aggregate can lead to more informed supply-side floor pricing, and hence increased publisher
revenue, without the need for publishers to identify what impression level information is being
specifically acted on by bidders. That is, the presence of differential pricing strategies, such as those
employed by DSPs can be inferred directly from the bid price distribution.

Towards this end, we develop a mean-shift latent variable model in the context of linear regression
to study publisher-advertiser information asymmetry, applying it to a large anonymized auction data
set. The fundamental model assumption is that additional information available to a subset of in-
formed advertisers, e.g. provided by DSPs, affects bid price additively, causing it to be overdispersed
when compared to the baseline model. Hence, markets undergoing significant adverse selection due
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to information asymmetries will appear to publishers as additional clearing price dispersion. Al-
though the underlying signals driving differential pricing may not be available on the supply side,
publishers can still pool their auction data to estimate its economic impact.

In addition to the basic model, we discuss several extensions, including the potential to improve
dynamic floor pricing mechanisms and produce more accurate estimates of marginal floor price.
Ultimately, pooling sell-side data will help give publishers more fine-grained control over their in-
ventory pricing and improve market efficiency.1

2 Mean-shift Mixture of Generalized Linear Models

We propose a simple generative model of auction clearing price pai as a function of floor price pfi ,
publisher id xpidi , and a latent externality indicator zi. Publishers set the floor price distributed over
their inventory as a noisy signal of quality, forcing higher correlation between pf and pa. Advertiser
willingness-to-pay is derived from a latent audience signal (unobserved information externality zi)
and site context.

Although the exact latent audience signal zi cannot be reconstructed from the data, an aggregate
estimate can be obtained by treating it as a latent variable in an overdispersed generalized linear
model (GLM) framework,

w|Σw � N p0,Σwq (parameter weights)
zi|x, µ0, µ1, σ0, σ1 � GMMp�|x, tµ0 ¤ µ1u, tσ0 � σ1uq (latent group indicator)
α|σα � N p0, σαq (price mean-shift)

pai |xi, zi,w, α � GLMp�|

�
xi
zi

�
,

�
w
α

�
q (regression)

where xi � tpfi , x
pid
i u. This model combines a standard GLM with a two-component, equal vari-

ance Gaussian mixture model (GMM) indicating whether the auction price has been mean-shifted
due to (unobserved) impression-level information. Such mean-shift mixture models are common in
outlier detection, and can be used to model over-dispersion due to unobserved factors [2]. GLMs
with latent factors can be fit using standard EM techniques; we adopt a Bayesian approach using
Gibbs sampling [cf. 5].

Using this framework, we derive three particular models of pa:

• Externality-free – Auction clearing price depends only on the observed variables,

pai � w0 � w0,xpid
i

� pw1 � w1,xpid
i
qpfi � εi

where w0,� are intercept parameters and w1,� are slope parameters. This model captures
the contribution of the floor price and publisher id to the prediction of the auction clearing
price.

• Aggregate Externalities – Audience pricing externalities are assumed constant across all
publishers, hence some percentage of each publishers inventory experiences a latent mean-
shift:

pai � w0 � w0,xpid
i

� α0zi � pw1 � w1,xpid
i

� α1ziqp
f
i � εi

where α0 and α1 are additional intercept and slope parameters respectively for mean-
shifted observations. This model captures additional price dispersion not accounted for in
the baseline externality-free model, i.e. separating the systematic/floor-dependent portion
of the bid from the additional unobserved audience segment signal.

• Publisher-dependent Externalities – Additional per-publisher coefficients are included to
address contextual pricing externalities,

pai � w0 � w0,xpid
i

� pα0 � α0,xpid
i
qzi � pw1 � w1,xpid

i
� pα1 � α1,xpid

i
qziqp

f
i � εi

This model captures per-publisher deltas on the aggregate externalities model.
1For example, empirically, floor prices in RTB markets may be set too high, reflecting unreasonably high

yield expectations for remnant inventory given the underlying market mechanics [8].
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Figure 1: Hourly autocorrelation for Erpf s and Erpas remains significant even for lags of a day or
more, indicating time-of-day effects acting on auction pricing. We account for these effects before
modeling other externalities by correcting for hourly residuals.

as well as variants that do not include publisher-specific effects (e.g. w1,xpid
i

).

Examining the fits produced by each of these models allows us to determine the extent of differential
pricing based on information externalities both across- and within publishers. If the model assigns
µ0 � µ1 or α � 0, then there is no additional price dispersion to be accounted for, and all price
differentials must be due to publisher context. Furthermore, if α�w0 in the aggregate externalities
model is less than w0 in the externality-free model, then additional audience information has a
negative impact on overall revenue, and vice-versa.

Finally, we note that this model is completely retrospective, and cannot be used to infer the existence
of externalities acting on impression auctions before they take place; rather its utility lies in its use
as a component for a differential floor-pricing model and demand-side weathervane.

3 Pricing Demand-Side Externalities

Dataset: 9M impression auctions from a real-time bidding market2 with 5K publishers and 70 active
advertisers3 over a 2 week span during July 2010. Publisher ID and floor price are observed for all
auctions; auction outcomes are observed in the form of the auction clearing price (second highest bid
or floor price, whichever is higher). Since price data is typically closer to log-normal (no negative
prices), we transform pa and pf into the log-domain. We also identify significant autocorrelations
in both pa and pf on an hourly scale (Figure 1), indicating that time-of-day plays a role in price
dispersion. To account for this potentially confounding effect, we fit a null model regressing on
hour and adjust pa and pf according to the residuals.4

Table 1 provides statistics from the top publishers by volume from our auction sample, and highlights
a wide variety in publisher strategies and inventory qualities. For example, all publishers except for
5 and 8 have dynamic floor pricing (nonzero floor price variance). Publisher 4 sets the highest floor
price, maintaining inventory sell-thru of 10% and also has the highest divergence between floor
and clearing price Eppa � pf q. The publishers with the highest floor prices also have the highest
correlation between pa and pf , indicating that advertisers are not willing to significantly overbid
the floor. In general, publishers with low correlation between pa and pf are experiencing the most
differential selection by informed bidders.

Table 2 summarizes the deviance5 and most salient parameter coefficients for each of the models.
The addition of the latent externality indicator zi significantly improves the model fit, lending evi-
dence for aggregate differential pricing based on unobserved information. However, the addition of
per-publisher externality effects does not significantly reduce deviance beyond the aggregate model,
indicating that advertisers may not be pursuing differential targeting based on publisher context.
Rather, they may be primarily targeting cross-cutting demographics and user cookies. Figure 2
summarizes the contribution of each component of the publisher-dependent externalities model to
the overall fit.

2Modified Vickrey (second-price) auction where the winning bidder pays the second highest price + $0.01.
3Winning at least one auction.
4The main results presented here do not depend on this correction.
5Dpyq � �2

�
logpppy|θ̂0qq � logpppy|θ̂sqq

�
, where θ0 are the parameters of the inferred model and θs are

the parameters of a model with perfect fit (one parameter per data point)
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Publisher n Nppa¡pf q Erpf s Erpas ρppa, pf q Eppa � pf q

0 1.6M 192K 125� 75 151.3� 96.8 0.72 45.1 � 79.9
1 1.5M 61.5K 35� 77 113.1� 110.4 0.53 66.1 � 89.3
2 219K 37.9K 568� 504 462.9� 258.1 0.82 150.2 � 199.0
3 174K 11.6K 111� 40 204.3� 167.2 0.51 100.1 �161.1
4 138K 12.8K 734� 396 632.1� 254.8 0.87 151.0 � 120.2
5 95K 35K 250�0 388� 130.0 - 138.7 � 130.0
8 44K 26K 0� 0 129� 169.9 - 129.3 � 169.9

Table 1: Examples of publisher impression price distributions for 7 of the top 10 publishers by
volume. n is total impressions, Nppa¡pf q is the number of successful (cleared) auctions, Erpf s is
the average floor price (CPM in cents), and Erpas is the average auction clearing price. ρppa, pf q is
the Spearman’s correlation between the floor and clearing price and Eppa � pf q is the expected lift
over the floor price. Errors are standard deviations.

Model Dpyq Erw0s Erα0s Erw1s Erα1s

Aggregate Effects Only
Externality-free 248736 3.21� 0.00 - 0.44�0.00 -
Aggregate Externalities 201443 2.57�0.00 1.32�0.01 0.39� 0.00 -0.09� 0.00

Publisher-Dependent Effects
Externality-free 174768 0.96�0.02 - 0.87�0.00 -
Aggregate Externalities 110254 0.85�0.01 2.22�0.01 1.13�0.00 -0.40�0.00
Publisher-dependent Externalities 106122 2.79�0.02 1.92� 0.01 0.31� 0.00 -0.26� 0.00

Table 2: Inferred model parameters and model deviance. The Aggregate Effects Only models do
not include per-publisher coefficients for the latent externality indicator zi, while the models under
Publisher-Dependent Effects do include such coefficients. Dpyq is the model deviance; w0 is the log-
price intercept; α0 is the intercept delta when zi � 1 (i.e. in the presence of a pricing externality); w1

is the log-price slope; and α1 is the is the externality slope delta. In the publisher-dependent effects
case, reported values for the slope and intercept parameters are averaged across all publishers.

Across all models, the base price w0 � α0zi is significantly higher in the presence of externalities,
as α0 ¡ 0. Furthermore, w0 � α0 in the externality model is greater than w0 in the baseline model,
indicating that additional information has a positive effect on auction revenue, at least for auctions
that result in a sale.

The slope coefficient w1 � α1zi is lower in the externality models, as α1   0. This result makes
intuitive sense: in auctions where externalities are found to affect bid price, clearing price is less
sensitive to floor price (i.e. slope is near 0). In other words, the floor price, or publisher context, is
less important as a signal of quality when advertisers have specific information about the particular
impression (e.g. auto-intender, or recently bought shoes).

                                 Df Deviance Resid. Df Resid. Dev
NULL                                             556421     403092
p_id                              19   218787    556402     184305
log(p_floor_price + 1)             1    30556    556401     153748
cluster.eq                         1    61055    556400      92694
p_id:log(p_floor_price + 1)       14     1646    556386      91048
p_id:cluster.eq                   15     5458    556371      85591
log(p_floor_price + 1):cluster.eq  1     2157    556370      83434

null
publisher id

floor price
per-publisher floor price

aggregate externalities
per-publisher externalities
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                                                Df Deviance Resid. Df Resid. Dev
NULL                                                           556421     503909
cluster.eq                                       1   202623    556420     301286
p_id                                            19   139436    556401     161850
log(p_floor_price.adjusted + 1)                  1    28191    556400     133659
cluster.eq:p_id                                 11     6733    556389     126926
cluster.eq:log(p_floor_price.adjusted + 1)       1     2223    556388     124702
p_id:log(p_floor_price.adjusted + 1)            19    17521    556369     107181
cluster.eq:p_id:log(p_floor_price.adjusted + 1) 10     1059    556359     106122

Figure 2: Residual deviance of linear model fit broken down over regression factors in the publisher-
dependent externalities model. Publisher ID and latent mean-shift components induce the highest
absolute reductions in deviance. Percentages show relative reduction in deviance with respect to the
previous model.
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4 Discussion

We have demonstrated the application of GLMs with a latent mean-shift parameter to quantifying the
effects of information externalities and informed bidders on revenue in RTB markets. Such models
are potentially useful to publishers interested in predicting the pricing dynamics of their remnant
inventory.

4.1 Limitations

The main limitation of the proposed model is that it cannot predict which particular auctions are sub-
ject to information externalities, rather, it can only capture the aggregate effects on price dispersion
retrospectively. However, publishers could potentially capture additional session and user features
in order to make such predictions. Our model can then be used to gauge how much price dispersion
is captured by such features.

Predictions from this model can be conflated with other causes of price dispersion, such as adver-
tiser budgets fluctuating during the sample period, or seasonal effects on price.6 In order to model
demand-side externalities more accurately, it would be necessary to hold publisher, site context and
the advertiser pool constant, observing price variation. However such controlled experiments are
untenable in live markets.

4.2 Future work

Demand-side Modeling: Standard models of auctions assume bidders are endowed with their own
private values over inventory and the auction clearing price is derived from the this set [cf. 4]. In this
paper we have limited ourselves to modeling publisher effects, but could easily extend the analysis
to include bidder preferences as well, bringing it more in line with traditional auction theory.

Supply-side Audience Targeting: There is significant market evidence for differential pricing based
on audience targeting [cf. 8], and a natural consequent is for similar targeting to take place on the
supply-side as well. Such dispersion due to dynamic floor pricing can be captured in our model.

Modeling Sell-through: Predicting sell-through (impressions sold) is also possible in the proposed
framework, and is potentially interesting as unsold inventory may have undergone adverse selection
due to information externalities.

Censored Models and Optimal Floor Pricing: In order to build models suitable for optimizing
floor pricing it is necessary to have an estimate of what advertisers would have bid if a floor price
were lower. Floor price can be treated as a dynamic left-censoring, where auction clearing price is
not observed if it is below the floor price. Tobit regression can be used in place of linear regres-
sion in the presence of censored variables, and could potentially be used to reconstruct the full bid
distribution [1]. Such models also allow straightforward temporal extensions [7].

Models of the full bid distribution would allow publishers to compute the marginal floor price and
hence derive optimal floor pricing strategies. Theoretically, the optimal floor price is simply the
second highest bid price (i.e. the market clearing price). However, in thin (demand-constrained)
markets with few bidders and poor price-discovery, the floor price acts as a pseudo-bidder and can
improve empirical supply-side revenue [9].

Pricing Risk: Finally, we envision extending our pricing models temporally in order to predict
future spot market demand and volatility, key components in controlling publisher risk.
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